
ar
X

iv
:2

00
2.

02
79

4v
1

 [
cs

.L
G

]
 7

 F
eb

 2
02

0

Reward-Free Exploration for Reinforcement Learning

Chi Jin

Princeton University

chij@princeton.edu

Akshay Krishnamurthy

Microsoft Research, New York

akshay@cs.umass.edu

Max Simchowitz

University of California, Berkeley

msimchow@berkeley.edu

Tiancheng Yu

Massachusetts Institute of Technology

yutc@mit.edu

February 10, 2020

Abstract

Exploration is widely regarded as one of the most challenging aspects of reinforcement learning (RL),

with many naive approaches succumbing to exponential sample complexity. To isolate the challenges

of exploration, we propose a new “reward-free RL” framework. In the exploration phase, the agent first

collects trajectories from an MDP M without a pre-specified reward function. After exploration, it is

tasked with computing near-optimal policies under for M for a collection of given reward functions.

This framework is particularly suitable when there are many reward functions of interest, or when the

reward function is shaped by an external agent to elicit desired behavior.

We give an efficient algorithm that conducts Õ(S2Apoly(H)/ǫ2) episodes of exploration and re-

turns ǫ-suboptimal policies for an arbitrary number of reward functions. We achieve this by finding

exploratory policies that visit each “significant” state with probability proportional to its maximum vis-

itation probability under any possible policy. Moreover, our planning procedure can be instantiated by

any black-box approximate planner, such as value iteration or natural policy gradient. We also give a

nearly-matchingΩ(S2AH2/ǫ2) lower bound, demonstrating the near-optimality of our algorithm in this

setting.

1 Introduction

In reinforcement learning (RL), an agent repeatedly interacts with an unknown environment with the goal

of maximizing its cumulative reward. To do so, the agent must engage in exploration, learning to visit states

in order to investigate whether they hold high reward.

Exploration is widely regarded as the most significant challenge in RL, because the agent may have to

take precise sequences of actions to reach states with high reward. Here, simple randomized exploration

strategies provably fail: for example, a random walk can take exponential time to reach the corner of the

environment where the agent can accummulate high reward [Li, 2012]. While reinforcement learning has

seen a tremendous surge of recent research activity, essentially all of the standard algorithms deployed

in practice employ simple randomization or its variants, and consequently incur extremely high sample

complexity.

On the other hand, sophisticated exploration strategies which deliberately incentivize the agent to visit

new states are provably sample-efficient (c.f., Kearns and Singh [2002], Brafman and Tennenholtz [2002],

1

http://arxiv.org/abs/2002.02794v1

Azar et al. [2017], Dann et al. [2017], Jin et al. [2018]), with recent work providing a nearly-complete the-

oretical understanding for maximizing a single prespecified reward function Dann and Brunskill [2015],

Azar et al. [2017], Zanette and Brunskill [2019], Simchowitz and Jamieson [2019]. In practice, however,

reward functions are often iteratively engineered to encourage desired behavior via trial and error (e.g.

in constrained RL formulations [Altman, 1999, Achiam et al., 2017, Tessler et al., 2018, Miryoosefi et al.,

2019]). In such cases, repeatedly invoking the same reinforcement learning algorithm with different reward

functions can be quite sample inefficient.

One solution to avoid excessive data collection in such settings is to first collect a dataset with good

coverage over all possible scenarios in the environment, and then apply a “Batch-RL” algorithm. Indeed

many algorithms are known for computing near optimal policies from previously collect data, provided

that the dataset has good coverage [Munos and Szepesvári, 2008, Antos et al., 2008, Chen and Jiang, 2019,

Agarwal et al., 2019]. However, prior work provides little guidance into how to obtain such good coverage.

In this paper, we aim to develop an end-to-end instantiation of this proposal. To this end we ask:

How can we efficiently explore an environment without using any reward information?

In particular, by exploring the environment, we aim to gather sufficient information so that we can

compute the near-optimal policies for any reward function after-the-fact.

Our Contributions. In this paper, we present the first near-optimal upper and lower bounds which charac-

terize the sample complexity of achieving provably sufficient coverage for Batch-RL. We do so by adopting

a novel “reward-free RL” paradigm: During an exploration phase, the agent collects trajectories from an

MDPM without a pre-specified reward function. Then, in a planning phase, it is tasked with computing

near-optimal policies under the transitions ofM for a large collection of given reward functions.

Letting S denote the number of states, A the number of actions, H the horizon, and ǫ the desired

accuracy, we give an efficient algorithm which, after conducting Õ(S2Apoly(H)/ǫ2) episodes of explo-

ration, collects a data set with sufficiently good coverage to enable application of standard Batch-RL solvers.

Specifically, we show that when given a reward function r we can find an ǫ-suboptimal policy for the true

MDP M with reward r, using the dataset alone and no additional data collection. This guarantee holds

for all possible reward functions simultaneously, without needing to collect more data to ensure statistical

correctness as new reward functions are considered.

Our exploration phase is conceptually simple, using an existing RL algorithm as a black-box [Zanette and Brunskill,

2019], and our planning phase accommodates arbitrary Batch-RL solvers. We instantiate our result with

value iteration and natural policy gradient as special cases. By decoupling exploration and planning, our

work sheds light on the algorithmic mechanisms required for sample efficient reinforcement learning. We

hope that this insight will be useful in the design of provably efficient algorithms for more practically rele-

vant RL settings, such as those where function approximation is required.

In addition to our algorithmic results, we establish a nearly-matching Ω(S2AH2/ǫ2) lower bound,

demonstrating the near-optimality of our algorithm in this paradigm. Notably, this lower bound quanti-

fies a price of “good-coverage” in the reward-free setting: while RL with a pre-specified reward has sample

complexity of only Θ̃(SAH2/ǫ2) [Dann and Brunskill, 2015], the reward-free sample complexity is a factor

of S larger.

Technical Novelty. The main technical challenge in our work involves handling environments with states

that are difficult to reach. In such cases, we cannot learn the transition operator to high accuracy uni-

formly over the environment, simply because we cannot reach these states to collect enough data. With

2

λ(s) denoting the maximal probability of visiting state s under any policy, our key observation is that

we can partition the state space into two groups: the states with λ(s) so small that they have negligible

contribution to reward optimization, and the rest. We introduce a rigorous analysis which enables us to

“ignores” the difficult-to-visit states altogether and only requires that we visit the remaining states with

probability proportional λ(s). To achieve this latter guarantee, we conduct our exploration with the EULER

algorithm [Zanette and Brunskill, 2019], which in our context yields refined sample complexity guarantees

in terms of λ(s). We believe that this decomposition of states into their ease of being reached may be of

broader interest. Our lower bound also adopts a novel and sophisticated construction, detailed in Section 4.

Related work. For reward-free exploration in the tabular setting, we are aware of only a few prior ap-

proaches. First, when one runs a PAC-RL algorithm like RMAX with no reward function [Brafman and Tennenholtz,

2002], it does visit the entire state space and can be shown to provide a coverage guarantee. However, for

RMAX in particular the resulting sample complexity is quite poor, and significantly worse than our near-

optimal guarantee (See Appendix A for a detailed calculation). We expect similar behavior from other PAC

algorithms, because reward-dependent exploration is typically suboptimal for the reward-free setting.

Second, one can extract the exploration component of recent results for RL with function approxima-

tion [Du et al., 2019, Misra et al., 2019]. Specifically, the former employs a model based approach where a

model is iteratively refined by planning to visit unexplored states, while the latter uses model free dynamic

programming to identify and reach all states. While these papers address a more difficult setting, it is rela-

tively straightforward to specialize their results to the tabular setting. In this case, both methods guarantee

coverage, but they have suboptimal sample complexity and require that all states can be visited with signif-

icant probability. In contrast, our approach requires no visitation probability assumptions and achieves the

optimal sample complexity.

The last point of comparison is a recent result of Hazan et al. [2018], that gives an efficient algorithm

for finding a certain exploratory policy. They use a Frank-Wolfe style algorithm to find a policy whose

state occupancy measure has maximum entropy. One can show that an exact optimizer for their objective

has a similar coverage property to our exploratory policy, but the Frank-Wolfe style algorithm can only

guarantee an approximate optimizer. They do not analyze how the optimization error enters in the coverage

guarantee, but we are able to show that setting the error toO(1/S) suffices (see Appendix B). Unfortunately,

this implies that their sample complexity scales with S5, which is much worse than ours. More generally,

their result is not end-to-end in that they do not show how to use their policy for planning, and they do not

establish a final sample complexity bound, both of which we do here.

Finally, the main source of motivation for our work is recent and classical results on batch reinforcement

learning [Munos and Szepesvári, 2008, Antos et al., 2008, Chen and Jiang, 2019, Agarwal et al., 2019], a

setting where the goal is to find a near optimal policy, given an a priori dataset collected by some logging

policy that satisfies certain coverage properties. In this paper, we show how to find such a logging policy

for the tabular setting, which enables straightforward application of these batch RL results. As an example,

we show how to apply both value iteration and natural policy gradient to optimize the policy given any

reward function. More generally, these works typically also consider the function approximation setting,

and we believe our modular approach will facilitate development of provably efficient algorithms for these

challenging settings.

3

2 Preliminaries

We consider the setting of a tabular episodic Markov decision process, MDP(S,A,H,P, r), where S is the

set of states with |S| = S, A is the set of actions with |A| = A, H is the number of steps in each episode,

P is the time-dependent transition matrix so that Ph(·|s, a) gives the distribution over the next state if action

a is taken from state s at step h ∈ [H], and rh : S × A → [0, 1] is the deterministic reward function at step

h.1 Note that we are assuming that rewards are in [0, 1] for normalization.

In each episode of a standard MDP, an initial state s1 is picked from an unknown initial distribution

P1(·). Then, at each step h ∈ [H], the agent observes state sh ∈ S , picks an action ah ∈ A, receives reward

rh(sh, ah), and then transitions to the next state sh+1, which is drawn from the distribution Ph(·|sh, ah).
The episode ends after the H th reward is collected.

A (non-stationary, stochastic) policy π is a collection of H functions
{
πh : S → ∆A

}
h∈[H]

, where ∆A

is the probability simplex over action set A. As notation, we use π(·|s) to denote the action distribution for

policy π in state s. We use V π
h : S → R to denote the value function at step h under policy π, which gives

the expected sum of remaining rewards received under policy π, starting from sh = s, until the end of the

episode. That is,

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)|sh = s

]
.

Accordingly, we also define Qπ
h : S × A → R to denote action-value function at step h, so that Qπ

h(s, a)
gives the expected sum of remaining rewards received under policy π, starting from sh = s, ah = a, until

the end of the episode. Formally:

Qπ
h(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)|sh = s, ah = a

]
.

Since the state and action spaces, and the horizon, are all finite, there always exists (see, e.g., Azar et al.

[2017]) an optimal policy π⋆ which gives the optimal value V ⋆
h (s) = supπ V

π
h (s) for all s ∈ S and h ∈ [H].

As notation, define [PhVh+1](s, a) := Es′∼P(·|s,a)Vh+1(s
′). Recall the Bellman equation

V π
h (s) = Qπ

h(s, πh(s)), Qπ
h(s, a) = (rh + PhV

π
h+1)(s, a) (1)

and the Bellman optimality equation:

V ⋆
h (s) = max

a∈A
Q⋆

h(s, a), Q⋆
h(s, a) := (rh + PhV

⋆
h+1)(s, a). (2)

where we define V π
H+1(s) = V ⋆

H+1(s) = 0 for any s ∈ S .

The RL objective is to find an ǫ-optimal policy π, satisfying

Es1∼P1 [V
⋆
1 (s1)− V

π
1 (s1)] ≤ ǫ

1While we study deterministic reward functions for notational simplicity, our results generalize to randomized reward functions.

4

Protocol 1 Reward-Free Exploration

for k = 1 to K do

learner decides a policy πk
environment samples the initial state s0 ∼ P1.

for h = 1 to H do

learner selects action ah ∼ πh(·|sh)
environment transitions to sh+1 ∼ Ph(·|sh, ah)
learner observes the next state sh+1

Reward-free Exploration. In the reward-free setting, we would like to design algorithms that efficiently

explore the state space without the guidance of reward information. Formally, the agent interacts with the

environment through Protocol 1—a reward-free version of the MDP, where the agent can transit as usual

but does not collect any rewards. Over the course of K episodes following Protocol 1, the agent collects a

dataset of visisted states, actions, and transitions D = {s
(k)
h , a

(k)
h }(k,h)∈[K]×[H], which is the outcome of the

exploration phase.

The effectiveness of the exploration strategy is evaluated in the next phase—the planning phase—in

which the agent is no longer allowed to interact with the MDP. In this phase, the agent is given a reward

function r(·, ·) that can be potentially adversarily designed, and the objective here is to compute a near

optimal policy for this reward function using the dataset D. Performance is measured in terms of how many

episodes K are required in the exploration phase so that the agent can reliably achieve the objective above.

As notation, we use V (·; r) to emphasize that the value function depends on the reward r.

We remark that providing the reward function after the exploration phase (as opposed to before) makes

the setting more challenging, and so our algorithm applies to the easier setting. We also note that our results

address the setting where the reward is observed through interaction with the environment, as learning

the reward is typically not the statistical barrier to efficient RL. Indeed, a provably effective reward-free

exploration strategy must visit all “significant” state-action pairs (see Definition 3.2) sufficiently many times

anyway, and this experience is sufficient to learn the reward function.

3 Main Results

We are now ready to state our main theorem. It asserts that our algorithm, which we will describe in the

subsequent sections, is a reward-free exploration algorithm with sample complexity Õ(H5S2A/ǫ2), ignor-

ing lower order terms. In other words, after this many episodes interacting with the MDP via Protocol 1, our

algorithm can compute ǫ-optimal policies for arbitrarily many reward functions. The theorem demonstrates

that the sample complexity of reward-free exploration is at most Õ(H5S2A/ǫ2), which we will show to be

near-optimal with our lower bound in the next section.

Theorem 3.1. Ther exists an absolute constant c > 0 and a reward-free exploration algorithm such that,

for any p ∈ (0, 1), with probability at least 1− p, the algorithm outputs ǫ-optimal policies for an arbitrary

number of adaptively chosen reward functions. The number of episodes collected in the exploration phase

is bounded by

c ·

[
H5S2Aι

ǫ2
+
S4AH7ι3

ǫ

]
, (3)

where ι := log(SAH/(pǫ)).

5

Algorithm 2 Reward-free RL-Explore

1: Input: iteration number N0, N .

2: set policy class Ψ← ∅, and dataset D ← ∅.
3: for all (s, h) ∈ S × [H] do

4: rh′(s′, a′)← 1[s′ = s and h′ = h] for all (s′, a′, h′) ∈ S ×A× [H].
5: Φ(s,h) ← EULER(r,N0).
6: πh(·|s)← Uniform(A) for all π ∈ Φ(s,h).

7: Ψ← Ψ ∪ Φ(s,h).

8: for n = 1 . . . N do

9: sample policy π ∼ Uniform(Ψ).
10: playM using policy π, and observe the trajectory zn = (s1, a1, . . . , sH , aH , sH+1).
11: D ← D ∪ {zn}
12: Return: dataset D.

We emphasize that the correctness guarantee here is quite strong: the dataset D collected by the algo-

rithm is such that any number of adaptively chosen reward functions can be optimized with no further data

collection. In contrast, if we naı̈vely deployed a reward-sensitive RL algorithm, we would have to collect

additional trajectories for each reward function, which could be quite sample inefficient. We emphasize that

requiring near-optimal policies for many reward functions is quite common in applications, especially when

we design reward functions by trial and error to elicit specific behaviors.

Algorithm overview. Our algorithm proceeds with following high level steps:

1. learn a set of policies Ψ which allow us to visit all “significant” states with reasonable probability.

2. collect a sufficient amount of data by executing policies in Ψ.

3. compute the empirical transition matrix P̂ using the collected data.

4. for each reward function r, find a near-optimal policy by invoking a planning algorithm with transi-

tions P̂ and reward r.

The first two steps are performed in the exploration phase, while the latter two steps are performed in the

planning phase. In Section 3.1 and Section 3.2, we will present our formal algorithms and the corresponding

theoretical guarantees for two phases separately. One important feature of our algorithm is that we can

use existing approximate MDP solvers or batch-RL algorithms in the last step. We demonstrate with two

examples, namely Value Iteration (VI) and Natural Policy Gradient (NPG), in Section 3.3.

3.1 Exploration Phase

The goal of exploration is to visit all possible states so that the agent can gather sufficient information in

order to find the optimal policy eventually. However, rather different from the bandit setting where agent can

select an arbitrary arm to pull, it is possible that certain state in the MDP is very difficult to reach no matter

what policy the agent is taking. Therefore, we first introduce the concept of the state being “significant”.

See Figure 1 for illustrations.

6

s0

s1 s2

s3s4

a2, 10
−6

a2, 1− 10−6

a1, 1

Figure 1: Illustration of significant states (Definition 3.2) v.s. insignificant states. In this toy example we

have 5 states, where s0 is the initial state. Only from state s0 the agent can transit to other states and the other

states are absorbing whatever action the agent takes. For state s0, we use blue arrows to represent transition

if action a1 is taken and red ones if action a2 is taken. The numbers on the arrows following the actions are

the transition probability. In this example, s4 is insignificant, because it can never be reached. For δ = 10−5,

s2 is also δ-insignificant, because the best policy to reach s2 is by taking action a2 at initial state s0, which

gives the maximum probability 10−6 to reach s2. The remaining states s1, s3 are all δ-significant.

Definition 3.2. A state s in step h is δ-significant if there exists a policy π, so that the probability to reach

s following policy π is greater than δ. In symbol:

max
π

P π
h (s) ≥ δ

Intuitively, with limited budeget of samples and runtime, one can be only hopefully to visit all significant

states. On the other hand, since insignificant states can be rarely visited no matter what policy is used, they

will not significantly change the value from the initial states. Thus, for the sake of finding near-optimal

policies, it is sufficient to visit all significant states with proper significance level ǫ. Indeed, Algorithm 2 is

able to provide such a guarantee as follows.

Theorem 3.3. There exists absolute constant c > 0 such that for any ǫ > 0 and p ∈ (0, 1), if we set

N0 ≥ cS2AH4ι30/δ where ι0 := log(SAH/(pδ)), then with probability at least 1 − p, that Algorithm 2

will returns a dataset D consisting of N trajectories {zn}
N
n=1, which are i.i.d sampled from a distribution µ

satisfying:

∀ δ-significant (s, h), max
a,π

P π
h (s, a)

µh(s, a)
≤ 2SAH. (4)

Theorem 3.3 claims that using Algorithm 2, we can collect data from a underlying distribution µ, which

ensures that for policy π, the ratio P π
h (s, a)/µh(s, a) will be upper bounded for any significant state and

action. That is, all significant state and action will be visited by distribution µ with reasonable amount of

probability. Notice as δ becomes smaller, there will be more significant states and the condition (4) becomes

stronger. As a result we need to take larger N0. As we will see later, the δ we take eventually will be

ǫ/
(
2SH2

)
, where ǫ is the suboptimality of the policy we find in the planning phase.

Algorithm 2 can be decompose into two parts, where Line 3-7 learns a set of exploration policies Ψ and

Line 8-11 simply collects data by uniformly executing policies in Ψ. Therefore, the key mechanism lies in

how to learn the set of exploration policies Ψ. Our strategy is to first learn the best policies that maximize

the probability to research each state s at step h individually, and then combine them.

Concretely, for each state s at step h, algorithm 2 first create a reward function r that is always zero

except for the state s at step h. Then we can simulate a standard MDP by properly feeding this designed

reward r when an agent interact with the environment using protocol 1. It is easy to verify that the optimal

policy for the MDP with this reward r is precisely the policy that maximizes the probability to reach (s, h).

7

Algorithm 3 Reward-free RL-Plan

1: Input: a dataset of transition D, reward function r, accuracy ǫ.
2: for all (s, a, s′, h) ∈ S ×A× S × [H] do

3: Nh(s, a, s
′)←

∑
(sh,ah,sh+1)∈D

1[sh = s, ah = a, sh+1 = s′].

4: Nh(s, a)←
∑

s′ Nh(s, a, s
′).

5: P̂h(s
′|s, a) = Nh(s, a, s

′)/Nh(s, a).
6: π̂ ← APPROXIMATE-MDP-SOLVER(P̂, r, ǫ).
7: Return: policy π̂.

Thus, any RL algorithms with PAC or regret guarantees Azar et al. [2017], Jin et al. [2018] can be used

here to approximately find this optimal policy. In particular, we use EULER algorithm Zanette and Brunskill

[2019], whose theoretical guarantee in our setting is presented as follows 2

Lemma 3.4. There exists absolute constant c > 0 such that for any N0 > 0 and p ∈ (0, 1), with probability

at least 1− p, if we run EULER algorithm for N0 episodes, it will output a policy set Φ with |Φ| = N0 that

satisfies:

Es1∼P1

[
V ⋆
1 (s1)−

1

N0

∑

π∈Φ

V π
1 (s1)

]
≤ c ·





√
SAHι0 · Es1∼P1V

⋆
1 (s1)

N0
+
S2AH4ι30

N0





where ι0 = log (SAHN0/p).

We comment that one unique feature of EULER algorithm is that its suboptimality scales with the value

of the optimal policy Es1∼P1V
⋆
1 (s1). This is key in obtaining a sharp result, and is especially helpful in

dealing with those states that are still significant but their maximum reaching probability is low. Finally,

since the best policy to reach (s, h) is only meaningful at steps before h, algorithm 2 then alter the policy

for state s at step h to be Uniform(A) to ensure good probability of choosing all actions for this state.

3.2 Planning Phase

In planning phase, the agent is given the reward function r, and aims to find a near-optimal policy

based on r and dataset D collected in the exploration phase. Algorithm 3 proceeds with two steps. Line

2-5 use counts based on dataset D to estimate the empirical transition matrix P̂. Then, algorithm 3 calls

a approximate MDP solver. Subroutine APPROXIMATE-MDP-SOLVER(P̂, r, ǫ) can be any algorithm

that finds ǫ-suboptimal policy π̂ for MDP with known transition matrix and reward (they are P̂, r in this

case). See Section 3.3 for examples of such approximate MDP solvers.

Now we are ready to state the guarantee for Algorithm 3, which asserts that as long as the number of

data collected in the exploration phase is sufficiently large, the output policy π̂ is not only a near-optimal

policy for the estimated MDP with transition P̂, but also a near-optimal policy for the true MDP.

Theorem 3.5. There exists absolute constant c > 0, for any ǫ > 0, p ∈ (0, 1), assume dataset D has N
i.i.d. samples from distribution µ which satisfies Eq.(4) with δ = ǫ/

(
2SH2

)
, and N ≥ cH5S2Aι/ǫ2, then

2In Zanette and Brunskill [2019], EULER is studied under stationary setting, where P and r does not depend on h. A stationary

MDP can simulate a non-stationary MDP by augmenting state s to (s, h). Therefore, the effective number of states becomes SH

when we apply the results in Zanette and Brunskill [2019].

8

with probability at least 1− p, for any reward function r simultanouesly, the output policy π̂ of Algorithm 3

is 3ǫ-suboptimal. That is:

Es1∼P1 [V
⋆
1 (s1; r)− V

π̂
1 (s1; r)] ≤ 3ǫ

The mechanism behind Theorem 3.5 is that: by sample sufficient number of exploring data, we ensure

that the empirical transition P̂ and the true transition P are close so that the near-optimal policy for the

esimated MDP with transition P̂ is also near optimal for the true MDP. We note that the closeness of P̂ and

P can not be established in the usual sense of the TV-distance (or other distributional distance) between

P̂h(·|s, a) and Ph(·|s, a) is small for any (s, a, h), due to the existence of insignificant states. The key

observation is that, nevertheless, we can establish the closeness of P̂ and P in the sense that for any policy

π, the value functions starting from initial states are close. That is, the difference in policy evaluations of

two MDPs is small, which is summarized in the following lemma.

Lemma 3.6. Under the preconditions of Theorem 3.5, with probability at least 1−p, for any reward function

r and any policy π, we have:

|Es1∼P1 [V̂
π
1 (s1; r)− V

π
1 (s1; r)]| ≤ ǫ (5)

where V̂ is the value function of MDP with the transition P̂.

The establishment of Lemma 3.6 is a natual consequence of the followings: (1) the total contribution

from all insignificant states is small; (2) P̂ is reasonably accurate for all significant states; and (3) a new

sharp concentration inequality (see Lemma C.2 in Appendix). With Lemma 3.6, now we are ready to prove

Theorem 3.5.

Proof of Theorem 3.5. We denote the optimal policy of MDP(P, r) and MDP(P̂, r) by π⋆ and π̂⋆ respec-

tively. The theorem is a direct consequence of the following decomposition

Es1∼P1{V
π⋆

1 (s1; r)− V
π̂
1 (s1; r)}

≤|Es1∼P1{V
π⋆

1 (s1; r)− V̂
π⋆

1 (s1; r)}|︸ ︷︷ ︸
Evaluation error 1

+ Es1∼P1{V̂
π⋆

1 (s1; r)− V̂
π̂⋆

1 (s1; r)}︸ ︷︷ ︸
≤0 by definition

+Es1∼P1{V̂
π̂⋆

1 (s1; r)− V̂
π̂
1 (s1; r)}︸ ︷︷ ︸

Optimization error

+ |Es1∼P1{V̂
π̂
1 (s1; r)− V

π̂
1 (s1; r)}|︸ ︷︷ ︸

Evaluation error 2

where evaluation errors are bounded by ǫ by Lemma 3.6 and optimization error is bounded by ǫ by assump-

tion.

3.3 Approximate MDP Solvers

Approximate MDP solvers aim to find a near-optimal policy when the exact transition matrix P and

reward r are known. The simplest way to achieve this is by Value Iteration (VI) algorithm, which solves the

Bellman optimality equation Eq.(2) in a dynamical programming fashion. Then the greedy policy induced

by the result Q⋆ gives precisely the optimal policy without error.

Another popular approach frequently used in practice is the Natural Policy Gradient (NPG) algorithm

as shown in Algorithm 4. In each iteration, the algorithm first evaluates the value of policy π(t) using

Bellman equation Eq.(1). Then it updates the policy by first scale it with the exponential of learning η times

value Qπ(t)
, and then performs a normalization. For completeness, we provides its guarantee here. Similar

analysis also appears in Agarwal et al. [2019].

9

Algorithm 4 Natural Policy Gradient (NPG)

1: Input: transition matrix P, reward function r, stepsize η, iteration number T .

2: initialize π
(0)
h (·|s)← Uniform(A) for all (s, h)

3: for t = 0, · · · , T − 1 do

4: evaluate Qπ(t)

h (s, a) using Bellman equation Eq.(1) for all (s, a, h).

5: update π
(t+1)
h (a|s) ∝ π

(t)
h (a|s) · exp(ηQπ(t)

h (s, a)) for all (s, a, h).
6: Return: policy π(T).

Proposition 3.7. for any learning rate η and iteration number T , the output policy π(T) of Algorithm 4

satisfies the following:

Es1∼P1 [V
⋆
1 (s1)− V

π(T)

1 (s1)] ≤
H logA

ηT
+ ηH2

Therefore, it is easy to verify, by choosing η =
√

logA/HT and T = 4H3 logA/ǫ2, the policy π(T)

returned by NPG is ǫ-optimal.

4 Lower Bound

In this section, we establish that Ω(H2S2A/ǫ2) trajectories are necessary to satisfy the guarantee from

Theorem 3.1.

Theorem 4.1. Let C > 0 be a universal constant. Then for A ≥ 2, S ≥ C log2A, H ≥ C log2 S,

and any ǫ ≤ min{1/4,H/48}, any reward-free exploration algorithm Alg which statisfies the guarantee of

Theorem 3.1 with p = 1/2 and accuracy parameter ǫmust collect Ω(S2AH2/ǫ2) trajectories in expectation.

This is true even if Alg can return randomized or history-dependent (non-Markov) policies, and holds even

if the rewards and transitions are identical across stages h.

In particular, Theorem 4.1 shows that our upper bound (Theorem 3.1) is tight in S,A, ǫ, up to logarithmic

factors and lower-order terms. Note that lower bound holds against querying an unlimited number of reward

vectors. It is left as an open question whether such a lower bound holds when the algorithm is only required

to ensure correctness over a smaller number of reward vectors pre-determined in advance. In what follows,

we sketch a proof of Theorem 4.1; a formal proof is given in Appendix D.

4.1 Reward Free Exploration at a Single State

The core of our construction is a simple instance with a single initial state x1 = 0 and 2n absorbing states

s ∈ [2n]; the transition from states 0 → s is described by a vector q ∈ R
[2n]×[A], where q(s, a) is the

transition probability to state s if action a is taken at state 0. We shall also restrict to vectors q are close to

uniform, i.e.,

∀s, a,

∣∣∣∣q(s, a)−
1

2n

∣∣∣∣ ≤
ǫ

2n
(6)

The learner is then tasked with learning near optimal policies for reward vectors rν parametrized by

ν ∈ [0, 1]2n, which assigns a state-dependent but action-independent reward ν(s) to states s ∈ [2n], and no

reward to x1 = 0. The blue (“left”) transitions or red (“right”) transition in Figure 2 mirror this construction,

10

(0, 1)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

‘left’

’right’

Figure 2: The “left” (blue) instance and “right” (red) instance embed two copies of the instance from

Lemma 4.2. In each copy, the agent begins in stage s = 0, and moves to states s ∈ [2n], n = 2. Dif-

ferent actions correspond to different probability distributions over next states s ∈ [2n]. States s ∈ [2n]
are absording, and rewards are action-independent. Lemma 4.2 shows that this construction requires the

learner to learn Ω(n) bits about the transition probabilities p(·|0, a). By embedding this coonstruction

into a large MDP, this construction forces the learner to learn the transition probabilities at n = 2 states,

{(x, log2 n) : x ∈ [n]}. The learner can determinsitically access these states by appropriate choice of “left”

and “right” actions.

which we formalize in Definition D.1. We show that reward-free exploration essentially forces the learner

to learn the probability vectors q(·, a) in total-variation distance for each a ∈ [A], yielding an Ω(nA/ǫ2)
lower bound for this construction. A formal statement is of the following Lemma is given in Lemma D.2 in

the appendix.

Lemma 4.2 (Informal). Suppose S ≥ C log2(A) for a universal constant C > 0. Suppose Alg, when faced

with the instances described above (with q satisfying Eq. (6)) successfully returns ǫ-suboptimal policies

for exponentially many reward vectors with total failure probability 1/2. Then Alg requires Ω(SA/ǫ2)
trajectories in expectation.

Proof Sketch. Unfortunately, we cannot show a direct reduction from estimating q in total variation to learn-

ing near optimal-policies. Instead, by selecting appropriate reward vectors rν , the algorithm can decode a

packing of exp(Ω(n)) transition vectors q(·, a) for each action a ∈ [A]. By a variant of Fano’s inequality,

this leads to the same Ω(nA/ǫ2) lower bound that would be obtained by a direct reduction.

Lemma 4.2 differs from existing Ω(SA/ǫ2) lower bounds in that the only quantities unknown to the

learner are the transition probabilities associated with the single state 0. This is in contrast to most existing

lower bounds where the learner needs to collect transition information at multiple states. In particular, here

the factor of S arises because the transition is to Θ(S) states, while in most constructions this factor arises

because transitions from Θ(S) states must be estimated.

4.2 Lower Bound for Multiple States

To obtain an Ω(S2H2A/ǫ2) lower bound, we embed n = Ω(S) instances from above as the second-to-last

layer of a binary tree of depth 1+ log2 n. All n such instances share the same 2n-terminal leaves (assume n

11

is a power of 2). We index states by pairs (x, ℓ), where ℓ denotes the layer. From the binary tree construction,

there are at most 4n states, so n = Ω(S). We assume that the MDP begins in stage (0, 1), and for layers

ℓ < log2 n, action 1 always moves “left” in the tree, and actions 2, . . . , A always moves “right” in the tree.

Moreover, the leaf-states are all absorbing. The construction is given in Figure 2.

The only part unknown to the learner are the transition vectors {qx}x∈[n], where qx(s, a) describes the

probability of transitioning to leaf (s, 1 + log2 n) when taking action a from state (x, log2 n). We now

index rewards by (x, ν) ∈ [n]× [0, 1]2n , where rx,ν places action-independent reward 1 on state (x, log2 n),
action-independent reward ν(s) on states (s, 1 + log2 n), and reward 0 everywhere.

Assume that the transitions qx satisfy the near-uniformity condition of (6) for ǫ = 1/4H . Then, for

reward rx,ν , the high reward of 1 at (x, log2 n) forces any near-optimal policy to visit (x, log2 n) and sub-

sequently play near optimal actions at this state. However, playing optimally at (x, log2 n) under reward

rx,ν for all ν is equivalent to reward-free learning of a single instance of the construction from Lemma 4.2.

By varying x ∈ [n] for the reward vectors rx,ν , the learner is forced to learn n such instances, yielding the

Ω(n · nA/ǫ2) = Ω(S2A/ǫ2) lower bound. This can be improved to Ω(H2S2A/ǫ2) by using the absorbing

states to create a chain of Ω(H) rewards.

5 Conclusion

In this paper, we propose a new “reward-free RL” framework, comprising of two phases. In the exploration

phase, the learner first collects trajectories from an MDPMwithout receiving any reward information. After

the exploration phase, the learner is no longer allowed to interact with the MDP and she is instead tasked with

computing near-optimal policies under forM for a collection of given reward functions. This framework is

particularly suitable when there are many reward functions of interest, or when we are interested in learning

the transition operator directly.

This paper provides an efficient algorithm that conducts Õ(S2Apoly(H)/ǫ2) episodes of exploration

and returns ǫ-suboptimal policies for an arbitrary number of adaptively chosen reward functions. Our

planning procedure can be instantiated by any black-box approximate planner, such as value iteration or

natural policy gradient. We also give a nearly-matching Ω(S2AH2/ǫ2) lower bound, demonstrating the

near-optimality of our algorithm in this setting.

We close with some directions for future work. On the technical level, an interesting direction is to

understand the sample complexity for reward-free RL with a pre-specified reward function that is unob-

served during the exploration phase. Our lower bound proofs requires the agent to be able to optimize

all possible reward functions, so it does not directly apply to this potentially easier setting. Can we use

Õ(SApoly(H)/ǫ2) samples in the exploration phase to achieve this goal?

Another interesting direction is to design reward-free RL algorithms for settings with function approxi-

mation. We believe our work highlights and introduces some mechanisms that may be useful in the function

approximation setting, such as the concept of significant states (Definition 3.2) and the coverage guaran-

tee (4). How do we generalize these concepts to the function approximation setting?

We hope to pursue these directions in future work.

References

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Proceed-

ings of the 34th International Conference on Machine Learning-Volume 70, pages 22–31. JMLR. org,

2017.

12

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with

policy gradient methods in markov decision processes. arXiv preprint arXiv:1908.00261, 2019.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-residual

minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):89–129,

2008.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement

learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages

263–272. JMLR. org, 2017.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal

reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization.

arXiv preprint arXiv:1912.05830, 2019.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. arXiv

preprint arXiv:1905.00360, 2019.

Xi Chen, Adityanand Guntuboyina, and Yuchen Zhang. On bayes risk lower bounds. The Journal of

Machine Learning Research, 17(1):7687–7744, 2016.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning.

In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds for

episodic reinforcement learning. In Advances in Neural Information Processing Systems, pages 5713–

5723, 2017.

Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, and John Langford.

Provably efficient rl with rich observations via latent state decoding. arXiv preprint arXiv:1901.09018,

2019.

Elad Hazan, Sham M Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy

exploration. arXiv preprint arXiv:1812.02690, 2018.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In

Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In ICML,

volume 2, pages 267–274, 2002.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis, University

of London, London, England, 2003.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification in

multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

13

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine

learning, 49(2-3):209–232, 2002.

Lihong Li. Sample complexity bounds of exploration. In Reinforcement Learning, pages 175–204. Springer,

2012.

Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudik, and Robert Schapire. Reinforcement

learning with convex constraints. arXiv preprint arXiv:1906.09323, 2019.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction

and provably efficient rich-observation reinforcement learning. arXiv preprint arXiv:1911.05815, 2019.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine

Learning Research, 9(May):815–857, 2008.

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular mdps.

In Advances in Neural Information Processing Systems, pages 1151–1160, 2019.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv

preprint arXiv:1805.11074, 2018.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning

without domain knowledge using value function bounds. arXiv preprint arXiv:1901.00210, 2019.

14

A The ZERORMAX algorithm

RMAX is a well-known PAC exploration algorithm Brafman and Tennenholtz [2002]. Here, we show that a

modified version of RMAX, which we call ZERORMAX, addresses the reward-free exploration setting.

The difference between ZERORMAX and RMAX is that we set the reward in “known” states to 0 in-

stead of the true reward, which explains the name. We briefly describe the algorithm and derive the PAC

bound relying heavily on prior arguments. Details about RMAX and its analysis can be found in prior

work Brafman and Tennenholtz [2002], Kakade [2003].

Following the reward-free exploration framework proposed in Section 2, the ZERORMAX algorithm

first collects samples without knowledge about reward (exploration) and then computes a policy for each

configuration of reward function (planning). We define set of known states K to be

K := {(s, h) : ∀a ∈ A, Nh (s, a) ≥ m}

where Nh (s, a) counts how many times s has been visited and a was taken in the h-th step and m is a

parameter to be specified later. The set K contains states that we have visited enough times to estimate the

corresponding transition kernel, and is typically referred to as the “known set” in the literature. For (s, h)
not in K, we call them “unknown.”

Now ZERORMAX explores as follows. In each episode i ∈ [N], the agent has a known set Ki and

1. builds an empirical MDP M̂i,Ki
with parameters

Ph (·|s, a) =

{
P̂h,i (·|s, a) if (s, h) ∈ Ki

1 {s′ = s} otherwise
rh (s, a) =

{
0 if (s, h) ∈ Ki

1 otherwise
(7)

where Ph,i is the empirical estimation of Ph in the i-th episode.

2. computes πi = π⋆
M̂i,Ki

on M̂i,Ki
by value iteration.

3. samples a trajectory from the environment following πi.

4. constructs Ki+1 for the next episode

For the planning phase, we first sample an index i ∈ [N] uniformly and construct the MDP M̂i,Ki
. Then

given reward function, we can just perform value iteration on M̂i,Ki
, which gives us a near optimal policy.

A.1 Analysis

A central concept for analyzing the sample complexity of ZERORMAX is the escape probability, which is

the probability of visiting the unknown states. Formally,

pπK = PM,π {∃ (sh, h) s.t. (sh, h) /∈ K}

The above definition also depends on the corresponding MDP M. Since we only care about the escape

probability w.r.t the true MDPM, we will omit this dependence. The key observation is that there cannot

be too many episodes where the escape probability is large. The inuition is that, if the escape probability is

big, then the agent will soon visit an unknown states. However, the agent can visit unknown states at most

mSA times in total.

15

M MK M̂K

Known (K) =M =M ≈M

Unknown =M self loop self loop

Table 1: A comparison between the three MDPs involved.

Lemma A.1 (Lemma 8.5.2 in Kakade [2003]). Let πi be the policy followed in the ithepisode and Ki be

corresponding set of known states. Then with probability 1 − p, there can be at most O
(
mSA
ε log SANH

p

)

episodes where pπi

Ki
> ε.

As a result, we have the following corollary.

Corollary A.2. If we sample i uniformly from 1 to K , then with probability 1− p −O
(
mSA
εN log SANH

p

)
,

we have pπi

Ki
≤ ε.

In what follows, we focus on a single “good” episode i where pπi

Ki
≤ ε. Since we focus on a single

episode, let us denote Ki by K and πi by π⋆
M̂K

. There are three MDPs of interest, with important details

presented in Table 1.

M is the true MDP of interest, that we will use to measure the performance of the policy we find in the

planning phase. M̂K is the MDP we use for computing policies in both exploration and planning phases.

The final MDP,MK is an intermediate MDP which agrees withM on the known set but follows self-loops

in the unknown states. Our plan is to prove with high probability, the value of any policyπ onM and M̂K

are close, which implies the desired sample complexity result using the same argument as in Theorem 3.5.

The first step is to prove that for any policy π, the values onMK and M̂K are similar.

Lemma A.3. With probability 1− p, for any policy π and reward function r,

∣∣∣Es1∼P1 [V
π
1,M̂K

(s1; r)− V
π
1,MK

(s1; r)]
∣∣∣ ≤ O

(
H2

√
S

m
log

SANH

p

)
.

Proof. We apply Lemma C.1 to MK and M̂K, since the reward function is the same and the transition

kernel is the same for unknown states,

∣∣∣Es1∼P1 [V
π
1,M̂K

(s1; r)− V
π
1,MK

(s1; r)]
∣∣∣ ≤ EMK,π

{
H∑

h=1

1 {(sh, h) ∈ K} |
(
Ph − P̂h

)
V π
h+1,M̂K

(sh, ah)|

}

≤ O

(
H2

√
S

m
log

SANH

p

)
.

The second step is to prove that for any policy π, the values onMK andM are similar, which is less

straightforward.

Lemma A.4. With probability 1− p and i is a ”good” episode, for any policy π,

∣∣∣Es1∼P1 [V
π
1,M̂K

(s1; r)− V
π
1,MK

(s1; r)]
∣∣∣ ≤ H3ε+O

(
H4

√
S

m
log

SANH

p

)
.

16

Proof. Notice that for any policy π, if we can upper bound the escape probability, thenMK andM must

be similar for this policy. Fortunately, this is actually the case, due to our setting of the reward function in

the exploration phase, following (7). Then by definition for any s,

Es1∼P1V
π
MK

(s1) ≥ p
π
K, and HpπK ≥ Es1∼P1V

π
MK

(s1).

and using Lemma A.3,

Es1∼P1V
π
M̂K

(s1) ≥ p
π
K −O

(
H2

√
S

m
log

SANH

p

)

However, since we are considering a good episode, we know that for the optimal policy on M̂K, π∗
M̂K

, we

have p
π∗

M̂K

K ≤ ε. Therefore,

Hε+O

(
H2

√
S

m
log

SANH

p

)
≥ Hp

π∗

M̂K

K +O

(
H2

√
S

m
log

SANH

p

)

≥Es1∼P1V
π∗

M̂K

MK
(s1) +O

(
H2

√
S

m
log

SANH

p

)
≥ Es1∼P1V

π∗

M̂K

M̂K

(s1) ≥ Es1∼P1V
π
M̂K

(s1)

≥pπK −O

(
H2

√
S

m
log

SANH

p

)

and as a result

pπK ≤ Hε+O

(
H2

√
S

m
log

SANH

p

)
.

Now noticeMK andM are only different on unknown states, which will not influence the agent unless the

agent escapes from K. Using Lemma C.1 onMK andM we have

∣∣∣Es1∼P1 [V
π
1,M̂K

(s1; r)− V
π
1,MK

(s1; r)]
∣∣∣ ≤ H3ε+O

(
H4

√
S

m
log

SANH

p

)
.

Finally we can put everything together. Again following the argument in Theorem 3.5, we have

Theorem A.5. With probability 1−2p−O
(
mSA
εK log SANH

p

)
, given any reward function, the ZERORMAX

algorithm can output a policy π such that

Es1∼P1 [V
∗
1,M(s1)− V

π
1,M(s1)] ≤ H

3ε+O

(
H4

√
S

m
log

SANH

p

)
.

Now we can set the parameters m and ε. To make Es1∼P1 [V
∗
1,M(s1) − V

π
1,M(s1)] ≤ ǫ, we need m ≥

Ω
(
SH8

ǫ2
log SAKH

p

)
and ε ≤ O

(
ǫ/H3

)
. This means we must set

N ≥ Ω

(
H11S2A

ǫ3p

(
log

SANH

p

)2
)

17

or equivalently,

N ≥ Ω

(
H11S2A

ǫ3p

(
log

SAH

pǫ

)2
)

This sample complexity is quite poor because it scales with ǫ−3 and polynomially, rather than logarithmi-

cally, with 1/p.

B MaxEnt Exploration

Another approach for reward-free exploration was studied in Hazan et al. [2018]. They consider the infinite

horizon discounted setting with discount factor γ, and they show that with Õ(S2A
ε3(1−γ)2

) trajectories of length

Õ(logS
ε−1 log(1/γ)

), they can find a policy π̂ such that

1

S

∑

s

log(dπ̂(s)) ≥ max
π

1

S

∑

s

log(dπ(s))− ε

where dπ(s) = (1− γ)
∑∞

t=1 γ
tdt,π(s) and dt,π(s) = P[st = s | π].

For reward free exploration, we want to use this guarantee to establish a condition similar to the con-

clusion of Theorem 3.3. For the sake of contradiction, suppose there exists some policy π̃ and some state s̃
such that

dπ̃(s̃)

dπ̂(s̃)
> 4S.

We want to show that the non-Markovian mixture policy (1 − α)π̂ + απ̃ for some α > 0 demonstrates

that π̂ violates its near-optimality guarantee for the optimization problem. To do this, we lower bound the

difference in objective values between the mixture policy and π̂:

1

S

∑

s

log((1 − α)dπ̂(x) + αdπ̃(s))− log(dπ̂(s)) =
1

S

∑

s

log

(
1− α

dπ̂(s) − dπ̃(s)

dπ̂(s)

)

≥
S − 1

S
log(1 − α) +

1

S
log(1 + α(4S − 1))

≥
S − 1

S

−α

1− α
+

1

S

α(4S − 1)

1 + α(4S − 1)

=
α

S

(
4S

1 + α(4S − 1)
−

1

1 + α(4S − 1)
−

(S − 1)

1− α

)
.

Here we are using that log(1− x1 + x2) is monotonically increasing in x2 so we use the lower bound of 4S
on s̃ and the trivial lower bound of 0 on all of the other states. We also use that log(1 + x) ≥ x

1+x , which

holds for any x > −1. The expression inside the parenthesis can be simplified to

3S + Sα− 4S2α

(1− α)(1 + α(4S − 1))
.

At this point we can see that if α ≥ 1/S then this expression is negative, so the mixture policy with large α
does not yield any improvement in objective. On the other hand, for any α < 1/S then this inner expression

18

is Θ(S). So if we set α = Θ(1/S) the overall improvement in objective is Ω(1/S). This means that if

we want establish the guarantee in Theorem 3.3, we must set ε = 1/S, at which point the overall sample

complexity scales with S5, which is quite poor.

Note that this calculation shows that O(S5) samples is sufficient for the maximum entropy approach to

find a suitable exploratory policy, but we do not claim that it is necessary for this method. A sharper analysis

may be possible, but we are not aware of any such results.

C Proof for Main Results

In this section, we present proofs for results in Section 3.

C.1 Exploration Phase

We begin with the proof of Lemma 3.4, which is a simple modification of the Theorem 1 in Zanette and Brunskill

[2019].

Proof of Lemma 3.4. WLOG, we can assume s1 is fixed. This is because for s1 stochastic from P1, we can

simply add an artificial step before the first step of MDP, which always starts from the same state s0, has

only one action, and the transition to s1 satisfies P1. This creates a new MDP with fixed initial state with

length H + 1, which is equivalent to the original MDP.

We use an alternative upper-bound for equation (156) in Zanette and Brunskill [2019], which gives:

1

N0H

N0∑

k=1

Eπk

[
(

H∑

h=1

r(sh, ah)− V
πk
1 (s1))

2

∣∣∣∣∣ s1

]

≤
2

N0H

N0∑

k=1

Eπk

[
(

H∑

h=1

r(sh, ah))
2 + (V πk

1 (s1))
2

∣∣∣∣∣ s1
]

(i)

≤
2

N0H

N0∑

k=1

Eπk

[
H∑

h=1

r(sh, ah) + V πk
1 (s1)

∣∣∣∣∣ s1
]

≤
4

N0H

N0∑

k=1

V πk
1 (s1) ≤

4

H
V ⋆
1 (s1)

where πk is the policy used in EULER in the k-th episode. Step (i) is because using the reward function

designed in Line 4 in Algorithm 2, we have all reward equal to zero except one state. Therefore, we

have
∑H

h=1 r(sh, ah) ≤ 1 and V π
1 (s1) ≤ 1. Therefore, we have replace the upper bound G2 in (156) of

Zanette and Brunskill [2019] by 4V ⋆
1 (s1).

This allows us also replace the G2 in Theorem 1 of Zanette and Brunskill [2019] by 4V ⋆
1 (s1), which

gives the regret of algorithm (note Zanette and Brunskill [2019] is for stationary MDP, while our paper is

for non-stationary MDP, thus S in Zanette and Brunskill [2019] need to be replaced by SH in our paper due

to state augmentation, which creates new states as (s, h)):

N0∑

k=1

[V ⋆
1 (s1)− V

πk(s1)] ≤ Õ(
√
V ⋆
1 (s1)SAT + S2AH4)

Finally, plug in T = N0H , we finish the proof.

19

Now we can prove the main result in this section.

Proof of Theorem 3.3. In the following we can fix a state (s, h) and consider the corresponding policy given

by EULER. Remember in our setting (Line 4 in Algorithm 2),

Es1∼P1V
⋆
1 (s1) = max

π
P π
h (s)

Therefore the regret guarantee Lemma 3.4 implies

max
π
P π
h (s)−

1

N0

∑

π∈Φ(s,h)

P π
h (s) ≤ c0

√
SAHι0 ·maxπ P π

h (s)

N0
+
S2AH4ι30

N0

for some absolute constant c0. Therefore, in order to make the following true

max
π
P π
h (s)−

1

N0

∑

π∈Φ(s,h)

P π
h (s) ≤

1

2
max
π
P π
h (s)

We simply need to choose N0 large enough so that:

√
SAHι0 ·maxπ P

π
h (s)

N0
≤ c1 ·max

π
P π
h (s)

S2AH4ι30
N0

≤ c1 ·max
π

P π
h (s)

for a sufficient small absolute constant c1. Combining with the fact that for δ-significant (s, h), maxπ P
π
h (s) ≥

δ, we know choosing N0 = O(S
2AH4ι30/δ) is sufficient. As a result, we have

max
π

P π
h (s)

1
N0

∑
π∈Φ(s,h) P π

h (s)
≤ 2

Since Algorithm 2 sets all policy in Φ(s,h) to choose action uniformly randomly at (s, h), this implies

max
π,a

P π
h (s, a)

1
N0

∑
π∈Φ(s,h) P π

h (s, a)
≤ 2A

Finally, we can apply the same argument for all δ-significant (s, h), and let Ψ = ∪{Φ(s,h)}(s,h) which gives:

∀ δ-significant (s, h), max
π,a

P π
h (s, a)

1
N0SH

∑
π∈Ψ P

π
h (s, a)

≤ 2SAH.

This finishes the proof.

C.2 Planning Phase

The following lemma (E.15 in Dann et al. [2017]) will be useful to characterize the difference between

V π
h (s; r) and V̂ π

h (s; r) .

20

Lemma C.1 (Lemma E.15 in Dann et al. [2017]). For any two MDPsM′ andM′′ with rewards r′ and r′′

and transition probabilities P′ and P
′′, the difference in values V ′, V ′′ with respect to the same policy π can

be written as

V ′
h(s)− V

′′
h (s) = EM′′,π

[
H∑

i=h

[r′i(si, ai)− r
′′
i (si, ai) + (P′

i − P
′′
i)V

′
i+1(si, ai)]

∣∣∣∣∣ sh = s

]

With this decomposition in mind, we can prove Lemma 3.6.

Proof of Lemma 3.6. In this section, we always use E to denote the expectation under the true MDP M.

Using Lemma C.1 onM (the true MDP) and M̂ (the empirical version), we have

|Es1∼P1{V̂
π
1 (s1; r)− V

π
1 (s1; r)}| ≤ |Eπ

H∑

h=1

(P̂h − Ph)V̂
π
h+1(sh, ah)| ≤ Eπ

H∑

h=1

|(P̂h − Ph)V̂
π
h+1(sh, ah)|

Let Sδh := {s : max
π
P π
h (s) ≥ δ} be the set of δ-significant states in the h-th step. We further have:

Eπ|(P̂h−Ph)V̂
π
h+1(sh, ah)| ≤

∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|P

π
h (s, a)

︸ ︷︷ ︸
ξh

+
∑

a,s/∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|P

π
h (s, a)

︸ ︷︷ ︸
ζh

By definition of insignificant state, we have:

ζh ≤ H
∑

a,s/∈Sδ
h

P π
h (s, a) = H

∑

s/∈Sδ
h

P π
h (s) ≤ H

∑

s/∈Sδ
h

δ ≤ HSδ. (8)

On the other hand, by Cauchy-Shwartz inequality, we have:

ξh ≤



∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s, a)




1
2

=



∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s)πh(a|s)




1
2

We note since V̂ π
h+1 only depends on π at h + 1, · · · ,H steps, it does not depends on πh. Therefore, we

have:

∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s)πh(a|s) ≤max

π′
h

∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s)π

′
h(a|s)

= max
ν:S→A

∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s)1{a = ν(s)}

where the last step is because the maximization over π′h achieves at deterministic polices.

Recall that by preconditions, we have 4 holds for δ = ǫ/(2SH2). That is, for any s ∈ Sδh we always

have

max
π̃

P π̃
h (s, a)

µh(s, a)
≤ 2SAH

21

Therefore, for any (s, a) pair, we can design a policy π′ so that π′h′ = πh′ for all h′ < h, and π′h(s) = a.

This will give that

P π
h (s) = P π′

h (s) = P π′

h (s, a) ≤ 2SAHµh(s, a)

which gives:

∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2P π
h (s)1{a = ν(s)}

≤2SAH
∑

a,s∈Sδ
h

|(P̂h − Ph)V̂
π
h+1(s, a)|

2µh(s)1{a = ν(s)}

≤2SAH
∑

s,a

|(P̂h − Ph)V̂
π
h+1(s, a)|

2µh(s)1{a = ν(s)}

=2SAHEµh
|(P̂h − Ph)V̂

π
h+1(s, a)|

2
1{a = ν(s)}

By Lemma C.2, we have:

Eµh
|(P̂h − Ph)V̂

π
h+1(s, a)|

2
1{a = ν(s)} ≤ O

(
H2S

N
log(

AHN

p
)

)

Therefore, combine all equations above, we have

|Es1∼P1{V̂
π
1 (s1; r)− V

π
1 (s1; r)}| ≤ O(

√
H5S2A

N
log(

AHN

p
)) +H2Sδ

Recall our choice δ = ǫ/(2SH2) and N ≥ cH
5S2A
ǫ2

log(SAH
pǫ) for sufficiently large absolute constant c,

which finishes the proof.

Lemma C.2. Suppose P̂ is the empirical transition matrix formed by sampling according to µ distribution

for N samples, then with probability at least 1− p, we have for any h ∈ [H]:

max
G:S→[0,H]

max
ν:S→A

Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)} ≤ O

(
H2S

N
log(

AHN

p
)

)

Proof. Define random variable

Xi = (P̂hG(si, ai)−G(s
′
i))

2 − (PhG(si, ai)−G(s
′
i))

2

where (si, ai, s
′
i) ∼ µh × Ph(·|si, ai) is the i-th sample in level h we collect.

Also we define

Yi = Xi1{ai = ν(si)}.

To simplify the notation, when some property of Yi holds for any i, we just use the notation Y to describe a

generic Yi.
We first state some properties of the random variables Yi, which are justified at the end of the proof.

• (Expection) EY = Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)}

• (Empirical risk minimization)
∑N

i=1 Yi ≤ 0

22

• (Self-bounded) Var{Y } ≤ 4H2
EY

Given these three properties, now we are ready to apply Berstein’s inequality to (
∑N

i=1 Yi)/N . Since

we are taking maximum over ν and G(s) and P̂ is random, we need to cover all the possible values of

P̂G(s, a)1{a = ν(s)} and PG(s, a)1{a = ν(s)} to ε accuracy to make Bernstein’s inequality hold. For

ν, there are AS deterministic policies in total. Given a fixed ν, P̂G(s, a)1{a = ν(s)} and PG(s, a)1{a =
ν(s)} can be covered by (H/ε)2S values by boundedness condition because for a 6= ν(s) they are always

0. The overall approximation error will be at most 12Hε by boundedness condition.

As a result, with probability at least 1− p/H , for any ν, G(s) and P̂,

Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)} = EY ≤ EY −

1

N

N∑

i=1

Yi

≤

√
2Var{Y } log((Hε)

2S · AS · Hp)

N
+
H2 log((Hε)

2S · AS · Hp)

3N
+ 12Hε

≤

√
2Var{Y }[2S log(HA

ε) + log H
p]

N
+
H2[2S log(HA

ε) + log H
p]

3N
+ 12Hε

We can simply choose ε = HS/36N and thus

Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)}

≤

√

8H2Eµh
|(P̂h − Ph)G(s, a)|21{a = ν(s)}

2S log(36AN
S) + log H

p

N
+
H2[2S log(36AN

S) + log H
p + S]

3N

Solving this quadratic formula we get

Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)} ≤ O(

H2S

N
log(

ANH

p
))

Since the above upper bound holds for arbitrary ν, G(s) and Ph,

max
G:S→[0,H]

max
ν:S→A

Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)} ≤ O

(
H2S

N
log(

AHN

p
)

)

Taking union bound w.r.t. h, the claim holds for any h with probability 1− p.

Finally we give the proofs for the claimed three properties of Yi. We begin with the expectation property:

EY =Es,a∼µh
Es′∼Ph(·|s,a){1{a = ν(s)}[(P̂hG(s, a)−G(s

′))2 − (PhG(s, a)−G(s
′))2]}

(i)
=2Es,a∼µh

Es′∼Ph(·|s,a){1{a = ν(s)}(P̂h − Ph)G(s, a)(PhG(s, a)−G(s
′))}

+ Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)}

(ii)
=Eµh

|(P̂h − Ph)G(s, a)|
2
1{a = ν(s)}

where (i) is by b2 − d2 = (b − d + d)2 − d2 = (b − d)2 + 2b(d − b) with b = P̂hG(s, a) − G(s
′) and

d = PhG(s, a)−G(s
′) and (ii) is because Es′∼Ph(·|s,a){G(s

′)} = PhG(s, a).

23

The emipirical risk minimization property is true because the evaluation rule is essentially minimizing

the empirical Bellman error for each (s, a) pair separately. Mathematically,

P̂hG(s, a) = argmax
g

N∑

i=1

1{si = s, ai = a}(g −G(s′))2

The self-bounded property is because

Var{Y } ≤ E(Y)2

(i)
=E{1{a = ν(s)}[(P̂h − Ph)G(s, a)]

2[(P̂h + Ph)G(s, a) − 2G(s′)]2}

≤4H2
Eµh
|(P̂h − Ph)G(s, a)|

2
1{a = ν(s)}

=4H2
EY

where (i) by b2 − d2 = (b+ d)(b− d) with b = P̂hG(s, a)−G(s
′) and d = PhG(s, a)−G(s

′).

C.3 Proof of Theorem 3.1

Putting everything together we can prove the main theorem.

Proof of Theorem 3.1. We only need to choose the parameter δ and N0. From the proof of Lemma 3.6 we

can see, we need δ = ǫ/(2SH2) and thus N0 ≥ cS3AH6ι3/ǫ. Since we need N0 episodes for each (s, h),
the total number episodes required for finding Ψ is O(cS4AH7ι3/ǫ), which gives the second term in (3).

The proof is completed by combining Theorem 3.5, which gives the first term in (3).

C.4 Approximate MDP Solvers

The convergence of NPG is well studied in Agarwal et al. [2019] (tabluar & infinite horizon) and Cai et al.

[2019] (linear approximation). However, the episodic setting has some unique characters (For example, we

not every state can be arrive at the first step and the corresponding analysis in Agarwal et al. [2019] does not

apply). Therefore the guarantee given in Proposition 3.7 is different.

Since we only need to prove the guarantee on the true MDP, we will not distinguish true MDPM and

estimated MDP M̂ here. Remember the NPG is defined by

π
(0)
h (a|s) = 1/A

and

π
(t+1)
h (a|s) = π

(t)
h (a|s) exp{η(Q

(t)
h (s, a)− V

(t)
h (s))}/Z

(t)
h (s)

where Q
(t)
h (s, a) := Qπ(t)

h (s, a) is computed following the value iteration procedure. Similarly we define

V
(t)
h (s) := V π(t)

h (s). The normalization constant can be written explicitly as

Z
(t)
h (s) :=

∑

a∈A

π
(t)
h (a|s) exp{η[Q

(t)
h (s, a)− V

(t)
h (s)]}

Notice the definition of the normalization constant is not unique. Here we choose the form that makes the

following proof simpler but different choice will essentially gives exactly the same algorithm.

We begin with a lemma showing that the value function monotonically increases.

24

Lemma C.3 (Lemma 5.8 in Agarwal et al. [2019]). Following the NPG iterations,

Es1∼P1{V
(t+1)
1 (s1; r)− V

(t)
1 (s1; r)} ≥

1

η

H∑

h=1

Esh∼M,π(t+1){logZ
(t)
h (sh)} ≥ 0

Proof. By performance difference lemma Kakade and Langford [2002],

Es1∼P1{V
(t+1)
1 (s1; r)− V

(t)
1 (s1; r)}

=

H∑

h=1

Eπ(t+1){
∑

a∈A

π
(t+1)
h (a|s)[Q

(t)
h (s, a)− V

(t)
h (s)]}

=
1

η

H∑

h=1

Eπ(t+1){
∑

a∈A

π
(t+1)
h (a|sh) log

π
(t+1)
h (a|sh)Z

(t)
h (sh)

π
(t)
h (a|sh)

}

=
1

η

H∑

h=1

Eπ(t+1){KL(π
(t+1)
h (sh)||π

(t)
h (sh)) + logZ

(t)
h (sh)}

≥
1

η

H∑

h=1

Eπ(t+1){logZ
(t)
h (sh)}

(i)

≥0

where (i) is by

logZ
(t)
h (s) = log{

∑

a∈A

π
(t)
h (a|s) exp{η[Q

(t)
h (s, a)− V

(t)
h (s)]}}

≥η
∑

a∈A

π
(t)
h (a|s)[Q

(t)
h (s, a)− V

(t)
h (s)]

=0

because V
(t)
h (s) =

∑
a∈A π

(t)
h (a|s)Q

(t)
h (s, a) by definition.

Equipped with the monotone property, we can simply prove an upper bound for the cumulative regret,

which immediately implies the convergence rate for the last iteration.

Proof of Proposition 3.7. Again by performance difference lemma,

Es1∼P1{V
⋆
1 (s1; r)− V

(t)
1 (s1; r)}

=

H∑

h=1

Eπ⋆{
∑

a∈A

π⋆h(a|s)[Q
(t)
h (s, a)− V

(t)
h (s)]}

=
1

η

H∑

h=1

Eπ⋆{
∑

a∈A

π⋆h(a|sh) log
π
(t+1)
h (a|sh)Z

(t)
h (sh)

π
(t)
h (a|sh)

}

=
1

η

H∑

h=1

Eπ⋆{KL(π⋆h(sh)||π
(t)
h (sh))− KL(π⋆h(sh)||π

(t+1)
h (sh)) + logZ

(t)
h (sh)}

25

Now we can upper bound the regret of π(T−1) by upper bound the cumulative regret using Lemma C.3

Es1∼P1{V
⋆
1 (s1; r)− V

(T−1)
1 (s1; r)}

≤
1

T

T−1∑

t=0

Es1∼P1{V
⋆
1 (s1; r)− V

(t)
1 (s1; r)}

≤
1

ηT

T−1∑

t=0

H∑

h=1

Eπ⋆{KL(π⋆h(sh)||π
(t)
h (sh))− KL(π⋆h(sh)||π

(t+1)
h (sh)) + logZ

(t)
h (sh)}

≤
1

ηT

H∑

h=1

Eπ⋆{KL(π⋆h(sh)||π
(0)
h (sh))}+

1

ηT

T−1∑

t=0

Eπ⋆{logZ
(t)
h (sh)}

≤
H logA

ηT
+

1

ηT

T−1∑

t=0

Eπ⋆{logZ
(t)
h (sh)}

Therefore we only need to bound logZ
(t)
h (sh), where the technique in Agarwal et al. [2019] does not

apply and we use a different approach. Notice for x ≤ 1, exp{x} ≤ 1 + x + x2. So as long as η ≤ 1
H ,

η[Q
(t)
h (s, a)− V

(t)
h (s)] ≤ 1 and we have

logZ
(t)
h (s) = log{

∑

a∈A

π
(t)
h (a|s) exp{η[Q

(t)
h (s, a)− V

(t)
h (s)]}}

≤ log{
∑

a∈A

π
(t)
h (a|s){1 + η[Q

(t)
h (s, a)− V

(t)
h (s)] + η2[Q

(t)
h (s, a)− V

(t)
h (s)]2}}

= log{1 + η2
∑

a∈A

π
(t)
h (a|s)[Q

(t)
h (s, a)− V

(t)
h (s)]2}

≤η2
∑

a∈A

π
(t)
h (a|s)[Q

(t)
h (s, a)− V

(t)
h (s)]2

≤η2H2

Put everything together we have

Es1∼P1{V
⋆
1 (s1; r)− V

(T−1)
1 (s1; r)} ≤

H logA

ηT
+ ηH2

This finishes the proof.

D Proof of Lower Bound

In this section, we prove our lower bound, Theorem 4.1. First, we develop further notation in Section D.1

which will aid in distinguishing between multiple possible instances. Next, Section D.2 states Lemma D.2,

the formal analogue of Lemma 4.2, which describes a lower bound for learning transitions at a single state.

Then, Section D.3 embeds the construction to obtain an instance where the learner to learn transitions at

n states, yielding the lower bound Theorem 4.1. Finally, Section D.4 details the proof of the 1-state lower

bound, Lemma 4.2.

26

D.1 Preliminaries

Environments, Transition Classes, Reward Classes To formalize our embedding a one-state instance

into a larger MDP, the following formalities are helpful: we define an environment E = (X , A,H) as a

triple specifying a finite state space X , number of actions A, and horizon H . For a fixed environment, a

transition class P is a class of transition and initital state distributions, denoted by P; a reward class R is

a family of reward functions r : (X , A) → [0, 1]. Given a reward vector r and transition vector P, we let

mdp(P, r) denote the with-reward MDP induced by P and r. We denote value of a policy π on mdp(P, r)
by V π(P, r).

Reward-Free MDP Algorithm A reward-free MDP algorithm Alg is algorithm which collects a random

number K trajectories from a given reward-free MDP, and then, when given a sequence of reward vectors

r(1), r(2), . . . , r(N), returns a sequence of policies π(1), π(2), . . . , π(N). We let EP,Alg[·] denote the expecta-

tion under the joint law prescribed by the explortion phase of algorithm Alg and transition operator P.

Correctness Given ǫ, p ∈ (0, 1), say that a reward-free MDP algorithm (ǫ, p,)-learns a a problem class

M := (E ,R,P) if, for any transition operator P ∈ P , for any finite sequence of reward vectors

r(1), . . . , r(N) ∈ R, Alg returns a sequence policies π(1), . . . , π(N), such that, with probability 1 − p, the

following holds

V π(i)
(P, r(i)) ≥ max

π
V π(P, r(i))− ǫ, ∀i ∈ [N].

For the lower bound, we allow the policies π prescribed by Alg to be arbitrary randomized mappings form

observed histories, that is, Alg selects a random seed ξ from some distribution; that is the policy at stage h
is a map

πh : (s1, . . . , sh, a1, . . . , ah−1, ξ)→ [A].

D.2 Learning A Single Instance

In this section, we define a triple (E ,R,P) on O (n)-states which forces the learner to spend Ω(nA/ǫ2)
trajectories to learn the transition probabilities at a given state.

As described in Figure 3, the hard instances consist of reward-free MDPs that begin in a fixed initial state,

and transition to one of 2n terminal states according to an unknown transition distribution. The transitions

are all taken to be ǫ/2n-close to uniform in the ℓ∞ norm, which helps with the embedding later on. For

simplicitiy, the rewards are taken to depend only on states but not on actions. We formalize these instances

in the following definition:

Definition D.1 (Hard Transitions and Rewards at Single State). For parameters n,A ≥ 1 and A, we de-

fine the problem class Msingle(ǫ;n,A) : (Esingle(n),Psingle(ǫ;n,A),Rsingle(n,A)) as the triple with the

following consitutents:

1. The environment Esingle(n) is

Esingle(n,A) = (Xsingle(n), A, 2), where Xsingle(n) := {0, 1, . . . , 2n}

27

s = 0

s = 1

s = 2

s = 3

s = 4

Figure 3: The agent begins in stage s = 0, and moves to states s ∈ [2n], n = 2. Different actions correspond

to different probability distributions over next states s ∈ [2n]. States s ∈ [2n] are absording, and rewards

are action-independent. Lemma 4.2 shows that this construction requires the learner to learn Ω(n) bits about

the transition probabilities p(· | 0, a).

2. For a given ǫ ∈ (0, 1), we define the transition class Psingle(ǫ;n,A) as the set of transition operator

on Esingle(n,A) , parameterized by vectors q, which begin at state x1 = 0, and always transition to

a state x2 ∈ {1, . . . , 2n} with near-uniform probability, and remain at that state for the remainder of

the episode. Formally,

Psingle(ǫ;n,A) :=
{
P[x1 = 0] = 1, |P[x′ = s | x = 0, a]− 1

2n | ≤
1

2n
ǫ

P[x′ = s | x = s, a] = 1 ∀a ∈ [A], s ∈ [2n],
}
.

3. We define the hard reward class Rsingle(n,A) as the set of rewards which as the set of rewards which

assign 0 reward to state 0, and an action-independent reward to each state s ∈ [2n]. Formally, we

define Rsingle(n,A) :=
{
rν : rν(0, ·) = 0, rν(x, ·) = ν[x], ν ∈ [0, 1]2n

}
.

Lemma D.2 (Formal Statement of Lemma 4.2). Fix ǫ ≤ 1, p ≤ 1/2,A ≥ 2, and suppose that n ≥ c0 log2A
for universal constants c0. Then, there exists a distribution D over transition vectors P ∈ Psingle(ǫ;n,A)
such that any algorithm which (ǫ/12, p)-learns the class Msingle(ǫ;n,A) satisfies

EP∼D EP,Alg[K] &
nA

ǫ2
.

Due to its level of technical, the proof of Lemma D.2 is given in Section D.4.

D.3 Learning Transitions at n states: Proof of Theorem 4.1

Let n ≥ 2 be a power of two, which we ultimately will choose to be Ω(S). This means that ℓ0 := log2 n ∈ N

is integral, and define the layered state space:

X :=
{
(x, ℓ) : x ∈ [2ℓ], ℓ ∈ {0, 1, . . . , ℓ0 + 1}

}

28

The cardinality of the state space is bounded as |X | ≤ 1 + 2 + · · ·+ n/2 + n+ 2n ≤ 4n. Hence, we shall

chose n to be the largest power of two such that 4n ≤ S. Note then that n = Ω(S) as long as S ≥ C for a

universal constant C . We will establish our lower bound for the environment Eembed = (X , A,H), that is,

with state space X ; the lower bound extends to an MDP wiht desired state space of size S by augmenting

the MDP with isolated, univistable states.

Description of Transition Class Let us define the class Pembd. First, we require that the states (x, ℓ) for

ℓ ∈ [ℓ0] form a dyadic tree, whose transitions are all known to the learner. That is, for P ∈Pembd,

P[s1 = (0, 1)] = 1

P[s′ = (x, ℓ+ 1) | s = (x, ℓ), a = 1] = 1, ℓ ∈ {0, 1 . . . , ℓ0 − 1}

P[x′ = (2ℓ + x, ℓ− 1) | s = (x, ℓ), a] = 1, ℓ ∈ {0, 1, . . . , ℓ0 − 1}, a > 1.

In words, P starts at (1, 1), moves leftward with action a = 1, and rightward with actions a > 1. At each

state s = (x, ℓ0), the learn learner faces transitions described by some P
(x)
single ∈Psingle(ǫ0) for ǫ0 = 1/8H:

specifically, we stipulate that states (x, ℓ0) always transition to states (x′, ℓ0 + 1), which are absorbing:

∀P ∈Pembd, x ∈ [n], there exists a P
(x)
single ∈Psingle(ǫ0) such that :

P[s′ = (x′, ℓ0 + 1) | s = (x, ℓ0), a] = P
(x)
single[s

′ = x′ | s = 0, a], ∀a ∈ [A], x′ ∈ [2n].

P[s′ = (x′, ℓ0 + 1) | s = (x′, ℓ0 + 1), a] = 1, ∀a ∈ [A]

Thus, there is a bijection between instances P ∈Pembd and tuples (P
(1)
single, . . . ,P

(n)
single) ∈Pn

single.

Description of Reward Class Define the reward class Rembed = {rx,ν} considering for action-independent

rewards

rx,ν(s, a) =





0 s = (x′, ℓ), ℓ < ℓ0,

0 s = (x′, ℓ0) and x′ 6= x

1 s = (x, ℓ0)

rν [x
′] s = (x′, ℓ0 + 1).

In other words, the learner recieves reward 1 at state (x, ℓ0), rewards rν at terminal states (x′, ℓ0 +1), and 0
elsewhere. We now establish that any policy which is ǫ-optimal under reward rx,ν must visit (y, ℓmax) with

sufficiently high probability:

Lemma D.3. Suppose that a (possibly randomized, non-Markovian) policy π satisfies, for ǫ ≤ 1/4 and

ǫ0 ≤ 1/8H ,

V π(P, rx,ν) ≥ max
π′

V π′

(P, rx,ν)− ǫ, ∀i ∈ [N].

Then, Pπ[sℓ0+1 = (x, ℓmax)] ≥
1
2 .

Proof. Due to the structure of the transitions and rewards, the value of any policy π is

V π(P, rx,ν) = P
π[sℓ0+1 = (x, ℓ0)] + (H − ℓ0 − 1)

2n∑

x′=1

ν(x′)Pπ[sℓ0+2 = (x, ℓ0)]

29

Since the transitions from (x′, ℓ0) to (x′′, ℓ0 + 1) is ǫ0/2n-away from uniform in ℓ∞, we can also see that

P
π[sℓ0+2 = (x, ℓ0)] ∈ (1

2n − ǫ,
1
2n + ǫ). Thus, letting ν := 1

2n

∑2n
x′=1 ν[x

′], we have

∣∣∣∣∣(H − ℓ0 − 1)

2n∑

x′=1

ν(x′)Pπ[sℓ0+2 = (x, ℓ0)]− (H − ℓ0 − 1)ν

∣∣∣∣∣ ≤ (H − ℓ0 − 1)ǫ0 ≤
1

8
.

This entails that

|V π(P, rx,ν)− (H − ℓ0 − 1)ν − P
π[sℓ0+1 = (x, ℓ0)]| ≤

1

8
.

Consequently, by considering a policy π′ which always visits state sℓ0+1 = (x, ℓ0) (this can be achieved due

to the deterministic behavior of the actions),

max
π′

V π′

(P, rx,ν)− V
π(P, rx,ν) ≥ 1− P

π[sℓ0+1 = (x, ℓ0)]− 2 ·
1

8
=

3

4
− P

π[sℓ0+1 = (x, ℓ0)].

In order for the above to be at most 1/4, we must have that Pπ[sℓ0+1 = (x, ℓ0)] ≥ 1/2.

Concluding the Proof of Theorem 4.1 To prove Theorem 4.1, we use the following lemma:

Lemma D.4 (Embedding Correspondence). Suppose that H ≥ (2ℓ0 + 2). Then there exists a correspon-

dence Ψ, which does not dependent on P ∈ Pembd or ry,ν ∈ Rembed (but possibly on ǫ, n,A,H) which

operates as follows: Given a policy π for Eembed, Ψ[π] = (π(1), . . . , π(n)) returns an n-tuple of policies for

Esingle(n,A) with the following property: For any P ≡ (P
(1)
single, . . . ,P

(n)
single) ∈Pembd and rx,ν ∈ Rembed,

If V π(P, rx,ν) ≥ max
π′

V π′

(P, rx,ν)− ǫ, ∀x ∈ [n], V π(x)
(P

(x)
single, rν) ≥ max

π′
V π′

(P
(x)
single, rν).

Proof of Lemma D.4. We directly construct the map Ψ. Observe that policies π(x) on the single state envi-

ronment can be discred by a distribution over which actions a ∈ [A] they select at the initial state x. Thus

identifying policies as elements of ∆(A), we set

π(x)[a] :=

{
P
π[aℓ0+1 = a | sℓ0+1 = (x, ℓ0)] P

π[sℓ0+1 = (x, ℓ0)] > 0

arbitrary otherwise

as the marginal distribution of actions selected when sℓ0+1 = (x, ℓ0+1). Observe that the above conditional

probabilites do not depend on P ∈Pembd since the dynamics up to h = ℓ0+1 are identical for all instances.

By considing a policy which coincides with π until sℓ0+1 = (x, ℓ0) and swtiches to playing optimally, we

can lower bound the subopitmality of π by

max
π′

V π′

(P, rx,ν)− V
π(P, rx,ν) ≥

P
π[sℓ0+1 = (x, ℓ0)] · (H − ℓ0 − 1)

(
max
π′

V π(P
(x)
single, rν)− V

π(x)
(P

(x)
single, rν)

)

In particular, if π is ǫ ≤ 1/4-suboptimal, then Lemma D.3 ensures P
π[sℓ0+1 = (x, ℓ0)] ≥ 1/2. Since

H ≥ 2(ℓ0 + 1) by assumption, we have

ǫ ≥ max
π′

VM,π′

− VM,π ≥
H

4

(
max
π′

V π(P
(x)
single, rν)− V

π(x)
(P

(x)
single, rν)

)
,

Therefore, maxπ′ V π(P
(x)
single, rν)− V

π(x)
(P

(x)
single, rν) ≤

4ǫ
H , as needed.

30

We now conclude with the proof of our main theorem:

Proof of Theorem 4.1. Let Alg be (ǫ, p)-correct on the class (Eembed,Pembd,Rembed). Then, for any x ∈
[2n], we simulate obtain a (4ǫ/H, p)-correct algorithm for Msingle(4ǫ/H;n,A) as follows:

1. Exploration: Let D be the distribution over Psingle ∈Psingle from Lemma D.2. Draw a tuple P
6=x =

(P
(x′)
single)x′ 6=x of n − 1 distributions i.i.d from D, and let Alg

(x,P 6=x)
single denote the algorithm induced by

embeding the instance in Msingle(4ǫ/H;n,A) at stage x of the embedding construction, running Alg

on this embedded instance

2. Planning: When queried given a reward vector rν ∈ Rsingle, use Alg to compute a policy π for reward

vector rx,ν ∈ Rembed, and return the policy π(x) dicated by the corresponding ψ.

Since Alg is (ǫ, p)-correct and ǫ ≤ 1/4, the correspondence Ψ ensures that for any draw of P 6=x, Alg
(x,P 6=x)
single

is (4ǫ/H, p)-correct. Let K(x,P 6=x) denote the random number of episodes collected by Alg
(x,P 6=x)
single in the ex-

ploration phase, Thus, if ǫ ≤ min{14 ,
H
48}, and n ≥ c0 log2A for the appropriate c0 specified in Lemma D.2,

the Lemma D.2 entails

EPsingle∼DE
Psingle,Alg

(x,P6=x)
single

[K(x,P 6=x)] &
nAH2

ǫ2
.

By taking an expectation over P 6=x, we have

EP 6=x∼Dn−1,Psingle∼DE
Psingle,Alg

(x,P6=x)
single

[K(x,P 6=x)] &
nAH2

ǫ2
.

Note then that, if NK(x) denotes the number of times that the original Alg visits state (x, ℓ0), then, by

Fubini’s theorem and the contruction of Alg
(x,P 6=x)
single , the expectation of NK(x) under probabilities drawn

uniform from Dn is euqal to the expectation of K(x,P 6=x) where P
6=x is drawm uniformly from Dn−1, and

then the transition Psingle is selected. Formally,

EP 6=x∼Dn−1,Psingle∼DE
Psingle,Alg

(x,P6=x)
single

[K(x,P 6=x)] = E
P≡(P

(1)
single,...,P

(n)
single)∼DnEP,Alg[Kx]

This implies that

E
P=(P

(1)
single,...,P

(n)
single)∼DnEP,Alg[Kx] &

nAH2

ǫ2
.

Since the number of episodes K encounted by Alg is equal to
∑n

x=1Kx (the agent visits exactly one state

of the form (x, ℓ0) per episode), we have

E
P=(P

(1)
single,...,P

(n)
single)∼DnEP,Alg[K] &

n∑

x=1

nAH2

ǫ2
=
n2AH2

ǫ2
.

Since S/8 ≤ n ≤ S, for the above conditions to hold, it suffices that, for a sufficiently large constant C ,

S ≥ C log2A, ǫ ≤ min{14 ,
H
48}, and H ≥ C log2 S. Moreover, n2AH2

ǫ2
= Ω(S

2AH2

ǫ2
), as needed.

31

D.4 Proof of Lemma D.2

A packing of reward-free MDPs The first step is to construct a family of transition probabilities PJ ∈
P(ǫ;n,A) which witness the lower bound. Let 1 denote the all ones vector on [2n]. To construct the

packing, we define the set of binary vectors

K :=
{
v ∈ {−1, 1}2n : 1⊤v = 0

}
.

For a cardinality parameter M to be chosen shortly, we consider a packing of vectors

VA,M := {va,j ∈ K : a ∈ [A], j ∈ [M]}

Throughout, we shall consider packings VA,M which are uncorrelated in the following sense:

Definition D.5 (Uncorrelated). For γ ∈ (0, 1), we say that VA,M is γ-uncorrelated if, for any pair (a, j), (a′, j′)
with either a 6= a′ or j 6= j′, it holds that |〈va,j , va′,j′〉| < 2nγ..

The following lemma shows that the exist γ-uncorrelated packings of size eΩ(nγ2):

Lemma D.6. Fix γ ∈ (0, 1), and suppose that 2 log(M) ≤ nγ2 − log(4n)− 2 log(A). Then, there exists a

γ-uncorrelated packing VA,M .

Proof Sketch. We use the probabilistic method. Specifically, we draw va,j
unif
∼ K, and can bound 〈va,j , va′,j′〉

with high-probability Chernoff bounds. Taking a union bound shows that an uncorrelated packings arise

from this construction with non-zero probability. A full proof is given in in Section D.4.1.

Given a γ-uncorrelated packing VA,M , define transition vectors

qa,j := q0 +
ǫ

2n
va,j, where q0 =

1

2n
1.

Since ǫ ≤ 1 and 1
⊤va,ja = 0, qj,a ∈ ∆(2n). Wet indices J denote tuples J = (J1, . . . , JA) ∈ [M]A, let

qJ(·, a) = qa,Ja , and define PJ as the instance PqJ , where Pq is as in Definition []. Formally,

PJ : P
PJ [s1 = 0] = 1, PPJ [s2 = 0] = 0, ∀s ∈ [2n], PPJ [s2 = s | s1 = 0, a] = qJ(s, a) = qa,Ja(s)

Lower Bound for Estimating the Packing Instance: Let us suppose we have an exploration algo-

rithm Algest which, for any PJ , collects (a possibly random number) K trajectories, and returns estimates

Ĵ1, . . . , ĴA of J1, . . . , JA. Our first step is to establish a lower bound on K assuming that Algest satisfies a

uniform correctness guarantee:

Lemma D.7. For any Algest satisfying the guarantee

∀J ∈ [A]M , PPJ ,Algest

[
Ĵa = Ja ∀a ∈ [A]

]
≥ 1− a. (9)

Then, we must have

E
J
unif
∼ [A]M

EPJ ,Algest [K] ≥ A ·
(1− p) logM − log 2

ǫ2

The above bound essentially follows from an application of Fano’s inequality, and is proven in Sec-

tion D.4.2. In particular, if we take say p = 1/2, and requireM = eΩ(S), then we have E
J
unif
∼ [A]M

E
PJ ,Algest [K] &

SA
ǫ2
, as desired.

32

Estimation Reduces to Exploration Of course, the above bound applies only to an estimation algorithm

Algest, but our intent is to establish lower bounds for exploration algorithms. In the following lemma, we

state that if the packing is suffciently uncorrelated, then we can convert an (ǫ/24, p)-correct exploration

algorithm into an Algorithm Algest satisfying Eq. (9).

Lemma D.8. Suppose Alg is (ǫ/24, p)-correct on the class Msingle(ǫ, n,A), and that the packing VM,A is

γ = 1/10-uncorrelated. Then, there is an algorithm Algest which collects K trajectories according to Alg,

and satisfies Eq. 9.

Proof Sketch. Consider reward vectors rν induced by νa,j,a2,j2 ∝ 2qa,j − qa2,j2 . These reward vectors

can be used to “pick out” qa,Ja as follows. For a given a, we show that on the good exploration event,

Alg returns policies with P[π̂ν1 (0) = a] > 1/2 for all ν = νa,Ja,a2,j2 ranging across a2, j2. However,

for j 6= Ja, we show that on this good event there exists some a2, j2 for which Alg returns policies with

P[π̂ν1 (0) = a] < 1/2. Hence, we can estimate qa,Ja by finding the (say, the first) index j for which

P[π̂ν1 (0) = a] > 1/2 for all ν = νa,j,a2,j2 , ranging across a2, j2. A full proof is given in Section D.4.3.

As a consequence, we find that if γ ≤ 1/10 and Alg is (ǫ/24, p)-correct,

E
J
unif
∼ [A]M

EPJ ,Alg[K] ≥ A ·
(1− p) logM − log 2

ǫ2

In particular, if logM ≥ 4 log 2 and p ≤ 1/2, then,

E
J
unif
∼ [A]M

EPJ ,Alg[K] ≥ A ·
logM

4ǫ2
(10)

Concluding the proof Take γ = 1/10. For constants c0, c1 sufficiently large, we can ensure that if

n ≥ c0 log2A, then M = e−n/c1 statisfies 2 log(M) ≤ nγ2 − log(4n) − 2 log(A) and logM ≥ 4 log 2.

Thus, we can construct a γ-uncorrelated packing of cardinality logM ≥ n/c1,

E
J
unif
∼ [A]M

EPJ ,Alg[K] ≥ A ·
n

4c1ǫ2
,

as needed.

D.4.1 Proof of Lemma D.6

We begin with the following concentration inequality:

Lemma D.9. For any fixed (a, j) and (a′, j′), we have

P[|〈va,j , va′,j′〉| ≥ 2nγ] ≤ elog(4n)−nγ2
.

Proof. By permuting coordinates, we may assume that

va′,j′[s] =

{
1 s ∈ [n]

−1 s ∈ {n+ 1, . . . , 2n}
.

Then,

〈va,j , va′,j′〉 = 2|{s ∈ [n] : va,j [s] = 1}| − 2(n− |{s ∈ [n] : va,j [s] = 1}|)

33

= 2n− 4|{s ∈ [n] : va,j [s] = 1}| := 2n− 4Z,

where we set Z = |{s ∈ [n] : va,j [s] = 1}|. Hence, if |〈va,j , va′,j′〉| ≥ 2γn, we need

∣∣∣∣
Z

n
−

1

2

∣∣∣∣ ≥
γ

2
.

Now, we have that for i ∈ [n],

P[Z = i] <

(
n
i

)
·
(

n
n−i

)
∑n

i=0

(
n
i

)
·
(

n
n−i

) =

(n
i

)2
∑n

i=0

(n
i

)2 < n

(n
i

)2
(∑n

i=0

(n
i

))2 = nPW∼Binom(n,1/2)[W = i]2.

Hence,

P

[∣∣∣∣
Z

n
−

1

2

∣∣∣∣ ≥
γ

2

]
≤ n

∑

i:| i
n
− 1

2
|≥ γ

2

PW∼Binom(n,1/2)[W = i]2

≤ n




∑

i:| i
n
− 1

2
|≥ γ

2

PW∼Binom(n,1/2)[W = i]




2

= n

(
PW∼Binom(n,1/2)

[∣∣∣∣
W

n
−

1

2

∣∣∣∣ ≥
γ

2

])2

≤ n(2e−2(γ/2)2n)2 = elog(4n)−nγ2

We now finish the proof of our intended lemma:

Proof of Lemma D.6. By a union bound over at most A2M2 − 1 pairs (a, j), (a′, j′), there exists a γ-

uncorrelated packing for any M satisfying

A2M2elog(4n)−nγ2
≤ 1

Taking logarithms, we require 2 log(M) ≤ nγ2 − log(4n)− 2 log(A).

D.4.2 Proof of Lemma D.7

To begin, let us state a variant of Fano’s inequality, which replaces mutual-information with an arbitrary

comparison measure:

Lemma D.10 (Fano’s Inequality). Consider M probability measures P1, . . . ,PM on a space Ω. Then for

any estimator ĵ on Ω and any comparison law P0 on Ω,

1

M

M∑

j=1

Pj

[
ĵ 6= j

]
≥ 1−

log 2 + 1
M

∑M
j=1KL(Pj,P0)

logM

34

Proof. This follows from the standard statement of Fano’s inequality, where we use that

inf
P0

1

M

M∑

j=1

KL(Pj,P0) =
1

M

M∑

j=1

KL


Pj,

1

M

M∑

j′=1

Pj′




For reference, see e.g. Equation (11) in Chen et al. [2016].

We will apply Fano’s inequality of each a ∈ [A]. To begin, for a fixed J ∈ [M]A and a ∈ [A], let us

define the laws “Pj”. We let PJ,a,j denote the reward-free MDP with starting at x = 0 deterministically, and

with transitions

P
PJ,a,j [s | x1 = 0, a1 = a′] =

{
qa,j[s] a′ = a

qa′,Ja′ [s] a′ 6= a.

For fixed J, a, we let Pj;J,a denote the joint law induced by Algest and PJ,a,j. For the comparison measure,

let PJ,a,0 denote the analogous MDP to PJ,a,j , but where P
PJ,a,j [s | x1 = 0, a1 = a] = q0 for the fixed

action a. We let P0;J,a denote the law induced by Algest and PJ,a,j. Then, Fano’s iqequality implies that

∀J, a, (1− p) logM − log 2 ≤
1

M

M∑

j=1

KL(PJ,a,j,P0;J,a). (11)

Now, observe that the laws PJ,a,j and P0;J,a only differ due to transitions selecting action a1 = a. Under the

first law, these have distribution Multinomial(qa,j), and under the second, Multinomial(q0). Let NK(a =
a1) denote the expected number of times algorithm Algest selects action a1 = a at time step 1. From a

Wald’s identity argument (see e.g. Kaufmann et al. [2016]), we have

KL(PJ,a,j,P0;J,a) = EPJ,a,j ,Algest [NK(a1 = a)]KL(Multinomial(qa,j),Multinomial(qa,0))

= EPJ,a,j ,Algest [NK(a1 = a)]

2n∑

s=1

1 + ǫvj,a[s]

2n
log(1 + ǫvj,a[s])

(i)

≤ EPJ,a,j ,Algest [NK(a1 = a)]
2n∑

s=1

ǫvj,a + ǫ2vj,a[s]
2

2n

(ii)

≤ ǫ2 · EPJ,a,j,Algest [NK(a1 = a)]

where (i) uses 1 + ǫvj,a[s] ≥ 0 and the identity log(1 + x) ≤ x, and (ii) uses the fact that vj,a[s]
2 = 1 and∑2n

s=1 vj,a[s] = 0 for vj,a ∈ K. Thus, by Eq 11,

∀J, a,
(1− p) logM − log 2

ǫ2
≤

1

M

M∑

j=1

EPJ,a,j ,Algest [NK(a1 = a)].

By taking an expectation over index tuples J drawn uniformly from [A]M , we have

∀a,
(1− p) logM − log 2

ǫ2
≤

1

M

M∑

j=1

E
J
unif
∼ [A]M

EPJ,a,j ,Algest [NK(a1 = a)]

35

= E
J
unif
∼ [A]M

EPJ ,Algest [NK(a1 = a)] ,

where the last line follows that PJ,a,j = PJ ′ for some J ′ and that, by symmetry, each index J ′ has equal

weight when averaged over both J ∈ [A]M and j ∈ [M]. Summing over a ∈ [A], we have

A ·
(1− p) logM − log 2

ǫ2
≤ E

J
unif
∼ [A]M

EPJ ,Algest

[
A∑

a=1

NK(a1 = a)

]
= E

J
unif
∼ [A]M

EPJ ,Algest [K].

D.4.3 Proof of Lemma D.8

Let us now show that (ǫ/12, p)-learning implies the existence of an algorithm Algest satisfying Eq. 9, pro-

vided the packing is sufficiently uncorrelated. Introduce the vectors

νa1,a2,j1,j2 :=
1

3
va1,j1 +

1

6
va2,j2 +

1

2
1,

which can be checked to lie [0, 1]2n. We shall establish the following lemma, which says that for sufficciently

uncorrelated packings, the vectors ν(...) witness separations between qa1,j1 and qa2,j2 for different actions

a1, a2:

Lemma D.11. Fix a1 ∈ [A] and j1 ∈ [M], and suppose the packing is γ = 1/10-uncorrelated: Then, for

any a2 6= a1 and j2 ∈ [M], the following holds

min
a′2,j

′
2

〈qa1,j1 − qa2,j2 , νa1,a′2,j1,j′2〉 >
ǫ

12

∀j′1 6= j1, min
a′2,j

′
2

〈qa1,j1 − qa2,j2 , νa1,a′2,j′1,j′2〉 < −
ǫ

12

Proof of Lemma D.11.

〈qa1,j1 − qa2,j2 , νa′1,a′2,j′1,j′2〉 =
ǫ

2n
〈va1,j1 − va2,j2 , νa′1,a′2,j′1,j′2〉

=
ǫ

12n
〈va1,j1 − va2,j2 , 2va′1,j′1 − va′2,j′2〉,

where we use the fact that v⊤a,j1 = 1 for all a, j. If a′1 = a1 and j′1 = j1, and the packing is γ ≤ 1/6-

uncorrelated

〈qa1,j1 − qa2,j2 , νa1,a′2,j1,j′2〉 =
ǫ

12n
〈va1,j1 − va2,j2 , 2va1,j1 − va′2,j′2〉

=
ǫ

12n

(
2〈va1,j1, va1,j1〉 − 2〈va2,j2 , va1,j1〉+ 〈va1,j1, va′2,j′2〉 − 〈va2,j2 , va′2,j′2〉

)

>
ǫ

12n
(4n− 4γn− 2n− 2nγ)

≥
ǫ

12n
(2n− 6nγ) =

ǫ

12
.

On the other hand, if j1 6= j′1, but (a2, j2) = (a′2, j
′
2) then a similar computation reveals that for γ ≤ 1/10,

〈qa1,j1 − qa2,j2, νa1,a2,j′1,j2〉 <
ǫ

12n
(10γn− 2n〉) <

−ǫ

12
.

36

We can now conclude the proof of our reduction:

Proof of Lemma D.8. Suppose that Alg is run on PJ for J ∈ [M]A. Further, recall the rewards rν which

assign reward of rν(s, a) = I(s ∈ [2n])ν(s). By (ǫ/24, p)-correctness of Alg, then with probability 1 − p,

Alg computes policies π̂ν which satisfies the following bound simultaneously for all ν ∈ {νa1,a2,j1,j2}:

max
π

V π(PJ , rν)− V
π̂ν (PJ , rν) ≤ ǫ/24. (12)

For a possibly randomized policy, we use the shorthand π[a] to denote the probability of selecting a at the

initial state 0; that is Pπ[a1 = a]. Now, Consider the following procedure: for each a ∈ [A], estimate Ja by

returning the first j ∈ [M] for which

∀a′2, j
′
2, π̂νa,a′

2
,j,j′

2
[a] > 1/2. (13)

We conclude our proof by showing that, on the good event Eq. (12), the condition in Eq. (13) holds if and

only if j = Ja. To this end, define the short hand

qπ :=
∑

a′

π[a′]qa′,Ja′

Then, we have that

max
π

V π(PJ , rν)− V
π̂ν (PJ , rν) = max

π
〈qπ − qπ̂ν

, ν〉 ,

so that on the good event of Eq. 12, we have

max
π
〈qπ − qπ̂ν

, ν〉 ≤
ǫ

24
.

True Positive for j = Ja: First let’s show that Equation 13 holds for j = Ja. Indeed, if it does not, then

there exists some a′2, j
′
2 for which P[π̂νa,j,a′2,j′2

[a]] ≤ 1/2, and (setting ν = νa,j,a′2,j′2 for shorthand in π̂ν)

ǫ/24 ≥ max
π
〈qπ − qπ̂ν

, ν〉 ,

≥
〈
qa,Ja − qπ̂ν , νa,j,a′2,j′2

〉
(choose π[a] = 1)

=
∑

a′ 6=a

π̂ν [a
′]
〈
qa,Ja − qa′,Ja′ , νa,j,a′2,j′2

〉

≥ (1− π̂ν [a])︸ ︷︷ ︸
≥1/2

·min
a′ 6=a

〈
qa,Ja − qa′,Ja′ , νa,j,a′2,j′2

〉

︸ ︷︷ ︸
>ǫ/12 by Lemma D.11

>
ǫ

24
,

yielding a contradiction.

True Negative for j 6= Ja: On the other hand, for j 6= Ja suppose that for all all a′2 6= a and all j′2 ∈ [M],

P[π̂
νa,j,a′2,j

′
2

1 (0) = a] > 1/2. Then, considering a′2 = a2 and j′2 = Ja2 , we have (setting ν = νa,j,a2,Ja2 for

shorthand in π̂ν)

ǫ/24 ≥ max
a′

〈
qa′,Ja′ − qπ̂ν , νa,j,a2,J2

〉

37

≥
〈
qa2,Ja2 − qπ̂ν , νa,j,a2,J2

〉

≥ π̂ν [a2]︸ ︷︷ ︸
≥π̂ν [a]>1/2

· min
a′ 6=a2

〈
qa2,Ja2 − qa′,Ja′ , νa,j,a′2,j′2

〉

︸ ︷︷ ︸
>ǫ/12 by Lemma D.11

>
ǫ

24
,

again drawing a contradiction.

38

	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Exploration Phase
	3.2 Planning Phase
	3.3 Approximate MDP Solvers

	4 Lower Bound
	4.1 Reward Free Exploration at a Single State
	4.2 Lower Bound for Multiple States

	5 Conclusion
	A The ZeroRMax algorithm
	A.1 Analysis

	B MaxEnt Exploration
	C Proof for Main Results
	C.1 Exploration Phase
	C.2 Planning Phase
	C.3 Proof of Theorem 3.1
	C.4 Approximate MDP Solvers

	D Proof of Lower Bound
	D.1 Preliminaries
	D.2 Learning A Single Instance
	D.3 Learning Transitions at n states: Proof of Theorem 4.1
	D.4 Proof of Lemma D.2
	D.4.1 Proof of Lemma D.6
	D.4.2 Proof of Lemma D.7
	D.4.3 Proof of Lemma D.8

