
NGBoost: Natural Gradient Boosting for Probabilistic Prediction

Tony Duan * 1 Anand Avati * 1 Daisy Yi Ding 1 Khanh K. Thai 2 Sanjay Basu 3 Andrew Ng 1

Alejandro Schuler 2

Abstract
We present Natural Gradient Boosting (NG-
Boost), an algorithm for generic probabilistic
prediction via gradient boosting. Typical regres-
sion models return a point estimate, conditional
on covariates, but probabilistic regression mod-
els output a full probability distribution over the
outcome space, conditional on the covariates.
This allows for predictive uncertainty estima-
tion — crucial in applications like healthcare and
weather forecasting. NGBoost generalizes gradi-
ent boosting to probabilistic regression by treat-
ing the parameters of the conditional distribu-
tion as targets for a multiparameter boosting al-
gorithm. Furthermore, we show how the Natural
Gradient is required to correct the training dy-
namics of our multiparameter boosting approach.
NGBoost can be used with any base learner, any
family of distributions with continuous parame-
ters, and any scoring rule. NGBoost matches or
exceeds the performance of existing methods for
probabilistic prediction while offering additional
benefits in flexibility, scalability, and usability.
An open-source implementation is available at
github.com/stanfordmlgroup/ngboost.

1. Introduction
Many important supervised machine learning problems are
regression problems. Weather forecasting (predicting tem-
perature of the next day based on today’s atmospheric vari-
ables (Gneiting and Katzfuss, 2014)) and clinical predic-
tion (predicting time to mortality with survival prediction

*Equal contribution 1Stanford University, Stanford, Cal-
ifornia, United States 2Unlearn.ai, San Francisco, Cal-
ifornia, United States 3Harvard Medical School, Cam-
bridge, Massachusetts, United States. Correspondence
to: Anand Avati <avati@cs.stanford.edu>, Tony Duan
<tonyduan@cs.stanford.edu>, Alejandro Schuler <alejan-
dro.schuler@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

x

y

Predicted mean

95% prediction interval

Figure 1. Prediction intervals for a toy 1-dimensional probabilis-
tic regression problem, fit via NGBoost. The dots represent data
points. The thick black line is the predicted mean after fitting
the model. The thin gray lines are the upper and lower quantiles
covering 95% of the prediction distribution.

on structured medical records of the patient (Avati et al.,
2018)) are important examples.

Most machine learning methods tackle this problem with
point prediction, returning a single “best guess” prediction
(e.g. the temperature tomorrow will be 16◦C). However,
in these fields it is often important to be able to quantify
uncertainty in the prediction or be able to answer multiple
questions on the fly (e.g. what’s the probability it will be
between 18◦C and 20◦C? What about <15◦C?) (Kruchten,
2016).

In order to answer arbitrary questions about the probability
of events conditional on covariates, we must estimate the
conditional probability distribution P (y|x) for each value
of x instead of producing a point estimate like E[y|x]. This
is called probabilistic regression. Probabilistic regression
is increasingly being used in fields like meteorology and
healthcare (Gneiting and Raftery, 2007; Avati et al., 2019).

Probabilistic estimation is already the norm in classifica-
tion problems. Although some classifiers (e.g. standard
support vector machines) only return a predicted class la-
bel, most are capable of returning estimated probabilities
for each class; effectively, a conditional probability mass
function.

However, existing methods for probabilistic regression are
either inflexible, slow, or inaccessible to non-experts. Any

ar
X

iv
:1

91
0.

03
22

5v
4

 [
cs

.L
G

]
 9

 J
un

 2
02

0

https://github.com/stanfordmlgroup/ngboost

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

x Base Learners
{
f (m)(x)

}M
m=1

Distribution Pθ(y|x) Scoring Rule S(Pθ, y) yθ

Fit Natural Gradient ∇̃θ

Figure 2. NGBoost is modular with respect to choice of base learner, distribution, and scoring rule.

mean-estimating regression method can be made prob-
abilistic by assuming homoscedasticity and estimating
an unconditional noise model, but homoscedasticity is a
strong assumption and the process requires some statistical
know-how. Generalized Additive Models for Shape, Scale,
and Location (GAMLSS) allow heteroscedasticity but are
restricted to a pre-specified model form (Stasinopoulos
et al., 2007). Bayesian methods naturally generate predic-
tive uncertainty estimates by integrating predictions over
the posterior, but exact solutions to Bayesian models are
limited to simple models, and calculating the posterior dis-
tribution of more powerful models such as Neural Net-
works (NN) (Neal, 1996) and Bayesian Additive Regres-
sion Trees (BART) (Chipman et al., 2010) is difficult. In-
ference in these models requires computationally expen-
sive approximation via, for example, MCMC sampling.
Moreover, sampling-based inference requires some statis-
tical expertise and thus limits the ease-of-use of Bayesian
methods. Bayesian approaches often also scale poorly to
large datasets (Rasmussen and Williams, 2005). Bayesian
Deep Learning is gaining popularity (Graves, 2011; Blun-
dell et al., 2015; Hernández-Lobato and Adams, 2015)
but, while neural networks have empirically excelled at
perception tasks (such as with visual and audio input),
they usually perform only on par with traditional methods
when data are limited in size or tabular. Extensive hyper-
parameter tuning and informative prior specification are
also challenges for Bayesian Deep Learning which make
it difficult to use out-of-the-box.

Meanwhile, Gradient Boosting Machines (GBMs) (Fried-
man, 2001; Chen and Guestrin, 2016) are a set of highly-
modular methods that work out-of-the-box and perform
well on structured input data, even with relatively small
datasets. This can be seen in their empirical success on
Kaggle and other data science competitions (Chen and
Guestrin, 2016). In classification tasks, their predictions
are probabilistic by default (by use of the sigmoid or soft-
max link function). But in regression tasks, they output
only a scalar value. Under a squared-error loss these scalars
can be interpreted as the mean of a conditional Gaussian
distribution with some (unknown) constant variance. How-
ever, such probabilistic interpretations have little use if the
variance is assumed constant. The predicted distributions
need to have at least two degrees of freedom (two parame-
ters) to effectively convey both the magnitude and the un-

certainty of the predictions, as illustrated in Figure 1. It is
precisely this problem of simultaneous boosting of multiple
parameters from the base learners which makes probabilis-
tic forecasting with GBMs a challenge, and NGBoost ad-
dresses this with a multiparameter boosting approach and
the use of natural gradients (Amari, 1998).

2. Summary of Contributions
i. We present Natural Gradient Boosting, a modular

algorithm for probabilistic regression (section 3.4)
which uses multiparameter boosting and natural gra-
dients to integrate any choice of:
• Base learner (e.g. Regression Tree),
• Parametric probability distribution (Normal,

Laplace, etc.), and
• Scoring rule (MLE, CRPS, etc.).

ii. We present a generalization of the natural gradient to
other scoring rules such as CRPS (section 3.2).

iii. We demonstrate empirically that NGBoost performs
competitively relative to other models in its predictive
uncertainty estimates, as well as in its point estimates
(section 4).

3. Natural Gradient Boosting
In standard prediction settings, the object of interest is an
estimate of a scalar function like E[y|x], where x is a vector
of observed features and y is the prediction target. In our
setting we are interested in producing a probability distri-
bution Pθ(y|x) (with CDF Fθ). Our approach is to assume
Pθ(y|x) is of a specified parametric form, then estimate the
p parameters θ ∈ Rp of the distribution as functions of x.

3.1. Proper Scoring Rules

To begin, we need a learning objective. In point prediction,
the predictions are compared to the observed data with a
loss function. The analogue in probabilistic regression is
a scoring rule, which compares the estimated probability
distribution to the observed data.

A proper scoring rule S takes as input a forecasted proba-
bility distribution P and one observation y (outcome), and
assigns a score S(P, y) to the forecast such that the true dis-
tribution of the outcomes gets the best score in expectation

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

(Gneiting and Raftery, 2007). In mathematical notation, a
scoring rule S is a proper scoring rule if and only if it sat-
isfies

Ey∼Q[S(Q, y)] ≤ Ey∼Q[S(P, y)] ∀P,Q, (1)

whereQ represents the true distribution of outcomes y, and
P is any other distribution (such as the probabilistic fore-
cast from a model). Since we are working with parametric
distributions, we can identify each distribution with its pa-
rameters and write the score as S(θ, y).
The most commonly used proper scoring rule is the loga-
rithmic score L, which, when minimized, gives the MLE:

L(θ, y) = − logPθ(y). (2)

Another example is CRPS, which is generally considered a
robust alternative to MLE (Gebetsberger et al., 2018). The
CRPS (denoted C) is defined as

C(θ, y) =
∫ y

−∞
Fθ(z)

2dz +

∫ ∞
y

(1− Fθ(z))2dz. (3)

3.2. The Generalized Natural Gradient

We take a standard gradient descent approach to find the
parameters that minimize the scoring rule by descending
along the negative gradient of the score relative to the pa-
rameters at each point x. The (ordinary) gradient of a scor-
ing rule S over a parameterized probability distribution Pθ
with parameter θ and outcome y with respect to the param-
eters is denoted ∇S(θ, y). It is the direction of steepest
ascent, such that moving the parameters an infinitesimally
small amount in that direction of the gradient (as opposed
to any other direction) will increase the scoring rule the
most. That is,

∇S(θ, y) ∝ lim
ε→0

argmax
d:‖d‖=ε

S(θ + d, y). (4)

This gradient is not invariant to reparameterization. Con-
sider reparameterizing Pθ to Pz(θ)(y) so Pθ(y ∈ A) =
Pψ(y ∈ A) for all events A when ψ = z(θ). If the gradient
is calculated relative to θ and an infinitesimal step is taken
in that direction, say from θ to θ + dθ the resulting distri-
bution will be different than if the gradient had been calcu-
lated relative to ψ and a step was taken from ψ to ψ + dψ.
In other words, Pθ+dθ(y ∈ A) 6= Pψ+dψ(y ∈ A). Thus
the choice of parameterization can drastically impact the
training dynamics, even though the minima are unchanged.

The problem is that “distance” between two parameter val-
ues does not correspond to an appropriate “distance” be-
tween the distributions that those parameters identify. This
motivates the natural gradient (denoted ∇̃), which origi-
nated in information geometry (Amari, 1998).

Divergences. Every proper scoring rule induces a diver-
gence that can serve as local distance metric in the space of
distributions. A proper scoring rule by definition satisfies
the inequality of Eqn 1. The excess score of the right hand
side over the left is the divergence induced by that scoring
rule (Dawid and Musio, 2014):

DS(Q‖P) = Ey∼Q[S(P, y)]− Ey∼Q[S(Q, y)], (5)

which is necessarily non-negative, and can be interpreted as
a measure of difference from one distribution Q to another
P . The MLE scoring rule induces the Kullback-Leibler
divergence (KL divergence, or DKL), while CRPS induces
the L2 divergence (Dawid, 2007; Machete, 2013).

The divergences DKL and DL2 are invariant to how Q and
P are parameterized. Though divergences in general are
not symmetric, for small changes of the parameters they
are almost symmetric and can serve as a local distance met-
ric. When used as such, a divergence induces a statistical
manifold where each point in the manifold corresponds to
a probability distribution (Dawid and Musio, 2014).

Natural Gradient. The generalized natural gradient is
the direction of steepest ascent in Riemannian space, which
is invariant to parametrization, and is defined as:

∇̃S(θ, y) ∝ lim
ε→0

argmax
d:DS(Pθ||Pθ+d)=ε

S(θ + d, y). (6)

If we solve the corresponding optimization problem, we
obtain the natural gradient of the form

∇̃S(θ, y) ∝ IS(θ)−1∇S(θ, y) (7)

where IS(θ) is the Riemannian metric of the statistical
manifold at θ, which is induced by the scoring rule S.
While the natural gradient was originally defined for the
statistical manifold with the distance measure induced by
DKL (Martens, 2014), we provide a more general treat-
ment here that applies to any divergence that corresponds
to some proper scoring rule.

By choosing S = L (i.e. MLE) and solving the above
optimization problem, we get:

∇̃L(θ, y) ∝ IL(θ)−1∇L(θ, y) (8)

where IL(θ) is the Fisher Information carried by an obser-
vation about Pθ, which is defined as:

IL(θ) = Ey∼Pθ
[
∇θL(θ, y)∇θL(θ, y)T

]
(9)

Similarly, by choosing S = C (i.e. CRPS) and solving the
above optimization problem, we get:

∇̃C(θ, y) ∝ IC(θ)−1∇C(θ, y) (10)

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

−3 −2 −1 0 1 2 3

µ

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
σ

MLE: gradients

−3 −2 −1 0 1 2 3

µ

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
σ

MLE: natural gradients

−3 −2 −1 0 1 2 3

µ

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
σ

CRPS: gradients

−3 −2 −1 0 1 2 3

µ

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
σ

CRPS: natural gradients

Figure 3. Proper scoring rules and corresponding gradients for fitting a Normal distribution on samples ∼ N(0, 1). For each scoring
rule, the landscape of the score (colors and contours) is identical, but the gradient fields (arrows) are markedly different depending on
which kind of gradient is used.

where IC(θ) is the Riemannian metric of the statistical
manifold that usesDL2 as the local distance measure, given
by (Dawid, 2007):

IC(θ) = 2

∫ ∞
−∞
∇θFθ(z)∇θFθ(z)T dz. (11)

Using the natural gradient for learning the parameters
makes the optimization problem invariant to parametriza-
tion and leads to more efficient and stable learning dynam-
ics (Amari, 1998). Figure 3 shows the vector field of gra-
dients and natural gradients for L and C on the parameter
space of a Normal distribution parameterized by µ (mean)
and log σ (logarithm of the standard deviation).

3.3. Gradient Boosting

Gradient boosting (Friedman, 2001) is a supervised learn-
ing technique where several weak learners (or base learn-
ers) are combined in an additive ensemble. The model is
learnt sequentially, where the next base learner is fit against
the training objective residual of the current ensemble. The
output of the fitted base learner is then scaled by a learning
rate and added into the ensemble.

The boosting framework can be generalized to any choice
of base learner but most popular implementations use shal-
low decision trees because they work well in practice (Chen
and Guestrin, 2016; Ke et al., 2017).

When fitting a decision tree to the gradient, the algorithm
partitions the data into axis-aligned slices. Each slice of
the partition is associated with a leaf node of the tree, and
is made as homogeneous in its response variable (the gra-
dients at that set of data points) as possible. The criterion
of homogeneity is typically the sample variance. The pre-
diction value of the leaf node (which is common to all the
examples ending up in the leaf node) is then set to be the
additive component to the predictions that minimizes the
loss the most. This is equivalent to doing a “line search”
in the functional optimization problem for each leaf node,
and, for some losses, closed form solutions are available.
For example, for squared error, the response variables are
residuals, and the result of the line search will yield the
sample mean of the response variables in the leaf.

We now consider adapting gradient boosting for prediction
of parameters θ in the probabilistic regression context.

3.4. NGBoost: Natural Gradient Boosting

The NGBoost algorithm is a supervised learning method
for probabilistic prediction that uses boosting to estimate
the parameters of a conditional probability distribution
P (y|x) as functions of x. Here y could be one of several
types ({±1}, R, {1, . . . ,K}, R+, N, etc.) and x is a vector
in Rd. In our experiments we focus on real valued outputs,
though all of our methods are applicable to other modalities

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

such as classification and survival prediction.

The algorithm has three modular components, which are
chosen upfront as a configuration:

• Base learner (f),

• Parametric probability distribution (Pθ), and

• Proper scoring rule (S).

Algorithm 1 NGBoost for probabilistic prediction
Data: Dataset D = {xi, yi}ni=1.
Input: Boosting iterations M , Learning rate η, Probability

distribution with parameter θ, Proper scoring rule
S, Base learner f .

Output: Scalings and base learners {ρ(m), f (m)}Mm=1.

θ(0) ← argminθ
∑n
i=1 S(θ, yi) {initialize to marginal}

for m← 1, . . . ,M do
for i← 1, . . . , n do

g
(m)
i ← IS

(
θ
(m−1)
i

)−1
∇θS

(
θ
(m−1)
i , yi

)
end

f (m) ← fit
({
xi, g

(m)
i

}n
i=1

)
ρ(m) ← argminρ

∑n
i=1 S

(
θ
(m−1)
i − ρ · f (m)(xi), yi

)
for i← 1, . . . , n do

θ
(m)
i ← θ

(m−1)
i − η

(
ρ(m) · f (m)(xi)

)
end

end

A prediction y|x on a new input x is made in the form of
a conditional distribution Pθ, whose parameters θ are ob-
tained by an additive combination of M base learner out-
puts (corresponding to theM gradient boosting stages) and
an initial θ(0). Note that θ can be a vector of parameters
(not limited to be scalar valued), and they completely deter-
mine the probabilistic prediction y|x. For example, when
using the Normal distribution, θ = (µ, log σ) in our ex-
periments. To obtain the predicted parameter θ for some
x, each of the base learners f (m) take x as their input.
Here f (m) collectively refers to the set of base learners,
one per parameter, of stage m. For example, for a Nor-
mal distribution with parameters µ and log σ, there will be
two base learners, f (m)

µ and f (m)
log σ per stage, collectively

denoted as f (m) =
(
f
(m)
µ , f

(m)
log σ

)
. The predicted outputs

are scaled with stage-specific scaling factors ρ(m), and a
common learning rate η:

y|x ∼ Pθ(x), θ = θ(0) − η
M∑
m=1

ρ(m) · f (m)(x).

Each scaling factor ρ(m) is a single scalar, even if the dis-
tribution has multiple parameters. The model is learnt se-
quentially, a set of base learners f (m) and a scaling factor

ρ(m) per stage. The learning algorithm starts by first esti-
mating a common θ(0) such that it minimizes the sum of the
scoring rule S over the response variables from all training
examples, essentially fitting the marginal distribution of y.
This becomes the initial predicted parameter θ(0) for all ex-
amples.

In each iteration m, the algorithm calculates, for each ex-
ample i, the natural gradients g(m)

i of the scoring rule S
with respect to the predicted parameters of that example up
to that stage, θ(m−1)i . Note that g(m)

i has the same dimen-
sion as θ. A set of base learners for that iteration f (m) are
fit to predict the corresponding components of the natural
gradients g(m)

i of each example xi.

The output of the fitted base learner is the projection of the
natural gradient on to the range of the base learner class.
This projected gradient is then scaled by a scaling factor
ρ(m) since local approximations might not hold true very
far away from the current parameter position. The scaling
factor is chosen to minimize the overall true scoring rule
loss along the direction of the projected gradient in the form
of a line search. In practice, we found that implementing
this line search by successive halving of ρ (starting with
ρ = 1) until the scaled gradient update results in a lower
overall loss relative to the previous iteration works reason-
ably well and is easy to implement.

Once the scaling factor ρ(m) is determined, the predicted
per-example parameters are updated to θ(m)

i by adding to
each θ(m−1)i the negative scaled projected gradient for i,
ρ(m) · f (m)(xi) which is further scaled by a small learning
rate η (typically 0.1 or 0.01).

The pseudo-code is presented in Algorithm 1. For very
large datasets computational performance can be easily
improved by simply randomly sub-sampling mini-batches
within the fit() operation.

3.5. Analysis and Discussion

Boosting for probabilistic prediction. Our boosting ap-
proach generalizes gradient boosting to predict conditional
distributions. For instance, if the user specifies the condi-
tional distribution to be a Normal distribution with a fixed
variance and uses the logarithmic scoring rule, our ap-
proach recovers the standard boosting algorithm with MSE
loss (modulo the per-leaf line search). The advantage of
NGBoost is that users are also free to specify any other
family of distributions identified by a set of real-valued pa-
rameters and allow all of those parameters to vary over the
covariates, not just the mean. NGBoost thus trivially ex-
tends to a variety of use cases, such as negative binomial
boosting (for counts), Gamma or Weibull boosting (for sur-
vival prediction, with or without right-censored data), etc.

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

(a) 0% fit (b) 33% fit (c) 67% fit (d) 100% fit

Figure 4. Contrasting the learning dynamics between using the ordinary gradient (top row) vs. the natural gradient (bottom row) for the
purpose of gradient boosting the parameters of a Normal distribution on a toy data set. With ordinary gradients, we observe that “lucky”
examples that are accidentally close to the initial predicted mean dominate the learning. This is because, under the ordinary gradient,
the variances of those examples that have the correct mean get adjusted much more aggressively than the wrong means of the “unlucky”
examples. This results in simultaneous overfitting of the “lucky” examples in the middle and underfitting of the “unlucky” examples at
the ends. Under the natural gradient, all the updates are better balanced.

Multiparameter boosting. These wide-ranging exten-
sions of gradient boosting are made possible by turning the
distributional prediction problem into a problem of jointly
estimating p functions of x, one per parameter, according
to the scoring rule objective. In this setting, an overall line
search for the stage multiplier (as opposed to per-leaf line
search) is an inevitable consequence. However, our use of
natural gradient makes this less of a problem as the gra-
dients of all the examples come “optimally pre-scaled” (in
both the relative magnitude between parameters, and across
examples) due to the inverse Fisher Information factor. The
use of ordinary gradients instead would be sub-optimal, as
shown in Figure 4. With the natural gradient the parameters
converge at approximately the same rate despite different
conditional means, variances, and “distances” from the ini-
tial marginal distribution, even while being subjected to a
common scaling factor ρ(m) in each iteration. We attribute
this stability to the “optimal pre-scaling” property of the
natural gradient.

Parameterization. When the probability distribution is
in the exponential family and the choice of parameteriza-
tion is the natural parameters of that family, then a Newton-
Raphson step is equivalent to a natural gradient descent
step. However, in other parameterizations and distribu-
tions, the equivalence need not hold. This is especially im-
portant in the boosting context because, depending on the
inductive biases of the base learners, certain parameteriza-
tion choices may result in more suitable model spaces than
others. For example, one setting we are particularly inter-
ested in is the two-parameter Normal distribution. Though
it is in the exponential family, we use a mean (µ) and
log-scale (log σ) parameterization for both ease of imple-
mentation and modeling convenience (to disentangle mag-
nitude of predictions from uncertainty estimates). Since

natural gradients are invariant to parameterization this does
not pose a problem, whereas the Newton-Raphson method
would fail as the problem is no longer convex in this pa-
rameterization.

Computational complexity. There are two computa-
tional differences between our algorithm and a standard
boosting algorithm which contribute to complexity. The
first is that a series of learners must be fit for each param-
eter in NGBoost, whereas standard boosting fits only one
series of learners. The relative increase in computational
cost is thus linear in the number of distributional parame-
ters (p). The other difference is that we must compute the
natural gradient per observation, which requires as many
inversions of a p × p matrix IS as there are observations
(N). The cost of doing so scales with p3, and linearly with
N . In practice, both costs are minimal because most com-
monly used distributions have only one or two parameters
and distributions with more than five are exceedingly rare.
Scaling in terms of p is therefore not a significant concern.
However, even though these costs are otherwise linear in
N , it may be prudent to avoid inverting a large number
of small matrices by sub-sampling mini-batches of data in
each boosting iteration. This is done in most implemen-
tations of boosting algorithms. All in all, NGBoost scales
exactly like other boosting algorithms in terms of N but
with larger “constants” that depend on p ≈ 100.

4. Experiments
Our experiments use datasets from the UCI Machine
Learning Repository, and follow the protocol first proposed
in Hernández-Lobato and Adams (2015). For all datasets,
we hold out a random 10% of the examples as a test set.
From the other 90% we initially hold out 20% as a valida-

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

Table 1. Comparison of probabilistic regression performance on regression benchmark UCI datasets as measured by NLL. Results for
MC dropout, Deep Ensembles, and Concrete Dropout are reported from Gal and Ghahramani (2016); Lakshminarayanan et al. (2017);
Gal et al. (2017) respectively. NGBoost offers competitive performance in terms of NLL, especially on smaller datasets. The best
method for each dataset is bolded, as are those with standard errors that overlap with the best method.

Dataset N NGBoost MC dropout Deep Ensembles Concrete Dropout Gaussian Process GAMLSS DistForest

Boston 506 2.43 ± 0.15 2.46 ± 0.25 2.41 ± 0.25 2.72 ± 0.01 2.37 ± 0.24 2.73 ± 0.56 2.67 ± 0.08
Concrete 1030 3.04 ± 0.17 3.04 ± 0.09 3.06 ± 0.18 3.51 ± 0.00 3.03 ± 0.11 3.24 ± 0.08 3.38 ± 0.05
Energy 768 0.60 ± 0.45 1.99 ± 0.09 1.38 ± 0.22 2.30 ± 0.00 0.66 ± 0.17 1.24 ± 0.86 1.53 ± 0.14
Kin8nm 8192 -0.49 ± 0.02 -0.95 ± 0.03 -1.20 ± 0.02 -0.65 ± 0.00 -1.11 ± 0.03 -0.26 ± 0.02 -0.40 ± 0.01
Naval 11934 -5.34± 0.04 -3.80 ± 0.05 -5.63 ± 0.05 -5.87 ± 0.05 -4.98 ± 0.02 -5.56 ± 0.07 -4.84 ± 0.01
Power 9568 2.79 ± 0.11 2.80 ± 0.05 2.79 ± 0.04 2.75 ± 0.01 2.81 ± 0.05 2.86 ± 0.04 2.68 ± 0.05
Protein 45730 2.81 ± 0.03 2.89 ± 0.01 2.83 ± 0.02 2.81 ± 0.00 2.89 ± 0.02 3.00 ± 0.01 2.59 ± 0.04
Wine 1588 0.91 ± 0.06 0.93 ± 0.06 0.94 ± 0.12 1.70 ± 0.00 0.95 ± 0.06 0.97 ± 0.09 1.05 ± 0.15
Yacht 308 0.20 ± 0.26 1.55 ± 0.12 1.18 ± 0.21 1.75 ± 0.00 0.10 ± 0.26 0.80 ± 0.56 2.94 ± 0.09
Year MSD 515345 3.43 ± NA 3.59 ± NA 3.35 ± NA NA± NA NA ± NA NA ± NA NA ± NA

Table 2. Comparison of probabilistic regression performance on regression benchmark UCI datasets as measured by NLL while ablating
key components of NGBoost. Multiparameter boosting must be used in tandem with the natural gradient to increase performance.
Bolding is as in Table 1.

Dataset N NGBoost 2nd-Order Multiparameter Homoscedastic

Boston 506 2.43 ± 0.15 3.57 ± 0.20 3.17 ± 0.13 2.79 ± 0.42
Concrete 1030 3.04 ± 0.17 4.21 ± 0.05 3.94 ± 0.09 3.22 ± 0.29
Energy 768 0.60 ± 0.45 3.64 ± 0.06 3.24 ± 0.09 0.68 ± 0.25
Kin8nm 8192 -0.49 ± 0.02 0.10 ± 0.07 -0.52 ± 0.03 -0.37 ± 0.05
Naval 11934 -5.34± 0.04 -2.80 ± 0.01 -3.46 ± 0.00 -4.35 ± 0.07
Power 9568 2.79 ± 0.11 4.11 ± 0.03 3.79 ± 0.13 2.66 ± 0.11
Protein 45730 2.81 ± 0.03 3.23 ± 0.00 3.04 ± 0.02 2.86 ± 0.01
Wine 1588 0.91 ± 0.06 1.21 ± 0.09 0.93 ± 0.07 1.34 ± 0.67
Yacht 308 0.20 ± 0.26 4.11 ± 0.17 3.29 ± 0.20 2.02 ± 0.21
Year MSD 515345 3.43 ± NA 3.80 ± 0.00 3.60 ± NA 3.63 ± NA

tion set to select M (the number of boosting stages) that
gives the best log-likelihood, and then retrain on the en-
tire 90% using the chosen M . The retrained model is then
made to predict on the held-out 10% test set. This entire
process is repeated 20 times for all datasets except Protein
and Year MSD, for which it is repeated 5 times and 1 time
respectively.

For all experiments, NGBoost was configured with the
Normal distribution, decision tree base learner with a max-
imum depth of three levels, and log scoring rule. The Year
MSD dataset, being extremely large relative to the rest, was
fit using a learning rate η of 0.1 while the rest of the datasets
were fit with a learning rate of 0.01. In general we recom-
mend small learning rates, subject to computational feasi-
bility. For the Year MSD dataset we use a mini-batch size
of 10%, for all other datasets we use 100%.

4.1. Probabilistic regression.

The quality of predictive uncertainty is captured in the av-
erage negative log-likelihood (NLL) (i.e. log P̂θ(y|x)) as
measured on the test set.

Our comparison in this task is against other probabilistic
prediction methods. Namely:

MC dropout fits a neural network to the dataset and inter-
prets Bernoulli dropout as a variational approximation for
Bayesian inference, obtaining predictive uncertainty by in-
tegrating over Monte Carlo samples (Gal and Ghahramani,
2016). We use the results from Gal and Ghahramani (2016)
as our benchmark.

Deep Ensembles fit an ensemble of neural networks to the
dataset and obtain predictive uncertainty by making an ap-
proximation to the Gaussian mixture arising out of the en-
semble (Lakshminarayanan et al., 2017). We use the results
from Lakshminarayanan et al. (2017) as our benchmark.

Concrete Dropout improves upon MC dropout by employ-
ing a continuous relaxation of the Bernoulli distribution
to automatically tune the dropout probability (Gal et al.,
2017). We use the results from Gal et al. (2017) as our
benchmark.

Gaussian Processes are a nonparametric Bayesian method
where the response is interpreted as a multivariate Gaussian

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

Table 3. Comparison of point-estimation performance on regression benchmark UCI datasets as measured by RMSE. Although not
optimized for point estimation, NGBoost still offers competitive performance. Bolding is as in Table 1.

Dataset N NGBoost Elastic Net Random Forest Gradient Boosting GAMLSS Distributional Forest

Boston 506 2.94 ± 0.53 4.08 ± 0.16 2.97 ± 0.30 2.46 ± 0.32 4.32 ± 1.40 3.99 ± 1.13
Concrete 1030 5.06 ± 0.61 12.1 ± 0.05 5.29 ± 0.16 4.46 ± 0.29 6.72 ± 0.59 6.61 ± 0.83
Energy 768 0.46 ± 0.06 2.75 ± 0.03 0.52 ± 0.09 0.39 ± 0.02 1.43 ± 0.32 1.11 ± 0.27
Kin8nm 8192 0.16 ± 0.00 0.20 ± 0.00 0.15 ± 0.00 0.14 ± 0.00 0.20 ± 0.01 0.16 ± 0.00
Naval 11934 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Power 9568 3.79 ± 0.18 4.42 ± 0.00 3.26 ± 0.03 3.01 ± 0.10 4.25 ± 0.19 3.64 ± 0.24
Protein 45730 4.33 ± 0.03 5.20 ± 0.00 3.60 ± 0.00 3.95 ± 0.00 5.04 ± 0.04 3.89 ± 0.04
Wine 1588 0.63 ± 0.04 0.58 ± 0.00 0.50 ± 0.01 0.53 ± 0.02 0.64 ± 0.04 0.67 ± 0.05
Yacht 308 0.50 ± 0.20 7.65 ± 0.21 0.61 ± 0.08 0.42 ± 0.09 8.29 ± 2.56 4.19± 0.92
Year MSD 515345 8.94 ± NA 9.49 ± NA 9.05 ± NA 8.73 ± NA NA ± NA NA ± NA

distribution with covariance given by some kernel between
covariates (Rasmussen and Williams, 2005). Our experi-
ments used an automatic relevance detection kernel fit via
gradient-based optimization of the marginal log-likelihood.
Datasets with N > 2000 employed 1000 inducing in-
puts randomly chosen from the training set, with induc-
ing points fit with variational inference as in Titsias (2009).
All features and labels were standardized to zero-mean and
unit variance for pre-processing. The standardized noise
level was tuned via grid search for each dataset, with val-
ues ranging between 0.01 and 0.1.

GAMLSS uses generalized (parametric) linear models
to fit each distributional parameter instead of boosting
(Stasinopoulos et al., 2007). Responses were parameter-
ized as Normal distributions N(µ, σ2). The mean µ and
log-std log σ were independently modeled as linear com-
binations of natural cubic splines of the covariates. No
interaction terms were included. All features and labels
were standardized to zero-mean and unit variance for pre-
processing.

Distributional Forests use trees to estimate distributional
parameters in each leaf, which are then averaged across the
model (Schlosser et al., 2019). Responses were parameter-
ized as Normal distributions N(µ, σ2). The mean µ and
log-std log σ were independently modeled using forests
consisting of 200 trees and default hyper-parameters (

√
d

covariates sampled per split, minimum 20 examples for a
split node, minimum 7 examples in a terminal node). All
features and labels were standardized to zero-mean and unit
variance for pre-processing.

Our probabilistic regression results are summarized in Ta-
ble 1. Results for the Year MSD dataset are unavail-
able either because they were not reported or because the
necessary computations for gradient-based optimization of
hyper-parameters did not fit in memory.

4.2. Ablation

We compare the NLL of our full NGBoost algorithm on
these data versus that of the following comparators, each
tuned in the same fashion:

2nd-Order boosting is NGBoost using 2nd-order gradi-
ent descent instead of the natural gradient. This tests the
added benefit of using the natural gradient vis-a-vis 2nd-
order methods. Recent work has argued that the natural
gradient improves training dynamics by approximating the
Hessian used in 2nd-order methods (Martens, 2014). We
use the “saddle-free” Newton-Raphson method of Dauphin
et al. (2014) in our implementation of 2nd-order multipa-
rameter boosting to provide a strong baseline.

Multiparameter boosting is NGBoost using the ordinary
gradient. This tests the added benefit of using the natural
gradient vis-a-vis the standard gradient, but still allows for
all of the parameters of the distribution to vary across x.

Homoscedastic boosting is NGBoost assuming a ho-
moscedastic variance σ2(x) = σ2 = V̂ar[r] where r are
the training set residuals from a single-parameter (mean)
boosting model. This tests the added benefit of allowing
parameters other than the conditional mean to vary across
x. Note that the natural gradient plays no meaningful role
when there is only a single parameter estimated with NG-
Boost.

Our ablation results are summarized in Table 2.

4.3. Point estimation

Although NGBoost is not specifically designed for point
estimation, it is easy to extract point estimates of expecta-
tions Ê[y|x] from the estimated distributions P̂θ(y|x). We
use this approach in a third evaluation to compare the same
NGBoost models as above to the Scikit-Learn implemen-
tations of random forests, standard gradient boosting, and
elastic net regression (Pedregosa et al., 2011). Predictive
performance in this evaluation is captured by the root mean

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

squared-error (RMSE) of the predictions on the test set.
We performed hyperparameter tuning for each of the com-
parator methods using the same validation procedure as de-
scribed above, although optimizing for RMSE instead of
NLL for all methods except NGBoost. We compare to:

Elastic Net: We used the Scikit-Learn implementation of
elastic net regularized linear models. We tuned over lasso-
ridge mixture parameters of 0.01, 0.7, and 0.99 and over
a range of regularization parameters between 0.00005 and
0.01. All other parameters were left to their default values.

Random Forest: We used the Scikit-Learn implementa-
tion of random forests. We set the number of trees to 500
and left all other parameters at their default values.

Gradient Boosting: We used the Scikit-Learn implemen-
tation of gradient boosted trees. We tuned over learning
rates of 0.01, 0.05, and 0.1, tree depths of 3 and 4, and num-
ber of boosting iterations between 0 and 1000. All other
parameters were left to their default values.

Our point prediction results are summarized in Table 3.

5. Conclusions
NGBoost is a method for probabilistic prediction with
competitive state-of-the-art performance on a variety of
datasets. NGBoost combines a multiparameter boosting
algorithm with the natural gradient to efficiently estimate
how parameters of the presumed outcome distribution vary
with the observed features.

NGBoost performs as well as existing methods for proba-
bilistic regression but retains major advantages: NGBoost
is flexible, scalable, and easy-to-use. We have not rigor-
ously quantified these advantages in this paper (since they
would be largely irrelevant without first establishing per-
formance), but many of the benefits are self-evident. Un-
like problem-specific approaches, NGBoost handles clas-
sification, regression, survival problems, etc. using the
same software package and interface. NGBoost scales to
large numbers of features or observations with the same fa-
vorable complexity of traditional boosting algorithms. No
expert knowledge of deep learning, Bayesian statistics, or
Monte Carlo methods is required to use NGBoost. It works
out of the box.

Our ablation experiments demonstrate that multiparameter
boosting and the natural gradient work together to improve
performance. Assuming a uniform variance across all co-
variates works reasonably well for some datasets, as would
be expected, but this is not always the case. However, us-
ing multiparameter boosting to relax the homoscedasticity
assumption most often results in worse performance, likely
due to poor training dynamics. 2nd-order methods result
in even worse performance. NGBoost employs the natural

gradient to correct the training dynamics of multiparameter
boosting. The superiority to 2nd-order methods demon-
strates that this is due to exploiting the curvature of the
score in distributional space, not the curvature of the score
in parameter space. The result is performance that is almost
always better than assuming homoscedasticity, sometimes
by a large margin.

Furthermore, the advantages of probabilistic regression
come almost “for free”. On point estimation tasks NG-
Boost performs better than elastic net, about on par with
random forests, and within striking distance of gradient
boosting. This is despite the fact that the NGBoost mod-
els were (a) optimized for NLL, not to minimize RMSE
and (b) less aggressively tuned. Thus, although point pre-
diction will always be best with a dedicated model for that
purpose, the loss in RMSE is not substantial if NGBoost is
used in order to support probabilistic regression instead.

There are many avenues for future work. This paper is fo-
cused on regression problems for clarity of exposition, but
NGBoost is also applicable to classification and to survival
problems with right-censored data (using the censored like-
lihood as a scoring rule). NGBoost could also be used for
joint prediction: by modeling two outcomes z and y with
a jointly parameterized conditional distribution Pθ(z, y|x),
a single NGBoost model could answer any question like
“what is the probability that it rains more than 4 inches and
the temperature is greater than 17◦C tomorrow?”.

Some further technical innovations are also worth explor-
ing. The natural gradient loses its invariance property with
finite step sizes, which we can address with differential
equation solvers for higher-order invariance (Song et al.,
2018). Better tree-based base learners and regularization
(e.g. Chen and Guestrin (2016); Ke et al. (2017)) are also
likely to improve performance, especially in terms of scal-
ing to large datasets.

Although we have shown empirically that NGBoost is
useful for probabilistic prediction, it remains to be seen
whether it is useful for inference problems and under what
assumptions. For instance, if we assume that y|x ∼
D(θ(x)) for some distribution D with parameters θ and we
estimate θ̂ngb(x) using NGBoost, under what conditions do
we have that θ̂ngb(x)→ θ(x) as sample size increases? Are
there conditions where the convergence is uniform in x? If
the model is misspecified (i.e. D is not correct), are there
conditions under which moment estimates from the model
are still consistent? Addressing these questions and others
like them would be of significant value.

Acknowledgements

This work was funded in part by the National Institutes of
Health. We thank anonymous reviewers for feedback.

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

References
Amari, S.-i. (1998). Natural Gradient Works Efficiently in

Learning. Neural Computation, page 29.

Avati, A., Duan, T., Jung, K., Shah, N. H., and Ng, A.
(2019). Countdown Regression: Sharp and Calibrated
Survival Predictions. In Uncertainty in Artificial Intelli-
gence. arXiv: 1806.08324.

Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., and
Shah, N. H. (2018). Improving palliative care with deep
learning. BMC Medical Informatics and Decision Mak-
ing, 18(4):122.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. (2015). Weight Uncertainty in Neural Network. In
International Conference on Machine Learning, pages
1613–1622.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scal-
able Tree Boosting System. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA. ACM.

Chipman, H. A., George, E. I., and McCulloch, R. E.
(2010). BART: Bayesian additive regression trees. The
Annals of Applied Statistics, 4(1):266–298.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. (2014). Identifying and attack-
ing the saddle point problem in high-dimensional non-
convex optimization. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., and Weinberger, K. Q., ed-
itors, Advances in Neural Information Processing Sys-
tems 27, pages 2933–2941. Curran Associates, Inc.

Dawid, A. P. (2007). The geometry of proper scoring
rules. Annals of the Institute of Statistical Mathematics,
59(1):77–93.

Dawid, A. P. and Musio, M. (2014). Theory and Appli-
cations of Proper Scoring Rules. METRON, 72(2):169–
183. arXiv: 1401.0398.

Friedman, J. H. (2001). Greedy Function Approximation:
A Gradient Boosting Machine. The Annals of Statistics,
29(5):1189–1232.

Gal, Y. and Ghahramani, Z. (2016). Dropout As a Bayesian
Approximation: Representing Model Uncertainty in
Deep Learning. In International Conference on Machine
Learning, ICML’16, pages 1050–1059. JMLR.org.

Gal, Y., Hron, J., and Kendall, A. (2017). Concrete
Dropout. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing Sys-
tems 30, pages 3581–3590. Curran Associates, Inc.

Gebetsberger, M., Messner, J. W., Mayr, G. J., and
Zeileis, A. (2018). Estimation Methods for Nonho-
mogeneous Regression Models: Minimum Continuous
Ranked Probability Score versus Maximum Likelihood.
Monthly Weather Review, 146(12):4323–4338.

Gneiting, T. and Katzfuss, M. (2014). Probabilistic Fore-
casting. Annual Review of Statistics and Its Application,
1(1):125–151.

Gneiting, T. and Raftery, A. E. (2007). Strictly Proper Scor-
ing Rules, Prediction, and Estimation. Journal of the
American Statistical Association, 102(477):359–378.

Graves, A. (2011). Practical Variational Inference for Neu-
ral Networks. In Shawe-Taylor, J., Zemel, R. S., Bartlett,
P. L., Pereira, F., and Weinberger, K. Q., editors, Ad-
vances in Neural Information Processing Systems 24,
pages 2348–2356. Curran Associates, Inc.

Hernández-Lobato, J. M. and Adams, R. P. (2015).
Probabilistic Backpropagation for Scalable Learning of
Bayesian Neural Networks. In International Confer-
ence on Machine Learning, ICML’15, pages 1861–
1869. JMLR.org.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). LightGBM: A Highly
Efficient Gradient Boosting Decision Tree. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems 30, pages 3146–
3154. Curran Associates, Inc.

Kruchten, N. (2016). Machine learning meets economics.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems 30, pages 6402–6413. Curran
Associates, Inc.

Machete, R. L. (2013). Contrasting probabilistic scoring
rules. Journal of Statistical Planning and Inference,
143(10):1781–1790.

Martens, J. (2014). New insights and perspectives on
the natural gradient method. Technical report. arXiv:
1412.1193.

Neal, R. M. (1996). Bayesian Learning for Neural Net-
works. Springer-Verlag, Berlin, Heidelberg.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

NGBoost: Natural Gradient Boosting for Probabilistic Prediction

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press.

Schlosser, L., Hothorn, T., Stauffer, R., and Zeileis, A.
(2019). Distributional regression forests for probabilistic
precipitation forecasting in complex terrain. The Annals
of Applied Statistics, 13(3):1564–1589. Publisher: Insti-
tute of Mathematical Statistics.

Song, Y., Song, J., and Ermon, S. (2018). Accelerating
Natural Gradient with Higher-Order Invariance. In Inter-
national Conference on Machine Learning, pages 4713–
4722.

Stasinopoulos, D. M., Rigby, R. A., et al. (2007). Gen-
eralized additive models for location scale and shape
(gamlss) in r. Journal of Statistical Software, 23(7):1–
46.

Titsias, M. (2009). Variational Learning of Inducing
Variables in Sparse Gaussian Processes. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 567–574.

