
Alleviating Privacy Attacks via Causal Learning

Shruti Tople 1 Amit Sharma 1 Aditya V. Nori 1

Abstract
Machine learning models, especially deep neural
networks have been shown to be susceptible to pri-
vacy attacks such as membership inference where
an adversary can detect whether a data point was
used for training a black-box model. Such pri-
vacy risks are exacerbated when a model’s pre-
dictions are used on an unseen data distribution.
To alleviate privacy attacks, we demonstrate the
benefit of predictive models that are based on the
causal relationships between input features and
the outcome. We first show that models learnt
using causal structure generalize better to unseen
data, especially on data from different distribu-
tions than the train distribution. Based on this
generalization property, we establish a theoreti-
cal link between causality and privacy: compared
to associational models, causal models provide
stronger differential privacy guarantees and are
more robust to membership inference attacks. Ex-
periments on simulated Bayesian networks and
the colored-MNIST dataset show that associa-
tional models exhibit upto 80% attack accuracy
under different test distributions and sample sizes
whereas causal models exhibit attack accuracy
close to a random guess.

1 Introduction
Machine learning algorithms, especially deep neural net-
works (DNNs) have found diverse applications in various
fields such as healthcare (Esteva et al., 2019), gaming (Mnih
et al., 2013), and finance (Tsantekidis et al., 2017; Fis-
cher & Krauss, 2018). However, a line of recent research
has shown that deep learning algorithms are susceptible
to privacy attacks that leak information about the training
dataset (Fredrikson et al., 2015; Rahman et al., 2018; Song
& Shmatikov, 2018; Hayes et al., 2017). Particularly, one

1Microsoft Research. Correspondence to: Shruti
Tople <shruti.tople@microsoft.com>, Amit Sharma
<amshar@microsoft.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

such attack called membership inference reveals whether
a data sample was present in the training dataset (Shokri
et al., 2017). The privacy risks due to membership inference
elevate when the DNNs are trained on sensitive data such
as in healthcare applications. For example, HIV patients
would not want to reveal their participation in the training
dataset.

Membership inference attacks are shown to exploit overfit-
ting of the model on the training dataset (Yeom et al., 2018).
Existing defenses propose the use of generalization tech-
niques such as adding learning rate decay, dropout or using
adversarial regularization techniques (Nasr et al., 2018b;
Salem et al., 2018). All these approaches assume that the
test and the training data belong to the same distribution. In
practice, a model trained using data from one distribution is
often used on a (slightly) different distribution. For example,
hospitals in one region may train a model and share it with
hospitals in different regions. However, generalizing to a
new context is a challenge for any machine learning model.
We extend the scope of membership inference attacks to
different distributions and show that the risk increases for
associational models as the test distribution is changed.

Our Approach. To alleviate privacy attacks, we propose
using models that depend on the causal relationship between
input features and the output. Causal learning has been used
to optimize for fairness and explainability properties of
the predicted output (Kusner et al., 2017; Nabi & Shpitser,
2018; Datta et al., 2016). However, the connection of causal
learning to enhancing privacy of models is yet unexplored.
To the best of our knowledge, we provide the first analysis
of privacy benefits of causal models. By definition, causal
relationships are invariant across input distributions (Peters
et al., 2016), and therefore predictions of causal models
should be independent of the observed data distribution, let
alone the observed dataset. Thus, causal models generalize
better even with changes in the data distribution.

In this paper, we show that the generalizability property of
causal models directly ensures better privacy guarantees for
the input data. Concretely, we prove that with reasonable as-
sumptions, a causal model always provides stronger (i.e.,
smaller ε value) differential privacy guarantees than an
associational model trained on the same features and
with the same amount of added noise. Consequently, we
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Figure 1: Structural causal model where a directed edge denotes a
causal relationship; dashed bidirectional edges denote correlation.
A causal predictive model includes only the parents of Y : XPA [(a)
and (b)]. Panel (c) shows the Markov Blanket of Y.

show that membership attacks are ineffective (almost a ran-
dom guess) on causal models trained on infinite samples.

Empirical attack accuracies on four different tabular datasets
and the colored MNIST image dataset (Arjovsky et al.,
2019) confirm our theoretical claims. On tabular data, we
find that 60K training samples are sufficient to reduce the
attack accuracy of a causal model to a random guess. In
contrast, membership attack accuracy for neural network-
based associational models increases up to 80% as the test
distribution is changed. On colored MNIST dataset, we find
that attack accuracy for causal model is close to a random
guess (50%) compared to 66% for an associational model
under a shift in the data distribution.

To summarize, our main contributions include:

• For the same amount of added noise, models learned us-
ing causal structure provide stronger ε-differential privacy
guarantees than corresponding associational models.

• Models trained using causal features are provably more
robust to membership inference attacks than typical asso-
ciational models such as neural networks.

• On the colored MNIST dataset and simulated Bayesian
Network datasets where the test distribution may not be
the same as the training distribution, the membership
inference attack accuracy of causal models is close to a
“random guess” (i.e., 50%) whereas associational models
exhibit 65-80% attack accuracy.

2 Generalization Property of Causal Models
Causal models generalize well since their output depends on
stable, causal relationships between input features and the
outcome instead of associations between them (Peters et al.,
2016). Our goal is to study the effect of this generalization
property on privacy of training data.

2.1 Background: Causal Model

Intuitively, a causal model identifies a subset of features
that have a causal relationship with the outcome and learns
a function from the subset to the outcome. To construct a
causal model, one may use a structural causal graph based
on domain knowledge that defines causal features as parents

of the outcome under the graph. Alternatively, one may ex-
ploit the strong relevance property from (Pellet & Elisseeff,
2008), use score-based learning algorithms (Scutari, 2009)
or recent methods for learning invariant relationships from
training datasets from different distributions (Peters et al.,
2016; Arjovsky et al., 2019; Bengio et al., 2019; Mahajan
et al., 2020), or learn based on a combination of randomized
experiments and observed data. Note that this is different
from training probabilistic graphical models, wherein an
edge conveys an associational relationship. Further details
on causal models are in (Pearl, 2009; Peters et al., 2017).

For ease of exposition, we assume the structural causal
graph framework throughout. Consider data from a distri-
bution (X, Y) ∼ P where X is a k-dimensional vector. Our
goal is to learn a function h(X) that predicts Y. Figure 1
shows causal graphs that denote the different relationships
between X and Y. Nodes of the graph represent variables
and a directed edge represents a direct causal relationship
from a source to target node. Denote XPA ⊆ X, the parents of
Y in the causal graph. Fig. (1a) shows the scenario where X
contains variables XS0 that are correlated to XPA in P, but not
necessarily connected to either XPA or Y. These correlations
may change in the future, therefore a generalizable model
should not include these features. Similarly, Fig. (1b) shows
parents and children of XPA. The d-separation principle
states that a node is independent of its ancestors conditioned
on all its parents (Pearl, 2009). Thus, Y is independent of XS1
and XS2 conditional on XPA. Including them in a model does
not add predictive value (and further, avoids prediction error
when the relationships between XS1, XS2 and XPA change).

The key insight is that building a model for predicting Y

using its parents XPA ensures that the model generalizes to
other distributions of X, and also to changes in other causal
relationships between X, as long as the causal relationship
of XPA to Y is stable. We call such a model a causal model,
the features in (XC = XPA) the causal features, and assume
that all causal features for Y are observed. In contrast, an
associational model uses all the available features.

Here we would like to distinguish causal features from Y’s
Markov Blanket. The Markov Blanket (Pellet & Elisseeff,
2008) for Y contains its parents, children and parents of
children. Conditioned on its Markov blanket (Fig. 1c), Y is
independent of all other variables in the causal graph, and
therefore past work (Aliferis et al., 2010) suggests to build a
predictive model using the features in Y’s Markov Blanket1.
However, such a model is not robust to interventions. For
instance, if there is an intervention on Y’s children in a new

1In some cases, it may be necessary to use Y’s children for pre-
diction, e.g., in predicting disease based on its symptoms. However,
such a model will not generalize under intervention— it makes an
implicit assumption that symptoms will never be intervened upon,
and that all causes of symptoms are observed.
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(a) (b) (c)
Figure 2: Interventions on (a) parents of Y, (b) children of Y, and (c) all features. The black hammer denotes an intervention and each
right subfigure shows the resultant causal model. Relationship between causal features and Y, Y = f(XPA) remains invariant under all
interventions but the relationship between other features and Y varies based on the intervention.

domain (Fig. 2b), it will break the correlation between Y

and XCH and lead to incorrect predictions. To summarize,
Fig. (2c) demonstrates how a causal model based on parents
is robust to all interventions on X, unlike an associational
model built using the Markov Blanket or other features.

2.2 Generalization to New Distributions

We state the generalization property of causal models and
show how it results in a stronger differential privacy guaran-
tee. We first define In-distribution and Out-of-distribution
generalization error. Throughout, L(., .) refers to the loss on
a single input and LP(., .) = EPL(., .) refers to the expected
value of the loss over a distribution P(X, Y). We refer to
h : X→ Y as the hypothesis function or simply the model.
Then, L(h, h′) is a loss function quantifying the difference
between any two models h and h′.

Definition 1. In-Distribution Generalization Error
(IDE). Consider a dataset S ∼ P(X, Y). Then for a model
h : X → Y trained on S, the in-distribution generalization
error is given by:

IDEP(h, y) = LP(h, y)− LS∼P(h, y) (1)

Definition 2. Out-of-Distribution Generalization Error
(ODE). Consider a dataset S sampled from a distribution
P(X, Y). Then for a model h : X→ Y trained on S, the out-
of-distribution generalization error with respect to another
distribution P∗(X, Y) is given by:

ODEP,P∗(h, y) = LP∗(h, y)− LS∼P(h, y) (2)

Definition 3. Discrepancy Distance (discL) (Def. 4 in
(Mansour et al., 2009)). LetH be a set of models, h : X→
Y. Let L : Y× Y→ R+ define a loss function over Y for any
such model h. Then the discrepancy distance discL over
any two distributions P(X, Y) and P∗(X, Y) is given by:

discL,H(P, P∗) = max
h,h′∈H

|LP(h, h′)− LP∗(h, h′)| (3)

Intuitively, the term discL(P, P
∗) denotes the distance be-

tween the two distributions. Higher the distance, higher is
the chance of an error when transferring model h from one
distribution to another. Next we state the theorem on the
generalization property of causal models.

Theorem 1. Consider a structural causal graph G that con-
nects X to Y, and causal features XC ⊂ X where XC represent
the parents of Y under G. Let P(X, Y) and P∗(X, Y) be two
distributions with arbitrary P(X) and P∗(X), having overlap,
P(X = x) > 0 whenever P∗(X = x) > 0. In addition, the
causal relationship between XC and Y is preserved, which
implies that P(Y|XC) = P∗(Y|XC). Let L be a symmetric
loss function that obeys the triangle inequality (such as L1,
L2 or 0-1 loss), and let f : XC → Y be the optimal predic-
tor among all hypotheses using XC features under L, i.e.,
f = arg minh Lxc(y, h(xc)) for all xc, and thus f depends
only on Pr(Y|XC) (e.g., f := E[Y|XC] for L2 loss). Fur-
ther, assume that HC represents the set of causal models
hc : XC → Y that may use all causal features and HA rep-
resent the set of associational models ha : X→ Y that may
use all available features, such that f ∈ HC andHC ⊆ HA.

1. When generation of Y is deterministic, y = f(Xc) (e.g.,
when Y|XC is almost surely constant), the ODE loss for a
causal model hc ∈ HC is bounded by:

ODEP,P∗(hc, y) = LP∗(hc, y)− LS∼P(hc, y)

≤ discL,HC
(P, P∗) + IDEP(hc, y) (4)

Further, for any P and P∗, the upper bound of ODE from
a dataset S ∼ P(X, Y) to P∗(called ODE-Bound) for a
causal model hc ∈ HC is less than or equal to the upper
bound ODE-Bound of an associational model ha ∈ HA,
with probability at least (1− δ)2.

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)

2. When generation of Y is probabilistic, the ODE error for a
causal model hc ∈ HC includes additional terms for the
loss between Y and optimal causal models hOPTc,P = hOPTc,P∗

on P and P∗ respectively.

ODEP,P∗(hc, y) ≤ discL,HC
(P, P∗) + IDEP(hc, y)+

LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (5)

However, while the loss of an associational model can be
lower on P, there always exists a P∗ such that the worst
case ODE-Bound for an associational model is higher
than the same for a causal model.

max
P∗

ODE-BoundP,P∗(hc, y; δ) ≤ max
P∗

ODE-BoundP,P∗(ha, y; δ)
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Proof Sketch. As an example, consider a colored MNIST
data distribution P such that the label Y is assigned based
on the shape of a digit. Here the shape features represent
the causal features (XC). If the shape is closest to shapes
for {0, 1, 2, 3, 4} then Y = 0, else Y = 1. Additionally, all
images classified as 1 are colored with the same color (say
red). Then, under a suitably expressive class of models,
the loss-minimizing associational model may use only the
color feature to obtain zero error, while the loss-minimizing
causal model still uses the shape (causal) features. On any
new P∗ that does not follow the same correlation of digits
with color, we expect that the associational model will have
higher error than the causal model.

Formally, since P(Y|XC) = P∗(Y|XC) and f ∈ HC, the opti-
mal causal model that minimizes loss over P is the same as
the loss-minimizing model over P∗. That is, hOPTc,P = hOPTc,P∗ .
However for associational models, the optimal models may
not be the same hOPTa,P 6= hOPTa,P∗ and thus there is an additional
loss term when generalizing to data from P∗. The rest of the
proof follows from triangle inequalities on the loss function
and the standard bounds for IDE ( in Suppl. Section A.1).

For individual instances, we present a similar result on
the worst-case generalization error (proof in Suppl. Sec-
tion A.2).
Theorem 2. Consider a causal model hminc,S : XC → Y and
an associational model hmina,S : X → Y trained on a dataset
S ∼ P(X, Y) with loss L. Let (x, y) ∈ S and (x′, y′) /∈ S
be two input instances such that they share the same true
labelling function on the causal features, y ∼ P(Y|XC = x)
and y′ ∼ P(Y|XC = x′). Then, the worst-case generalization
error for a causal model on such x′ is less than or equal to
that for an associational model.

max
x∈S,x′

Lx′(h
min
c,S , y)−Lx(hminc,S , y) ≤ max

x∈S,x′
Lx′(h

min
a,S , y)−Lx(hmina,S , y)

3 Main Result: Privacy with Causality
We now present our main result on the privacy guarantees
and attack robustness of causal models.

3.1 Differential Privacy Guarantees

Differential privacy (Dwork et al., 2014) provides one of
the strongest notions of privacy to hide the participation of
an individual sample in the dataset. To state informally, it
ensures that the presence or absence of a single data point
in the input dataset does not change the output by much.

Definition 4 (Differential Privacy). A mechanism M with
domain I and range O satisfies ε-differential privacy if for
any two datasets d, d′ ∈ I that differ only in one input and
for a set S ⊆ O, the following holds: Pr(M(d) ∈ S) ≤
eε Pr(M(d′) ∈ S)

The standard approach to designing a differentially private
mechanism is by calculating the sensitivity of an algorithm

and adding noise proportional to the sensitivity. Sensitivity
captures the change in the output of a function due to chang-
ing a single data point in the input. Higher the sensitivity,
larger is the amount of noise required to make any function
differentially private with reasonable ε guarantees. Below
we provide a formal definition of sensitivity, derive a corol-
lary based on the generalization property from Theorem 2,
and then show that sensitivity of a causal learning function
is lower than or equal to an associational learning function
(proofs are in Suppl. Section B).

Definition 5 (Sensitivity (From Def. 3.1 in (Dwork et al.,
2014)). Let F be a function that maps a dataset to a vector
in Rd. Let S, S′ be two datasets such that S′ differs from S

in one data point. Then the l1-sensitivity of a function F is
defined as: ∆F = maxS,S′ ||F(S)−F(S′)||1

Corollary 1. Let S be a dataset of n (x, y) values, such
that y(i) ∼ P(Y|XC = x(i))∀(x(i), y(i)) ∈ S, where P(Y|XC)
is the invariant conditional distribution on the causal fea-
tures XC. Consider a neighboring dataset S′ such that
S′ = S\(x, y) + (x′, y′) where (x, y) ∈ S, (x′, y′) /∈ S,
and (x′, y′) shares the same conditional distribution y′ ∼
P(Y|XC = x′c). Then the maximum generalization error from
S to S′ for a causal model trained on S is lower than or
equal to that of an associational model.

max
S,S′
LS′(h

min
c,S , y)−LS(h

min
c,S , y) ≤ max

S,S′
LS′(h

min
a,S , y)−LS(h

min
a,S , y)

Lemma 1. Let S and S′ be two datasets defined as in Corol-
lary 1. Let a model h be specified by a set of parameters
θ ∈ Ω ⊆ Rn. Let hminS (x; θS) be a model learnt using S as
training data and hminS′ (x; θS′) be the model learnt using S′

as training data, using a loss function L that is λ-strongly
convex over Ω, ρ-Lipschitz, symmetric and obeys the trian-
gle inequality. Then, under the conditions of Theorem 1
(optimal predictor f ∈ HC) and for a sufficiently large n,
the sensitivity of a causal learning function Fc that outputs
learnt empirical model hminc,S ← Fc(S) and hminc,S′ ← Fc(S

′)
is lower than or equal to the sensitivity of an associa-
tional learning function Fa that outputs hmina,S ← Fa(S) and
hmina,S′ ← Fa(S

′),

∆Fc = max
S,S′
||hminc,S −hminc,S′ ||1 ≤ max

S,S′
||hmina,S −hmina,S′ ||1 = ∆Fa

where the maximum is over all such datasets S and S′.

We now prove our main result on differential privacy.

Theorem 3. Let F̂c and F̂a be the differentially private
mechanisms, obtained by adding Laplace noise to model pa-
rameters of the causal learning and associational learning
functions Fc and Fa respectively. Let F̂c and F̂a provide
εc-DP and εa-DP guarantees respectively. Then, for equiva-
lent noise added to both the functions and sampled from the
same distribution, Lap(Z), we have εc ≤ εa.
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Proof. According to the Def. 3.3 of Laplace mechanism
from (Dwork et al., 2014), we have,

F̂c= Fc +K ∼ Lap(
∆Fc

εc
) F̂a= Fa +K ∼ Lap(

∆Fa

εa
)

The noise is added to the output of the learning algorithm
F(.) i.e., the model parameters. Since K is sampled from
the same noise distribution,

Lap(
∆Fc

εc
) = Lap(

∆Fa

εa
) ∴

∆Fc

εc
=

∆Fa

εa
(6)

From Lemma 1, ∆Fc ≤ ∆Fa and hence εc ≤ εa.

While we prove the general result above, our central claim
comparing differential privacy for causal and associational
models also holds for mechanisms that provide a tighter data-
dependent differential privacy guarantee (Papernot et al.,
2017). The key idea is to produce an output label based
on voting from M teacher models, each trained on a disjoint
subset of the training data. We state the theorem below
and provide its proof in Suppl. Section C. Given datasets
from different domains, the below theorem also provides
a constructive proof to train a differentially private causal
algorithm following the method from Papernot et al. (2017).

Theorem 4. Let D be a dataset generated from possibly a
mixture of different distributions Pr(X, Y) such that Pr(Y|XC)
remains the same. Let nj be the votes for the jth class from
M teacher models. LetM be the mechanism that produces
a noisy max, arg maxj{nj + Lap(2/γ)}. Then the privacy
budget εc for a causal model trained on D is lower than that
for an associational model with the same accuracy.

3.2 Robustness to Membership Attacks

Deep learning models have been shown to memorize or
overfit on the training data during the learning process (Car-
lini et al., 2018). Such overfitted models are susceptible
to membership inference attacks that can accurately pre-
dict whether a target input belongs to the training dataset
or not (Shokri et al., 2017). There are multiple variants of
the attack depending on the information accessible to the
adversary. An adversary with black-box access to a model
observes confidence scores for the predicted output whereas
one with the white-box access observes all model parame-
ters and the output at each layer in the model (Nasr et al.,
2018a). In the black-box setting, a membership attack is pos-
sible whenever the distribution of output scores for training
data is different from the test data, and has been connected
to model overfitting (Yeom et al., 2018). Alternatively, if
the adversary knows the distribution of the training inputs,
they may learn a “shadow” model based on synthetic inputs
and use the shadow model’s output to build a membership
classifier (Shokri et al., 2017). For the white-box setting, if
an adversary knows the true label for the target input, then

they may guess membership of the input based on either the
loss or gradient values during inference (Nasr et al., 2018a).

Most of the existing membership inference attacks have
been demonstrated for test inputs from the same data dis-
tribution as the training set. When test inputs are expected
from the same distribution, methods to reduce overfitting
(such as adversarial regularization) can help reduce privacy
risks (Nasr et al., 2018b). However in practice, this is sel-
dom the case. For instance, in our example of a model
trained with a single hospital’s data, the test inputs may
come from different hospitals. Therefore, models trained to
reduce the generalization error for a specific test distribution
are still susceptible to membership inference when the dis-
tribution of features is changed. This is due to the problem
of covariate shift that introduces a domain adaptation error
term (Mansour et al., 2009). That is, the loss-minimizing
model that predicts Y changes with a different distribution,
and thus allows the adversary to detect differences in losses
for the test versus training datasets. As we show below,
causal models alleviate the risk of membership inference
attacks. Based on Yeom et al. (2018), we first define a
membership attack.

Definition 6. Let h be trained on a dataset S(X, Y) ∼ P

of size N. Let A be an adversary with access to h and
an input x ∼ P∗ where P∗ is any distribution such that
P(Y|XC) = P∗(Y|XC). Then advantage of an adversary
in membership inference is the difference between true
and false positive rate in guessing whether the the in-
put belongs to the training set. Adv(A, h, N, P, P∗) =
Pr[A = 1|b = 1] − Pr[A = 1|b = 0], where b = 1 if the
input is in the training set and else is 0.

As a warmup, we demonstrate the relationship between
membership advantage and out-of-distribution generaliza-
tion using a specific adversary that predicts membership
for an input based on the model’s loss. This adversary
is motivated by empirical membership inference algo-
rithms (Shokri et al., 2017; Nasr et al., 2018a).

Definition 7. [From (Yeom et al., 2018)] Assume that the
loss L is bounded by B ∈ R+. Then for a model h and an in-
put x, a Bounded-Loss adversary ABL predicts membership
in a train set with probability 1− Lx(h, y)/B.

Theorem 5. Assume a training set S of size n and a loss
function L that is bounded by B ∈ R+. Under the conditions
of Theorem 1 and for a Bounded-Loss adversary ABL, the
worst-case membership advantage of a causal model hminc,S

is lower than that of an associational model hmina,S .

max
P∗

Adv(ABL, h
min
c,S , n, P, P

∗) ≤ max
P∗

Adv(ABL, h
min
a,S , n, P, P

∗)

Proof. Let the variable b = 1 denote that data point belongs
to the train dataset S. The membership advantage of the
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bounded loss adversaryA for any model h trained on dataset
S ∼ P is given by,

Adv(A, h, n, P, P∗) = Pr[A = 1|b = 1]− Pr[A = 1|b = 0]

= Pr[A = 0|b = 0]− Pr[A = 0|b = 1]

= E[
Lx′(h, y)

B
|b = 0]− E[

Lx(h, y)

B
|b = 1]

=
1

B
(Ex′∼P∗ [Lx′(h, y)]− Ex∼S[Lx(h, y)])

≤ max
x′ 6∈S

Lx′(h, y)− LS(h, y)

where the third equality is due to Def. 7 for ABL, and the
last inequality is due to the fact that the expected value of a
random variable is less than or equal to the maximum value.
Note that the upper bound in the above inequality is tight: it
can be achieved by evaluating membership advantage only
on those x′ that lead to the maximum loss difference. Thus,

max
P∗

Adv(A, h, N, P, P∗) = max
x′

Lx′(h, y)− LS(h, y) (7)

Applying Eqn. 7 to the trained causal model hminc,S and asso-
ciational model hmina,S , we obtain:

max
P∗

Adv(A, hminc,S , n, P, P
∗) = max

x′
Lx′(h

min
c,S , y)− LS(h

min
c,S , y)

max
P∗

Adv(A, hmina,S , n, P, P
∗) = max

x′
Lx′(h

min
a,S , y)− LS(h

min
a,S , y)

From Theorem 2 proof (Suppl. Eqn. 58), we
state the inequality, maxx′ Lx′(h

min
c,S , y) − LS(hminc,S , y) ≤

maxx′ Lx′(h
min
a,S , y)−LS(hmina,S , y). Combining this inequality

with the above equations, we get the main result.

max
P∗

Adv(A, hminc,S , n, P, P
∗) ≤ max

P∗
Adv(A, hmina,S , n, P, P

∗)

We now prove a more general result. The maximum mem-
bership advantage for a causal DP mechanism (based on a
causal model) is not greater than that of an associational DP
mechanism. We present a lemma from Yeom et al. (2018).

Lemma 2. [From (Yeom et al., 2018)] Let M be a ε-
differentially private mechanism based on a model h. The
membership advantage is bounded by exp(ε)− 1.

Based on the above lemma and Theorem 3, we can show
that the upper bound of membership advantage for an εc-DP
mechanism from a causal model eεc − 1 is not greater than
that of an εa-DP mechanism from an associational model,
eεa − 1, since εc ≤ εa. The next theorem proves that the
same holds true for the maximum membership advantage.

Theorem 6. Under the conditions of Theorem 1, let S ∼
P(X, Y) be a dataset sampled from P. Let F̂c,S and F̂a,S be
the differentially private mechanisms trained on S by adding

identical Laplacian noise to the causal and associational
learning functions from Lemma 1 respectively. Assume that
a membership inference adversary is provided inputs sam-
pled from either P or P∗, where P∗ is any distribution such
that P(Y|XC) = P∗(Y|XC). Then, across all adversaries A
that predict membership in S ∼ P, the worst-case member-
ship advantage of F̂c,S is not greater than that of F̂a,S.

max
A,P∗

Adv(A, F̂c,S, n, P, P
∗) ≤ max

A,P∗
Adv(A, F̂a,S, n, P, P

∗)

Proof. We construct an expression for the maximum mem-
bership advantage for any ε-DP model and then show that it
is an increasing function of the sensitivity, and thus ε.

Finally, we show that membership advantage against a
causal model trained on infinite data will be zero for any
adversary. The proof is based on the result from Theorem 1
that hOPTc,P = hOPTc,P∗ for a causal model. Crucially, membership
advantage does not go to zero as n→∞ for associational
models, since hOPTa,P 6= hOPTa,P∗ in general. Detailed proof is in
Suppl. Section E.

Corollary 2. Under the conditions of Theorem 1, let hminc,S

be a causal model trained using empirical risk minimization
on a dataset S ∼ P(X, Y) with sample size n. As n → ∞,
membership advantage Adv(A, hminc,S )→ 0.

3.3 Robustness to Attribute Inference Attacks

We prove similar results on the benefits of causal models
for attribute inference attacks where a model may reveal
the value of sensitive features of a test input, given partial
knowledge of its features. For instance, given a model’s out-
put and certain features about a person, an adversary may
infer other attributes of the person (e.g., their demographics
or genetic information). As another example, it can be possi-
ble to infer a person’s face based on hill climb on the output
score of a face detection model (Fredrikson et al., 2015).
Model inversion is not always due to a fault in learning: a
model may learn a true, generalizable relationship between
features and the outcome, but still be vulnerable to a model
inversion attack. This is because given k−1 features and the
true outcome label, it is possible to guess the kth feature by
brute-force search on output scores generated by the model.

However, inversion based on learning correlations between
features and the outcome, e.g., using demographics to pre-
dict disease, can be alleviated by causal models, since a
non-causal feature will not be included in the model.

Definition 8 (From (Yeom et al., 2018)). Let h be a model
trained on a dataset S(X,Y). Let A be an adversary with
access to h, and a partial test input xA ⊂ x. The attribute
advantage of the adversary is the difference between true
and false positive rates in guessing the value of a sensitive
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Dataset Child Alarm (Sachs) Water

Output XrayReport BP Akt CKNI_12_45

No. of classes 5 3 3 3
Nodes 20 37 11 32
Arcs 25 46 17 66

Parameters 230 509 178 10083

Table 1: Details of the benchmark datasets.

feature xs /∈ xA. For a binary xs,

Adv(A, h) = Pr(A = 1|xs = 1)− Pr(A = 1|xs = 0)

Theorem 7. Given a dataset S(X, Y) of size n and a struc-
tural causal model that connects X to Y, a causal model hc
makes it impossible to infer non-causal features.

The proof is in Suppl. Section F.

4 Implementation and Evaluation
We perform our evaluation on two types of datasets: 1) Four
datasets generated from known Bayesian Networks and 2)
Colored images of digits from the MNIST dataset.

Bayesian Networks. To avoid errors in learning causal
structure from data, we perform evaluation on datasets for
which the causal structure and the true conditional proba-
bilities of the variables are known from prior research. We
select 4 Bayesian network datasets— Child, Sachs, Alarm
and Water that range from 178-10k parameters (Table 1)2.
Nodes represent the number of input features and arcs de-
note the causal connections between these features in the
network. Each causal connection is specified using a con-
ditional probability table P(Xi|Parents(Xi)); we consider
these probability values as the parameters in our models.
To create a prediction task, we select a variable in each of
these networks as the output Y . The number of classes in
Table 1 denote the possible values for an output variable.
For example, the variable BP (blood pressure) in the alarm
dataset takes 3 values i.e, LOW, NORMAL, HIGH. The
causal model uses only parents of Y whereas the associa-
tional model (DNN) uses all nodes except Y as features.

Colored MNIST Dataset. We also evaluate on a complex
dataset where it is difficult to construct a causal graph of the
input features. For this, we consider the dataset of colored
MNIST images used in a recent work by (Arjovsky et al.,
2019). The original MNIST dataset consists of grayscale
images of handwritten digits (0-9)3. The colored MNIST
dataset consists of inputs where digits 0-4 are red in color
with label as 0 while 5-9 are green in color and have label
1. The training dataset consists of two environments where
only 10% and 20% of inputs do not follow the correlation of
color to digits. This creates a spurious correlation of color

2www.bnlearn.com/bnrepository
3http://yann.lecun.com/exdb/mnist/

with the output. In this dataset, shape of the digit is the
actual causal feature whereas color acts as the associational
or non-causal feature. The test dataset is generated such
that 90% of the inputs do not follow the color pattern. We
use the code made available by (Arjovsky et al., 2019) to
generate the dataset and perform our evaluation4. We refer
the readers to the paper for further details.

4.1 Results for Bayesian Networks Dataset

Evaluation Methodology. We sample data using the
causal structure and probabilities from the Bayesian net-
work, and use a 60:40% split for train-test datasets. We
learn a causal model and a deep neural network (DNN) on
each training dataset. We implement the attacker model to
perform membership inference attack using the output con-
fidences of both these models, based on past work (Salem
et al., 2018). The input features for the attacker model
comprises of the output confidences from the target model,
and the output is membership prediction (member / non-
member) in the training dataset of the target model. In both
the train and the test data for the attacker model, the number
of members and non-members are equal. The creation of
the attacker dataset is described in Figure 5 in the Suppl.
Section G. Note that the attack accuracies reported are an
upper bound since we assume that the adversary has access
to the subset of training data for the ML model.

To train the causal model, we use the bnlearn library in R
language that supports maximum likelihood estimation of
the parameters in Y ’s conditional probability table. For pre-
diction, we use the parents method to predict the class
of any specific variable. To train the DNN model and the
attacker model, we build custom estimators in Python using
Tensorflow v1.2. The DNN model is a multilayer perceptron
(MLP) with 3 hidden layers of 128, 512 and 128 nodes re-
spectively. The learning rate is set to 0.0001 and the model
is trained for 10000 steps. The attacker model has 2 hidden
layers with 5 nodes each, a learning rate of 0.001, and is
trained for 5000 steps. Both models use Adam optimizer,
ReLU for the activation function, and cross entropy as the
loss function. We chose these parameters to ensure model
convergence. We evaluate the DNN and the causal model
sample sizes ranging from 1K to 1M dataset sizes. We refer
Test(P) as the test dataset which is drawn from the same dis-
tribution as the training data and Test(P*) is generated from
a completely different distribution except for the relation-
ship of the output class to its parents. To generate Test(P*),
we alter the true probabilities Pr(X) uniformly at random
(later, we consider adding noise to the original value). Our
goal with generating Test (P*) is to capture extreme shifts in
distribution for input features. The causal and DNN model
are the target on which the attack is perpetrated.

4https://github.com/facebookresearch/InvariantRiskMinimization
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(a) (b) (c)

Figure 3: Results for Child dataset with XrayReport as the output. ( a) is the target model accuracy. ( b) is the attack accuracy for different
dataset sizes on which the target model is trained and ( c) is the attack accuracy for test distribution with varying amount of noise for total
dataset size of 100K samples.

(a) (b) (c)

Figure 4: Results for all the bayesian models trained on dataset of size of 60K. (a) is the accuracy of the target model, (b) is the attack
accuracy for the target model, (c) is the attack accuracy using Test(P*) dataset on true causal, learned causal and DNN models.

Accuracy comparison of DNN and Causal models. Fig-
ure 3a shows the target model accuracy comparison for the
DNN and the causal model trained on the Child dataset with
XrayReport as the output variable. We report the accuracy
of the target models only for a single run since in practice
the attacker would have access to the outputs of only a single
model. We observe that the DNN model has a large differ-
ence between the train and the test accuracy (both Test(P)
and Test(P*)) for smaller dataset sizes (1K and 2K). This
indicates that the model overfits on the training data for
these dataset sizes. However, after 10K samples, the model
converges such that the train and Test(P) dataset have the
same accuracy. The accuracy for the Test(P*) distribution
stabilizes for a total dataset size of 10K samples. In con-
trast, for the causal model, the train and Test(P) accuracy are
similar for the causal model even on smaller dataset sizes.
However, after convergence at around 10K samples, the gap
between the accuracy of train and Test(P*) dataset is the
same for both the DNN and the causal model. Figure 4a
shows similar results for the accuracy on all the datasets.

Attack Accuracy of DNN and Causal models. A naive at-
tacker classifier would predict all the samples to be members
and therefore achieve 0.5 prediction accuracy. Thus, we con-
sider 0.5 as the baseline attack accuracy which is equal to a
random guess. Figure 3b shows the attack accuracy compar-
ison for Test(P) (same distribution) and Test(P*) (different
distribution) datasets. Attack accuracy of the Test(P) dataset
for the causal model is slightly above a random guess for
smaller dataset sizes, and then converges to 0.5. In com-

parison, attack accuracy for the DNN on Test(P) dataset is
over 0.6 for smaller samples sizes and reaches 0.5 after 10K
datapoints. This confirms past work that an overfitted DNN
is susceptible to membership inference attacks even for test
data generated from the same distribution as the training
data (Yeom et al., 2018). On Test(P*), the attack accuracy
is always higher for the DNN than the causal model, indi-
cating our main result that associational models “overfit” to
the training distribution, in addition to the training dataset.
Membership inference accuracy for DNNs is as high as 0.8
for total dataset size of 50K while that of causal models is
below 0.6. Further, attack accuracy for DNN increases with
sample size whereas attack accuracy for the causal model
reduces to 0.5 for total dataset size over 100k even when
the gap between the train and test accuracies is the same as
DNNs (Figure 3a). These results show that causal models
generalize better than DNNs across input distributions. Fig-
ure 4b shows a similar result for all four datasets. The attack
accuracy for DNNs and the causal model is close to 0.5 for
the Test 1 dataset while for the Test(P*) dataset the attack
accuracy is significantly higher for DNNs than causal model.
This empirically confirms our claim that in general, causal
models are robust to membership inference attacks across
test distributions as compared to associational models.

Attack Accuracy for Different Test Distributions. To un-
derstand the change in attack accuracy as Pr(X) changes,
we generate test data from different distributions by adding
varying amount of noise to the true probabilities. We range
the noise value between 0 to 2 and add it to the individual
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True Model Learned Causal (2 causal +) DNN

Acc.
(%)

2 causal
parents

1 non-causal
parent

2 non-causal
parents

Attack 50 52 61 76

Pred. 79 75 68.8 73

Table 2: Attack and Prediction accuracy comparison across models
for Sachs dataset and Akt output variable.

probabilities which are then normalized to sum up to 1. Fig-
ure (3c) shows the attack accuracy for the causal model and
the DNN on the child dataset for a total sample size of 100K
samples. We observe that the attack accuracy increases with
increase in the noise values for the DNN. Even for a small
amount of noise, attack accuracies increase sharply. In con-
trast, attack accuracies stay close to 0.5 for the causal model,
demonstrating the robustness to membership attacks.

Results with learnt causal model. Finally, we perform
experiments to understand the effect of privacy guarantees
on causal structures learned from data that might vary from
the true causal structure. For these datasets, a simple hill-
climbing algorithm returned the true causal parents. Hence
we evaluated attack accuracy for models with hand-crafted
errors in learning the structure, i.e., misestimation of causal
parents, see Figure (4c). Specifically, we include two non-
causal features as parents of the output variable along with
the true causal features. The attack risk increases as a learnt
model deviates from the true causal structure, however it
still exhibits lower attack accuracy than the corresponding
associational model. Table 2 shows the attack and prediction
accuracy for Sachs dataset when trained with increase in
error in the causal model (with 1 and 2 non-causal features),
and the results for the corresponding DNN model.

4.2 Results for Colored MNIST Dataset

In recent work Arjovsky et al. (2019) proposed a way to
train a causal model by minimizing the risk across different
environments or distributions of the dataset. Using this
approach, we train an invariant risk minimizer (IRM) and an
emprical risk minimizer (ERM) on the colored MNIST data.
Since IRM constructs the same model using invariant feature
representation for the two training domains, it is aimed
to learn the causal features (shape) that are also invariant
across domains (Peters et al., 2016). Thus IRM can be
considered as a causal model while ERM is an associational
model. Table 3 gives the model accuracy and the attack
accuracy for IRM and ERM models. The attacker model has
2 hidden layers with 3 nodes each, a learning rate of 0.001,
and is trained for 5000 steps. We observe that the causal
model has attack accuracy close to a random guess while
the associational model has 66% attack accuracy. Although
the training accuracy of IRM is lower than ERM, we expect
this to be an acceptable trade-off for the stronger privacy
and better generalizability guarantees of causal models.

Model
Train

Acc. (%)
Test

Acc. (%)
Attack

Acc. (%)

IRM (causal) 70 69 53
ERM (Associational) 87 16 66

Table 3: Results on Colored MNIST Dataset.

5 Related Work
Privacy attacks and defenses on ML models. Shokri
et al. (2017) demonstrate the first membership inference at-
tacks on black box neural network models with access only
to the confidence values. Similar attacks have been shown
on several other models such as GANs (Hayes et al., 2017),
text prediction generative models (Carlini et al., 2018; Song
& Shmatikov, 2018) and federated learning models (Nasr
et al., 2018b). However, prior research does not focus on
the severity of these attacks with change in the distribution
of the test dataset. We discussed in Section 3.2 that existing
defenses based on regularization (Nasr et al., 2018b) are
not practical when models are evaluated on test inputs from
different distributions. Another line of defense is to add dif-
ferentially private noise while training the model. However,
the ε values necessary to mitigate membership inference
attacks in deep neural networks require addition of large
amount of noise that degrades the accuracy of the output
model (Rahman et al., 2018). Thus, there is a trade-off be-
tween privacy and utility when using differential privacy for
neural networks. In contrast, we show that causal models
require lower amount of noise to achieve the same ε differ-
ential privacy guarantees and hence retain accuracy closer to
the original model. Further, as training sample sizes become
sufficiently large (Section 4) causal models are robust to
membership inference attacks across distributions.

Causal learning and privacy. There is substantial litera-
ture on learning causal models from data; for a review see
(Peters et al., 2017; Pearl, 2009). Kusner et al. (2015) pro-
posed a method to privately reveal parameters from a causal
learning algorithm, using the framework of differential pri-
vacy. Instead of a specific causal algorithm, our focus is on
the privacy benefits of causal models for general predictive
tasks. While recent work uses causal models to study prop-
erties of ML models such as providing explanations (Datta
et al., 2016) or fairness (Kusner et al., 2017), the relation of
causal learning to model privacy is yet unexplored.

6 Conclusion and Future Work
Our results show that causal learning is a promising ap-
proach to train models that are robust to privacy attacks
such as membership inference and model inversion. As
future work, we aim to investigate privacy guarantees when
the causal features and the relationship between them is not
known apriori and with causal insufficiency and selection
bias in the observed data.
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A Generalization Properties of Causal
Models

A.1 Generalization over Different Distributions

We provide formal proofs for generalization properties of
causal model over different distributions and over a single
datapoint.

Theorem 1. Consider a structural causal graph G that con-
nects X to Y, and causal features XC ⊂ X where XC represent
the parents of Y under G. Let P(X, Y) and P∗(X, Y) be two
distributions with arbitrary P(X) and P∗(X), having overlap,
P(X = x) > 0 whenever P∗(X = x) > 0. In addition, the
causal relationship between XC and Y is preserved, which
implies that P(Y|XC) = P∗(Y|XC). Let L be a symmetric
loss function that obeys the triangle inequality (such as L1,
L2 or 0-1 loss), and let f : XC → Y be the optimal predic-
tor among all hypotheses using XC features under L, i.e.,
f = arg minh Lxc(y, h(xc)) for all xc, and thus f depends
only on Pr(Y|XC) (e.g., f := E[Y|XC] for L2 loss). Fur-
ther, assume that HC represents the set of causal models
hc : XC → Y that may use all causal features and HA rep-
resent the set of associational models ha : X→ Y that may
use all available features, such that f ∈ HC andHC ⊆ HA.

1. When generation of Y is deterministic, y = f(Xc) (e.g.,
when Y|XC is almost surely constant), the ODE loss for a
causal model hc ∈ HC is bounded by:

ODEP,P∗(hc, y) = LP∗(hc, y)− LS∼P(hc, y)

≤ discL,HC
(P, P∗) + IDEP(hc, y) (4)

Further, for any P and P∗, the upper bound of ODE from
a dataset S ∼ P(X, Y) to P∗(called ODE-Bound) for a
causal model hc ∈ HC is less than or equal to the upper
bound ODE-Bound of an associational model ha ∈ HA,
with probability at least (1− δ)2.

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)

2. When generation of Y is probabilistic, the ODE error for a
causal model hc ∈ HC includes additional terms for the
loss between Y and optimal causal models hOPTc,P = hOPTc,P∗

on P and P∗ respectively.

ODEP,P∗(hc, y) ≤ discL,HC
(P, P∗) + IDEP(hc, y)+

LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (5)

However, while the loss of an associational model can be
lower on P, there always exists a P∗ such that the worst
case ODE-Bound for an associational model is higher
than the same for a causal model.

max
P∗

ODE-BoundP,P∗(hc, y; δ) ≤ max
P∗

ODE-BoundP,P∗(ha, y; δ)

Proof. The proof has three parts: General ODE Bound for
a model, equivalence of loss-minimizing causal hypotheses
(models) on P and P∗, and finally the two claims from the
Theorem.

I. GENERAL ODE BOUND
Consider a model h : X → Y belonging to a set of models
H, that was trained on S ∼ P(X, Y). From Def. 2 we write,

ODEP,P∗(h, y) = LP∗(h, y)− LS∼P(h, y)

= LP∗(h, y)− LP(h, y)+

LP(h, y)− LS∼P(h, y)

= LP∗(h, y)− LP(h, y) + IDEP(h, y)

(8)

where the last equation is to due to Def.1 of the in-
distribution generalization error.

Let us denote the optimal loss-minimizing hypotheses over
H for P and P∗ as hOPTP and hOPTP∗ .

hOPTP = arg min
h∈H
LP(h, y) hOPTP∗ = arg min

h∈H
LP∗(h, y)

(9)

Using the triangle inequality of the loss function, we can
write:

LP∗(h, y) ≤ LP∗(h, hOPTP ) + LP∗(hOPTP , y) (10)

And,

LP(h, y) ≥ LP(h, hOPTP )− LP(hOPTP , y)

⇒ −LP(h, y) ≤ −LP(h, hOPTP ) + LP(hOPTP , y)
(11)
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Thus, combining Eqns. 8, 10 and 11, we obtain,

ODEP,P∗(h, y)

≤ IDEP(h, y) + LP∗(h, hOPTP )+

LP∗(hOPTP , y)− LP(h, hOPTP ) + LP(hOPTP , y)

= IDEP(h, y) + (LP∗(h, hOPTP )− LP(h, hOPTP ))+

LP∗(hOPTP , y) + LP(hOPTP , f)

≤ IDEP(h, y) + discL,H(P, P∗)+

LP∗(hOPTP , y) + LP(hOPTP , y)

(12)

where the last inequality is due to the definition of discrep-
ancy distance (Definition 3).

Below we show that Eqn. 12 divides the out-of-distribution
generalization error of a model h in four parts. As defined in
the Theorem statement,HC refers to the class of models that
uses all causal features (XC), parents of Y over the structural
causal graph; and HA refers to the class of associational
models that may use all or a subset of all available features.

1. IDEP(h, y) denotes the in-distribution error of h. This
can be bounded by typical generalization bounds, such
as the uniform error bound that depends only on the VC
dimension and sample size of S (Shalev-Shwartz & Ben-
David, 2014). Using a uniform error bound based on the
VC dimension, we obtain, with probability at least 1− δ,

IDE ≤

√
8
VCdim(H)(ln(2|S|) + 1) + ln(4/δ)

|S|

= IDE-Bound(H, S)

(13)

SinceHC ⊆ HA, VC-dimension of causal models is not
greater than that of associational models. Thus,

VCDim(HC) ≤ VCDim(HA)⇒ IDE-Bound(HC,S)

≤ IDE-Bound(HA,S)

(14)

2. discL,H(P, P∗) denotes the distance between the two
distributions. Given two distributions, the discrepancy
distance does not depend on h, but only on the model
classH. From Definition 3, discrepancy distance is the
maximum quantity over all pairs of models in a model
class. SinceHC ⊆ HA, we obtain that:

discL,HC (P, P
∗) ≤ discL,HA(P, P∗) (15)

3. LP(hOPTP , y) measures the error of the loss-minimizing
model on P, when evaluated on P. While hOPTP is optimal,
there can still be error due to the true labeling function f

being outside the model classH, or irreducible error due
to probabilistic generation of Y.

4. LP∗(hOPTP , y) measures the error of the loss-minimizing
model on P, when evaluated on P∗. In addition to the
reasons cited above, this error can be due to differences
in both Pr(X) and Pr(Y|X) between P and P∗: change in
the marginal distribution of inputs X, and/or change in
the conditional distribution of Y given X.

II. SAME LOSS-MINIMIZING CAUSAL MODEL
OVER P AND P∗

Below we show that for a given distribution P and another
distribution P∗ such that P(Y|XC) = P∗(Y|XC), the loss mini-
mizing model is the same for causal models (hOPTc,P = hOPTc,P∗ ),
but not necessarily for associational models.

Causal Model. Given a structural causal network, let us
construct a model using all parents of XC of Y. By property
of the structural causal network, XC includes all parents of Y
and therefore there are no backdoor paths. Using Rule 2 of
do-calculus from Pearl (2009):

Pr(Y|do(Xc = xc)) = P(Y|XC = xc) = P∗(Y|XC = xc)
(16)

where the last equality is assumed since data from P∗

also shares the same causal graph. Defining hOPTc,P =
arg min

hc∈HC

LP(hc, y) and hOPTc,P∗ = arg min
hc∈HC

LP∗(hc, y), we

can write,

hOPTc,P = arg min
h∈HC

LP(h, y)

= arg min
h∈HC

EP(xc,y)L(h(xc), y) = fP(Y|XC)
(17)

since f = arg minh Lx(h(xc), y) for all xc and thus does
not depend on Pr(XC), and f ∈ HC. Similarly, for hOPTc,P∗ , we
can write:

hOPTc,P∗ = arg min
h∈HC

LP∗(h, y)

= arg min
h∈HC

EP∗(xc,y)L(h(xc), y) = fP∗(Y|XC)
(18)

Since P(Y|XC) = P∗(Y|XC), we obtain,

fP(Y|XC) = fP∗(Y|XC) ⇒ hOPTc,P = hOPTc,P∗ (19)

Associational Model. In contrast, an associational model
may use a subset XA ⊆ X that may not include all parents
of Y, or may include parents but also include other extra-
neous variables. Following the derivation for causal mod-
els, let us define hOPTa,P = arg min

ha∈HA

LP(ha, y) and hOPTa,P∗ =

arg min
ha∈HA

LP∗(ha, y), we can write,

hOPTa,P = arg min
h∈HA

LP(h, y)

= arg min
h∈HA

EP(xa,y)L(h(xa), y) = fP(XA,Y)
(20)
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where we define fA as, fA = arg minh Lx(h(xa), y) for any
xa. Similarly, for hOPTa,P∗ , we can write:

hOPTa,P∗ = arg min
h∈HA

LP∗(h, y)

= arg min
h∈HA

EP∗(xa,y)L(h(xa), y) = fP∗(XA,Y)
(21)

Now, in general,

P(XA, Y) 6= P∗(XA, Y)⇒ fP(XA,Y) 6= fP∗(XA,Y)

Even if the optimal associational model fA ∈ HA (as we
assumed for causal models), and thus fP(XA,Y) = fP(Y|XA) and
fP∗(XA,Y) = fP∗(Y|XA), they are not the same since P(Y|XA) 6=
P∗(Y|XA). Therefore we obtain,

fP(Y|XA) 6= fP∗(Y|XA) ⇒ hOPTa,P 6= hOPTa,P∗ (22)

That said, since XC ⊂ X, it is possible that XA = XC for some
X andH, and thus the loss-minimizing associational model
includes only the causal features of Y. Then hOPTa,P = hOPTa,P∗ .
In general, though, hOPTa,P 6= hOPTa,P∗ .

IIIa. CLAIM 1
As a warmup, consider the case when Y is generated de-
terministically. That is, the optimal model f has zero
error. Then, both the loss-minimizing causal model and
loss-minimizing associational model have zero error when
evaluated on the same distribution that they were trained
on. Thus, LP(hOPTc,P , y) = LP∗(hOPTc,P∗ , y) = 0. Similarly,
LP(hOPTa,P , y) = 0. (Note that here we consider only those
cases where fP(Y|X) ∈ HA and fP∗(Y|X) ∈ HA for a fair com-
parison; otherwise, the error bound for ha ∈ HA is trivially
larger than that for hc ∈ HC).

Further, for a causal model, using Equation 19, we obtain:

LP∗(hOPTc,P , y) = LP∗(hOPTc,P∗ , y) = 0 (23)

However, the same does not hold for associational models:
LP∗(hOPTa,P , y) need not be zero.

We now present the loss bounds. Using Equations 19 and
23, we write Equation 12 for a causal model as:

ODEP,P∗(hc, y) = LP∗(hc, y)− LS∼P(hc, y)

≤ discL,HC
(P, P∗) + IDEP(hc, y)

(24)

For an associational model, we obtain,

ODEP,P∗(ha, y) = LP∗(ha, y)− LS∼P(ha, y)

≤ discL,HA
(P, P∗) + IDEP(ha, y)

+ LP∗(hOPTa,P , y)

(25)

Using Eqn. 13 that bounds IDE with probability 1− δ, and
Eqns. 14 and 15 that compare IDE-Bound and discrepancy

distance between causal and associational model classes,
we can rewrite Eqn. 24. With probability at least 1− δ:

ODEP,P∗(hc, y) ≤ discL,HC (P, P
∗) + IDE-BoundP(HC, S; δ)

= ODE-BoundP,P∗(hc, y; δ)

≤ discL,HA(P, P∗) + IDE-BoundP(HA, S; δ)
(26)

Similarly, for the associational model,

ODEP,P∗(ha, y) ≤ discL,HA
(P, P∗) + IDE-BoundP(HA, S; δ)

+ LP∗(hOPTa,P , y)

= ODE-BoundP,P∗(ha, y; δ)

(27)

Therefore, comparing Eqn. 26 and 27, we claim for any P

and P∗, with probability (1− δ)2,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(28)

IIIb. CLAIM 2
We now consider the general case when Y is generated
probabilistically. Thus, even though f ∈ HC and hOPTc,P =
hOPTc,P∗ = f, LP(hOPTc,P , y) 6= 0 and LP∗(hOPTc,P∗ , y) 6= 0.

Using the IDE bound from Eqn. 13, we write Eqn. 12 as,

ODEP,P∗(hc, y) ≤ discL,HC
(P, P∗) + IDEP(hc, y)

+ LP∗(hOPTc,P , y) + LP(hOPTc,P , y)

≤ discL,HC (P, P
∗) + IDE-BoundP(HC, S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (29)

= ODE-BoundP,P∗(hc, y; δ)

≤ discL,HA(P, P∗) + IDE-BoundP(HA, S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (30)

where Eqn. 29 uses hOPTc,P = hOPTc,P∗ and Eqn. 30 uses inequali-
ties comparing IDE and discrepancy distance from Eqns. 14
and 15.

Similarly, for associational model,

ODE-BoundP,P∗(ha, y) = discL,HA(P, P∗)

+ IDE-BoundP(HA, S; δ) + LP∗(hOPTa,P , y) + LP(hOPTa,P , y)

(31)

Now, we compare the last two terms of Equations 30 and 31.
SinceHC ⊆ HA, loss of the loss-minimizing associational
model can be lower than the loss of the causal model trained
on the same distribution. Thus, LP(hOPTa,P , y) ≤ LP(hOPTc,P , y).

However, since hOPTa,P 6= hOPTa,P∗ , loss of the loss-minimizing
associational model trained on P can be higher on P∗ than
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the loss of optimal causal model trained on P∗ and evaluated
on P∗. Formally, let γ1 ≥ 0 be the loss reduction over P due
to use of associational model optimized on P, compared to
the loss-minimizing causal model. Similarly, let γ2 be the
increase in loss over P∗ due to using the associational model
optimized over P, compared to the loss-minimizing causal
model.

γ1 =LP(hOPTc,P , y)− LP(hOPTa,P , y) (32)

γ2 =LP∗(hOPTa,P , y)− LP∗(hOPTc,P , y) (33)

Then, Eqn. 31 transforms to,

ODEP,P∗(ha, y) ≤ discL,HA(P, P∗) + IDE-BoundP(HA,S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) + γ2 − γ1
(34)

Hence, as long as γ2 ≥ γ1, we obtain,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(35)

Below we show that such a P∗ always exists, and further, the
worst-case maxP∗ ODE-BoundP,P∗(h, y; δ) is always lower
for a causal model than an associational model.

There exists P∗ such that γ2 ≥ γ1. The proof is by con-
struction. As an example, consider L1 loss and a distribution
P such that the optimal causal model f for an input data
point x(i) can be written as,

y(i) = fP(x
(i)
C ) + ξi = fP∗(x

(i)
C ) + ξi (36)

where f(xC) = hOPTc,P = hOPTc,P∗ refers to the optimal causal
model and is the same for P and P∗ (using Eqn. 19). Let
fP(xA) = hOPTa,P be the optimal associational model over P.
We can rewrite hOPTa,P as an arbitrary change from hOPTc,P , using

λ
(i)
xA as a parameter that can be different for each data point

x(i). That is,

hOPTa,P (x(i)) = hOPTc,P (x
(i)
C ) + λ(i)xA

(37)

Based on Eqns. 36 and 37, γ1 can be written as,

LP(hOPTc,P , y) = EP[|ξ|]
LP(hOPTa,P , y) = EP[|ξ − λxA |]

⇒ γ1 = EP[|λxA |]
(38)

Then, we can construct a P∗(X, Y) such that (i) the relation-
ship (Pr(Y|XA)) between xA and y is reversed, and (ii) Pr(X)
is chosen such that EP∗ [λxA ] ≥ EP[λxA ] (e.g., by assigning
higher probability weights to data points i where |λ(i)xA | is
high). That is, consider a P∗ such that we can write hOPTa,P∗ as,

hOPTa,P∗(x
(i)) = hOPTc,P∗(x

(i)
C )− λ(i)xA

(39)

On such P∗, the loss-minimizing causal model remains the
same. However, the loss of the associational model hOPTa,P on
such P∗ increases and can be written as:

LP∗(hOPTc,P , y) = EP∗ [|ξ|]
LP∗(hOPTa,P , y) = EP∗ [|ξ + λxA |]

⇒ γ2 = EP∗ [|λxA |]
(40)

From condition (ii) above, EP∗ [λxA ] ≥ EP[λxA ], thus γ2 ≥
γ1.

Note that we did not use any special property of the L1 Loss
above. In general, we can write the loss-minimizing function
hOPTa,P as adding some arbitrary value λ(i)xA to hOPTc,P (x

(i)
c ); and

then construct a P∗ such that the relationship Pr(Y|XA) is
reversed on P∗, and thus hOPTa,P∗ subtracts the same value.
Further, the input data distribution P∗(X) can be chosen
such that γ2 ≥ γ1. That is, for a loss L, we can choose λ
such that LP∗(hOPTa,P , y;λ) − LP∗(hOPTc,P∗ , y) ≥ LP(hOPTc,P , y) −
LP(hOPTa,P , y;λ).

Hence, there exists a P∗ such that γ2 ≥ γ1, and thus,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(41)

Worst case ODE-bound for causal model is lower. Fi-
nally, we show that the for a fixed P, the worst case
ODE-Bound also follows Eqn. 41. Looking at Eqns. 30 and
31, ODE-Bound will be highest for a P∗ such that discrep-
ancy between P and P∗ is highest andLP∗(hOPTP , y) is highest.
Below we show that discrepancy discL(P, P

∗) increases as
LP∗(hOPTP , y) increases.

LP∗(h
OPT
P , y) = LP∗(h

OPT
P , y)− LP(h

OPT
P , y) + LP(h

OPT
P , y)

≤ discL(P, P
∗) + LP(h

OPT
P , y)

⇒ discL(P, P
∗) ≥ LP∗(h

OPT
P , y)− LP(h

OPT
P , y) (42)

where LP(hOPTP , y) is fixed since P is fixed. Thus, the above
equation shows that whenever LP∗(hOPTP , y) is high, discrep-
ancy is also high. Hence, for any P∗max that maximizes
ODE-Bound, P∗max = arg maxP∗ ODE-BoundP,P∗(h, y; δ),
LP∗(hOPTP , y) is also maximized.

Now, let us consider causal and associational models, and
their respective worst case P∗max. To complete the proof,
we need to check whether γ2 ≥ γ1 for such maximal
LP∗(hOPTc,P , y) and LP∗(hOPTa,P , y). Since γ2 increases mono-
tonically with LP∗(hOPTa,P , y) ( LP∗(hOPTc,P , y) is bounded by
maxx Lx(h

OPT
c,P , y)), and there exists at least one P∗ such that

γ2 ≥ γ1, this implies that γ2 ≥ γ1 for P∗max too. Therefore,
using Equation 41,

max
P∗

ODE-BoundP,P∗(hc, y; δ) ≤ max
P∗

ODE-BoundP,P∗(ha, y; δ)

(43)
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A.2 Generalization over a Single Datapoint

Theorem 2. Consider a causal model hminc,S : XC → Y and
an associational model hmina,S : X → Y trained on a dataset
S ∼ P(X, Y) with loss L. Let (x, y) ∈ S and (x′, y′) /∈ S
be two input instances such that they share the same true
labelling function on the causal features, y ∼ P(Y|XC = x)
and y′ ∼ P(Y|XC = x′). Then, the worst-case generalization
error for a causal model on such x′ is less than or equal to
that for an associational model.

max
x∈S,x′

Lx′(h
min
c,S , y)−Lx(hminc,S , y) ≤ max

x∈S,x′
Lx′(h

min
a,S , y)−Lx(hmina,S , y)

Proof. For any model h, we can write,

max
x∈S,x′

Lx′(h, y)− Lx(h, y) = max
x′

Lx′(h, y)−min
x∈S

Lx(h, y)

(44)
since x′ and x are independently selected. To prove the
main result, we will show that the maximum loss on an
unseen x′, maxx′ Lx′(h, y) is higher for a loss-minimizing
associational model than a causal model, and that minimum
loss on a training point x ∈ S, minx∈S Lx(h, y) is lower for
the associational model than a causal model.

Loss on a training data point. First, consider loss on
x ∈ S, Lx(h, y).

hminc,S = arg min
h∈HC

LS(hc, y) = arg min
h

1

N

N∑
i=1

Lxi(h, y)

hmina,S = arg min
h∈HA

LS(ha, y) = arg min
h

1

N

N∑
i=1

Lxi(h, y)

SinceHC ⊆ HA, the average training loss will be lower for
the associational model.

LS(hminc,S , y) ≥ LS(hmina,S , y) (45)

Further, under a suitably complex HA there exists a hmina,S

such that the loss L is lower for any x ∈ S. Therefore,

min
x∈S

Lx(h
min
c,S , y) ≥ min

x∈S
Lx(h

min
a,S , y) (46)

Loss on an unseen data point. Second, consider
Lx′(h, y). Without loss of generality, let us write the true
function for some (x′, y′) ∼ P∗ as,

y′ = hOPTc,P∗(x
′
c) + ε = hOPTc,P (x′c) + +ε (47)

where we use that hOPTc,P = hOPTc,P∗ . Suppose there is a data
point (x′1, y

′
1) such that the loss L is maximum for hminc,S .

max
x′ 6∈S

Lx′(h
min
c,S , y) = Lx′1(h

min
c,S (x′1), y

′
1)

= Lx′1(h
min
c,S (x′c,1), h

OPT
c,P (x′c,1) + ε1)

(48)

Now for the associational model hmina,S , the corresponding
loss on x′1 is,

Lx′1(h
min
a,S , y) = Lx′1(h

min
a,S , h

OPT
c,P + ε1) (49)

Without loss of generality, we can write the output of the
associational model hmina,S on a particular input x′ as,

hmina,S (x′) = hminc,S (x′c) + ha(x
′) (50)

where ha is some associational function of x. Therefore the
loss on x′1 becomes,

Lx′1(h
min
a,S , y) = Lx′1(h

min
c,S + ha, h

OPT
c,P + ε1) (51)

Since Pr(Y|XA) can change for different x′ ∼ P∗ (where
XA = X \ XC refers to the associational features), we will
show that RHS of Eqn. 49 can always be greater than or
equal to the RHS of Eqn. 48. For ease of exposition, we
consider L1 loss below. For a causal model, the loss can be
written as,

Lx′1(h
min
c,S ,h

OPT
c,P + +ε)

= |hminc,S (x′c,1)− hOPTc,P (x′c,1)− ε1|
= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |ε1|

(52)

where x′1 (and thus ε1) is chosen such that ε1(hOPTc,P (x′c,1)−
hminc,S (x′c,1)) ≥ 0 which leads to maximum loss. And for the
associational model, the loss on the same (x′1, y

′
1) can be

written as,

Lx′1(h
min
a,S , h

OPT
c,P + ε1)

= |hminc,S (x′c,1) + ha(x
′
1)− hOPTc,P (x′c,1)− ε1|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1)) + (ha(x
′
1)− ε1)|

(53)

Comparing Eqns. 52 and 53, two cases arise. If ha(x′1)ε1 ≤
0, then we obtain,

Lx′1(h
min
a,S , h

OPT
c,P + ε1)

= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |(ha(x′1)− ε1)|
= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |ha(x′1)|+ |ε1|

(54)

which is greater than maximum loss on x′1 using a causal
model (Eqn. 52). Otherwise, we can sample a new data point
(x′2, y

′
2) from some other P∗ such that its causal features

are the same (x′c,1 = x′c,2) and thus y is the same (y′2 =
y′1 = hOPTc,P (x′c,1) + ε1), but its associational features are
different (x′a,1 6= x′a,2). Specifically, x′a,2 is chosen such that
ha(x

′
2)ε1 ≤ 0. Thus we again obtain,

Lx′2(h
min
a,S , h

OPT
c,P + ε1)

= |(hminc,S (x′c,2)− hOPTc,P (x′c,2)) + (ha(x
′
2)− ε1)|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1)) + (ha(x
′
2)− ε1)|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1))|+ |(ha(x′2)|+ |ε1|

(55)
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where the second equality uses x′c,2 = x′c,1. Combining
Eqns. 54 and 55 and comparing to Eqn. 52, we obtain,

max
x′

Lx′(h
min
c,S , y) ≤ max

x′
Lx′(h

min
a,S , y) (56)

Finally, using Eqns. 46 and 56 leads to the main result.

max
x′

Lx′(h
min
c,S , y)−min

x∈S
Lx(h

min
c,S , y)

≤ max
x′

Lx′(h
min
a,S , y)−min

x∈S
Lx(h

min
a,S , y)

max
x′,x∈S

Lx′(h
min
c,S , y)− Lx(h

min
c,S , y) ≤ max

x′,x∈S
Lx′(h

min
a,S , y)− Lx(h

min
a,S , y)

(57)

Using Eqns. 45 and 56 we also obtain an auxiliary result.

max
x′

Lx′(h
min
c,S , y)−LS(h

min
c,S , y) ≤ max

x′
Lx′(h

min
a,S , y)−LS(h

min
a,S , y)

(58)

B Sensitivity of Causal and Associational
Models

Before we prove Lemma 1 on sensitivity, we prove Corol-
lary 1 and restate a Lemma from (Wu et al., 2015) for com-
pleteness.
Corollary 1. Let S be a dataset of n (x, y) values, such
that y(i) ∼ P(Y|XC = x(i))∀(x(i), y(i)) ∈ S, where P(Y|XC)
is the invariant conditional distribution on the causal fea-
tures XC. Consider a neighboring dataset S′ such that
S′ = S\(x, y) + (x′, y′) where (x, y) ∈ S, (x′, y′) /∈ S,
and (x′, y′) shares the same conditional distribution y′ ∼
P(Y|XC = x′c). Then the maximum generalization error from
S to S′ for a causal model trained on S is lower than or
equal to that of an associational model.

max
S,S′
LS′(h

min
c,S , y)−LS(h

min
c,S , y) ≤ max

S,S′
LS′(h

min
a,S , y)−LS(h

min
a,S , y)

Proof. Let Sn−1 = S \ (x, y)) and similarly S′n−1 = S′ \
(x′, y′). Since S and S′ differ in only one data point, Sn−1 =
S′n−1. We will add and subtract sum of losses on data points
in Sn−1, (n− 1)LSn−1 to Theorem 2 statement.

Considering the LHS of Theorem 2,

max
x∈S,x′

Lx′(h
min
c,S , y)− Lx(h

min
c,S , y)

= max
x∈S,x′

Lx′(h
min
c,S , y) + (n− 1)LSn−1

(hminc,S , y)

− Lx(h
min
c,S , y)− (n− 1)LSn−1

(hminc,S , y)

= max
x∈S,x′

Lx′(h
min
c,S , y) + (n− 1)LS′n−1

(hminc,S , y)

− Lx(h
min
c,S , y)− (n− 1)LSn−1

(hminc,S , y)

= max
S′

nLS′(hminc,S , y)− nLS(hminc,S , y)

(59)

Similarly, the RHS of Theorem 2 can be written as,

max
x∈S,x′

Lx′(h
min
a,S , y)− Lx(h

min
a,S , y)

= max
x∈S,x′

Lx′(h
min
a,S , y) + (n− 1)LSn−1

(hmina,S , y)

− Lx(h
min
a,S , y)− (n− 1)LSn−1

(hmina,S , y)

= max
S′

nLS′(hmina,S , y)− nLS(hmina,S , y)

(60)

Using Theorem 2 and dividing Eqns. 59 and 60 by n, we
obtain,

max
S′

nLS′(hminc,S , y)− nLS(hminc,S , y)

≤ max
S′

nLS′(hmina,S , y)− nLS(hmina,S , y)

⇒max
S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S′
LS′(hmina,S , y)− LS(hmina,S , y)

(61)

Finally, since the above holds for any S ∼ P, it will also
hold for the worst-case S. The result follows.

max
S,S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

(62)

Lemma 3. [From Wu et al. (2015)] Let S and S′ be two
neighboring datasets as defined in Corollary 1 where S′ =
S \ (x, y) + (x′, y′). Given a model classH, Let hminS be the
loss-minimizing model on S and hminS′ be the loss-minimizing
model on S′. Then the difference in losses between the two
models on the same dataset is bounded by,

LS(hminS′ , y)− LS(hminS , y)

≤ Lx′(h
min
S , y)− Lx′(h

min
S′ , y)

n
+

Lx(h
min
S′ , y)− Lx(h

min
S , y)

n
(63)

Proof. The proof follows from expanding loss over a dataset
into individual terms for each data point and then using the
fact that hminS′ has the minimum loss on S′.

Using the definition of LS = 1
n

∑n
i=1 Lxi(h, y), we can

write the following for any two neighboring datasets S and
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S′.

LS(hminS′ , y)− LS(hminS , y)

= LS′(hminS′ , y) +
Lx(h

min
S , y)− Lx′(h

min
S , y)

n

− (LS′(hminS , y) +
Lx(h

min
S , y)− Lx′(h

min
S , y)

n
)

= (LS′(hminS′ , y)− LS′(hminS , y)) +
Lx(h

min
S , y)− Lx′(h

min
S , y)

n

+
Lx′(h

min
S , y)− Lx(h

min
S , y)

n
)

≤ Lx′(h
min
S , y)− Lx′(h

min
S′ , y)

n
+

Lx(h
min
S′ , y)− Lx(h

min
S , y)

n
(64)

where the last inequality is since hminS′ is the minimizer of
LS′(h, y) and thus LS′(hminS′ , y)− LS′(hminS , y) ≤ 0.

Lemma 1. Let S and S′ be two datasets defined as in Corol-
lary 1. Let a model h be specified by a set of parameters
θ ∈ Ω ⊆ Rn. Let hminS (x; θS) be a model learnt using S as
training data and hminS′ (x; θS′) be the model learnt using S′

as training data, using a loss function L that is λ-strongly
convex over Ω, ρ-Lipschitz, symmetric and obeys the trian-
gle inequality. Then, under the conditions of Theorem 1
(optimal predictor f ∈ HC) and for a sufficiently large n,
the sensitivity of a causal learning function Fc that outputs
learnt empirical model hminc,S ← Fc(S) and hminc,S′ ← Fc(S

′)
is lower than or equal to the sensitivity of an associa-
tional learning function Fa that outputs hmina,S ← Fa(S) and
hmina,S′ ← Fa(S

′),

∆Fc = max
S,S′
||hminc,S −hminc,S′ ||1 ≤ max

S,S′
||hmina,S −hmina,S′ ||1 = ∆Fa

where the maximum is over all such datasets S and S′.

Proof. Since L is a strongly convex function over Ω, we can
write for the two models hminc,S and hminc,S′ trained on S and S′

respectively (Wu et al., 2015),

LS(hminc,S , y) ≤ LS(αhminc,S + (1− α)hminc,S′ , y)

≤ αLS(hminc,S , y) + (1− α)LS(hminc,S′ , y)

− λ

2
α(1− α)||hminc,S′ − hminc,S ||2

(65)

where α ∈ (0, 1) and the first inequality is since hminc,S is the
loss-minimizing model over S. Rearranging the terms and
tending α to 1 leads to,

(1− α)(LS(hminc,S , y)− LS(hminc,S′ , y))

≤ −λ
2
α(1− α)

∥∥hminc,S′ − hminc,S

∥∥2
⇒λ

2

∥∥hminc,S′ − hminc,S

∥∥2 ≤ LS(hminc,S′ , y)− LS(hminc,S , y)

(66)

Now consider maxS,S′
∥∥hminc,S − hminc,S′

∥∥
1
. Without loss of gen-

erality, we can order the pair of datasets S, S′ such that
LS(hminc,S′ , y) ≤ LS′(hminc,S , y). Then using Eqn. 66 and taking
the maximum, we obtain,

λ

2
max
S,S′

∥∥hminc,S − hminc,S′

∥∥2
1
≤ max

S,S′
LS(hminc,S′ , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

(67)

where the last inequality is due to Theorem 2. Let S1 and
S′1 denote the datasets that lead to the maximum in the RHS
above. We know that LS1(hmina,S′1

) ≥ LS′1(h
min
a,S′1

) since hmina,S′1
is the loss-minimizing model over S′1. Therefore, we can
rewrite,

max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

= LS′1(h
min
a,S1 , y)− LS1(hmina,S1 , y)

≤ LS′1(h
min
a,S1 , y)− LS1(hmina,S1 , y) + (LS1(hmina,S′1

)− LS′1(h
min
a,S′1

))

= [LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

)] + (LS1(hmina,S′1
)− LS1(hmina,S1 , y)]

(68)

Now using Lemma 3, we obtain the following two bounds.

LS1(hmina,S′1
, y)− LS1(hmina,S1 , y)

≤
Lx′(h

min
a,S1 , y)− Lx′(h

min
a,S′1

, y)

n
+

Lx(h
min
a,S′1

, y)− Lx(h
min
a,S1 , y)

n

LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y)

≤
Lx′(h

min
a,S1 , y)− Lx′(h

min
a,S′1

, y)

n
+

Lx(h
min
a,S′1

, y)− Lx(h
min
a,S1 , y)

n
(69)

Now since the loss function L(., y) is ρ-Lipschitz, we have
Lx(h1, y) − Lx(h2, y) ≤ ρ‖h1 − h2‖1 for any data point x
and any two models h1 and h2. Plugging Eqn. 69 and the
ρ-Lipschitz property back in Eqn. 68,

LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y) ≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

LS1(hmina,S′1
, y)− LS1(hmina,S1 , y) ≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

⇒max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

≤ [LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

)] + (LS1(hmina,S′1
)− LS1(hmina,S1 , y)]

≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

+
2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

=
4

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

(70)
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Finally, combining with Eqn. 67, we obtain,

max
S,S′

∥∥hminc,S′ − hminc,S

∥∥2
1
≤ 8ρ

λn

∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

≤ 8ρ

λn
max
S,S′

∥∥hmina,S − hmina,S′

∥∥
1

≤ max
S,S′

∥∥hmina,S − hmina,S′

∥∥
1

(71)

where the last inequality holds for a sufficiently large n

such that 8ρ
λn ≤ 1. If maxS,S′

∥∥hminc,S′ − hminc,S

∥∥
1
≥ 1, the

result follows. Otherwise, we need a larger n such that
n ≥ 8ρ

λmaxS,S′
∥∥∥hmin

c,S′−h
min
c,S

∥∥∥
1

. In both cases, we obtain,

max
S,S′

∥∥hminc,S − hminc,S′

∥∥
1
≤ max

S,S′

∥∥hmina,S − hmina,S′

∥∥
1

(72)

Hence, sensitivity of a causal model is lower than an associ-
ational model, i.e., ∆Fc ≤ ∆Fa.

C Differential Privacy Guarantees with
Tighter Data-dependent Bounds

In this section we provide the differential privacy guarantee
of a causal model based on a recent method (Papernot et al.,
2017) that provides tighter data-dependent bounds.

As a consequence of Theorem 2, another generalization
property of causal learning is that classification models
trained on data from two different distributions P(X) and
P∗(X) are likely to output the same value for a new input.
Lemma 4. Under the conditions of Theorem 1 and 0-1
loss, let hminc,S be the loss-minimizing causal classification
model trained on a dataset S from distribution P and let
hminc,S∗ be the loss-minimizing model trained on a dataset S∗

from P∗. Similarly, let hmina,S and hmina,S∗ be loss-minimizing
associational classification models trained on S and S∗

respectively. Then for any new data input x,

min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
≥ min

S∼P,S∗∼P∗
Pr
(
hmina,S (x) = hmina,S∗(x)

)
As the size of the training sample |S| = |S∗| → ∞, the
LHS→ 1.

Proof. Let hmina,P = arg minh∈HA
LS(h, y) and hmina,P∗ =

arg minh∈HA
LS∗(h, y) be the loss-minimizing associa-

tional hypotheses under the two datasets S and S∗ re-
spectively, where HA is the set of hypotheses. We
can analogously define hminc,P and hminc,P∗ . Likewise, let
hOPTa,P = arg minh∈HA

LP(h, y) and similarly let hOPTa,P∗ =
arg minh∈HA

LP∗(h, y) be the loss-minimizing hypotheses
over the two distributions. We can analogously define hOPTc,P

and hOPTc,P∗ . For ease of exposition, let us consider a bi-
nary classification task where all associational models map
X→ {0, 1} and causal models map XC → {0, 1}.

Infinite sample result. As |S| = |S∗| → ∞, each of mod-
els on S and S∗ approach their loss-minimizing functions
on the distributions P and P ∗ respectively. Then, for any
input x,

lim
|S|→∞

hmina,S = hOPTa,P lim
|S∗|→∞

hmina,S∗ = hOPTa,P∗ (73)

lim
|S|→∞

hminc,S = hOPTc,P lim
|S∗|→∞

hminc,S∗ = hOPTc,P∗ (74)

From Theorem 1 (Equation 19), we know that hOPTc,P = hOPTc,P∗ .
Therefore, for any new input x for a causal model, we ob-
tain Pr

(
hOPTc,P (x) = hOPTc,P∗(x)

)
= 1, but not necessarily for

associational models. This leads to,

lim
|S|→∞

Pr
(
hminc,S (x) = hminc,S∗(x)

)
= 1 (75)

≥ lim
|S∗|→∞

Pr
(
hmina,S (x) = hmina,S∗(x)

)
(76)

Finite sample result. Under finite samples, let S1 and S∗2
be the two datasets from P and P∗ respectively that lead
to the minimum probability of agreement between the two
causal models hminc,S1 and hminc,S∗1

.

min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
= Pr

(
hminc,S1(x) = hminc,S∗1

(x)
)

(77)
Now consider the probability of agreement for the two as-
sociational models trained on the same datasets, hmina,S1 and
hmina,S∗1

. Without loss of generality, we can write the associa-
tional models as,

hmina,S1(x) = |hminc,S1(x)− ha,S1(x)|
hmina,S∗1

(x) = |hminc,S∗1
(x)− ha,S∗1 (x)|

(78)

where ha,S1 : X → {0, 1} and ha,S∗1 : X → {0, 1} are any
two functions. Effectively, when ha,S1 is 1, it flips the output
of the loss-minimizing associational model compared to the
loss-minimizing causal model on S1 (and similarly for ha,S∗1
on S∗1).

Now we can select a different S∗2 ∼ P∗2 where y and the
causal features remain the same as S∗1 but associational
features are changed for each input x ∈ S∗2 . Therefore
hminc,S∗1

= hminc,S∗2
but the loss-minimizing associational model

ha,S∗2 has the following property. ha,S∗2 6= ha,S1(x) if hminc,S∗1
=

hminc,S1 , and ha,S∗2 = ha,S1(x) if hminc,S∗1
6= hminc,S1 . Under S∗2 ,∣∣∣hmina,S1 − hmina,S∗2

∣∣∣ ≥ ∣∣∣hminc,S1 − hminc,S∗2

∣∣∣
=
∣∣∣hminc,S1 − hminc,S∗1

∣∣∣ = max
S,S∗

∣∣hminc,S − hminc,S∗

∣∣ (79)

Therefore, the disagreement between two associational mod-
els trained on two datasets is greater than or equal to the
disagreement between causal models on the worst-case S1
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and S∗1 . Since the loss is 0-1 loss, the worst-case probability
of agreement is lower.

max
S,S∗

∣∣hminc,S (x)− hminc,S∗(x)
∣∣ ≤ max

S,S∗

∣∣hmina,S (x)− hmina,S∗(x)
∣∣

⇒ min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
≥ min

S∼P,S∗∼P∗
Pr
(
hmina,S (x) = hmina,S∗(x)

)

Based on the above generalization property, we now show
that causal models provide stronger differential privacy guar-
antees than corresponding associational models. We uti-
lize the subsample and aggregate technique (Dwork et al.,
2014) that was extended for machine learning in Hamm et al.
(2016) and Papernot et al. (2017), for constructing a differ-
entiably private model. The framework considers M arbitrary
teacher models that are trained on a separate subsample of
the dataset without replacement. Then, a student model is
trained on some auxiliary unlabeled data with the (pseudo)
labels generated from a majority vote of the teachers. Dif-
ferential privacy can be achieved by either perturbing the
number of votes for each class (Papernot et al., 2017), or per-
turbing the learnt parameters of the student model (Hamm
et al., 2016). For any new input, the output of the model is a
majority vote on the predicted labels from the M models. The
privacy guarantees are better if a larger number of teacher
models agree on each input, since by definition the majority
decision could not have been changed by modifying a single
data point (or a single teacher’s vote). Since causal models
generalize to new distributions, intuitively we expect causal
models trained on separate samples to agree more. Below
we show that for a fixed amount of noise, a causal model is
εc-DP compared to ε-DP for a associational model, where
εc ≤ ε.
Theorem 4. Let D be a dataset generated from possibly a
mixture of different distributions Pr(X, Y) such that Pr(Y|XC)
remains the same. Let nj be the votes for the jth class from
M teacher models. LetM be the mechanism that produces
a noisy max, arg maxj{nj + Lap(2/γ)}. Then the privacy
budget εc for a causal model trained on D is lower than that
for an associational model with the same accuracy.

Proof. Consider a change in a single input example (x, y),
leading to a new D′ dataset. Since sub-datasets are sampled
without replacement, only a single teacher model can change
in D′. Let n′j be the vote counts for each class under D′.
Because the change in a single input can only affect one
model’s vote, |nj − n′j | ≤ 1.

Let the noise added to each class be rj ∼ Lap(2/γ). Let
the majority class (class with the highest votes) using data
from D be i and the class with the second largest votes be j.

Let us consider the minimum noise r∗ required for class i
to be the majority output underM over D. Then,

ni + r∗ > nj + rj

For i to have the maximum votes usingM over D′ too, we
need,

n′i + ri > n′j + rj

In the worst case, n′i = ni − 1 and n′j = nj + 1 for some j.
Thus, we need,

ni − 1 + ri > nj + 1 + rj ⇒ ni + ri > nj + 2 + rj

(80)

which shows that ri > r∗+2. Note that r∗ > rj−(ni−nj).
We have two cases:

CASE I: The noise rj < ni − nj , and therefore r∗ < 0.
Writing Pr(i|D′) to denote the probability that class i is
chosen as the majority class under D′,

P(i|D′) = P(ri ≥ r∗ + 2) = 1− 0.5 exp(γ) exp

(
1

2
γr∗
)

= 1− exp(γ)(1− P(ri ≥ r∗))

= 1− exp(γ)(1− P(i|D))

(81)

where the equations on the right are due to Laplace c.d.f.
Using the above equation, we can write:

P(i|D′)
P(i|D)

= exp(γ) +
1− exp(γ)

P(i|D)

= exp(γ) +
1− exp(γ)

P(ri ≥ r∗)
≤ exp(ε)

(82)

for some ε > 0. As P (i|D) = P (ri ≥ r∗) increases, the
ratio decreases and thus the effective privacy budget (ε)
decreases. Thus, a DP-mechanism based on teacher models
with lower r∗ (effectively higher |r∗|) will exhibit the lowest
ε.

Below we show that the worst-case |r∗| across any two
datasets S ∼ P, S∗ ∼ P∗ such that P(Y|XC) = P∗(Y|XC)
is higher for a causal model, and thus maxD P(ri ≥ r∗)
is higher. Intuitively, |r∗| is higher when there is more
consensus between the M teacher models since |r∗| is the
difference between the votes for the highest voted class with
the votes for the second-highest class. For two sub-datasets
D1 ⊂ D and D2 ⊂ D, let the two causal teacher models be
hc,D1 and hc,D2 , and the two associational teacher models
be ha,D1 and ha,D2 . From Lemma 4, for any new x, there is
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more consensus among causal models.

min
D1,D2

Pr(hc,D1(x) = hc,D2(x)) ≥ min
D1,D2

Pr(ha,D1(x) = ha,D2(x))

⇒ min
D

min
D1,D2

Pr(hc,D1(x) = hc,D2(x))

≥ min
D

min
D1,D2

Pr(ha,D1(x) = ha,D2(x))

Hence worst-case r∗c ≤ r∗. From Equation 82, εc ≤ ε.

CASE II: The noise rj >= ni−nj , and therefore r∗ >=
0. Following the steps above, we obtain:

P(i|D′) = P(ri ≥ r∗ + 2) = 0.5 exp(−γ) exp

(
−1
2
γr∗
)

= exp(−γ)(P(ri ≥ r∗))

= exp(−γ)(P(i|D))

(83)

Thus, the ratio does not depend on r∗.

P (i|D′)
P (i|D)

= exp(−γ) (84)

Under CASE II when the noise is higher to the differences
in votes between the highest and second highest voted class,
causal models provide the same privacy budget as associa-
tional models.

Thus, overall, εc ≤ ε.

D Maximum Advantage of a Differentially
Private algorithm

Theorem 6. Under the conditions of Theorem 1, let S ∼
P(X, Y) be a dataset sampled from P. Let F̂c,S and F̂a,S be
the differentially private mechanisms trained on S by adding
identical Laplacian noise to the causal and associational
learning functions from Lemma 1 respectively. Assume that
a membership inference adversary is provided inputs sam-
pled from either P or P∗, where P∗ is any distribution such
that P(Y|XC) = P∗(Y|XC). Then, across all adversaries A
that predict membership in S ∼ P, the worst-case member-
ship advantage of F̂c,S is not greater than that of F̂a,S.

max
A,P∗

Adv(A, F̂c,S, n, P, P
∗) ≤ max

A,P∗
Adv(A, F̂a,S, n, P, P

∗)

Proof. Consider a neighboring dataset S′ to S ∼ P such
that S′ replaces data point x ∈ S with a different point
x′. Let FS and F ′S be differentially private mechanisms
trained on S and S′ respectively. Following Theorem 1
proof from (Yeom et al., 2018), the membership advantage
of an adversary A on a differentially private algorithm F̂
can be written as:

Adv(A, F̂ , n, P, P∗) = Pr(A = 1|b = 1)− Pr(A = 1|b = 0)

= Pr(A(x, FS) = 1|x ∈ S)− Pr(A(x, FS′) = 1|x ∈ S)

(85)

where A(x, FS) denotes a membership adversary for an
algorithm FS trained on a dataset S, and A(x, FS′) denotes
an adversary attacking algorithm FS′ trained on S′. Without
loss of generality for the case where there are an infinite
number of models h, assume that models are sampled from
a discrete set of K models: {h1, h2, ..., hK}. Then using
the law of total probability over the models yielded by the
algorithms FS and FS′ ,

Adv(A, F̂ , n, P, P∗) =

K∑
j=1

Pr
(
A(x, hj) = 1

)
Pr
(
FS = hj

)
−

K∑
j=1

Pr
(
A(x, hj) = 1

)
Pr
(
FS′ = hj

)
=

K∑
j=1

Pr
(
A(x, hj) = 1

)
[Pr
(
FS = hj

)
− Pr

(
FS′ = hj

)
]

(86)

where Pr(A(x, hj)) can be interpreted as the weights in
a sum. Thus, the above is a weighted sum and will
be maximum when positive values for Pr(FS = hj) −
Pr(FS′ = hj) have the highest weight and negative val-
ues for Pr(FS = hj)− Pr(FS′ = hj) have zero weight. It
follows that to obtain the maximum advantage, the adver-
sary will choose Pr(A(x, hj) = 1) = 1 if Pr(FS = hj)−
Pr(FS′ = hj) > 0, and 0 otherwise. In other words, the
adversary predicts membership in train set for an input x
whenever probability of the given model hj being generated
from FS is higher than it being generated from FS′ .

LetH+ ⊂ H be the set of models for which Pr(FS = hj)−
Pr(FS′ = hj) > 0. Similarly, let H− = H \ H+ be
the set of models for which being generated from FS′ is
more probable: Pr(FS′ = hj) − Pr(FS = hj) ≥ 0. The
worst-case adversary selects datasets S ∼ P, S′ such that the
sum

∑
hj∈H+

Pr(FS = hj)−Pr(FS′ = hj) is the highest.
Therefore, for a given distribution P and a differentially
private algorithm FS learnt on S ∼ P , we can write the
maximum membership advantage as,

max
A,P∗

Adv(A, FS, n, P, P∗)

= maxS,S′
∑
hj∈H+

[P(FS = hj)− P(F′S = hj)]

= maxS,S′P(FS ∈ H+)− P(F′S ∈ H+)

= maxS,S′P(FS ∈ H+)− (1− P(F′S ∈ H−))

= maxS,S′2Pr(FS ∈ H+)− 1

(87)

where the last equality is since the Laplace noise is added
to FS and FS′ is from identical distributions and thus
Pr(FS ∈ H+) = Pr(FS′ ∈ H−). Equation 87 provides the
maximum membership advantage for any ε-DP mechanism
FS with Laplace noise.
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We next show that Eqn. 87 for a causal mechanism Fc
is not greater than that for an associational mechanism
Fa. Let Pr(FS) be a Laplace distribution with mean at
hS,min and Pr(FS′) be a Laplace distribution with mean
hS′,min with identical scale/noise parameter. We would
like to find the boundary model h† of the set H+ where
P (FS = hj) = P (F ′S = hj), since Pr(FS ∈ H+) is the
probability under the Laplace distribution cut off at a point
h†. Due to identical noise for FS and F ′S and the symmetry
of the Laplace distribution, the boundary h† corresponds to
the midpoint of hS,min and hS′,min: 0.5(hS,min + hS′,min).
Alternatively, the L1 distance of the boundary h† from the
means of the Laplace distributions can be written as (for a
worst S, S′),

∥∥h† − hS,min
∥∥
1

=
‖hS′,min − hS,min‖1

2
=

∆FS

2
(88)

where ∆FS is the sensitivity of FS and the last equality is
due to the choice of worst-case S and S′.

From Lemma 1, we know that sensitivity of a causal learn-
ing function is lower than that of an associational learning
model.

∆F̂c,S ≤ ∆F̂a,S (89)

Thus, L1 distance of h†c from the mean hminc,S is lower for a
causal learning function, and thus its PDF Pr(FS = hj) is
higher. Now the set H+ is a one-sided boundary on the val-
ues of h and includes the mean of the Laplace distribution.
Given symmetry of the Laplace distribution, probability of
FS lying in H+, Pr(FS ∈ H+) should be lower whenever
the PDF at the one-sided boundary is higher. Therefore,
P (FSinH+) is lower for a causal mechanism than the as-
sociational learning mechanism.

∆F̂c,S ≤ ∆F̂a,S ⇒ Pr
(
F̂c,S ∈ H+

)
≤ Pr

(
F̂a,S ∈ H+

)
(90)

Finally, using the above equation in Eqn. 87 shows that the
maximum membership advantage of a causal model is lower.

max
A,P∗

Adv(A, F̂c,S, n, P, P
∗) ≤ max

A,P∗
Adv(A, F̂a,S, n, P, P

∗)

(91)

E Infinite sample robustness to membership
inference attacks

Corollary 2. Under the conditions of Theorem 1, let hminc,S

be a causal model trained using empirical risk minimization
on a dataset S ∼ P(X, Y) with sample size n. As n → ∞,
membership advantage Adv(A, hminc,S )→ 0.

Proof. hminc,S can be obtained by empirical risk minimization.

hminc,S = arg min
h∈HC

LS∼P(h, y) = arg min
h∈HC

1

n

n∑
i=1

Lxi(h, y)

(92)
As |S| = n → ∞, hminc,S → hOPTc,P . Suppose now that there
exists another S′ of the same size such that S′ ∼ P∗. Then
as |S′| → ∞, hminc,S′ → hOPTc,P∗ .

From Theorem 1, hOPTc,P = hOPTc,P∗ . Thus,

lim
n→∞

hminc,S = lim
n→∞

hminc,S′ (93)

Equation 93 implies that as n→∞, the learnt hminc,S does not
depend on the training set, as long as the training set is sam-
pled from any distribution P∗ such that P(Y|XC) = P∗(Y|XC).
That is, being the global minimizer over distributions,
hminc,S = hOPTc,P does not depend on its training set. There-
fore, hminc,S (x) is independent of whether x is in the training
set.

lim
n→∞

Adv(A, hminc,S ) = Pr(A = 1|b = 1)− Pr(A = 1|b = 0)

= E[A|b = 1]− E[A|b = 0]

= E[A(hminc,S )|b = 1]− E[A(hminc,S )|b = 0]

= E[A(hminc,S )]− E[A(hminc,S )] = 0

(94)

where the second last equality follows since any function of
hminc,S is independent of the training dataset.

F Robustness to Attribute Inference Attacks
Theorem 7. Given a dataset S(X, Y) of size n and a struc-
tural causal model that connects X to Y, a causal model hc
makes it impossible to infer non-causal features.

Proof. The proof follows trivially from definition of a
causal model. hc includes only causal features during train-
ing. Thus, h(x) is independent of all features not in Xc.

Adv(A, h) = Pr(A = 1|xs = 1)− Pr(A = 1|xs = 0)

= Pr(A(h) = 1|xs = 1)− Pr(A(h) = 1|xs = 0)

= Pr(A(h) = 1)− Pr(A(h) = 1) = 0

G Dataset Distribution
The target model is trained using the synthetic training and
test data generated using the bnlearn library. We first divide
the total dataset into training and test dataset in a 60:40
ratio. Further, the output of the trained model for each of
the training and test dataset is again divided into 50:50 ratio.
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The training set for the attacker model consists of confidence
values of the target model for the training as well as the test
dataset. The relation is explained in Figure 5. Note that the
attacker model is trained on the confidence output of the
target models.

Figure 5: Dataset division for training target and attacker models.


