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Abstract

We study the problem of controllable generation
of long-term sequential behaviors. Solutions to
this important problem would enable many ap-
plications, such as calibrating behaviors of Al
agents in games or predicting player trajectories in
sports. In contrast to the well-studied areas of con-
trollable generation of images, text, and speech,
there are two questions that pose significant chal-
lenges when generating long-term behaviors: how
should we specify the factors of variation to con-
trol, and how can we ensure that the generated
temporal behavior faithfully demonstrates diverse
styles? In this paper, we leverage large amounts
of raw behavioral data to learn policies that can
be calibrated to generate a diverse range of be-
havior styles (e.g., aggressive versus passive play
in sports). Inspired by recent work on leveraging
programmatic labeling functions, we present a
novel framework that combines imitation learning
with data programming to learn style-calibratable
policies. Our primary technical contribution is
a formal notion of style-consistency as a learn-
ing objective, and its integration with conven-
tional imitation learning approaches. We eval-
uate our framework using demonstrations from
professional basketball players and agents in the
MuJoCo physics environment, and show that our
learned policies can be calibrated to generate in-
teresting behavior styles in both domains.

1. Introduction

The widespread availability of recorded tracking data is en-
abling the study of complex behaviors in many domains,
including sports (Chen et al., 2016a; Le et al., 2017b; Zhan
et al., 2019; Yeh et al., 2019), video games (Kurin et al.,
2017; Broll et al., 2019; Hofmann, 2019), laboratory ani-
mals (Eyjolfsdottir et al., 2014; 2017; Branson et al., 2009;
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Johnson et al., 2016), facial expressions (Suwajanakorn
et al., 2017; Taylor et al., 2017), commonplace activities
such as cooking (Nishimura et al., 2019), and transportation
(Bojarski et al., 2016; Luo et al., 2018; Li et al., 2018; Chang
etal., 2019). A key aspect of modern behavioral datasets is
that the behaviors are from multiple demonstrators, and can
exhibit very diverse styles (e.g., aggressive versus passive
play in sports). For example, Figure 1a depicts demonstra-
tions from basketball players with variations in movement
speed, desired destinations, tendencies for long versus short
passes, and curvature of movement routes.

The goal of this paper is to study controllable generation
of diverse and dynamic behaviors by learning to imitate
raw demonstrations; or more technically, to develop style-
calibrated imitation learning methods. A controllable, or
calibratable, policy would enable the generation of behav-
iors consistent with various styles, such as low movement
speed (Figure 1b), or approaching the basket (Figure 1c), or
both styles simultaneously (Figure 1d). Style-calibrated im-
itation learning methods that can yield such policies can be
broadly useful to: (a) perform more robust imitation learn-
ing from diverse demonstrations (Wang et al., 2017; Broll
et al., 2019), (b) enable diverse exploration in reinforcement
learning agents (Co-Reyes et al., 2018), or (c) visualize and
extrapolate counterfactual behaviors beyond those seen in
the dataset (Le et al., 2017a), amongst many other tasks.

Performing style-calibrated imitation is a challenging task.
First, what constitutes a “style” and when can we be certain
that a policy is “calibrated” when imitating a style? In re-
lated tasks like controllable image generation, user-specified
attributes are available in some domains (e.g., attributes such
as gender) to specify “styles” (Lu et al., 2018; Wang et al.,
2018), and common approaches for controllable generation
use factorization or mutual information between generated
images and user-specified attributes to capture “calibration”
(Creswell et al., 2017; Lample et al., 2017). In our experi-
ments, we implement such approaches but find that these
indirect approaches fall well short of generating calibratable
sequential behaviors. Intuitively, objectives like factoriza-
tion and mutual information provide only indirect proxies
for style-calibration, and this issue is exacerbated in settings
that are high-dimensional or require calibrating to multiple
styles simultaneously. We see an example in Figure 2, where
an indirect baseline approach struggles to reliably generate
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(a) Expert demonstrations (b) Style: SPEED

(c) Style: DESTINATION (d) Both styles

Figure 1. Basketball trajectories from policies that are: (a) the expert; (b) calibrated to move at low speeds; (c) calibrated to end near the
basket (within green boundary); and (d) calibrated for both (b,c) simultaneously. Diamonds (4) and dots (e) are initial and final positions.

(a) Baseline, low displacement

(b) Ours, low displacement

(c) Baseline, high displacement

(d) Ours, high displacement

Figure 2. Basketball trajectories sampled from baseline policies and our models calibrated to the style of DISPLACEMENT with 6 classes
corresponding to regions separated by blue lines. Diamonds (4) and dots (e) indicate initial and final positions respectively. Each policy
is conditioned on a label class for DISPLACEMENT (low in (a,b), high in (c,d)). Green dots indicate trajectories that are consistent with
the style label, while red dots indicate those that are not. Our policy (b,d) is better calibrated for this style than the baselines (a,c).

trajectories to get to a certain destination, even though the
dataset contains many examples of such behavior.

We seek to answer three research questions while tackling
this challenge. The first is strategic: since high-level stylis-
tic attributes like movement speed are typically not provided
with the raw demonstration data, what systematic form of
domain knowledge can we leverage to quickly and cleanly
extract style information from raw behavioral data? The
second is formulaic: how can we formalize the learning
objective to encourage learning style-calibratable policies?
The third is algorithmic: how do we design practical learn-
ing approaches that reliably optimize the learning objective?

To address these questions, we present a novel framework
inspired by data programming (Ratner et al., 2016), a
paradigm in weak supervision that utilizes automated label-
ing procedures, called labeling functions, to learn without
ground-truth labels. In our setting, labeling functions en-
able domain experts to quickly translate domain knowledge
of diverse styles into programmatically generated style an-
notations. For instance, it is trivial to write programmatic
labeling functions for the styles depicted in Figures 1 & 2
(speed and destination). Labeling functions also motivate a
new learning objective, which we call programmatic style-

consistency: rollouts generated by a policy calibrated for
a particular style should return the same style label when
fed to the programmatic labeling function. This notion of
style-consistency provides a direct approach to measuring
how calibrated a policy is, and does not suffer from the
weaknesses of indirect approaches such as mutual informa-
tion estimation. In the basketball example of scoring when
near the basket, trajectories that perform correlated events
(like turning towards the basket) will not return the desired
style label when fed to the labeling function that checks for
scoring events. We elaborate on this in Section 4.

To summarize, our contributions are:

e We propose a novel framework for learning policies
calibrated to diverse behavior styles.

e Our framework allows domain experts to efficiently ex-
press styles as labeling functions, which can be quickly
applied to produce a weak signal of style labels.

e Our framework introduces style-consistency as a metric
to evaluate calibration to styles.

e We present a method to learn calibratable policies that
maximize style-consistency of the generated behaviors,
and validate it in Basketball and MuJoCo domains.
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2. Related Work

Our work combines ideas from imitation learning and data
programming to develop a weakly supervised approach for
more explicit and fine-grained calibration. This is related
to learning disentangled representations and controllable
generative modeling, reviewed below.

Imitation learning of diverse behaviors has focused on
unsupervised approaches to infer latent variables/codes that
capture behavior styles (Li et al., 2017; Hausman et al.,
2017; Wang et al., 2017). Similar approaches have also
been studied for generating text conditioned on attributes
such as sentiment or tense (Hu et al., 2017). A typical
strategy is to maximize the mutual information between the
latent codes and trajectories, in contrast to our notion of
programmatic style-consistency.

Disentangled representation learning aims to learn rep-
resentations where each latent dimension corresponds to
exactly one desired factor of variation (Bengio et al., 2012).
Recent studies (Locatello et al., 2019) have noted that popu-
lar techniques (Chen et al., 2016b; Higgins et al., 2017; Kim
& Mnih, 2018; Chen et al., 2018) can be sensitive to hy-
perparameters and that evaluation metrics can be correlated
with certain model classes and datasets, which suggests that
fully unsupervised learning approaches may, in general, be
unreliable for discovering cleanly calibratable representa-
tions. We avoid this roadblock by relying on programmatic
labeling functions to provide weak supervision.

Conditional generation for images has recently focused
on attribute manipulation (Bao et al., 2017; Creswell et al.,
2017; Klys et al., 2018), which aims to enforce that chang-
ing a label affects only one aspect of the image (similar
to disentangled representation learning). We extend these
models and compare with our approach in Section 6. Our
experiments suggest that these algorithms do not necessarily
scale well into sequential domains.

Enforcing consistency in generative modeling, such as
cycle-consistency in image generation (Zhu et al., 2017),
and self-consistency in hierarchical reinforcement learning
(Co-Reyes et al., 2018) has proved beneficial. The former
minimizes a discriminative disagreement, whereas the latter
minimizes a distributional disagreement between two sets
of generated behaviors (e.g., KL-divergence). From this
perspective, our style-consistency notion is more similar
to the former; however we also enforce consistency over
multiple time-steps, which is more similar to the latter.

3. Background: Imitation Learning for
Behavior Trajectories

Since our focus is on learning style-calibratable generative
policies, for simplicity we develop our approach with the

basic imitation learning paradigm of behavioral cloning. In-
teresting future directions include composing our approach
with more advanced imitation learning approaches like
DAGGER (Ross et al., 2011), GAIL (Ho & Ermon, 2016)
as well as with reinforcement learning.

Notation. Let S and A denote the environment state and
action spaces. At each timestep ¢, an agent observes state
s; € S and executes action a, € A using a policy 7 :
S — A. The environment then transitions to the next
state s;4; according to a (typically unknown) dynamics
function f : § x A — S. For the rest of this paper, we
assume f is deterministic; a modification of our approach
for stochastic f is included in Appendix B. A trajectory
T is a sequence of T state-action pairs and the last state:
7= {(s¢,a¢)}1_;U{s741}. Let Dbe asetof N trajectories
collected from expert demonstrations. In our experiments,
each trajectory in D has the same length 7', but in general
this does not need to be the case.

Learning objective. We begin with the basic imitation
learning paradigm of behavioral cloning (Syed & Schapire,
2008). The goal is to learn a policy that behaves like the
pre-collected demonstrations:

7 = argmin B, p | LM (7 )| (1)
s

where £mittion js 3 Joss function that quantifies the mis-
match between actions chosen by 7 and those in the demon-
strations. Since we are primarily interested in probabilistic
or generative policies, we typically use (variants of) neg-
ative log-density: L£(7,7) = 23:1 —log m(ay|s;), where
m(as]s;) is the probability of 7 picking action a; in s;.

Policy class of 7. Common model choices for instantiating
7 include sequential generative models like recurrent Neural
Networks (RNN) and trajectory variational autoencoders
(TVAE). TVAEs introduce a latent variable z (also called
a trajectory embedding), an encoder network g4, a policy
decoder 7y, and a prior distribution p on z. They have been
shown to work well in a range of generative policy learning
settings (Wang et al., 2017; Ha & Eck, 2018; Co-Reyes et al.,
2018), and have the following imitation learning objective:

T
Etvae(T7 0; Q¢) :E%(Z\T) [Z —log W9(3t|styl)]

t=1

+ Dk (qo(z|7)||p(2)). 2

The first term in (2) is the standard negative log-density
that the policy assigns to trajectories in the dataset, while
the second term is the KL-divergence between the prior
and approximate posterior of trajectory embeddings z. The
main shortcoming of TVAEs and related approaches, which
we address in Sections 4 & 5, is that the resulting policies
cannot be easily calibrated to generate specific styles. For
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instance, the goal of the trajectory embedding z is to cap-
ture all the styles that exist in the expert demonstrations, but
there is no guarantee that the embeddings cleanly encode the
desired styles in a calibrated way. Previous work has largely
relied on unsupervised learning techniques that either re-
quire significant domain knowledge (Le et al., 2017b), or
have trouble scaling to complex styles commonly found in
real-world applications (Wang et al., 2017; Li et al., 2017).

4. Programmatic Style-consistency

Building upon the basic setup in Section 3, we focus on the
setting where the demonstrations D contain diverse behav-
ior styles. To start, let y € Y denote a single style label
(e.g., speed or destination, as shown in Figure 1). Our goal
is to learn a policy 7 that can be explicitly calibrated to
y, i.e., trajectories generated by m(-|y) should match the
demonstrations in D that exhibit style y.

Obtaining style labels can be expensive using conventional
annotation methods, and unreliable using unsupervised ap-
proaches. We instead utilize easily programmable labeling
functions that automatically produce style labels. We then
formalize a notion of style-consistency as a learning objec-
tive, and in Section 5 describe a practical learning approach.

Labeling functions. Introduced in the data programming
paradigm (Ratner et al., 2016), labeling functions program-
matically produce weak and noisy labels to learn models
on otherwise unlabeled datasets. A significant benefit is
that labeling functions are often simple scripts that can be
quickly applied to the dataset, which is much cheaper than
manual annotations and more reliable than unsupervised
methods. In our framework, we study behavior styles that
can be represented as labeling functions, which we denote
A, that map trajectories 7 to style labels y. For example:

A1) = H{|ls741 — s1ll, > ¢}, (3)

which distinguishes between trajectories with large (greater
than a threshold c¢) versus small total displacement. We ex-
periment with a range of labeling functions, as described in
Section 6. Multiple labeling functions can be provided
at once, possibly from multiple users. Many behavior
styles used in previous work can be represented as la-
beling functions, e.g., agent speed (Wang et al., 2017).
We use trajectory-level labels A(7) in our experiments,
but in general labeling functions can be applied on sub-
sequences A(7u;4p) to obtain per-timestep labels, e.g.,
agent goal (Broll et al., 2019). We can efficiently anno-
tate datasets using labeling functions, which we denote as
A(D) = {(7i, M(7:))}L,. Our goal can now be phrased as:
given A(D), train a policy 7 : S X Y +— A such that (-|y)
is calibrated to styles y found in A(D).

Style-consistency. A key insight in our work is that label-
ing functions naturally induce a metric for calibration. If a

policy 7 (-|y) is calibrated to A\, we would expect the gener-
ated behaviors to be consistent with the label. So, we expect
the following loss to be small:

Eyapy),rmn(-ly) [ﬁtyle (A(r), Y)} “4)

where p(y) is a prior over the style labels, and 7 is obtained
by executing the style-conditioned policy in the environment.
L% is thus a disagreement loss over labels that is mini-
mized at \(7) =y, e.g., LY (A(7),y) = 1{\(7) # y} for
categorical labels. We refer to (4) as the style-consistency
loss, and say that 7(+]y) is maximally calibrated to A when
(4) is minimized. Our learning objective adds (1) with (4):

= arg minE(T)\(T))N)\(D) |:£imitation (T,?T(' | )\(7.))>:|
+ Eympiy)rrntly) [EP5AEY)] O

The simplest choice for the prior distribution p(y) is the
marginal distribution of styles in A\(D). The first term
in (5) is a standard imitation learning objective and can
be tractably estimated using A(D). To enforce style-
consistency with the second term, conceptually we need to
sample several y ~ p(y), then several rollouts 7 ~ (- | y)
from the current policy, and query the labeling function for
each of them. Furthermore, if \ is a non-differentiable func-
tion defined over the entire trajectory, as is the case in (3),
then we cannot simply backpropagate the style-consistency
loss. In Section 5, we introduce differentiable approxima-
tions to more easily optimize the objective in (5).

Multiple styles. Our notion of style-consistency can be eas-
ily extended to simultaneously optimize for multiple styles.
Suppose we have M labeling functions {)\;}}£; and corre-
sponding label spaces {Y;} . Let A denote (Aq, ..., )
and y denote (yq,...,¥s)- Style-consistency loss becomes:

By p(y),rom(ly)
=1

M
> £ (Ni(r), yi)] } (6)

Note that style-consistency is optimized when the gener-
ated trajectory agrees with all labeling functions. Although
challenging to achieve, this describes the most desirable out-
come, i.e. 7(+|y) is calibrated to all styles simultaneously.

S. Learning Approach

Optimizing (5) is challenging due to the long-time hori-
zon and non-differentiability of the labeling functions \.!
Given unlimited queries to the environment, one could

!This issue is not encountered in previous work on style-
dependent imitation learning (Li et al., 2017; Hausman et al., 2017),
since they use purely unsupervised methods such as maximizing
mutual information which is differentiable.
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Algorithm 1 Generic recipe for optimizing (5)

Algorithm 2 Model-based approach for Algorithm 1

1: Input: demonstrations D, labeling functions A

2: construct A\(D) by applying A on trajectories in D
3: optimize (7) to convergence to learn C?).

4: optimize (8) to convergence to learn 7*

naively employ model-free reinforcement learning, e.g.,
estimating (4) using rollouts and optimizing using policy
gradient approaches. We instead take a model-based ap-
proach, described generically in Algorithm 1, that is more
computationally-efficient and decomposable. The model-
based approach is compatible with batch or offline learning,
and we found it particularly useful to diagnose deficiencies
in our algorithmic framework. To develop our approach, we
first introduce a label approximator for A, and then show
how to optimize through the environmental dynamics using
a differentiable model-based learning approach.

Approximating labeling functions. To deal with non-
differentiability of A\, we approximate it with a differentiable
function C’,$ parameterized by 1):

Y= argdfnmE(T,,\(T))N,\(D) {ﬁlabel(CfL(T)»)\(T))} Q)

Here, £'%! is a differentiable loss that approximates £V,
such as cross-entropy loss when £V is the 0/1 loss. In our
experiments we use a RNN to represent C’g. We then modify

the style-consistency term in (5) with 6’12* and optimize:

o :argFinE(m\(T))N)\(D) |:£imitation (T,W(' | )\(T)))]

+ Eyopiy) oty [EPHCR ()] ®

Optimizing £5%'¢ over trajectories. The next challenge
is to optimize style-consistency over multiple time steps.
Consider the labeling function in (3) that computes the dif-
ference between the first and last states. Our label approx-
imator Cg* may converge to a solution that ignores all
inputs except for s; and s . In this case, ij* provides no
learning signal about intermediate steps. As such, effective
optimization of style-consistency in (8) requires informative
learning signals on all actions at every step, which can be
viewed as a type of credit assignment problem.

In general, model-free and model-based approaches address
this challenge in dramatically different ways and for dif-
ferent problem settings. A model-free solution views this
credit assignment challenge as analogous to that faced by
reinforcement learning (RL), and repurposes generic re-
inforcement learning algorithms. Crucially, they assume
access to the environment to collect more rollouts under
any new policy. A model-based solution does not assume

1: Input: demonstrations D, labeling function A, label
approximator C’iﬁ, dynamics model M,
(D)  { (7 A(m)) Y2,
for ngynamics iterations do
optimize (9) with batch from D
end for
for ny,pe iterations do
optimize (7) with batch from A(D)
end for
for npoiicy iterations do
B+ { Neollect trajectories using M, and }
optimize (8) with batch from A(D) and B
for n.,, iterations do
Tenv < { 1 trajectory using environment and 7 }
optimize (9) with Tepy
end for
: end for

_ =
TYReRUn kD

— e
AN

such access and can operate only with the batch of behavior
data D; however they can have an additional failure mode
since the learned models may provide an inaccurate signal
for proper credit assignment. We choose a model-based
approach, while exploiting access to the environment when
available to refine the learned models, for two reasons: (a)
we found it to be compositionally simpler and easier to
debug; and (b) we can use the learned model to obtain hal-
lucinated rollouts of any policy efficiently during training.

Modeling dynamics for credit assignment. Our model-
based approach utilizes a dynamics model M, to approxi-
mate the environment’s dynamics by predicting the change
in state given the current state and action:

T
¢" =argminE, p Z LY (M (s¢,a¢), (Se41 — St))
2

t=1
€))

where £3YMMi¢S g often Ly or squared- Lo loss (Nagabandi
et al., 2018; Luo et al., 2019). This allows us to generate
trajectories by rolling out: §; 1 = s;+ M (8¢, w(s¢)). Then
optimizing for style-consistency in (8) would backpropagate
through our dynamics model M, and provide informative
learning signals to the policy at every timestep.

We outline our model-based approach in Algorithm 2. Lines
12-15 describe an optional step to fine-tune the dynamics
model by querying the environment using the current policy
(similar to Luo et al. (2019)); we found that this can improve
style-consistency in some experiments. In Appendix B we
elaborate how the dynamics model and objective of Eqn (9)
is changed if the environment is stochastic.
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6. Experiments

We first briefly describe our experimental setup and baseline
choices, and then discuss our main experimental results. A
full description of experiments is available in Appendix C.

Data. We validate our framework on two datasets: 1)
a collection of professional basketball player trajectories
with the goal of learning a policy that generates realistic
player-movement, and 2) a Cheetah agent running hori-
zontally in MuJoCo (Todorov et al., 2012) with the goal
of learning a policy with calibrated gaits. The former
has a known dynamics function: f(s;,a;) = s; + ag,
where s; and a; are the player’s position and velocity
on the court respectively; we expect the dynamics model
M, to easily recover this function. The latter has an un-
known dynamics function (which we learn a model of
when approximating style-consistency). We obtain Cheetah
demonstrations from a collection of policies trained using
pytorch—-a2c-ppo—-acktr (Kostrikov, 2018) to inter-
face with the DeepMind Control Suite’s Cheetah domain
(Tassa et al., 2018)—see Appendix C for details.

Labeling functions. Labeling functions for Basket-
ball include: 1) average SPEED of the player, 2)
DISPLACEMENT from initial to final position, 3) dis-
tance from final position to a fixed DESTINATION on the
court (e.g. the basket), 4) mean DIRECTION of travel,
and 5) CURVATURE of the trajectory, which measures
the player’s propensity to change directions. For Chee-
tah, we have labeling functions for the agent’s 1) SPEED,
2) TORSO HEIGHT, 3) BACK-FOOT HEIGHT, and 4)
FRONT-FOOT HEIGHT that can be trivially computed
from trajectories extracted from the environment.

We threshold the aforementioned labeling functions into cat-
egorical labels (leaving real-valued labels for future work)
and use (4) for style-consistency with £5¥' as the 0/1 loss.
We use cross-entropy for £'2°¢! and list all other hyperpa-
rameters in Appendix C.

Metrics. We will primarily study two properties of the
learned models in our experiments — imitation quality, and
style-calibration quality. For measuring imitation quality
of generative models, we report the negative log-density
term in (2), which corresponds to how well the policy can
reconstruct trajectories from the dataset. To measure style-
calibration, we report style-consistency results as 1 — £V
in (4) so that all results are easily interpreted as accura-
cies. In Section 6.5, we find that style-consistency indeed
captures a reasonable notion of calibration — when the la-
beling function is inherently noisy and style-calibration is
hard, style-consistency correspondingly decreases. In Sec-
tion 6.3, we find that the goals of imitation (as measured
by negative log-density) and calibration (as measured by
style-consistency) may not always be aligned — investigating

this trade-off is an interesting avenue for future work.

Baselines. Our main experiments use TVAEs as the underly-
ing policy class. In Section 6.4, we also experiment with an
RNN policy class. We compare our approach, CTVAE-style,
with 3 baselines:

1. CTVAE: conditional TVAEs (Wang et al., 2017).

2. CTVAE-info: CTVAE with information factorization
(Creswell et al., 2017), indirectly maximizes style-
consistency by removing correlation of y with z.

3. CTVAE-mi: CTVAE with mutual information maxi-
mization between style labels and trajectories. This
is a supervised variant of unsupervised models (Chen
etal., 2016b; Li et al., 2017), and also requires learning
a dynamics model for sampling policy rollouts.

Detailed descriptions and model parameters of baselines
are in Appendix A and C respectively. All these models
build upon TVAEs, which are also conditioned on a latent
variable (see Section 3) and only fundamentally differ in
how they encourage the calibration of policies to different
style labels. We highlight that the underlying model choice
or imitation learning algorithm is orthogonal to our contri-
butions; our framework is compatible with any imitation
learning algorithm (see Section 6.4).

6.1. How well can we calibrate policies for single styles?

We first threshold labeling functions into 3 classes for Bas-
ketball and 2 classes for Cheetah; the marginal distribu-
tion p(y) of styles in A(D) is roughly uniform over these
classes. Then we learn a policy 7* calibrated to each of
these styles. Finally, we generate rollouts from each of
the learned policies to measure style-consistency. Table 1
compares the median style-consistency (over 5 seeds) of
learned policies. For Basketball, CTVAE-style significantly
outperforms baselines and achieves almost perfect style-
consistency for 4 of the 5 styles For Cheetah, CTVAE-style
outperforms all baselines, but the absolute performance is
lower than for Basketball — we conjecture that this is due to
the complex environment dynamics that can be challenging
for model-based approaches. Figure 5 in Appendix D shows
a visualization of our CTVAE-style policy calibrated for
DESTINATION (net).

We also consider cases in which labeling functions can have
several classes and non-uniform distributions (i.e. some
styles are more/less common than others). We threshold
DISPLACEMENT into 6 classes for Basketball and SPEED
into 4 classes for Cheetah and compare the policies in Ta-
ble 2. In general, we observe degradation in overall style-
consistency accuracies as the number of classes increase.
However, CTVAE-style policies still consistently achieve
better style-consistency than baselines in this setting.
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Model Speed | Disp. | Dest. Dir. Curve Basketball Cheetah
CTVAE 83 72 82 77 61 Model 2 3 4 5 2 3
CTVAE-info 84 71 79 72 60 styles| styles| styles| styles| styles| styles
CTVAE-mi 86 74 82 77 72 CTVAE 71 58 50 37 41 28
CTVAE-style 95 96 97 97 81 CTVAE-info 69 58 51 32 41 27
] . . CTVAE-mi 72 56 51 30 40 28
(a) Style-consistency for labeling functions in Basketball. CTVAE-style 93 sS sS 75 53 40
Model Speed | Torso | BFoot | FFoot
CTVAE 59 63 68 68 Table 3. Multi Style-consistency: (10~2, median over 5 seeds)
g%zig'm,fo 2 (7) gg gg 3(6) Simultaneously calibrated to multiple styles, CTVAE-style policies
-mi . . .
CTVAE-style 75 30 30 7 outperform baselines for all styles in Cheetah and in Basketball.

(b) Style-consistency for labeling functions in Cheetah.

Table 1. Individual Style Calibration: Style-consistency
(x1072, median over 5 seeds) of policies evaluated with 4,000
Basketball and 500 Cheetah rollouts. Trained separately for each
style, CTVAE-style policies outperform baselines for all styles in
Basketball and Cheetah environments.

Basketball Cheetah

Model 2 3 4 6 3 4
class | class | class | class | class | class

CTVAE 92 83 79 70 45 37

CTVAE-info 90 83 78 70 49 39
CTVAE-mi 92 84 77 70 48 37
CTVAE-style | 99 98 96 92 59 51

Table 2. Fine-grained Style-consistency: (x 102, median over
5 seeds) Training on labeling functions with more classes
(DISPLACEMENT for Basketball, SPEED for Cheetah) yields in-
creasingly fine-grained calibration of behavior. Although CTVAE-
style degrades as the number of classes increases, it outperforms
baselines for all styles.

We visualize and compare policies calibrated for 6 classes
of DISPLACEMENT in Figure 2. In Figure 2b and 2d, we
see that our CTVAE-policy (0.92 style-consistency) is ef-
fectively calibrated for styles of low and high displacement,
as all trajectories end in the correct corresponding regions
(marked by the green dots). On the other hand, trajectories
from a baseline CTVAE model (0.70 style-consistency) in
Figure 2a and 2c can sometimes end in the wrong region
corresponding to a different style label (marked by red dots).
These results suggest that incorporating programmatic style-
consistency while training via (8) can yield good qualitative
and quantitative calibration results.

6.2. Can we calibrate for many styles simultaneously?

We now consider multiple style-consistency as in (6), which
measures the total accuracy of all labeling functions simul-
taneously. For instance, in addition to terminating close to
the net in Figure 3, we also calibrate the speed at which the
agent moves towards the target destination.

Table 3 compares the style-consistency of policies calibrated
for up to 5 styles for Basketball and 3 styles for Cheetah.
Calibrating for multiple styles simultaneously is a very dif-

Basketball Cheetah
Model DKL NLD DKL NLD
TVAE 2.55 -7.91 294 | -0.60
CTVAE 2.51 -7.94 | 29.3 | -0.59
CTVAE-info 2.25 -7.91 20.1 -0.58
CTVAE-mi 2.56 | -7.94 | 285 | -0.57
CTVAE-style | 2.27 | -7.83 | 30.1 -0.28

Table 4. KL-divergence and negative log-density per timestep for
TVAE models (lower is better). CTVAE-style is comparable to
baselines for Basketball, but is slightly worse for Cheetah.

ficult task for baselines, as their style-consistency degrades
significantly as the number of styles increases. On the
other hand, CTVAE-style sees a modest decrease in style-
consistency but is still significantly better calibrated (0.75
style-consistency for all 5 styles vs. only 0.30 for the best
baseline in Basketball). We visualize a CTVAE-style policy
calibrated for two styles in Basketball with style-consistency
0.93 in Figure 3. CTVAE-style outperforms baselines in
Cheetah as well, but there is still room for improvement to
optimize style-consistency better in future work.

6.3. What is the trade-off between style-consistency
and imitation quality?

In Table 4, we investigate whether CTVAE-style’s superior
style-consistency comes at a significant cost to imitation
quality, since we optimize both in (5). For Basketball, high
style-consistency is achieved without any degradation in im-
itation quality. For Cheetah, negative log-density is slightly
worse; a followup experiment in Table 13 in Appendix D
shows that we can improve imitation quality with more train-
ing, sometimes with modest decrease to style-consistency.

6.4. Is our framework compatible with other policy
classes for imitation?

We highlight that our framework introduced in section 5
is compatible for any imitation learning algorithm. In this
experiment, we optimize for style-consistency using a sim-
pler model for the policy and show that style-consistency is
still improved. In particular, we use an RNN and calibrate
for DESTINATION in basketball. In Table 5, we see that
style-consistency is improved for the RNN model without
any significant decrease in imitation quality.
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(a) Label class 0 (slow) (b) Label class 1 (mid)
Style-consistency T
Model Min Median Max NLD |
RNN 79 80 81 -1.7
RNN-style 81 91 98 -7.6

Table 5. Style-consistency of RNN policy model (1072, 5 seeds)
for DESTINATION in basketball. Our approach improves style-
consistency without significantly decreasing imitation quality.

6.5. What if labeling functions are noisy?

So far, we have demonstrated that our method optimizing for
style-consistency directly can learn policies that are much
better calibrated to styles, without a significant degradation
in imitation quality. However, we note that the labeling
functions used thus far are assumed to be perfect, in that
they capture exactly the style that we wish to calibrate. In
practice, domain experts may specify labeling functions that
are noisy; we simulate that scenario in this experiment.

In particular, we create noisy versions of labeling functions
in Table 1 by adding Gaussian noise to computed values
before applying the thresholds. The noise will result in some
label disagreement between noisy and true labeling func-
tions (Table 17 in Appendix D). This resembles the scenario
in practice where domain experts can mislabel a trajectory,
or have disagreements. We train CTVAE-style models with
noisy labeling functions and compute style-consistency us-
ing the true labeling functions without noise. Intuitively,
we expect the relative decrease in style-consistency to scale
linearly with the label disagreement.

Figure 4 shows that the median relative decrease in style-
consistency of our CTVAE-models scales linearly with label
disagreement. Our method is also somewhat robust to noise,
as X % label disagreement results is better than X % relative
decrease in style-consistency (black line in Figure 4). Di-
rections for future work include combining multiple noisy
labeling functions together to improve style-consistency
with respect to a “true” labeling function.

7. Conclusion and Future Work

We propose a novel framework for imitating diverse be-
havior styles while also calibrating to desired styles. Our

L Figure 3. CTVAE-style rollouts
calibrated for 2 styles: label class

7 1 of DESTINATION (net) (see
! Figure 5 in Appendix D) and

each class for SPEED, with 0.93
~— style-consistency. Diamonds (4)
and dots (e) indicate initial and

final positions.

() Label class 2 (fast) nat posttions

displacement
speed
destination(net)
direction

SEER

curvature

Relative Change in SC (%)
I

|
N
o

’ ’ Iioabel Disagreementzz%) ® ”
Figure 4. Relative change of style-consistency for CTVAE-style
policies trained with noisy labeling functions, which are created
by injecting noise with mean 0 and standard deviation c - ¢ for ¢ €
{1,2, 3,4} before applying thresholds to obtain label classes. The
x-axis is the label disagreement between noisy and true labeling
functions. The y-axis is the median change (5 seeds) in style-
consistency using the true labeling functions without noise, relative
to Table 1. The relationship is generally linear and better than a
one-to-one dependency (i.e. if X% label disagreement leads to
— X% relative change, indicated by the black line). See Table 17
and 18 in the Appendix D for more details.

framework leverages labeling functions to tractably repre-
sent styles and introduces programmatic style-consistency,
a metric that allows for fair comparison between calibrated
policies. Our experiments demonstrate strong empirical
calibration results.

We believe that our framework lays the foundation for many
directions of future research. First, can one model more
complex styles not easily captured with a single labeling
function (e.g. aggressive vs. passive play in sports) by com-
posing simpler labeling functions (e.g. max speed, distance
to closest opponent, number of fouls committed, etc.), simi-
lar to (Ratner et al., 2016; Bach et al., 2017)? Second, can
we use these per-timestep labels to model transient styles, or
simplify the credit assignment problem when learning to cal-
ibrate? Third, can we blend our programmatic supervision
with unsupervised learning approaches to arrive at effective
semi-supervised solutions? Fourth, can we use leverage
model-free approaches to further optimize self-consistency,
e.g., to fine-tune from our model-based approach? Finally,
can we integrate our framework with reinforcement learning
to also optimize for environmental rewards?
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A. Baseline Policy Models
1) Conditional-TVAE (CTVAE). The conditional version of TVAEs optimizes:

T

Z - IOg ’/TG(at‘Sta z, Y)

t=1

Ectvae(T7 7r9;q¢) —E + Dkr, (Q9(Z|77Y)||P(Z))- (10)

qe(z|T.y)

2) CTVAE with information factorization (CTVAE-info). (Creswell et al., 2017; Klys et al., 2018) augment conditional-
VAE models with an auxiliary network A, (z) which is trained to predict the label y from z, while the encoder g, is also
trained to minimize the accuracy of A,,. This model implicitly maximizes self-consistency by removing the information
correlated with y from z, so that any information pertaining to y that the decoder needs for reconstruction must all come
from y. While this model was previously used for image generation, we extend it into the sequential domain:

T
max <E%<ZT> [IHJH L(Ay(z),y) + > _logmo(arls:,z,y)| — Dkr (Qe(ZIT)Ip(Z))>~ (11)
’ t=1

Note that the encoder in (10) and (11) differ in that g, (z|7) is no longer conditioned on the label y.

3) CTVAE with mutual information maximization (CTVAE-mi). In addition to (10), we can also maximize the mutual
information between labels and trajectories I(y; 7). This quantity is hard to maximize directly, so instead we maximize the
variational lower bound:

I(y; 7) = Eyop(y),rmmo Cloy) [l0gTo(YT)] + Hy), (12)

where 7, approximates the true posterior p(y|7). In our setting, the prior over labels is known, so #(y) is a constant. Thus,
the learning objective is:

LM (7 191 q) = LY(T,70) + Eymp(y) o (Jy) | — 10870 (¥|T)]. (13)

Optimizing (13) also requires collecting rollouts with the current policy, so similarly we also pretrain and fine-tune a
dynamics model M. This baseline can be interpreted as a supervised analogue of unsupervised models that maximize
mutual information in (Li et al., 2017; Hausman et al., 2017).

B. Stochastic Dynamics Function

If the dynamics function f of the environment is stochastic, we modify our approach in Algorithm 2 by changing the form of
our dynamics model. We can model the change in state as a Gaussian distribution and minimize the negative log-likelihood:

T

@h, on = argminE,op Y —logp(Ay; e, o), (14)
PuPu t=1

where Ay = 8111 — 8¢, pr = My, (8¢,¢), 0y = M, (st,a;), and M, , M, are neural networks that can share weights.
We can sample a change in state during rollouts using the reparametrization trick (Kingma & Welling, 2014), which allows

us to backpropagate through the dynamics model during training.

C. Experiment Details

Dataset details. See Table 6. Basketball trajectories are collected from tracking real players in the NBA. Figure 7 shows
the distribution of basketball labeling functions applied on the training set. For Cheetah, we train 125 policies using PPO
(Schulman et al., 2017) to run forwards at speeds ranging from 0 to 4 (m/s). We collect 25 trajectories per policy by sampling
actions from the policy. We use (Kostrikov, 2018) to interface with (Tassa et al., 2018). Figure 8 shows the distributions of
Cheetah labeling functions applied on the training set.

Training hyperparameters. See Table 7.
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Model parameters. We model all trajectory embeddings z as a diagonal Gaussian with a standard normal prior. Encoder
g and label approximators Cj; are bi-directional GRUs (Cho et al., 2014) followed by linear layers. Policy 7y is recurrent
for basketball, but not for Cheetah. The Gaussian log sigma returned by 7y is state-dependent for basketball, but state-
independent for Cheetah. For Cheetah, we made these choices based on prior work in Mujoco for training gait policies.
For Basketball, we observed a lot more variation in the 500k demonstrations so we experimented with more flexible model
classes. See Table 8 for more model details.

| ISI A | T | Neain | New | frequency (Hz)
Basketball | 2 2 24 | 520,015 | 67,320 3
Cheetah 18 6 | 200 2,500 625 40

Table 6. Dataset parameters for basketball and Cheetah environments.

‘ batch size ‘ # batch b ‘ Tl dynamics ‘ Tabel ‘ Tpolicy ‘ Ncollect ‘ Teny ‘ learning rate
Basketball 128 4,063 10-b [20-b|30-b| 128 | O 2-1071

Cheetah 16 157 50 -0 20-b | 60-0 16 1 1073

Table 7. Hyperparameters for Algorithm 2. b is the number of batches to see all trajectories in the dataset once. We also use L2
regularization of 10" for training the dynamics model M.

‘ z-dim ‘ qs GRU ‘ C’;) GRU ‘ 79 GRU ‘ Ty sizes ‘ M, sizes
Basketball 4 128 128 128 (128,128) | (128,128)
Cheetah 8 200 200 (200,200) | (500,500)

Table 8. Model parameters for basketball and Cheetah environments.

D. Experiment Results
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Model Speed Displacement Destination Direction Curvature
CTVAE 82 83 85 71 72 | 74 81 82 82 | 76 | 77 80 60 | 6l 62
CTVAE-info | 84 84 87 69 71 74 78 79 83 71 72 | 74 60 | 60 62
CTVAE-mi 84 86 87 71 74 | 74 80 82 84 | 75 77 78 58 72 | 74
CTVAE-style | 34 | 95 97 | 8 | 96 | 97 91 97 | 98 | 96 | 97 | 98 | 77 | 81 83

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes 8 classes
CTVAE 91 92 93 79 83 84 76 79 79 68 70 72 64 66 69
CTVAE-info 90 90 92 83 83 85 75 76 77 68 70 72 60 63 67
CTVAE-mi 90 92 93 81 84 86 75 77 80 66 70 72 62 62 67
CTVAE-style | 98 99 99 15 98 99 15 96 96 02 92 94 80 90 93

(b) Style-consistency wrt. DISPLACEMENT of up to 8 classes (roughly uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes
CTVAE 86 87 87 80 82 83 76 78 79 70 74 77
CTVAE-info 83 87 88 79 81 83 73 75 78 71 77 78
CTVAE-mi 86 88 88 80 81 84 71 74 79 73 76 78
CTVAE-style | 97 98 99 68 97 98 35 89 95 67 84 93

(c) Style-consistency wrt. DESTINATION (net) with up to 6 classes (non-uniform distributions).

Model 2 styles 3 styles 4 styles 5 styles
CTVAE 67 71 73 58 58 62 49 50 52 27 37 35
CTVAE-info 68 69 70 54 58 59 48 51 54 28 32 35
CTVAE-mi 71 72 73 48 56 61 45 51 52 16 30 31
CTVAE-style | 92 93 9 86 88 920 62 88 88 66 75 80

(d) Style-consistency wrt. multiple styles simultaneously.

Table 9. [min, median, max] style-consistency (X 1072, 5 seeds) of policies evaluated with 4,000 basketball rollouts each. CTVAE-style
policies significantly outperform baselines in all experiments and are calibrated at almost maximal style-consistency for 4/5 labeling
functions. We note some rare failure cases with our approach, which we leave as a direction for improvement for future work.

Model Speed Torso Height B-Foot Height F-Foot Height
CTVAE 53 59 62 62 63 70 61 68 73 63 68 72
CTVAE-info 56 57 61 62 63 72 58 65 72 63 66 69
CTVAE-mi 53 60 62 62 65 70 60 65 70 66 70 73
CTVAE-style | 68 79 81 79 80 84 77 80 88 74 77 80

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).

Model 3 classes 4 classes Model 2 styles 3 styles
CTVAE 41 45 49 35 37 41 CTVAE 39 41 43 25 28 29
CTVAE-info 47 49 52 36 39 42 CTVAE-info 39 41 46 25 27 30
CTVAE-mi 47 48 53 36 37 38 CTVAE-mi 34 40 48 27 28 31
CTVAE-style | 59 59 65 42 51 60 CTVAE-style | 43 54 60 38 40 52

(b) Style-consistency wrt. SPEED with varying # of classes (non- (c) Style-consistency wrt. multiple styles simultaneously.
uniform distributions).

Table 10. [min, median, max] style-consistency (x 1072, 5 seeds) of policies evaluated with 500 Cheetah rollouts each. CTVAE-style
policies consistently outperform all baselines, but we note that there is still room for improvement (to reach 100% style-consistency).
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Model Speed Displacement | Destination Direction Curvature
CTVAE 834 +1.2 724+ 14 81.9 £ 0.6 77.7+£1.3 61.0+ 1.0
CTVAE-info 85.0 £ 1.2 712+£1.9 80.1 £ 1.8 723+ 1.1 60.2 £ 0.8
CTVAE-mi 858+ 1.3 72.8 £ 1.5 822+14 769 £ 1.1 68.6 £ 6.4
CTVAE-style | 72.1 £33.3 94.6 + 3.1 95.0 £ 3.7 96.8 + 0.7 79.6 £ 2.7

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes 8 classes
CTVAE 92.1 +09 824 +24 780+ 14 699+ 14 66.0 + 2.0
CTVAE-info 90.5 +0.9 83.6 + 1.0 75.9 + 0.9 70.2 £ 1.6 634 +29
CTVAE-mi 91.6 = 1.2 83.5+2.1 77.6 2.5 68.8 2.5 63.7+23
CTVAE-style 98.7 + 0.4 81.4 +36.9 79.3 £35.9 68.1 + 40.0 88.2 + 5.1

(b) Style-consistency wrt. DISPLACEMENT of up to 8 classes (non-uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes
CTVAE 86.6 + 0.6 81.6 +1.3 77.4 + 1.5 74.0 2.6
CTVAE-info 862+ 1.7 81.1+1.4 753+25 753 +33
CTVAE-mi 87.3+09 816+ 1.6 743 £ 3.1 75.8 £2.1
CTVAE-style 98.1 0.8 88.2 +-13.6 77.0 +£24.1 82.6 - 11.3

(c) Style-consistency wrt. DESTINAT

ION (net) of up to 6 classes (non-uniform distributions).

Model 2 styles 3 styles 4 styles 5 styles
CTVAE 70.5 £ 2.1 589 +1.5 504+ 14 31.6 £2.8
CTVAE-info 69.0 £ 0.9 575+£20 50.5+23 314 £25
CTVAE-mi 71.8 + 0.7 53.8+59 502+ 2.7 269 +6.3
CTVAE-style 928 £ 1.0 883+ 1.7 81.7+11.0 739+ 54

(d) Style-consistency wrt. multiple styles simultaneously.

Table 11. Mean and standard deviation style-consistency (x 1072, 5 seeds) of policies evaluated with 4,000 basketball rollouts each.
CTVAE-style policies generally outperform baselines. Lower mean style-consistency (and large standard deviation) for CTVAE-style is
often due to failure cases, as can be seen from the minimum style-consistency values we report in Table 9. Understanding the causes of
these failure cases and improving the algorithm’s stability are possible directions for future work.

Model Speed Torso Height | B-Foot Height | F-Foot Height
CTVAE 57.4+3.9 64.4 + 3.1 67.4+42 68.5 +3.7
CTVAE-info 583 +21 65.0+4.2 64.1+54 66.1 +2.7
CTVAE-mi 58.4+3.9 65.7+3.2 65.0 + 3.6 699 +2.6
CTVAE-style 77.0 £53 81.0 2.2 819+54 772+ 2.4

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).

Model 3 classes 4 classes Model 2 styles 3 styles
CTVAE 452 +£32 37.8 £2.9 CTVAE 409 + 1.6 272+19
CTVAE-info 492 +1.8 39.3+2.38 CTVAE-info 41.8+23 27.8+22
CTVAE-mi 49.1 +£2.2 36.8 £ 1.0 CTVAE-mi 40.7 £ 4.9 28.5+ 1.6
CTVAE-style 60.8 =29 513+ 7.8 CTVAE-style 52.6 £ 6.1 42.8+5.8

(b) Style-consistency wrt. SPEED with varying # of classes (non-
uniform distributions).

(c) Style-consistency wrt. multiple styles simultaneously.

Table 12. Mean and standard deviation style-consistency (x 1072, 5 seeds) of policies evaluated with 500 Cheetah rollouts each. CTVAE-
style policies consistently outperform all baselines, but we note that there is still room for improvement (to reach 100% style-consistency).
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Speed Torso Height B-Foot Height F-Foot Height
Model NLD SC NLD SC NLD SC NLD SC
CTVAE-style -0.28 79 -0.24 80 -0.16 80 -0.22 77
CTVAE-style+ | -0.49 70 -0.42 83 -0.36 80 -0.42 74

Table 13. We report the median negative log-density per timestep (lower is better) and style-consistency (higher is better) of CTVAE-style
policies for Cheetah (5 seeds). The first row corresponds to experiments in Tables 1 and 10a, and the second row corresponds to the
same experiments with 50% more training iterations. The KL-divergence in the two sets of experiments are roughly the same. Although
imitation quality improves, style-consistency can sometimes degrade (e.g. SPEED, FRONT-FOOT HEIGHT), indicating a possible
trade-off between imitation quality and style-consistency.

Style-consistency 1
Model Min - Median - Max NLD |
RNN 79 79 80 81 81 =17
RNN-style 81 86 91 95 98 -7.6
CTVAE 81 82 82 82 82 -8.0
CTVAE-style 91 92 97 98 98 -7.8

Table 14. Comparing style-consistency (x10~2) between RNN and CTVAE policy models for DESTINATION in basketball. The
style-consistency for 5 seeds are listed in increasing order. Our algorithm improves style-consistency for both policy models at the cost of
a slight degradation in imitation quality. In general, CTVAE performs better than RNN in both style-consistency and imitation quality.

Speed Displacement Destination Direction Curvature
] L130el 3.96 £ 0.33 4.58 +0.20 1.61 £ 0.18 3.19 £0.25 28.31 £0.95

(a) Basketball labeling functions for experiments in section 6.1.

Speed Torso Height B-Foot Height | F-Foot Height
] LTabeT 3.24 £0.83 15.87 £ 1.78 17.25 +0.73 14.75 + 0.74

(b) Cheetah labeling functions for experiments in section 6.1.

Table 15. Mean and standard deviation cross-entropy loss (£, x1072) over 5 seeds of learned label approximators C’Q,* on test
trajectories after n'*! training iterations for experiments in section 6.1. Cﬁ* is only used during training; when computing style-
consistency for our quantitative results, we use original labeling functions .

| M, test error
Basketball | 1.47 £0.59(x10~7)
Cheetah 1.93 4 0.08(x1072)

Table 16. Average mean-squared error of dynamics model M., per timestep per dimension on test data after training for n"™™* iterations

Basketball
noise Speed Disp. Dest. Dir. Curve
o 5.20 6.18 7.46 5.36 5.88
20 10.33 12.24 15.54 10.93 11.66
30 15.36 18.08 23.46 16.78 17.24
4o 20.10 23.47 30.10 22.56 22.52
o value 0.001 0.02 0.02 0.1 0.02

Table 17. Label disagreement (%) of noisy labeling functions: For each of the Basketball labeling functions with 3 classes in Table 1,
we consider noisy versions where we inject Gaussian noise with mean 0 and standard deviation ¢ - o for ¢ € {1, 2, 3,4} before applying
thresholds to obtain label classes. This table shows the label disagreement between noisy and true labeling functions over trajectories in
the training set. The last row shows the ¢ value used for each labeling function.
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Basketball
noise Speed Disp. Dest. Dir. Curve
o 2.78 3.21 3.70 3.71 3.16
20 5.59 7.88 9.75 8.63 4.46
30 9.71 15.37 16.38 12.39 6.34
4o 11.63 20.54 21.11 19.98 12.41

Table 18. Relative decrease in style-consistency when training with noisy labeling functions: (%, median over 5 seeds) Using the noisy
labeling functions in Table 17, we train CTVAE-style models and evaluate style-consistency using the true labeling functions without
noise. This table shows the percentage decrease in style-consistency relative to when there is no noise in Table 1. Comparing with the
label disagreement in Table 17, we see that the relative decrease in style-consistency generally scales linearly with the label disagreement
between noisy and true labeling functions.
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Figure 5. CTVAE-style rollouts cali-
brated for DESTINATION (net), 0.97
style-consistency. Diamonds (¢) and
dots (e) indicate initial and final posi-
tions. Regions divided by green lines
represent label classes.
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(f) Label class 5 (farthest)

Figure 6. Rollouts from our policy calibrated to DESTINATION (net) with 6 classes. The 5 green boundaries divide the court into 6
regions, each corresponding to a label class. The label indicates the target region of a trajectory’s final position (e). This policy achieves a
style-consistency of 0.93, as indicated in Table 9c. Note that the initial position (#) is the same as in Figures 5 and 3 for comparison, but
in general we sample an initial position from the prior p(y) to compute style-consistency.
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Figure 7. Histogram of basketball labeling functions applied on the training set (before applying thresholds). Basketball trajectories are
collected from tracking real players in the NBA.
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Figure 8. Histogram of Cheetah labeling functions applied on the training set (before applying thresholds). Note that SPEED is the most
diverse behavior because we pre-trained the policies to achieve various speeds when collecting demonstrations, similar to (Wang et al.,
2017). For more diversity with respect to other behaviors, we can also incorporate a target behavior as part of the reward when pre-training
Cheetah policies.



