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Abstract
Standard methods in supervised learning sepa-
rate training and prediction: the model is fit in-
dependently of any test points it may encounter.
However, can knowledge of the next test point
x? be exploited to improve prediction accuracy?
We address this question in the context of linear
prediction, showing how techniques from semi-
parametric inference can be used transductively to
combat regularization bias. We first lower bound
the x? prediction error of ridge regression and the
Lasso, showing that they must incur significant
bias in certain test directions. We then provide
non-asymptotic upper bounds on the x? predic-
tion error of two transductive prediction rules. We
conclude by showing the efficacy of our methods
on both synthetic and real data, highlighting the
improvements single point transductive prediction
can provide in settings with distribution shift.

1. Introduction
We consider the task of prediction given independent data-
points ((yi,xi))

n
i=1 from a linear model,

yi = x>i β0 + εi, E[εi] = 0, εi ⊥⊥ xi (1)

in which our observed targets y = (y1, . . . , yn) ∈ Rn and
covariates X = [x1, . . . ,xn]> ∈ Rn×p are related by an
unobserved parameter vector β0 ∈ Rp and noise vector
ε = (ε1, . . . , εn) ∈ Rn.

Most approaches to linear model prediction are inductive,
divorcing the steps of training and prediction; for example,
regularized least squares methods like ridge regression (Ho-
erl & Kennard, 1970) and the Lasso (Tibshirani, 1996) are
fit independently of any knowledge of the next target test
point x?. This suggests a tantalizing transductive question:
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can knowledge of a single test point x? be leveraged to
improve prediction for x?? In the random design linear
model setting (1), we answer this question in the affirmative.

Specifically, in Section 2 we establish out-of-sample predic-
tion lower bounds for the popular ridge and Lasso estimators,
highlighting the significant dimension-dependent bias intro-
duced by regularization. In Section 3 we demonstrate how
this bias can be mitigated by presenting two classes of trans-
ductive estimators that exploit explicit knowledge of the
test point x?. We provide non-asymptotic risk bounds for
these estimators in the random design setting, proving that
they achieve dimension-free O( 1

n ) x?-prediction risk for n
sufficiently large. In Section 4, we first validate our theory
in simulation, demonstrating that transduction improves the
prediction accuracy of the Lasso with fixed regularization
even when x? is drawn from the training distribution. We
then demonstrate that under distribution shift, our transduc-
tive methods outperform even the popular cross-validated
Lasso, cross-validated ridge, and cross-validated elastic net
estimators (which attempt to find an optimal data-dependent
trade-off between bias and variance) on both synthetic data
and a suite of five real datasets.

1.1. Related Work

Our work is inspired by two approaches to semiparamet-
ric inference: the debiased Lasso approach introduced by
(Zhang & Zhang, 2014; Van de Geer et al., 2014; Javanmard
& Montanari, 2014) and the orthogonal machine learning ap-
proach of (Chernozhukov et al., 2017). The works (Zhang
& Zhang, 2014; Van de Geer et al., 2014; Javanmard &
Montanari, 2014) obtain small-width and asympotically-
valid confidence intervals (CIs) for individual model pa-
rameters (β0)j = 〈β0, ej〉 by debiasing an initial Lasso
estimator (Tibshirani, 1996). The works (Chao et al., 2014;
Cai & Guo, 2017; Athey et al., 2018) each consider a more
closely related problem of obtaining prediction confidence
intervals using a generalization of the debiased Lasso es-
timator of (Javanmard & Montanari, 2014). The work of
Chernozhukov et al. (2017) describes a general-purpose
procedure for extracting

√
n-consistent and asymptotically

normal target parameter estimates in the presence of nui-
sance parameters. Specifically, Chernozhukov et al. (2017)
construct a two-stage estimator where one initially fits first-
stage estimates of nuisance parameters using arbitrary ML
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estimators on a first-stage data sample. In the second-stage,
these first-stage estimators are used to provide estimates
of the relevant model parameters using an orthogonalized
method-of-moments. Wager et al. (2016) also uses generic
ML procedures as regression adjustments to form efficient
confidence intervals for treatment effects.

These pioneering works all focus on improved confidence
interval construction. Here we show that the semiparametric
techniques developed for hypothesis testing can be adapted
to provide practical improvements in mean-squared predic-
tion error. Our resulting mean-squared error bounds com-
plement the in-probability bounds of the aforementioned
literature by controlling prediction performance across all
events.

Our approach to prediction also bears some resemblance
to semi-supervised learning (SSL) – transferring predic-
tive power between labelled and unlabelled examples (Zhu,
2005). In contrast with SSL, the goal of transductive learn-
ing is to predict solely the labels of the observed unlabeled
features. Alquier & Hebiri (2012) formulate a transductive
version of the Lasso and Dantzig selector estimators in the
fixed design setting focused only on predicting a subset of
points. Bellec et al. (2018) also prove risk bounds for trans-
ductive and semi-supervised `1-regularized estimators in the
high-dimensional setting. A principal difference between
our approaches is that we make no distributional assump-
tions about the sequence of test points x? and do not assume
simultaneous access to a large pool of test data. Rather
our procedures receive access to only a single arbitrary test
point x?, and our aim is accurate prediction for that point.
Conventionally, SSL benefits from access to a large pool
of test points; we are unaware of other results that benefit
from access to single test point x?. Moreover, existing SSL
methods in the sparse linear regression setting do not re-
move regularization bias to achieve dimension-independent
O( 1

n ) rates but rather provide dimension-dependent bounds
(Bellec et al., 2018).

1.2. Problem Setup

Our principal aim in this work is to understand the x? pre-
diction risk,

R(x?, ŷ) = E[(y? − ŷ)2]− σ2
ε = E[(ŷ − 〈x?,β0〉)2] (2)

of an estimator ŷ of the unobserved test response y? =
x>? β0 + ε?. Here, ε? is independent of x? with variance σ2

ε .
We exclude the additive noise σ2

ε from our risk definition,
as it is irreducible for any estimator. Importantly, to accom-
modate non-stationary learning settings, we consider x? to
be fixed and arbitrary; in particular, x? need not be drawn
from the training distribution. Hereafter, we will make use
of several assumptions which are standard in the random
design linear regression literature.

Assumption 1 (Well-specified Model). The data (X,y) is
generated from the model (1).

Assumption 2 (Bounded Covariance). The covariate vec-
tors have common covariance Σ = E[xix

>
i ] with Σii ≤

1/2, σmax(Σ) ≤ Cmax and σmin(Σ) ≥ Cmin. We further
define the precision matrix Ω = Σ−1 and condition number
Ccond = Cmax/Cmin.

Assumption 3 (Sub-Gaussian Design). Each covariate vec-
tor Σ−1/2xi is sub-Gaussian with parameter κ ≥ 1, in the
sense that, E[exp

(
v>xi

)
] ≤ exp

(
κ2‖Σ1/2v‖2/2

)
.

Assumption 4 (Sub-Gaussian Noise). The noise εi is sub-
Gaussian with variance parameter σ2

ε .

Throughout, we will use bold lower-case letters (e.g., x)
to refer to vectors and bold upper-case letters to refer to
matrices (e.g., X). We use [p] for the set {1, . . . , p}. Vectors
or matrices subscripted with an index set S indicate the
subvector or submatrix supported on S. The expression
sβ0 indicates the number of non-zero elements in β0 and
supp(β0) = {j : (β0)j 6= 0}. We will use &, ., and � to
denote greater than, less than, and equal to up to a constant
that is independent of p and n.

2. Lower Bounds for Regularized Prediction
We begin by providing lower bounds on the x? prediction
risk of Lasso and ridge regression; the corresponding predic-
tions take the form ŷ = 〈x?, β̂〉 for a regularized estimate
β̂ of the unknown vector β0.

2.1. Lower Bounds for Ridge Regression Prediction

We first consider the x? prediction risk of the ridge estimator
β̂R(λ) , argminβ ‖y −Xβ‖22 + λ‖β‖22 with regulariza-
tion parameter λ > 0. In the asymptotic high-dimensional
limit (with n, p → ∞) and assuming the training distri-
bution equals the test distribution, Dobriban et al. (2018)
compute the predictive risk of the ridge estimator in a
dense random effects model. By contrast, we provide a
non-asymptotic lower bound which does not impose any
distributional assumptions on x? or on the underlying pa-
rameter vector β0. Theorem 1, proved in Appendix B.1,
isolates the error in the ridge estimator due to bias for any
choice of regularizer λ.

Theorem 1. Under Assumption 1, suppose xi
i.i.d.∼ N (0, Ip)

with independent noise ε ∼ N (0, Inσ
2
ε ). If n ≥ p ≥ 20,

E[〈x?, β̂R(λ)− β0〉2] ≥
‖β0‖22
σ2
ε
· n4
(

λ/n
λ/n+7

)2
· ‖x?‖22 ·

σ2
ε

n · cos(x?,β0)
2
.

Notably, the dimension-free term ‖x?‖22·
σ2
ε

n in this bound co-
incides with the x? risk of the ordinary least squares (OLS)
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estimator in this setting. The remaining multiplicative factor
indicates that the ridge risk can be substantially larger if
the regularization strength λ is too large. In fact, our next
result shows that, surprisingly, over-regularization can result
even when λ is tuned to minimize held-out prediction error
over the training population. The same undesirable outcome
results when λ is selected to minimize `2 estimation error;
the proof can be found in Appendix B.2.

Corollary 1. Under the conditions of Theorem 1, if x̃
d
= x1

and x̃ is independent of (X,y), then for SNR , ‖β0‖22/σ2
ε ,

λ∗ , argminλ E[〈x̃, β̂R(λ)− β0〉2] =

argminλ E[‖β̂R(λ)− β0‖22] = p
SNR
, and, for n ≥ 1

6
p

SNR
,

E[〈x?, β̂R(λ∗)− β0〉2] ≥ p2

nSNR
· ‖x?‖22 ·

σ2
ε

n ·
cos(x?,β0)

2

784 .

Several insights can be gathered from the previous re-
sults. First, the expression E[〈x̃, β̂R(λ) − β0〉2] mini-
mized in Corollary 1 is the expected prediction risk E[(ỹ −
x̃>β̂R(λ))2] − σ2

ε for a new datapoint (x̃, ỹ) drawn from
the training distribution. This is the population analog of
held-out validation error or cross-validation error that is of-
ten minimized to select λ in practice. Second, in the setting
of Corollary 1, taking SNR = 1

6
p
n yields

E[〈x?, β̂R(λ∗)− β0〉2] ≥ p · ‖x?‖22 ·
σ2
ε

n ·
3 cos(x?,β0)

2

392 .

More generally, if we take cos(x?,β0)
2

= Θ(1), SNR =

o(p
2

n ) and SNR ≥ 1
6
p
n then,

E[〈x?, β̂R(λ∗)− β0〉2] ≥ ω(‖x?‖22 ·
σ2
ε

n ).

If λ is optimized for estimation error or for prediction error
with respect to the training distribution, the ridge estimator
must incur much larger test error then the OLS estimator
in some test directions. Such behavior can be viewed as a
symptom of over-regularization – the choice λ∗ is optimized
for the training distribution and cannot be targeted to provide
uniformly good performance over all x?. In Section 3 we
show how transductive techniques can improve prediction
in this regime.

The chief difficulty in lower-bounding the x? prediction risk
in Theorem 1 lies in controlling the expectation over the
design X, which enters nonlinearly into the prediction risk.
Our proof circumvents this difficulty in two steps. First, the
isotropy and independence properties of Wishart matrices
are used to reduce the computation to that of a 1-dimensional
expectation with respect to the unordered eigenvalues of X.
Second, in the regime n ≥ p, the sharp concentration of
Gaussian random matrices in spectral norm is exploited to
essentially approximate 1

nX>X ≈ Ip.

2.2. Lower Bounds for Lasso Prediction

We next provide a strong lower bound on the out-of-
sample prediction error of the Lasso estimator β̂L(λ) ,
argminβ

1
2n‖y −Xβ‖22 + λ‖β‖1 with regularization pa-

rameter λ > 0. There has been extensive work (see, e.g.,
Raskutti et al., 2011) establishing minimax lower bounds
for the in-sample prediction error and parameter estimation
error of any procedure given data from a sparse linear model.
However, our focus is on out-of-sample prediction risk for a
specific procedure, the Lasso. The point x? need not be one
of the training points (in-sample) nor even be drawn from
the same distribution as the covariates. Theorem 2, proved
in Appendix C.1, establishes that a well-regularized Lasso
program suffers significant biases even in a simple problem
setting with i.i.d. Gaussian covariates and noise.1

Theorem 2. Under Assumption 1, fix any s ≥ 0, and let
xi

i.i.d.∼ N (0, Ip) with independent noise ε ∼ N (0, Inσ
2
ε ).

If λ ≥ (8 + 2
√

2)σε
√

log(2ep)/n and p ≥ 20, then there
exist universal constants c1, c2, c3 such that for all n ≥
c1s

2 log(2ep),

c3λ
2‖x?‖2(s) ≥ sup

β0∈B0(s)

E[〈x?, β̂L(λ)− β0〉2]

≥ sup
β0∈B0(s),‖β0‖∞≤λ

E[〈x?, β̂L(λ)− β0〉2] ≥ c2λ2‖x?‖2(s)

where the trimmed norm ‖x?‖(s) is the sum of the magni-
tudes of the s largest magnitude entries of x?.

In practice we will always be interested in a known x?
direction, but the next result clarifies the dependence of our
Lasso lower bound on sparsity for worst-case test directions
x? (see Appendix C.2 for the proof):
Corollary 2. In the setting of Theorem 2, for q ∈ [1,∞],

sup
‖x?‖q=1

sup
β0∈B0(s)

E[〈x?, β̂L(λ)− β0〉2] ≥ c2λ2s2−2/q.

We make several comments regarding these results. First,
together Theorem 2 yields an x?-specific lower bound –
showing that given any potential direction x? there will exist
an underlying s-sparse parameter β0 for which the Lasso
performs poorly. Morever, the magnitude of error suffered
by the Lasso scales both with the regularization strength
λ and the norm of x? along its top s coordinates. Second,
the constraint on the regularization parameter in Theorem
2, λ & σε

√
log p/n, is a sufficient and standard choice to

obtain consistent estimates with the Lasso (see Wainwright,
Ch. 7 for example). Third, simplifying to the case of q = 2,
we see that Corollary 2 implies the Lasso must incur worst-
case x? prediction error & σ2

εs log p
n , matching upper bounds

1A yet tighter lower bound is available if, instead of being fixed,
x? follows an arbitrary distribution, and the expectation is taken
over x? as well. See the proof for details.
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for Lasso prediction error. In particular such a bound is not
dimension-free, possessing a dependence on s log p, even
though the Lasso is only required to predict well along a
single direction.

The proof of Theorem 2 uses two key ideas. First, in this
benign setting, we can show that β̂L(λ) has support strictly
contained in the support of β0 with at least constant proba-
bility. We then adapt ideas from the study of debiased lasso
estimation in (Javanmard & Montanari, 2014) to sharply
characterize the coordinate-wise bias of the Lasso estima-
tor along the support of β0; in particular we show that a
worst-case β0 can match the signs of the s largest elements
of x? and have magnitude λ on each non-zero coordinate.
Thus the bias induced by regularization can coherently sum
across the s coordinates in the support of β0. A similar
lower bound follows by choosing β0 to match the signs of
x? on any subset of size s. This sign alignment between x?
and β0 is also explored in the independent and concurrent
work of (Bellec & Zhang, 2019, Thm. 2.2).

3. Upper Bounds for Transductive Prediction
Having established that regularization can lead to excessive
prediction bias, we now introduce two classes of estima-
tors which can mitigate this bias using knowledge of the
single test direction x?. While our presentation focuses on
the prediction risk (2), which features an expectation over
ŷ, our proofs in the appendix also provide identical high
probability upper bounds on (ŷ − 〈x?,β0〉)2.

3.1. Javanmard-Montanari (JM)-style Estimator

Our first approach to single point transductive prediction
is inspired by the debiased Lasso estimator of Javanmard
& Montanari (2014) which was to designed to construct
confidence intervals for individual model parameters (β0)j .
For prediction in the x? direction, we will consider the
following generalization of the Javanmard-Montanari (JM)
debiasing construction2:

ŷJM = 〈x?, β̂〉+ 1
nw>X>(y −Xβ̂) for (3)

w = argminw̃ w̃>Σnw̃ s.t. ‖Σnw̃ − x?‖∞ ≤ λw. (4)

Here, β̂ is any (ideally `1-consistent) initial pilot estimate
of β0, like the estimate β̂L(λ) returned by the Lasso. When
x? = ej the estimator (3) reduces exactly to the program
in (Javanmard & Montanari, 2014), and equivalent general-
izations have been used in (Chao et al., 2014; Athey et al.,
2018; Cai & Guo, 2017) to construct prediction intervals
and to estimate treatment effects. Intuitively, w approxi-
mately inverts the population covariance matrix along the
direction defined by x? (i.e., w ≈ Ωx?). The second term

2In the event the constraints are not feasible we define w = 0.

in (3) can be thought of as a high-dimensional one-step cor-
rection designed to remove bias from the initial prediction
〈x?, β̂〉; see (Javanmard & Montanari, 2014) for more in-
tuition on this construction. We can now state our primary
guarantee for the JM-style estimator (3); the proof is given
in Appendix D.1.

Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold and
that the transductive estimator ŷJM of (3) is fit with regular-

ization parameter λw = 8a
√
Ccondκ

2‖x?‖2
√

log(p∨n)
n for

some a > 0. Then there is a universal constant c1 such that
if n ≥ c1a2 log(2e(p ∨ n)),

E[(ŷJM − 〈β0,x?〉)2] ≤ (5)

O
(
σ2
εx?Ωx?
n + r2β,1(λ2w + ‖x?‖2∞ 1

(n∨p)c3 )
)
.

for c3 = a2

4 − 1
2 and rβ,1 = (E[‖β̂−β0‖41])1/4, the `1 error

of the initial estimate. Moreover, if λw ≥ ‖x?‖∞, then
E[(ŷJM − 〈β0,x?〉)2] = E[〈x?, β̂ − β̂0〉2]. Here the O(·)
masks constants depending only on κ,Cmin, Cmax, Ccond.

Intuitively, the first term in our bound (5) can be viewed as
the variance of the estimator’s prediction along the direc-
tion of x? while the second term can be thought of as the
(reduced) bias of the estimator. We consider the third term
to be of higher order since a (and in turn c3) can be chosen
as a large constant. Finally, when λw ≥ ‖x?‖∞ the error
of the transductive procedure reduces to that of the pilot
regression procedure. When the Lasso is used as the pilot
regression procedure we can derive the following corollary
to Theorem 3, also proved in Appendix D.2.

Corollary 3. Recall sβ0
= ‖β0‖0. Under the con-

ditions of Theorem 3, consider the JM-style estima-
tor (3) with pilot estimate β̂ = β̂L(λ) with λ ≥
80σε

√
log(2ep/sβ0)

n . If p ≥ 20, then there exist univer-
sal constants c1, c2 such that if ‖β0‖∞/σε = o(ec1n) and

n ≥ c2 max{ sβ0
κ4

Cmin
, a2} log(2e(p ∨ n)),

E[(ŷJM − 〈β0,x?〉)2] ≤ O
(
σ2
εx?Ωx?
n

+ λ2s2β0
(λ2w + ‖x?‖2∞ 1

(n∨p)c3 )
)

Here the O(·) masks constants depending only on
κ,Cmin, Cmax, Ccond.

We make several remarks to further interpret this result.
First, to simplify the presentation of the results (and match
the lower bound setting of Theorem 2) consider the set-
ting in Corollary 3 with a � 1, λ � σε

√
log p/n, and

n & s2β0
log p log(p ∨ n). Then the upper bound in Theo-

rem 3 can be succinctly stated as O(
σ2
ε‖x?‖

2
2

n ). In short, the
transductive estimator attains a dimension-free rate for suffi-
ciently large n. Under the same conditions the Lasso estima-
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tor suffers a prediction error of Ω(‖x?‖2(s)
σ2
ε log p
n ) as The-

orem 2 and Corollary 2 establish. Thus transduction guar-
antees improvement over the Lasso lower bound whenever
x? satisfies the soft sparsity condition ‖x?‖2

‖x?‖(s)
.
√

log p.
Since x? is observable, one can selectively deploy transduc-
tion based on the soft sparsity level ‖x?‖2‖x?‖(s)

or on bounds
thereof. Second, the estimator described in (4) and (3)
is transductive in that it is tailored to an individual test-
point x?. The corresponding guarantees in Theorem 3 and
Corollary 3 embody a computational-statistical tradeoff. In
our setting, the detrimental effects of regularization can be
mitigated at the cost of extra computation: the convex pro-
gram in (4) must be solved for each new x?. Third, the
condition ‖β0‖∞/σε = o(ec1n) is not used for our high-
probability error bound and is only used to control predic-
tion risk (2) on the low-probability event that the (random)
design matrix X does not satisfy a restricted eigenvalue-like
condition. For comparison, note that our Theorem 2 lower
bound establishes substantial excess Lasso bias even when
‖β0‖∞ = λ = o(1).

Finally, we highlight that Cai & Guo (2017) have shown that
the JM-style estimator with a scaled lasso base procedure

and λw �
√

log p
n produce CIs for x>? β0 with minimax rate

optimal length when x? is sparsely loaded. Although our
primary focus is in improving the mean-square prediction
risk (2), we conclude this section by showing that a different
setting of λw yields minimax rate optimal CIs for dense x?
and simultaneously minimax rate optimal CIs for sparse and
dense x? when β0 is sufficiently sparse.
Proposition 4. Under the conditions of Theorem 3 with
σε = 1, consider the JM-style estimator (3) with pilot

estimate β̂ = β̂L(λ) and λ = 80
√

log(2p)
n . Fix any

C1, C2, C3 > 0, and instate the assumptions of Cai & Guo
(2017), namely that the vector x? satisfies maxj |(x?)j |

minj |(x?)j | ≤ C1

and sβ0 � pγ for 0 ≤ γ < 1
2 . Then for n & sβ0 log p the

estimator ŷJM (3) with λw = 8
√
Ccondκ

2 1
sβ0

√
log p
‖x?‖2

yields (minimax rate optimal) 1−α confidence intervals for
x>? β0 of expected length

• O(‖x?‖∞ · sβ0

√
log p
n ) in the dense x? regime where

‖x?‖0 = C3p
γq with 2γ < γq < 1 (matching the result

of (Cai & Guo, 2017, Thm. 4)).
• O(‖x?‖2 · 1√

n
) in the sparse x? regime of (Cai & Guo,

2017, Thm. 1) where ‖x?‖0 ≤ C2sβ0
if n & s2β0

(log p)2.
Here the O(·) masks constants depending only on
κ,C1, C2, C3, Cmin, Cmax, Ccond.

3.2. Orthogonal Moment (OM) Estimators

Our second approach to single point transductive prediction
is inspired by orthogonal moment (OM) estimation (Cher-
nozhukov et al., 2017). OM estimators are commonly used

to estimate single parameters of interest (like a treatment ef-
fect) in the presence of high-dimensional or nonparametric
nuisance. To connect our problem to this semiparametric
world, we first frame the task of prediction in the x? direc-
tion as one of estimating a single parameter, θ0 = x>? β0.
Consider the linear model equation (1)

yi = x>i β0 + εi = ((U−1)>xi)
>Uβ0 + εi

with a data reparametrization defined by the matrix U =

‖x?‖2·
[
u1

R

]
for x?
‖x?‖2 = u1 so that e>1 Uβ0 = x>? β0 = θ0.

Here, the matrix R ∈ R(p−1)×p has orthonormal rows
which span the subspace orthogonal to u1 – these are
obtained as the non-u1 eigenvectors of the projector ma-
trix Ip − u1u

>
1 . This induces the data reparametrization

x′ = [t, z] = (U−1)>x. In the reparametrized basis, the
linear model becomes,

yi = θ0ti + z>i f0 + εi, ti = g0(zi) + ηi,

q0(zi) , θ0g0(zi) + z>i f0 (6)

where we have introduced convenient auxiliary equations in
terms of g0(zi) , E[ti | zi].
To estimate θ0 = x>? β0 in the presence of the unknown
nuisance parameters f0,g0,q0, we introduce a thresholded-
variant of the two-stage method of moments estimator pro-
posed in (Chernozhukov et al., 2017). The method of mo-
ments takes as input a moment function m of both data and
parameters that uniquely identifies the target parameter of
interest. Our reparameterized model form (6) gives us ac-
cess to two different Neyman orthogonal moment functions
described (Chernozhukov et al., 2017):

f moments: m(ti, yi, θ, z
>
i f ,g(zi)) =

(yi − tiθ − z>i f)(ti − g(zi)) (7)
q moments: m(ti, yi, θ,q(zi),g(zi)) =

(yi − q(zi)− θ(ti − g(zi)))(ti − g(zi)).

These orthogonal moment equations enable the accurate
estimation of a target parameter θ0 in the presence of high-
dimensional or nonparametric nuisance parameters (in this
case f0 and g0). We focus our theoretical analysis and
present description on the set of f moments since the analy-
sis is similar for the q, although we investigate the practical
utility of both in Section 4.

Our OM proposal to estimate θ0 now proceeds as fol-
lows. We first split our original dataset of n points into
two3 disjoint, equal-sized folds (X(1),y(1)) = {(xi, yi) :
i ∈ {1, . . . , n2 }} and (X(2),y(2)) = {(xi, yi) : i ∈
{n2 + 1, . . . , n}}. Then,

3In practice, we useK-fold cross-fitting to increase the sample-
efficiency of the scheme as in (Chernozhukov et al., 2017); for
simplicity of presentation, we defer the description of this slight
modification to Appendix G.4.



Single Point Transductive Prediction

• The first fold (X(1),y(1)) is used to run two first-stage
regressions. We estimate β0 by linearly regressing y(1)

onto X(1) to produce β̂; this provides an estimator
of f0 as e>−1Uβ̂ = f̂ . Second we estimate g0 by re-
gressing t(1) onto z(1) to produce a regression model
ĝ(·) : Rp−1 → R. Any arbitrary linear or non-linear
regression procedure can be used to fit ĝ(·).

• Then, we estimate E[η21 ] as µ2 = 1
n/2

∑n
i=n

2 +1 ti(ti −
ĝ(zi)) where the sum is taken over the second fold of
data in (X(2),y(2)); crucially (ti, zi) are independent
of ĝ(·) in this expression.

• If µ2 ≤ τ for a threshold τ we simply output ŷOM =
x>? β̂. If µ2 ≥ τ we estimate θ0 by solving the empirical
moment equation:∑n

i=n
2 +1m(ti, yi, ŷOM, z

>
i f̂ , ĝ(zi)) = 0 =⇒

ŷOM =
1
n/2

∑n
i=n

2
+1(yi−z>i f̂)(ti−ĝ(zi))

µ2
(8)

where the sum is taken over the second fold of data in
(X(2),y(2)) and m is defined in (7).

If we had oracle access to the underlying f0 and
g0, solving the population moment condition
Et1,y1,z1 [m(t1, y1, θ, z

>
1 f0,g0(z1))] = 0 for θ would

exactly yield θ0 = x>? β0. In practice, we first con-
struct estimates f̂ and ĝ of the unknown nuisance
parameters to serve as surrogates for f0 and g0 and
then solve an empirical version of the aforementioned
moment condition to extract ŷOM. A key property of
the moments in (7) is their Neyman orthogonality: they
satisfy E[∇z>1 fm(t1, y1, θ0, z

>
1 f0,g0(z1))] = 0 and

E[∇g(z1)[m(t1, y1, θ0, z
>
1 f0,g0(z1))] = 0. Thus the

solution of the empirical moment equations is first-order
insensitive to errors arising from using f̂ , ĝ in place of f0
and g0. Data splitting is further used to create independence
across the two stages of the procedure. In the context of
testing linearly-constrained hypotheses of the parameter
β0, Zhu & Bradic (2018) propose a two-stage OM test
statistic based on the transformed f moments introduced
above; they do not use cross-fitting and specifically employ
adaptive Dantzig-like selectors to estimate f0 and g0.
Finally, the thresholding step allows us to control the
variance increase that might arise from µ2 being too small
and thereby enables our non-asymptotic prediction risk
bounds. Before presenting the analysis of the OM estimator
(8) we introduce another condition4:

Assumption 5. The noise ηi is independent of zi.

4This assumption is not essential to our result and could be
replaced by assuming ηi satisfies E[ηi|zi] = 0 and is almost surely
(w.r.t. to zi) sub-Gaussian with a uniformly (w.r.t. to zi) bounded
variance parameter.

Recall ĝ is evaluated on the (independent) second fold data
z. We now obtain our central guarantee for the OM estimator
(proved in Appendix E.1).

Theorem 5. Let Assumptions 1, 2, 3, 4 and 5 hold, and as-
sume that g0(zi) = g>0 zi in (6) for g0 = argming E[(t1 −
z>1 g)2]. Then the thresholded orthogonal ML estimator ŷOM

of (8) with τ = 1
4σ

2
η satisfies

E[(ŷOM − x>? β0)2] ≤

‖x?‖22
[
O(

σ2
ε

σ2
ηn

) +O(
r2β,2r

2
g,2

(σ2
η)

2 ) +O(
r2β,2σ

2
η+r

2
g,2σ

2
ε

(σ2
η)

2n )
]

(9)

where rβ,2 = (E[‖β̂ − β0‖42])1/4 and rg,2 = (E[(ĝ(zn)−
g0(zn))4])1/4 denote the expected prediction errors of the
first-stage estimators, and the O(·) masks constants depend-
ing only on Cmin, Cmax, Ccond, κ.

Since we are interested in the case where β̂ and ĝ(·) have
small error (i.e., rβ,2 = rg,2 = o(1)), the first term in
(9) can be interpreted as the variance of the estimator’s
prediction along the direction of x?, while the remaining
terms represent the reduced bias of the estimator. We first
instantiate this result in the setting where both β0 and g0

are estimated using ridge regression (see Appendix E.2 for
the corresponding proof).

Corollary 4 (OM Ridge). Assume ‖β0‖∞/σε = O(1). In
the setting of Theorem 5, suppose β̂ and ĝ(zi) = ĝ>zi
are fit with the ridge estimator with regularization pa-
rameters λβ and λg respectively. Then there exist uni-
versal constants c1, c2, c3, c4, c5 such that if p ≥ 20,
c1
n2Cmin

pCcond
e−nc2/κ

4C2
cond ≤ λβ ≤ c3 (CcondCmaxn)

1/3, and

c4
n2Cmin

pCcond
e−nc2/κ

4C2
cond ≤ λg ≤ p

(
Cmax‖x?‖22

Ccond

n
pσ

4
η

)1/3
for

n ≥ c5κ4C2
condp,

E[(ŷOM − x>? β0)2]

≤ ‖x?‖22
[
O(

σ2
ε

σ2
ηn

) +O( p2

(σ2
η)

2n2 ) +O(
p(σ2

η+σ
2
ε )

(σ2
η)

2n2 )
]

where the O(·) masks constants depending only on
Cmin, Cmax, Ccond, κ.

Similarly, when β0 and g0 are estimated using the Lasso
we conclude the following (proved in Appendix E.2).

Corollary 5 (OM Lasso). In the setting of Theorem 5, sup-
pose β̂ and ĝ(zi) = ĝ>zi are fit with the Lasso with
regularization parameters λβ ≥ 80σε

√
log(2ep/sβ0

)/n

and λg ≥ 80ση
√

log(2ep/sg)/n respectively. If p ≥ 20,
sβ0 = ‖β0‖0, and sg0 = ‖g0‖0, then there exist universal
constants c1, c2 such that if ‖β0‖∞/σε = o(ec1n), then for
n ≥ c1κ

4

Cmin
max{sβ0

, sg} log(2ep),

E[(ŷOM − x>? β0)2] ≤

‖x?‖22
[
O(

σ2
ε

σ2
ηn

) +O(
λ2
βλ

2
gsβ0

sg0

(σ2
η)

2 ) +O(
λ2
βsβ0

σ2
η+λ

2
gsg0σ

2
ε

(σ2
η)

2n )
]
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where the O(·) masks constants depending only on
Cmin, Cmax, Ccond, κ.

We make several comments regarding the aforementioned
results. First, Theorem 5 possesses a double-robustness
property. In order for the dominant bias termO(r2β,2r

2
g,2) to

be small, it is sufficient for either β0 or g0 to be estimated at
a fast rate or both to be estimated at a slow rate. As before,
the estimator is transductive and adapted to predicting along
the direction x?. Second, in the case of ridge regression, to
match the lower bound of Corollary 1, consider the setting
where n = Ω(p2), SNR = o(p

2

n ), cos(x?,β0)
2

= Θ(1) and
SNR & p

n . Then, the upper bound5 can be simplified to

O(‖x?‖22
σ2
ε

n ). By contrast, Corollary 1 shows the error of
the optimally-tuned ridge estimator is lower bounded by
ω(‖x?‖22

σ2
ε

n ); for example, the error is Ω(p‖x?‖22
σ2
ε

n ) when
SNR = 1

6
p
n . Hence, the performance of the ridge estimator

can be significantly worse then its transductive counter-
part. Third, if we consider the setting of Corollary 5 where
n & sβ0

sg0
(log p)2 while we take λβ � σε

√
log p/n and

λg � ση
√

log p/n, the error of the OML estimator attains

the fast, dimension-free O(‖x?‖22
σ2
ε

n ) rate. On the other
hand, Corollary 2 shows the Lasso suffers prediction error
Ω(‖x?‖2(s)

σ2
ε log p
n ), and hence again strict improvement is

possible over the baseline when ‖x?‖2
‖x?‖(s)

.
√

log p. Finally,
although Theorem 5 makes stronger assumptions on the
design of X than the JM-style estimator introduced in (4)
and (3), one of the primary benefits of the OM framework
is its flexibility. All that is required for the algorithm are
“black-box” estimates of g0 and β0 which can be obtained
from more general ML procedures than the Lasso.

4. Experiments
We complement our theoretical analysis with a series of
numerical experiments highlighting the failure modes of
standard inductive prediction. In Sections 4.1 and 4.2,
error bars represent ±1 standard error of the mean com-
puted over 20 independent problem instances. We refer the
reader to Appendix G for further details on the experimen-
tal set-up in each section. Python code to reproduce our
experiments can be found at https://github.com/
nileshtrip/SPTransducPred.

4.1. Excess Lasso Bias without Distribution Shift

We construct problem instances for Lasso estimation by in-
dependently generating xi ∼ N (0, Ip), εi ∼ N (0, 1), and
(β0)j ∼ N (0, 1) for j less then the desired sparsity level
sβ0 while (β0)j = 0 otherwise. We fit the Lasso estimator,

5Note that in this regime,
√

SNR = ‖β0‖2/σε = o(1) and
hence the condition ‖β0‖∞/σε = O(1) in Corollary 4 is satisfied.

JM-style estimator with Lasso pilot, and the OM f -moment
estimator with Lasso first-stage estimators. We set all hy-
perparameters to their theoretically-motivated values. As
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Figure 1. Lasso vs. transductive Lasso prediction without distribu-
tion shift. Hyperparameters are set according to theory (see Sec-
tion 4.1). Left: p = 200, sβ0 = 20. Right: p = 200, sβ0 = 100.

Figure 1 demonstrates, both transductive methods signif-
icantly reduce the prediction risk of the Lasso estimator
when the hyperparameters are calibrated to their theoretical
values, even for a dense β0 (where p

sβ0
= 2).

4.2. Benefits of Transduction under Distribution Shift
The no distribution shift simulations of Section 4.1 corrobo-
rate the theoretical results of Corollaries 3 and 5. However,
since our transductive estimators are tailored to each indi-
vidual test point x?, we expect these methods to provide an
even greater gain when the test distribution deviates from
the training distribution.

In Figure 2, we consider two cases where the test distri-
bution is either mean-shifted or covariance-shifted from
the training distribution and evaluate the ridge estimator
with the optimal regularization parameter for the training
distribution, λ∗ =

pσ2
ε

‖β0‖22
. We independently generated

xi ∼ N (0, Ip), εi ∼ N (0, 1), and β0 ∼ N (0, 1√
pIp). In

the case with a mean-shifted test distribution, we generated
x? ∼ N (10β0, Ip) for each problem instance while the
covariance-shifted test distribution was generated by taking
x? ∼ N (0, 100β0β

>
0 ). The first and second plots in Fig-

ure 2 show the OM estimator with λ∗-ridge pilot provides
significant gains over the baseline λ∗-ridge estimator.
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Figure 2. Ridge vs. transductive ridge prediction (p = 200) under
train-test distribution shift. Hyperparameters are set according to
theory (1st and 2nd plots) or via CV (3rd and 4th plots).

In Figure 3 we also consider two cases where the test distri-
bution is shifted for Lasso estimation but otherwise identical
to the previous set-up in Section 4.1. For covariance shifting,
we generated (x?)i

indep∼ N (0, 100) for i ∈ supp(β0) and
(x?)i = 0 otherwise for each problem instance. For mean

https://github.com/nileshtrip/SPTransducPred
https://github.com/nileshtrip/SPTransducPred
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Table 1. Test set RMSE of OLS, CV-tuned ridge, Lasso, and elastic net, and transductive CV-tuned ridge, Lasso, and elastic net on five
real-world datasets. All hyperparameters are set via CV. Error bars represent ±1 standard error of the mean computed over the test set.

Method Wine Parkinson Fire Fertility Triazines (no shift)

OLS 1.0118±0.0156 12.7916±0.1486 82.7147±35.5141 0.3988±0.0657 0.1716±0.037

Ridge 0.9936±0.0155 12.5267±0.1448 82.3462±35.5955 0.399±0.0665 0.1469±0.0285
OM f (Ridge) 0.9883±0.0154 12.4686±0.1439 82.3522±35.5519 0.3987±0.0655 0.1446±0.029
OM q (Ridge) 0.7696±0.0145 12.0891±0.1366 81.9794±35.7872 0.3977±0.0653 0.1507±0.0242

Lasso 0.9812±0.0155 12.2535±0.1356 82.0656±36.0321 0.4092±0.0716 0.1482±0.0237
JM (Lasso) 1.0118±0.0156 12.7916±0.1486 82.7147±35.5141 0.3988±0.0657 0.173±0.0367
OM f (Lasso) 0.9473±0.0152 11.869±0.1339 81.794±35.5699 0.398±0.0665 0.1444±0.0239
OM q (Lasso) 0.7691±0.0144 11.8692±0.1339 81.811±35.5637 0.3976±0.0656 0.1479±0.0226

Elastic 0.9652±0.0154 12.2535±0.1356 81.8428±35.8333 .0492±0.0716 0.1495±0.0238
OM f (Elastic) 0.9507±0.0152 11.8369±0.1338 81.7719±35.6166 0.398±0.0655 0.1445±0.024
OM q (Elastic) 0.7693±0.0145 11.8658±0.1341 81.803±35.6485 0.3976±0.0657 0.147±0.0228
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Figure 3. Lasso vs. transductive Lasso prediction (p = 200) under
mean (sβ0 = 100) or covariance (sβ0 = 20) train-test distribution
shifts. Hyperparameters are set according to theory (1st and 2nd
plots) or via CV (3rd and 4th plots).

shifting, we generated x? ∼ N (10β0, Ip) for each problem
instance. The first and second plots in Figure 3 show the
transductive effect of the OM and JM estimators improves
prediction risk with respect to the Lasso when the regular-
ization hyperparameters are selected via theory. We also
note that comparing CV-tuned ridge or Lasso to OM and
JM with CV-tuned base procedures, shows the the benefit
of transduction in this practical setting where regularization
hyperparameters are chosen by CV.

As the third and fourth in Figure 2 show, selecting λ via CV
leads to over-regularization of the ridge estimator, and the
transductive methods provide substantial gains over the base
ridge estimator. In the case of the Lasso, the third and fourth
plots in Figure 3 show the residual bias of the CV Lasso
also causes it to incur significant error in its test predictions,
while the transductive methods provide substantial gains by
adapting to each x?.

4.3. Improving Cross-validated Prediction

Motivated by our findings on synthetic data, we conclude by
reporting the performance of our methods on real data with
and without distribution shift. We also include the popular
elastic net estimator as a base regression procedure along-
side the ridge and Lasso estimators. All hyperparameters
are selected by CV.

For the OM estimators we exploited the flexibility of the
framework by including a suite of methods for the aux-

iliary g regressions: Lasso estimation, random forest re-
gression, and a g = 0 baseline. Amongst these, we select
the method with the least estimated asymptotic variance,
which can be done in a data-dependent way without intro-
ducing any extra hyperparameters into the implementation;
see Appendix G for further details on the methodology and
regression datasets from the UCI dataset repository (Dua &
Graff, 2017).

The f and q regressions were always fit with Lasso, ridge, or
elastic net estimation. In Table 1 we can see the orthogonal
moment estimators generically provide gains over the CV
Lasso, CV ridge regression, and CV elastic net on datasets
with intrinsic distribution shift and perform comparably on a
dataset without explicit distribution shift. On Wine, we see a
substantial performance gain from 0.96-0.99 RMSE without
transduction to 0.77 with OM q transduction. The gains
on other datasets are smaller but notable as they represent
consistent improvements over the de facto standard of CV
prediction.

We also report the performance of ordinary least squares
(OLS) which produces an unbiased estimate of the entire
parameter vector β0. OLS fares worse than most methods
on each dataset due to a increase in variance. In contrast, our
proposed transductive procedures limit the variance intro-
duced by targeting a single parameter of interest, 〈x?,β0〉.

5. Discussion and Future Work
We have highlighted the detrimental effects of bias in linear
prediction and presented two transductive estimators that
amelioriate this bias. We provided theoretical guarantees
for these estimators and demonstrated their practical utility–
especially under distribution shift–on both synthetic/real
data. Promising directions for future work include improv-
ing the quality of our OM debiasing techniques using higher-
order orthogonal moments (Mackey et al., 2017) and explor-
ing the utility of these debiasing techniques for other regular-
izers (e.g., group Lasso (Yuan & Lin, 2006) penalties) and



Single Point Transductive Prediction

alternative models such as generalized linear models/kernel
machines.
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A. Notation
We first establish several useful pieces of notation used throughout the Appendices. We will say that a mean-zero random
variable x is sub-gaussian, x ∼ sG(κ), if E[exp(λx))] ≤ exp

(
κ2λ2

2

)
for all λ. We will say that a mean-zero random

variable x is sub-exponential, x ∼ sE(ν, α), if E[exp(λx)] ≤ exp
(
ν2λ2

2

)
for all |λ| ≤ 1

α . We will say that a mean-zero

random vector is sub-gaussian, x ∼ sG(κ), if ∀v ∈ Rp, E[exp
(
v>x

)
] ≤ exp

(
κ2‖v‖22

2

)
. Moreover a standard Chernoff

argument shows if x ∼ sE(ν, α) then Pr[|x| ≥ t] ≤ 2 exp
(
− 1

2 min( t
2

ν2 ,
t
α )
)

.

B. Proofs for Section 2.1: Lower Bounds for Prediction with Ridge Regression
Here we provide lower bounds on the prediction risk of the ridge regression estimator. To do so, we show that under
Gaussian design and independent Gaussian noise ε the ridge regression estimator can perform poorly.

Recall we define the ridge estimator as β̂R(λ) = arg minβ
1
2

(
‖y −Xβ‖22 + λ‖β‖22

)
which implies β̂R(λ) = (X>X +

λIp)
−1X>y. For convenience we further define Σ̂ = X>X

n , Σ̂λ = X>X
n + λ

nIp and Πλ = Ip− (Σ̂λ)−1Σ̂. Note that under
Assumption 1, β̂R(λ)− β0 = −Πλβ0 + Σ̂−1λ X>ε/n, which can be thought of as a standard bias-variance decomposition
for the ridge estimator. We begin by stating a standard fact about Wishart matrices we will repeatedly use throughout this
section.

Proposition 6. Let xi
i.i.d.∼ N (0, Ip) for i ∈ [n]. Then the eigendecomposition of the sample covariance Σ̂n =

1
n

∑n
i=1 xix

>
i = V>DV satisfies the following properties:

• The orthonormal matrix V is uniformly distributed (with respect to the Haar measure) over the orthogonal group
O(p).

• The matrices V and D are independent. Moreover, by isotropy, D is equivalent in distribution to the random matrix
zIp where z is an unordered eigenvalue of Σ̂n.

Proof. Statements and proofs of these standard facts about Wishart matrices can be found in Bishop et al. (2018).

B.1. Theorem 1

We now provide the proof of our primary lower bound on the prediction risk of the ridge estimator,

Proof of Theorem 1. The first statement follows by using Lemma 1 and taking the expectation over X,

E[〈x?, β̂R(λ)− β0〉2] = E[(x>? Πλβ0)2] +
σ2
ε

n x>? E[(Σ̂λ)−1Σ̂(Σ̂λ)−1]x? = E[(x>? Πλβ0)2] + σ2
ε
‖x?‖22
n E[ z

(z+λ/n)2 ]

The computation of the variance term uses the eigendecomposition of Σ and Proposition 6,

E[(Σ̂λ)−1Σ̂(Σ̂λ)−1] = E[V>E[(D + λ/nIp)
−2D]V] = E[

z

(z + λ/n)2
]Ip.

We now lower bound the bias. Again by Proposition 6 and the eigendecomposition of Σ̂n, E[Πλ] = E[ λ/n
z+λ/n ]Ip. Using

Jensen’s inequality,

E[(β>0 Πλx?)
2] ≥ (β>0 E[Πλ]x?)

2 = ‖x?‖22‖β0‖22 cos(x?,β0)
2E[(

λ/n

z + λ/n
)]2.

The final expectation over the unordered eigenvalue distribution can be controlled using the sharp concentration of
Gaussian random matrices. Namely for n ≥ p,

∥∥∥Σ̂n −Σ
∥∥∥
2
≤ 2ε + ε2 for ε =

√
p
n + δ with probability at least

1 − 2ε−nδ
2/2 (Wainwright, Theorem 6.1, Example 6.2). Taking δ = 1/2

√
p/n and assuming that p ≥ 20 we conclude

that
∥∥∥Σ̂−Σ

∥∥∥
2
≤ 6

√
p
n with probability at least 1

2 – let E denote this event. Note that by the Weyl inequalities, on the
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event E , all of the eigenvalues of Σ̂ are uniformly close to the eigenvalues of Σ. Hence if n ≥ p, on E we must have that
Σ̂n � 7Ip, and hence the unordered eigenvalue z ≤ 7 as well. Thus it follows that (E[ 1

λ/n+z ])2 ≥ (E[ 1
λ/n+z I[E ]])2 ≥

(E[ 1
λ/n+7I[E ]])2 ≥ 1

4
1

(λ/n+7)2 . Combining the expressions yields the conclusion.

B.2. Corollary 1

We now prove Corollary 1.

Proof of Corollary 1. The expression for λ∗ = arg minλ E[‖β̂R(λ) − β0‖22] can be computed using Lemma 2. Since,
arg minλ E[‖ỹ − x̃>β̂R(λ)‖22 = E[‖β̂R(λ)− β0‖22] + σ2

ε , equality of the minimizers follows for both expressions.

Define SNR =
‖β0‖22
σ2
ε

and a =
√

4C
SNR

. If, in addition, n ≥ a2 and λ ≥ 7an√
n−a , we claim,

E[〈x?, β̂R(λ)− β0〉2] ≥ C cos(x?,β0)
2 · ‖x?‖22 ·

σ2
ε

n .

This lower bound follows by simply rearranging the lower bound from Theorem 1 – some algebraic manipulation give the
conditions that λ/n

λ/n+7 ≥ a√
n

=⇒ λ ≥ a√
n

(λ+ 7n) =⇒ λ(1− a√
n

) ≥ 7a
√
n =⇒ λ ≥ 7a

√
n

1− a√
n

=⇒ λ ≥ 7an√
n−a .

After defining λ∗ = p/SNR = b the previous inequality over λ∗ to achieve the desired conclusion can be rearranged to
b(
√
n − a) ≥ 7an =⇒ n − b

7a

√
n + b

7 =⇒ n − b
7a

√
n + b

7 ≤ 0. The corresponding quadratic equation in
√
n

has roots r+ = 1
14

(
b
a +

√
b2−28a2b

a

)
, r− = 1

14

(
b
a −

√
b2−28a2b

a

)
. In order to ensure both roots are real we must have

b ≥ 28a2 =⇒ p ≥ 120C. The condition that r− ≤
√
n ≤ r+ can be equivalently expressed as,∣∣∣∣√n− 1

14

b

a

∣∣∣∣ ≤ √b2 − 28a2b

a
⇐⇒∣∣∣∣√n− 1

14

p√
4CSNR

∣∣∣∣ ≤
√

p2

4CSNR
− 28

p

SNR
.

Defining C such that
√
n− 1

14
p√

4CSNR
= 0 =⇒ C = p2

784nSNR
. The remaining condition simplifies as,

√
p2

4CSNR
− 28 p

SNR
≥

0 =⇒ 196n − 28 p
SNR
≥ 0 =⇒ n ≥ 1

7
p

SNR
. The condition p ≥ 120C =⇒ n ≥ 1

6
p

SNR
. Accordingly, under these

conditions,

E[〈x?, β̂R(λ)− β0〉2] ≥ cos(x?,β0)
2

784
p2

nSNR
‖x?‖22 ·

σ2
ε

n

We first compute the (conditional on X) prediction risk of this estimator alongst x? as,

Lemma 1. Let the independent noise distribution be Gaussian, ε ∼ N (0, Inσ
2
ε ), and Assumption 1 hold. Then,

E[〈x?, β̂R(λ)− β0〉2|X] = (x>? Πλβ0)2 + σ2
εx
>
? (Σ̂λ)−1Σ̂(Σ̂λ)−1x?/n

Proof. Using the standard bias-variance decomposition β̂R(λ)− β0 = −Πλβ0 + Σ̂−1λ X>ε/n, squaring and taking the
expectation over ε (which is mean-zero) gives the result.

We now calculate the optimal choice of the ridge parameter λ to minimize the parameter error in the `2 distance.

Lemma 2. Under Assumption 1, let xi
i.i.d.∼ N (0, Ip) with independent noise ε ∼ N (0, Inσ

2
ε ). Then,

E
[∥∥∥β̂R(λ)− β0

∥∥∥2
2

]
= ‖β0‖22E[(

λ/n

z + λ/n
)2] +

σ2
ε p

n
E[

z

(z + λ/n)2
]

and the optimal λ∗ = arg minλ E
[∥∥∥β̂R(λ)− β0

∥∥∥2
2

]
, is λ∗/p =

σ2
ε

‖β0‖22
.
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Proof. We first compute the (expected) mean-squared error. Using Lemma 1, summing over x? = ei, and taking a further
expectation over X we have that,

E
[∥∥∥β̂R(λ)− β0

∥∥∥2
2

]
= E

[
p∑
i=1

(e>i Πλβ0)2

]
+
σ2
ε

n
E

[
p∑
i=1

e>i (Σ̂λ)−1Σ̂(Σ̂λ)−1ei

]

The computation of both the bias and variance terms exploits Proposition 6 along with the eigendecomposition of Σ̂n. For
the bias term,

E[

p∑
i=1

(e>i Πλβ0)2] = E[β>0 Π2
λβ0] = E[β>0 V>(E[Ip − 2(D + λIp)

−1D + (D + λIp)
−2D2])Vβ0] = ‖β0‖22v

where v = E[( λ/n
λ/n+z )2]. Similarly for the variance term,

σ2
ε

n
E[

p∑
i=1

e>i (Σ̂λ)−1Σ̂(Σ̂λ)−1ei] =
σ2
ε

n
E[Tr

[
(Σ̂λ)−1Σ̂(Σ̂λ)−1

]
] =

σ2
ε

n
E[Tr

[
VE[w]IpV

>]] =
σ2
ε p

n
E[w]

where E[w] = E[ z
(z+λ/n)2 ]. Combining we have that,

E
[∥∥∥β̂R(λ)− β0

∥∥∥2
2

]
= ‖β0‖22E[(

λ/n

z + λ/n
)2] +

σ2
ε p

n
E[

z

(z + λ/n)2
].

In general this expression is a complicated function of λ, however conveniently,

d

dλ
E
[∥∥∥β̂R(λ)− β0

∥∥∥2
2

]
= 2λn‖β0‖22E[

z

(z + λn)3
]− 2n2

σ2
ε p

n
E[

z

(λn+ z)3
] =⇒ λ∗/p =

σ2
ε

‖β0‖22
.

C. Proofs for Section 2.2: Lower Bounds for Prediction with the Lasso
Here we provide lower bounds on the prediction risk of the Lasso estimator. In order to do so we will exhibit a benign
instance of the design matrix for which for the Lasso performs poorly.

C.1. Theorem 2

We begin by stating a more general version of Theorem 2 and provide its proof

Theorem 7. Under Assumption 1, fix any s ≥ 0, and let xi
i.i.d.∼ N (0, Ip) with independent noise ε ∼ N (0, Inσ

2
ε ). Then, if

β̂L(λ) denotes the solution of the Lasso program, with regularization parameter chosen as λ ≥ (8 + 2
√

2)σε
√

log(2ep)/n,
and p ≥ 20, there exist universal constants c1, c2, c3 such that for all n ≥ c1s2 log(2ep) and for fixed x? ∼ P? independently
of X, ε,

sup
β0∈B0(s)

E[〈x?, β̂L(λ)− β0〉2] ≥ sup
β0∈B0(s),
‖β0‖∞≤λ

E[〈x?, β̂L(λ)− β0〉2] ≥ c2λ2Λs[E[x?x
>
? ]] ≥ c2λ2‖E[x?]‖2(s)

where the trimmed norm ‖x?‖(s) is the sum of the magnitudes of the s largest magnitude entries of x? and Λs[E[x?x
>
? ]] is

the maximum s-sparse eigenvalue of E[x?x
>
? ]. Moreover, for deterministic x?,

sup
β0∈B0(s)

E[〈x?, β̂L(λ)− β0〉2] ≤ c3λ2‖E[x?]‖2(s)

Proof of Theorem 2 and Theorem 7. Let v? denote the maximum s-sparse eigenvector of E[x?x
>
? ] (which is normalized

as have ‖v‖2 = ‖v‖(s) = 1) and Λs[E[x?x
>
? ]] its corresponding eigenvalue. We begin by restricting β0 to have support
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on these s coordinates of v?, denoted by S; we subsequently choose the magnitude of the elements β0. Now under the
conditions of the Proposition, we can guarantee support recovery of the Lasso solution, Sβ̂L

⊆ Sβ0 ≡ S, with probability at
least 1

2 by Proposition 9. Denote this event by S.

Thus, for this choice of β0,

E[〈x?, β̂L(λ)− β0〉2] ≥ E[〈(x?)S , (β̂L(λ)− β0)S〉2I[S]] = E[〈(x?)S , I[S](β̂L(λ)− β0)S〉2]

≥ 〈E[I[S](β̂L(λ)− β0)S ],E[x?x
>
? ]SE[I[S](β̂L(λ)− β0)S〉 (10)

using Jensen’s inequality and independence of x? and β̂L(λ) in the inequality.

We now focus on characterizing the bias of the Lasso solution β̂L(λ) on the coordinates contained in S (in fact using
properties of the debiased Lasso estimator). Consider a single coordinate i ∈ S, and without loss of generality assume
that (x?)i > 0, in which case we choose (β0)i > 0. We will argue that the magnitude of (β0)i can be chosen so that
E[(β̂L(λ) − β0)i] < c < 0 for appropriate c under the conditions of the theorem. Note that under our assumptions
κ = Cmax = Cmin = 1 for the following.

Recall, since y = Xβ0 + ε, from the KKT conditions applied to the Lasso objective we have that,

1

n
X>(X>β̂L(λ)− y) + λv = 0, v ∈ ∂

(
‖β̂L(λ)‖1

)
=⇒

(I− Σ̂n)(β̂L(λ)− β0)︸ ︷︷ ︸
∆

+
1

n
X>ε︸ ︷︷ ︸
Z

−λv = β̂L(λ)− β0

We can now use this relation to control the coordinate-wise Lasso bias,

E[I[S](β̂L(λ)− β0)i] = E[(β̂L(λ)− β0)iI[S ∩ {(β̂L(λ))i > 0}] + E[(β̂L(λ)− β0)iI[S ∩ {(β̂L(λ))i ≤ 0}] =

E[(Z + ∆− λv)iI[S ∩ {(β̂L(λ))i > 0}] + E[(β̂L(λ)− β0)iI[S ∩ {(β̂L(λ))i ≤ 0}] ≤
E[|Zi|+ |∆i|]− λE[I[S ∩ {(β̂L(λ))i > 0}]− (β0)iE[I[S ∩ {(β̂L(λ))i ≤ 0}] ≤
E[|Zi|+ |∆i|]−min(λ, (β0)i) Pr[S]︸ ︷︷ ︸

≥1/2

.

At this point we fix the magnitude of (β0)i = λ for i ∈ S. We can now bound the expectations of our first two terms. For
the first term Zi = 1

ne>i X>ε where ε ∼ N (0, σ2
ε In) and v = Xei ∼ N (0, σ2

ε In) independently of ε. Thus,

E[|Zi|] ≤
1

n

√
E[(v>ε)2] =

σ√
n
.

For the second term,

E[|∆i|] ≤
√
E[‖(Σ̂n − I)ei‖2∞

√
E[‖β̂L − β0‖21]

From the proof of Lemma 5, with x? = ei and Ω = I, we have that Pr
[
‖(Σ̂n − I)ei‖∞ ≥ t

]
≤ 2p ·

exp
(
−n2 min(( tκ′ )

2, tκ′ )
)

where κ′ = 8. Note for n ≥ (a/κ′)2 log p, a
√

log p
n ≤ κ′. Defining A = ‖(Σ̂n − I)ei‖∞,

E[A2] =

∫ ∞
0

2tPr[A > t] ≤ 4

[∫ a
√

log p/n

0

t · 1 +

∫ κ′

a
√

log p/n

p · t exp

(
−n

2

(
t

κ′

)2
)

+

∫ ∞
κ′

p · t exp

(
−n

2

t

κ′

)]

≤ 4

a2
2

log p

n
+
κ′2p1−

a2

2κ′2

n
+

2κ′2e−n/2(2 + n)p

n2

 ≤ (8κ′2 +
20κ′2

p log p · n

)
log p

n
≤ 9κ′2

log p

n
.
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where the last sequence of inequalities follows by choosing a = 2κ′, assuming n ≥ max{4 log p, 2}, and then assuming
p ≥ 20. Using Lemma 10 and 15 we have that,

E[‖β̂L(λ)− β0‖21] ≤
(

49λsβ0

4

)2

+

(
49

8

(8 + 2
√

2)σε√
n

)2

+

(
σ4
ε

λ2∗
+ 24s2β0

λ2
)(

2e−c/2·n
)

using our choice of |(β0)i| = λ for each of the s non-zero coordinates in β0 (so ‖β0‖1 ≤ sβ0λ). Here λ∗ is the lower
bound on λ from the Theorem statement. Under the assumption that n ≥ c1s2β0

log(2ep) and p ≥ 20, there exists c1 such

that
(
σ4
ε

λ2
∗

+ 24s2β0
λ2
) (

2e−c2/2·n
)
≤ (8 + 2

√
2)2σ2

ε /n+ 25λ2s2β0
. Once again using p ≥ 20 and that λ ≥ λ∗ we have that,

E[‖β̂L(λ)− β0‖21] ≤ 300λ2s2β0
.

Assembling, we conclude that,

E[I[S](β̂L(λ)− β0)i] ≤ E[|Zi|+ |∆i|]−min(λ, (β0)i) Pr[S]︸ ︷︷ ︸
≥1/2

≤ σε√
n

+ 300λsβ0

√
log(2ep)

n
− 1

2
λ ≤ −2

5
λ.

The last inequality holds using that λ ≥ λ∗ and n ≥ c1s2β0
log(2ep) for sufficiently large c1.

This allows us to conclude that (v>? E[I[S](β̂L(λ) − β0)S ])2 ≥ c2λ2‖v?‖2(s) ≥ c2λ2. Finally if we consider a spec-

tral decomposition of E[x?x
>
? ]S we can conclude that, 〈E[I[S](β̂L(λ) − β0)S ],E[x?x

>
? ]SE[I[S](β̂L(λ) − β0)S〉 ≥

Λs[E[x?x
>
? ]](v>? (E[I[S](β̂L(λ) − β0)S ]])2, which yields the desired conclusion after combining with (10). The final

inequality in the display, Λs[E[x?x
>
? ]] ≥ ‖E[x?]‖2(s) follows by Jensen’s inequality and the variational characterization of

the s-sparse eigenvalues. The claim for fixed deterministic x? follows immediately from this result.

To show tightness of the upper bound for deterministic x?, we first apply the Holder inequality on the top-s norm and its
dual (see Proposition 10) to see that,

E[〈x?, β̂L(λ)− β0〉2] ≤ ‖x?‖2(s)E

max


∥∥∥β̂L(λ)− β0

∥∥∥
1

sβ0

,
∥∥∥β̂L(λ)− β0

∥∥∥
∞

2
Since for a, b ≥ 0 , max(a, b)2 ≤ 2(a2 + b2) it suffices to bound the expectation of each term individually. From the
previous computations we recall that E[‖β̂L(λ) − β0‖21] ≤ 300λ2s2β0

. Finally by appealing to Lemma 4 and similar
computations to before, we have that,

E[
∥∥∥β̂L(λ)− β0

∥∥∥2
∞

] ≤ 30

(
E[(
∥∥X>ε∥∥∞/n)2] +

√
E[‖Σn − Id‖4∞]

√
E[
∥∥∥β̂L(λ)− β0

∥∥∥4
1
] + (

λ

2
)2

)
≤

O(λ2∗) +O((
√

log(2ep)/n · λsβ0
)2) +O(λ2) ≤ O(λ2),

using once again that λ ≥ λ∗ and that n ≥ c1s2β0
log(2ep) for sufficiently large c1. Recall we define Zi = 1

ne>i X>ε where
ε ∼ N (0, σ2

ε In) and v = Xei ∼ N (0, σ2
ε In) independently of ε. Hence appealing to Lemma 8 and using a union bound,

Pr
[
max
i
|Z|i ≥ t

]
≤ 2p exp

(
−n

2
min((t/κ)2, t/κ)

)
=⇒ E[(

∥∥X>ε∥∥∞/n)2] ≤ O

(σε√ log p

n

)2
 ≤ O(λ2)

for κ = 8σ2
ε by integrating the tail bound using similar computations to before when n ≥ c1 log p for large-enough constant

c1. Combining these results shows that,

E[〈x?, β̂R(λ)− β0〉2] ≤ c3‖x?‖2(s)λ2

for some large-enough c3.
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C.2. Corollary 2 and Supporting Lemmas

We now provide a short proof of the supporting corollary.

Proof of Corollary 2. This follows from Theorem 2 since for a fixed x? we have that E[x?] = x? and sup‖x?‖q=1 ‖x?‖2(s) ≥
s2−2/q .

The construction of this lower bound utilizes a support recovery result which requires the following conditions on the sample
design matrix X ∈ Rn×p,

Condition 1. (Lower Eigenvalue on Support). The smallest eigenvalue of the sample covariance sub-matrix indexed by S
is bounded below:

σmin

(
X>SXS

n

)
≥ cmin > 0

Condition 2. (Mutual Incoherence). There exists some α ∈ [0, 1) such that

max
j∈Sc

∥∥(X>SXS)−1X>SXej
∥∥
1
≤ α

Condition 3. (Column Normalization). There exists some C such that

max
j=1,...,p

‖Xej‖2/
√
n ≤ C

Importantly all of these conditions can be verified w.h.p when n & sβ0 log p for covariates xi ∼ N (0, Ip) using
standard matrix concentration arguments. To state our first lower bound it is also convenient to define ΠS⊥(X) =
In −XS(X>SXS)−1X>S , which is a type of orthogonal projection matrix.

Given these conditions we can state a conditional (on X) support recovery result,

Proposition 8. Let Conditions (1), (2) and (3) hold for the sample covariance matrix X, the independent noise distribution
be Gaussian, ε ∼ N (0, Inσ

2
ε ), and Assumption 1 hold (with sβ0 -sparse underlying parameter β0). Then, for any choice of

regularization parameter λ = 2Cσ
1−α

√
2 log(p−sβ0)

n + δ for δ > 0, the support of β̂L(λ) is strictly contained in the support of
β0:

Sβ̂L(λ)
⊆ Sβ0

with probability at least 1− 4e−nδ
2/2.

Proof. Conditions (1) and (2), and the fact that λ ≥ 2
1−α

∥∥X>ScΠS⊥(X) ε
n

∥∥
∞ are sufficient show a support recovery result.

Under these conditions, for all s-sparse β0, there is a unique optimal solution to the Lagrangian Lasso program β̂L(λ) and
the support of β̂L(λ), Sβ̂L(λ)

, is contained within the support Sβ0
(no false inclusion property) (Wainwright, Theorem

7.21). We can simplify the condition on the regularization parameter from Proposition (Wainwright, Theorem 7.21) using a
standard union bound/Gaussian tail bound argument (using Assumption 4) along with the column normalization condition

(Condition (3)) to show that λ = 2Cσ
1−α

√
2 log(p−sβ0)

n + δ satisfies λ ≥ 2
1−α

∥∥X>ScΠS⊥(X) ε
n

∥∥
∞ with probability at least

1− 4e−nδ
2/2 (over the randomness in ε) (Wainwright, Corollary 7.22). Combining yields the desired conclusion.

The aforementioned result holds conditional on X. However, we can verify that Conditions, (1), (2), (3) hold true w.h.p. even
if we sample xi ∼ N (0, Ip) (see Lemma 3). Thus, we can show a Lasso prediction error bound that holds in expectation
over all the randomness in the training data (X, ε).

To do so we introduce the following standard result showing Conditions (1), (2), (3) can be verified w.h.p. for i.i.d. covariates
from N (0, Ip).
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Lemma 3. Let xi
i.i.d.∼ N (0, Ip) for i ∈ [n]. Then there exists a universal constant c2, such that for n ≥ c2sβ0

log p and
p ≥ 20, Conditions 1, 2, 3 each hold with probability at least 99

100 .

Proof. The proofs of these follow by standard matrix concentration arguments. Condition (3) can be verified w.h.p. for
C = 1 (as a function of n) identically to Lemma 9 for n & log p. Condition (2) can also be verified w.h.p. for α = 1

2 for
n & sβ0 log(p− sβ0), see for example (Wainwright, Ch.7, p.221, Exercise 19). While finally, Condition (1) can also be
verified w.h.p. for cmin = 1

2 when n & sβ0 using standard operator norm bounds for Gaussian ensembles (see for example,
(Wainwright, Theorem 6.1, Example 6.3)).

Combining Lemma 3 and Proposition 8 yields the desired conclusion which we formalize below.

Proposition 9. Under Assumption 1, suppose xi
i.i.d.∼ N (0, Ip) with independent noise ε ∼ N (0, Inσ

2
ε ). Then, if β̂L(λ)

denotes the solution of the Lasso program, with regularization parameter chosen as λ ≥ 8σε
√

log p/n, there exists a
universal constant c1 such that for all n ≥ c1sβ0

log p,

Sβ̂L(λ)
⊆ Sβ0

with probability at least 1
2 .

Proof. The proof follows using the independence of ε and X, by combining the results of Proposition 8 and Lemma 3 with
a union bound (and taking n sufficiently large).

We next state a useful supremum norm bound applicable to the Lasso under random design from van de Geer (2014a),

Lemma 4 (Lemma 2.5.1 in van de Geer (2014a)). Under Assumption 1, if β̂L(λ) denotes the solution of the Lasso program,
with regularization parameter chosen as λ,∥∥∥β̂L(λ)− β0

∥∥∥
∞
≤
∥∥ΩX>ε

∥∥
∞/n+ ‖Ω‖1

(
‖Σn − Id‖∞

∥∥∥β̂L(λ)− β0

∥∥∥
1

+
λ

2

)
Finally, we state a useful (and standard fact) from convex analysis.

Proposition 10. If ‖x‖(k) denotes the top-k norm, the sum of the magnitudes of the s largest magnitude entries of x, then
its dual norm is ‖x‖(k),∗ = max(‖x‖1/k, ‖x‖∞).

D. Proofs for Section 3.1: Javanmard-Montanari (JM)-style Estimator
In this section we provide the proof of the prediction risk bounds for the JM-style estimator.

D.1. Theorem 3

We provide the proof of Theorem 3.

Proof of Theorem 3. Recall that we will use rβ,1 = (EX,ε[‖β̂ − β0‖41])1/4. This estimator admits the error decomposition,

ŷJM − 〈x?,β0〉 =
1

n
w>X>ε + 〈x? −Σnw, β̂ − β0〉

and hence,

EX,ε[(ŷJM − 〈x?,β0〉)2] ≤ 2

(
EX,ε[(

1

n
w>X>ε)2] + EX,ε[〈x? −Σnw, β̂ − β0〉2]

)
The first term can be thought of as the variance contribution while the second is the contribution due to bias. For the variance
term, we begin by evaluating the expectation over ε. Using independence (w.r.t. to X) and sub-gaussianity of ε,

EX,ε[(
1

n
w>X>ε)2] =

1

n
EXEε[(

n∑
i=1

w>xiεi)
2|X] =

σ2
ε

n
EX[w>Σnw]
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Now using Corollary 6 and defining κ′1 = 8κ2/Cmin‖x?‖22 we have that,

EX[w>Σnw] ≤ x>? Ωx? +
3κ′1√
n
.

using the condition n ≥ 2. Turning to the bias term, the Holder and Cauchy-Schwarz inequalities give, EX,ε[〈x? −

Σ̂nw, β̂ − β0〉2] ≤ EX,ε[
∥∥∥x? − Σ̂nw

∥∥∥2
∞

∥∥∥β̂ − β0

∥∥∥2
1
] ≤

√
EX[

∥∥∥x? − Σ̂nw
∥∥∥4
∞

]EX,ε[
∥∥∥β̂ − β0

∥∥∥4
1
].

We begin by evaluating the first expectation EX[
∥∥∥x? − Σ̂nw

∥∥∥4
∞

] which follows from Corollary 6,

√
EX[

∥∥∥x? − Σ̂nw
∥∥∥4
∞

] ≤ λ2w +
√

2‖x?‖2∞(p ∨ n)−c3

for n ≥ a2 log(p ∨ n) and c3 = a2/4− 1
2 with κ′2 = 8κ2

√
Ccond‖x?‖2. By definition of the base estimation procedure we

can assemble to obtain the desired error is bounded by,

≤ O(
σ2
εx?Ωx?
n

+
σ2
εκ
′
1

n3/2
+ r2β,1((λ2w + ‖x?‖2∞(p ∨ n)−c3))

where λw = ak2κ′2

√
log(p∨n)

n .

For the second claim note by Corollary 6, that w = 0 and hence we can write the error of the estimator as,

ŷJM − 〈x?,β0〉 = 〈x?, β̂ − β0〉 =⇒ EX,ε[(ŷJM − 〈x?,β0〉)2] = EX,ε[〈x?, β̂ − β0〉2].

We can now instantiate the result of the previous theorem in the setting where the Lasso estimator is used as the base-
regression procedure.

D.2. Corollary 3 and Supporting Lemmas

We provide the proof of Corollary 3.

Proof of Corollary 3. The second expectation EX,ε[‖β̂L(λ)−β0‖41] can be evaluated using Lemmas 13 and 15 from which
we find,

r2β,1 =

√
EX,ε[‖β̂L(λ)− β0‖41] ≤ O

(
λβ0

sβ0

Cmin

)2

+O

(
σε√
n

)2

+O(

(
σ4
ε

λ2β
+ ‖β0‖21

)(
e−

c
4κ4

n
)

)

Assuming p ≥ 20 and n ≥ c2
κ4

Cmin
s log(2ep), there exists sufficiently large c2 such that

(
σ4
ε

λ2
β

+ ‖β0‖21
)(√

2e−n
c

4κ4

)
≤

O(
σ2
ε

n + ‖β0‖21e−nc/(4κ
4)) ≤ O(

σ2
ε

n ) since ‖β0‖∞/σε = o(ec1n) for some sufficiently small c1. Thus we have r2β,1 ≤

O

(
λ2
βs

2
β0

C2
min

+
σ2
ε

n

)
= O(

λ2
βs

2
β0

C2
min

) due to the lower bound on λβ. Combining with Theorem 3 gives the result,

O

(
σ2
εx?Ωx?
n +

(
λ2
βs

2
β0

C2
min

)
(λ2w + ‖x?‖2∞(p ∨ n)−c3)

)

We now connect our results to the problem of constructing CIs in sparse linear regression – namely the results in Cai &
Guo (2017). We first define formally what it means for a set S to be a 1 − α CI in this context – namely that for all β0,
lim infn,p→∞ Prβ0 [x>? β0 ∈ S] ≥ 1− α.
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Proof of Proposition 4. Before beginning, we first recall the tail bound in Bellec et al. (2016, Theorem 4.2), which provides
that,

‖β̂L(λ)− β0‖q ≤
49

8

(
log(1/δ0)

s log(1/δ(λ))
∨ 1

φ20

)
λs1/q

with probability at least 1 − δ0/2, where δ(λ) = exp
(
−( λ

√
n

(8+2
√
2)σ

)
)

for all design matrices in X ∈ En(s, 7) where

φ20 = φ2SRE(s, 7). Note by Theorem 11 we have that under our design assumptions X ∈ En(s, 7) with probability at
least 1− 3 exp

(
−cn/κ4

)
for n & s log p. Hence taking q = 1 and λ �

√
log p/n, s log(1/δ(λ)) � s exp

(
−c√log p

)
�

exp
(
γ log p− c√log p

)
for 0 ≤ γ < 1

2 . Hence, for δ0 � p−γ/2, log(1/δ0)
s log(1/δ(λ)) → 0. Accordingly, for sufficiently large p, we

‖β̂L(λ)− β0‖1 ≤ K1s

√
log p

n

with probability at least 1−O(exp(−cn))−O(p−γ/2). Define the set S1 = [x>? β̂L(λ)+‖x?‖∞Ksβ0

√
log p
n ,x>? β̂L(λ)−

‖x?‖∞Ksβ0

√
log p
n ] for future reference.

In the case of the dense loading regime we have that ‖x?‖∞‖x?‖2
� p−γq/2, and take λw = 8

√
Ccondκ

2 1
s
√
log p
‖x?‖2. This

choice of satisfies λw �
pγq/2−γ√

log p︸ ︷︷ ︸
→∞

‖x?‖∞. Hence by the definition of the JM program, for sufficiently large p, its minimizer

is w = 0 almost surely as argued in the proof of Theorem 3 – in which case ŷJM = x>? β̂L(λ) almost surely. Hence in this

regime, S1 = [ŷJM + ‖x?‖∞K1sβ0

√
log p
n , ŷJM − ‖x?‖∞K1sβ0

√
log p
n ] provides valid coverage by the previous arguments.

To show the second claim consider the set S2 = [ŷJM + 1.01/
√
nzα/2‖x?‖2

√
w>Σnw +

√
n, ŷJM +

1.01/
√
nzα/2‖x?‖2

√
w>Σnw +K2/

√
n], and note fom the proof of Theorem 3 we can see

|ŷJM − 〈x?,β0〉| =
∣∣∣∣ 1nw>X>ε + 〈x? −Σnw, β̂ − β0〉

∣∣∣∣
using the results in therein that

∣∣∣〈x? −Σnw, β̂ − β0〉
∣∣∣ ≤ ∥∥∥β̂ − β0

∥∥∥
1
‖x? −Σnw‖∞ . s

√
log p/n · ‖x?‖2 1

s
√
log p

≤
K2‖x?‖2 1√

n
with probability at least 1 − O(exp(−cn) − O(p−1) with the aforementioned choice of a in the regime

n & s2(log p)2 (which implies a & 1). Conditionally on X we then have that 1
nw>X>ε ∼ N (0, 1

nw>Σnw). Combining
these results with a union bound show thats lim infn,p Pr

[
x>? β0 ∈ S2

]
→ 1 − α with as n, p → ∞. Finally, since

by Lemma 6 we have that
√

w>Σnw ≤ 1.01
√

x>? Ωx? with probability at least 1 − exp(−cn), and Corollary 6, we
E[w>Σnw] ≤ x?Ωx? +O( 1√

n
) we can see that in the regime n & s2(log p)2 the interval S2 indeed has expected length

O(
‖x?‖2√

n
) which is optimal in this regime.

Here we collect several useful lemmas which follow from standard concentration arguments useful both in the analysis of
the upper bound on the JM estimator and in the Lasso lower bound.

To begin we show the convex program defining the JM estimator is feasible with high probability. For convenience we
define the event F(a) to be the event that the convex program defining the JM estimator in (4) with choice of regularization
parameter λw = a

√
log p/n possesses w0 = Ωx? as a feasible point.

Lemma 5. Let Assumption 2 and 3 hold for the design X and assume n ≥ a2 log(p ∨ n) with κ′2 = 8κ2
√
Ccond‖x?‖2. If

x? ∈ Rp then for w0 = Ωx?,

Pr
[∥∥∥Σ̂nw0 − x?

∥∥∥
∞
≥ aκ′2

√
log(p ∨ n)/n

]
≤ 2(p ∨ n)−c2

for c2 = a2

2 − 1. Hence the convex program in (4) with regularization parameter λw = aκ′2

√
log(p∨n)

n admits w0 as a
feasible point with probability at least 1− 2(p ∨ n)−c2 .
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Proof. This follows from a standard concentration argument for sub-exponential random variables. Throughout we will use
x̃` = Ω1/2x`. Consider some j ∈ [p] and define zj` = e>j Ω1/2x̃` · x̃>` Σ1/2x?−e>j x? which satisfies E[zj` ] = 0, is indepen-
dent over ` ∈ [n], and for which e>j (Σ̂nw0 − x?) = 1

n

∑n
j=1 z

`
j . Since e>j Ω1/2x̃` ∼ sG(κ‖e>j Ω1/2‖2) ∼ sG(κ/

√
Cmin),

and (x?)
>Σ1/2x̃` ∼ sG(κ‖Σ1/2x?‖2) ∼ sG(κ

√
Cmax‖x?‖2), zj` is a mean-zero sE(8κ2

√
Ccond‖x?‖2, 8κ2

√
Ccond‖x?‖2)

r.v. by Lemma 8. Defining κ′2 = 8κ2
√
Cmax/Cmin‖x?‖2, applying the tail bound for sub-exponential random variables,

and taking a union bound over the p coordinates implies that,

Pr[‖Σnw0 − x?‖∞ ≥ t] ≤ Pr[‖Σnw0 − x?‖∞ ≥ t] ≤ 2p exp
[
−n

2
min((t/κ′2)2, t/κ′2))

]
.

Choosing t = aκ′2
√

log(p ∨ n)/n, assuming n ≥ a2 log(p ∨ n), gives the conclusion

Pr
[
‖Σnw0 − x?‖∞ ≥ aκ′2

√
log(p ∨ n)/n

]
≤ 2(p ∨ n)−a

2/2+1

and the conclusion follows.

We can now provide a similar concentration argument to bound the objective of the JM program.

Lemma 6. Let Assumption 2 and 3 hold for the design X. Let w be the solution of the convex program in (4) with
regularization parameter set as λw. If x? ∈ Rp, then,

Pr
[
w>Σnw ≥ x?Ωx? + t

]
≤ 2 exp

[
−n/2 min((t/κ′1)2, t/κ′1)

]
for κ′21 = 8κ2/Cmin‖x?‖22.

Proof. The argument once again follows from a standard concentration argument for sub-exponential random variables.
Considering,

(x?Ω)>ΣnΩx? = [(x?Ω)>ΣnΩx? − x?Ωx?] + x?Ωx? =
1

n

n∑
j=1

(z2j − x?Ωx?) + x?Ωx?

where zj = x>? Ωxj is mean-zero with sj ∼ sG(κ‖Ω1/2x?‖2) ∼ sG(κ/
√
Cmin‖x?‖2). Since E[z2j ] = x?Ωx?, Lemma 8

implies z2j − x?Ωx? ∼ sE(8κ2/Cmin‖x?‖22, 8κ2/Cmin‖x?‖22) and is mean-zero. The sub-exponential tail bound gives,

Pr

 1

n

n∑
`=j

z2j ≥ x?Ωx? + t

 ≤ exp
[
−n/2 min((t/κ′1)2, t/κ′1)

]
where κ′1 = 8κ2/Cmin‖x?‖22. Hence, since on the eventF(a), we have that w>Σnw ≤ (x?Ω)>ΣnΩx? (recall w0 = Ωx?
is feasible on F(a)),

Pr
[
w>Σnw ≥ x?Ωx? + t

]
≤ Pr

[
{w>Σnw ≥ x?Ωx? + t} ∩ F(a)

]
+ Pr

[
{w>Σnw ≥ x?Ωx? + t} ∩ F(a)c

]
≤ Pr

 1

n

n∑
`=j

z2j ≥ x?Ωx? + t

+ 0 ≤ exp
[
−n/2 min((t/κ′1)2, t/κ′1))

]
,

since by definition on the event F(a)c the convex program outputs w = 0 and x?Ωx? ≥ 1/Cmax > 0.

Finally we can easily convert these tail bounds into moment bounds,

Corollary 6. Let Assumption 2 and 3 hold for the design X. Let w be the solution of the convex program in (4) with

regularization parameter set as λw = aκ′2

√
log(p∨n)

n . If x? ∈ Rp, then,

E[w>Σ̂nw] ≤ x?Ωx? +
3κ′1√
n
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for κ′1 = 8κ2/Cmin‖x?‖22 and assuming n ≥ a2 log(p ∨ n),√
E[
∥∥∥Σ̂nw − x?

∥∥∥4
∞

] ≤ λ2w +
√

2‖x?‖2∞(p ∨ n)−c2

for c2 = a2/4− 1/2 with κ′2 = 8κ2
√
Ccond‖x?‖2. Moreover if λw ≥ ‖x?‖∞ then w = 0 almost surely.

Proof. Using Lemma 6 we have that,

E[w>Σ̂nw] = x?Ωx? +

∫ ∞
0

Pr
[
w>Σnw ≥ x?Ωx? + t

]
≤ x?Ωx? +

∫ κ′1

0

[exp
[
−n/2(t/κ′1)2

]
dt+

∫ ∞
κ′1

[exp[−n/2(t/κ′1)]dt

≤ x?Ωx? +
2κ′1√
n

+
2κ′1e

−n/2

n
≤ x?Ωx? +

3κ′1√
n

which holds for n ≥ 2.

Similarly, directly applying Lemma 5 we obtain,

E[
∥∥∥Σ̂nw − x?

∥∥∥4
∞

] = E[
∥∥∥Σ̂nw − x?

∥∥∥4
∞
1[F(a)]] + E[

∥∥∥Σ̂nw − x?

∥∥∥4
∞
1[Fc(a)]] ≤

λ4w + ‖x?‖4∞ Pr[Fc(a)] ≤ λ4w + 2‖x?‖4∞(p ∨ n)−c2

c2 = a2/2−1, since the convex program outputs w = 0 on the event Fc(a). The first conclusion follows using subadditivity
of
√·.

For the second statement note the convex program in (4) always admits w = 0 as a feasible point under the condition
λw ≥ ‖x?‖∞, in which case w = 0 is a global minima of the objective since Σ̂n is p.s.d.

E. Proofs for Section 3.2: Orthogonal Moment Estimators
We begin by providing the consistency proofs for the orthogonal moment estimators introduced in Section 3.2. However,
first we make a remark which relates the assumptions on the design we make to the properties of the noise variable η.

Remark 1. Under the random design assumption on x, if we consider x′ = [t, z] = (U−1)>x, then by Assumption 3,
g0 = arg ming EX[(t− z>g0)2] can be thought of as the best linear approximator interpreted in the regression framework.
Hence it can also be related to the precision matrix and residual variance as:

Ωt,· =
(1,−g0)

σ2
η

.

In this setting, we have that E[η2] = Σtt − g>0 Σzzg0 ≥ 0. Moreover from the variational characterization of the minimum
eigenvalue we also have that E[η2] ≥ Cmin/‖x?‖2. Thus ‖g0‖22 ≤ Σtt

Cmin
≤ Ccond/‖x?‖2 and E[η2] ≤ Σtt ≤ Cmax/‖x?‖2.

Moreover, the treatment noise η is also a sub-Gaussian random variable, since η = t − z>g0 = (1,−g0)>x′. Recall
by Assumption 2 that E[(x>v)p] ≤ κ2p‖Σ1/2v‖2p2 while η = (1,−g0)>x′. Thus we have that E[η2p] = κ2pCpmax(1 +

‖g0‖22)p/‖x?‖2p2 ≤ O((κ2CcondCmax/‖x?‖22)p). Similarly E[(z>g0)2p] ≤ (κ2‖g0‖22Cmax/‖x?‖22)p.

E.1. Theorem 5

We now present the Proof of Theorem 5.

Proof of Theorem 5. To begin we rescale the x? such that is has unit-norm (and restore the scaling in the final statement of
the proof). In order to calculate the mean-squared error of our prediction E[(ŷOM − x>? β0)2], it is convenient to organize the
calculation in an error expansion in terms of the moment function m. For convenience we define the following (held-out)
prediction errors ∆f (zi) = z>i (f̂ − f0), and ∆g(zi) = ĝ(zi) − g0(zi) of f and g(·) which are trained on first-stage
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data but evaluated against the second-stage data. Note that as assumed in the Theorem, g0(z) = z>g0. Also note the
moment equations only depend on f and g(·) implicitly through the evaluations z>f and g(z), so derivatives of the moment
expressions with respect to z>f and g(z), refer to derivatives with respect to scalar. Recall the sums of the empirical
moment equation here only range over the second fold of data, while f̂ and ĝ are fit on the first fold. The empirical moment
equations can be expanded (exactly) as,

1

n/2

n/2∑
i=1

∇θm(ti, yi, θ0, z
>
i f̂ , ĝ(zi))︸ ︷︷ ︸

J

(θ0 − ŷOM) =
1

n/2

n/2∑
i=1

m(ti, yi, θ0, z
>
i f̂ , ĝ(zi))

since by definition 1
n/2

∑n/2
i=1m(ti, yi, ŷOM, z

>
i f̂ , ĝ(zi)) = 0. Then we further have that,

1

n/2

n/2∑
i=1

m(ti, yi, θ0, z
>
i f̂ , ĝ(zi)) =

1

n/2

n/2∑
i=1

∇m(ti, yi, θ0, z
>
i f0,g0(zi))︸ ︷︷ ︸

A

+

1

n/2

n/2∑
i=1

∇z>fm(ti, yi, θ0, z
>
i f0,g0(zi))

>(∆f )︸ ︷︷ ︸
B1

+

1

n/2

n/2∑
i=1

∇g(z)m(ti, yi, θ0, z
>
i f0,g0(zi))

>(∆g)︸ ︷︷ ︸
B2

+

1

n/2

n/2∑
i=1

∇z>f ,g(z)m(ti, yi, θ0, z
>
i f0,g0(zi))[∆f ,∆g]︸ ︷︷ ︸

C

We first turn to controlling the moments of A,B1, B2, C. We use as convenient shorthand ζ = κ2Cmax. Similarly we also
use rf,2 = (E[∆f (z)4])1/4.

1. For A = 1
n/2

∑n/2
i=1 ηiεi, note that E[m(ti, yi, θ0, z

>
i f0,g0(zi))|zi] = 0 so it follows that,

E[A2] = O(
1

n
E[η2ε2]) =

1

n
σ2
εσ

2
η

2. For B1 = 1
n/2

∑n/2
i=1 ∆f (zi)ηi. Note E[∇z>fm(ti, yi, θ0, z

>
i f0,g0(zi))|zi] = 0 since E[ηi|zi] = 0. So we have using

sub-gaussianity of the random vector z, sub-gaussianity of η and independence that,

E[B2
1 ] = O(

1

n
E[(∆f (z))2η2]) ≤ O(

1

n
r2f,2σ

2
η)

3. For B2 =
∑n
i=1 ∆g(zi)εi. Note E[∇g(z)m(ti, yi, θ0, z

>
i f0,g0(zi))|zi] = 0 using independence of εi and the fact

E[εi] = 0. Once again using independence,

E[B2
2 ] =

1

n
E[ε2(∆g(z))2] ≤ O(

1

n
σ2
ε r

2
g)

4. For C = 1
n

∑n
i=1 ∆g(zi)∆f (zi). Note that in general for the remainder term

E[∇z>f ,g(z)m(ti, yi, θ0, z
>
i f0,g0(zi))|zi] 6= 0; however in some cases we can exploit unless we can exploit

unconditional orthogonality: E[∇z>f ,g(z)m(ti, yi, θ0, z
>
i f0,g0(zi))] = 0 to obtain an improved rate although this is

not mentioned in the main text.
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• In the absence of unconditional orthogonality, we have by the Cauchy-Schwarz inequality that,

E[C2] ≤ O(
√
E[(∆g(z))4]

√
E[(∆f (z))4]) ≤ O(r2f,2r

2
g,2)

• In the presence of unconditional orthogonality we have that,

E[C2] =
1

n
r2f,2r

2
g,2

as before using Cauchy-Schwarz but cancelling the cross-terms.

Now we can amalgamate our results. Before doing so note that rf,2 ≤ ζrβ,2 since in the description of the algorithm
the estimator is defined by rotating an estimate of β0 in the base regression procedure (and consistency of the (held-out)
prediction error is preserved under orthogonal rotations).

First define the event J = {J ≤ 1
4σ

2
η}. For the orthogonal estimator defined in the algorithm, on the event J the estimator

will output the estimate from the first-stage base regression using ŷOM = x>? β0. So introducing the indicator of this event,
and using Cauchy-Schwarz, we have that,

E[(ŷOM − θ0)2] =

[
E[(ŷOM − θ0)21(J )] +

√
E[‖∆β(x?)‖42]

√
Pr[J ]

]
≤
[
O(

E[A2 +B2
1 +B2

2 + C2]

(σ2
η)2

) +O(r2β,2)

√
O(((

ξ

σ2
η

)4 +
ξ2

(σ2
η)4

r4g) ·
1

n2
)

]

≤ ‖x?‖22
[
O(
σ2
ησ

2
ε + ζr2β,2σ

2
η + r2gσ

2
ε

(σ2
η)2n

) +O((((
ξ

σ2
η

)2 +
ξ

(σ2
η)2

r2g,2) · 1

n
) · r2β,2) + O(

ζ2r2β,2r
2
g,2

(σ2
η)

2n ) with unconditional orthogonality

O(
ζ2r2β,2r

2
g,2

(σ2
η)

2 without unconditional orthogonality

]
where Pr[J ] is computed using Lemma 7. If we consider the case without unconditional orthogonality, and assume since
Cmax ≥ σ2

η ≥ Cmin, the above results simplifies (ignoring conditioning-dependent factors) to the theorem statement,

‖x?‖22

[
O(

σ2
ε

σ2
ηn

) +O(
r2β,2r

2
g,2

(σ2
η

)2) +O(
r2β,2σ

2
η + r2gσ

2
ε

(σ2
η)2n

)

]

Lemma 7. Let Assumptions 2, 3, and 5 hold and suppose g0(z) = z>g0 in (6). Defining J = 1
n

∑n
i=1 Ji = 1

n

∑n
i=1 ti(ti−

ĝ(zi)) as in the description of first-order OM estimator with τ ≤ 1
4E[η2], then,

Pr

[
1

n

n∑
i=1

Ji ≤ τ
]
≤ O(((

ξ

σ2
η

)4 +
ξ2

(σ2
η)4

r4g,2) · 1

n2
)

where ξ = CcondCmaxκ
2 and ζ = κ2Cmax and rg,2 = (E[‖∆g(z)‖42])1/4.

Proof. To begin we rescale the x? such that is has unit-norm (and restore the scaling in the final statement of the proof). We
begin by establishing concentration of the J term which justifies the thresholding step in the estimator using a 4th-moment
Markov inequality. We have that J = 1

n

∑n
i=1∇θm(ti, yi, θ0, z

>
i f̂ , ĝ(zi)) = 1

n

∑n
i=1 ti(ti − ĝ(zi)) = 1

n

∑n
i=1 Ji. Note

that we assume ti = z>i g0 + ηi. The, for an individual term we have that,

Ji = (z>i g0 + ηi)(∆g(zi) + ηi) = η2i + z>i g0ηi︸ ︷︷ ︸
ai

+ z>i g0(∆g(zi))︸ ︷︷ ︸
bi

Recall by Remark 1, that η = (1,−g0)>x′, and that ‖g0‖22 = O(Ccond). Using sub-gaussianity of x′ we have that
ηi ∼ sE(8Ccondκ

2Cmax, 8Ccondκ
2Cmax) by Lemma 8. Similarly, z>i g0ηi ∼ sE(8Ccondκ

2Cmax, 8Ccondκ
2Cmax) since

z>i g0 ∼ sG(Cmaxκ
2Ccond). We introduce ξ = CcondCmaxκ

2 and ζ = κ2Cmax.

Analyzing each term, we have that,



Single Point Transductive Prediction

• For the first terms, E[η2i ] = E[η2]. Similarly for the second term, note E[bi] = 0 since ηi is conditionally (on z)
mean-zero. Hence we have that each ai is mean-zero and ai ∼ sE(16ξ, 16ξ).

• For the final term, note E[(z>i g0(∆(zi)))
4] ≤ O(ξ2r4g) by Cauchy-Schwarz.

Since, J = 1
n

∑n
i=1 ai + bi + ci, if

∣∣ 1
n

∑n
i=1 bi + ci

∣∣ ≤ ε′ and 1
n

∑n
i=1 ai ≥ ε′+ τ then 1

n

∑n
i=1 Ji > τ . So a union bound

gives,

Pr

[
1

n

n∑
i=1

Ji ≤ τ
]
≤ Pr

[
1

n

n∑
i=1

ai < +ε′ + τ

]
+ Pr

[∣∣∣∣∣ 1n
n∑
i=1

bi + ci

∣∣∣∣∣ ≥ ε′
]

Using a sub-exponential tail bound for the first term and the 4th-moment Marcinkiewicz–Zygmund inequality for the second
we obtain,

• For the first term

Pr

 1

n

n∑
i=1

ai − E[η2] ≤ −(−ε′ − τ + E[η2]︸ ︷︷ ︸
t

)

 ≤ O(exp

(
−cnmin(

t2

ξ2
,
t

ξ
)

)

for some universal constant c (that may change line to line).

• For the second term

Pr

[∣∣∣∣∣ 1n
n∑
i=1

bi

∣∣∣∣∣ ≥ +ε′

]
≤ O(

ξ2r4g
(ε′)4n2

)

Taking ε′ = 1
8σ

2
η and τ ≤ 1

4σ
2
η it follows that t ≥ 1

2σ
2
η. Hence the second term can be simplified to

O(exp
(
−cnmin( t

2

ξ2 ,
t
ξ )
)

= O(max( ξ
2

σ2
η
, ξση )2 1

n2 ) Hence the desired bound becomes, Pr
[
1
n

∑n
i=1 Ji ≤ ε

]
≤ O(

ξ2r4g
(σ2
η)

4n2 )+

O(exp
(
−cnmin( t

2

ξ2 ,
t
ξ )
)

= O((( ξ
σ2
η

)4 + ξ2

(σ2
η)

4 r
4
g) · 1

n2 ).

E.2. Corollaries 4 and 5

We conclude the section by presenting the proofs of Corollary 4 and Corollary 5 which instantiate the OM estimators when
both first-stage regressions are estimated with the Lasso.

First we prove Corollary 4.

Proof of Corollary 4. It suffices to compute rβ,2 and rg,2. By using Lemma 19,

rβ,2 ≤ O
(
σ2
εp
n

)
by utilizing condition on λβ in the theorem statement and that ‖β0‖∞/σε ≤ O(1) and n ≥ Ω(κ4C2

condp). Similarly, for
the case of rg,2 in the case the estimator is parametric Lasso estimator it follows that rg,2 = (E[(z>(g0 − g))4])1/4 ≤
O(
√
ζE[(‖g0 − g‖42])1/4) where ζ = κ2Cmax. Similar to above we obtain that,

rg,2 ≤ O(
σ2
ηp

n )

since we can verify that the conditions of Lemma 19 also hold when t is regressed against z under the hypotheses of the
result. In particular, note since the regression for g is performed between t and z (which up to an orthogonal rotation is a
subvector of the original covariate x itself), the minimum eigenvalue for this regression is lower-bounded by the minimum
eigenvalue of X. Moreover by Remark 1, ‖g0‖2 ≤

√
Ccond.
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Proof of Corollary 5. It suffices to compute rβ,2 and rg,2. The computation for rβ,2 is similar to the one for rβ,1. By
combining Lemma 13 and Lemma 15, and assuming p ≥ 20 and n ≥ c2κ

4

Cmin
s log(2ep), there exists sufficiently large c such

that,

rβ,2 ≤ O
((

λβ
√
sβ

C2
min

)
+O(

(
σε√
nsβ

)
+ ( 1

nλβ
√
sβ

)
)

+O
(
σε√
n

+ ‖β0‖1e−nc/(8κ
4)
)

=

O
(
λβ
√
sβ0

C2
min

)
+O(‖β0‖1e−nc/(8κ

4)) ≤ O(
λβ
√
sβ0

C2
min

)

using the lower bound on λβ in the theorem statement and that ‖β0‖∞/σε = o(ec1n) for some sufficiently small c1. Similarly,
for the case of rg,2 in the case the estimator is parametric Lasso estimator it follows that rg,2 = (E[(z>(g0 − g))4])1/4 ≤
O(
√
ζE[(‖g0 − g‖42])1/4) where ζ = κ2Cmax. Similar to above we obtain that,

rg,2 ≤ O(
λg
√
sg0

C2
min

) +O(‖g0‖1e−nc/(8κ
4)) ≤ O(

λg
√
sg0

C2
min

)

since we can verify that the conditions of Lemma 13 and Lemma 15 also hold when t is regressed against z under the
hypotheses of the result. In particular, note since the regression for g is performed between t and z (which up to an
orthogonal rotation is a subvector of the original covariate x itself), the strong-restricted eigenvalue for this regression is
lower-bounded by the strong-restricted eigenvalue of X. Moreover by Remark 1, ‖g0‖1 ≤ sg0‖g0‖2 ≤ sg0

√
Ccond.

F. Auxiliary Lemmas
We now introduce a standard concentration result we will repeatedly use throughout,

Lemma 8. Let x, y be mean-zero random variables that are both sub-Gaussian with parameters κ1 and κ2 respectively.
Then z = xy − E[xy] ∼ sE(8κ1κ2, 8κ1κ2).

Proof. Using the dominated convergence theorem,

E[eλz] = 1 +

∞∑
k=2

λkE[(xy − E[xy])
k
]

k!

≤ 1 +

∞∑
k=2

λk2k−1(E[|xy|k] + E[|xy|]k)

k!

≤ 1 +

∞∑
k=2

λk2k
√
E[x2k]E[y2k]

k!

≤ 1 +

∞∑
k=2

λk2k(2κ1κ2)k(2k)Γ(k)

k!
= 1 + 2(4λκ1κ2)2

∞∑
k=0

(4λκ1κ2)k

≤ 1 + 4(4λκ1κ2)2 = 1 + 64λ2κ21κ
2
2 for |λ| ≤ 1

8κ1κ2

≤ e(λ·8κ1κ2)
2 ≤ e(λ·8κ1κ2)

2/2

where we have used the fact a sub-Gaussian random variable x with parameter κ satisfies E[|x|k] ≤ (2κ2)k/2kΓ(k/2)
(which itself follows from integrating the sub-gaussian tail bound), along with the Cauchy-Schwarz and Jensen inequalities.

F.1. Random Design Matrices and Lasso Consistency

Here we collect several useful results we use to show consistency of the Lasso estimator in the random design setting.

Note Assumption 2 ensures the population covariance for the design X satisfies Σii ≤ 1/2, and a standard sub-exponential
concentration argument establishes the result for a random design matrix under Assumption 3. Accordingly, we introduce,
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Definition 1. The design matrix X ∈ Rn×p if satisfies the 1-column normalization condition if

max
i∈[p]
‖Xej‖22/n = Σ̂ii ≤ 1

and we have that,

Lemma 9. Let κ′ = 8
√

2κ. If Assumptions 2 and 3 hold, then

Pr

[
max
i∈[p]

[(Σ̂n)ii −Σii] ≥ t
]
≤ p exp

(
−n

2
min(

t2

κ′2
,
t

κ′
)

)
and if n ≥ 2amax(κ′2, κ′) log p, then with probability at least 1− p−a

max
i∈[p]

(Σ̂n)ii ≤ 1.

Proof. Note that xi = x>ei satisfies E[exp(λxi)] ≤ exp
(
λ2κ2Σii/2

)
. For fixed i we have that (Σ̂n)ii = 1

n

∑n
i=1(x2

i −
Σii). Since xi ∼ sG(κ

√
Σii), using Lemma 8 along with a sub-exponential tail bound we have that,

Pr
[
(Σ̂n)ii ≥ Σii + t

]
≤ exp

(
−n

2
min(

t2

κ′2
,
t

κ′
)

)
defining κ′ = 8κ

√
Σii ≤ 4

√
2κ. Since Σii ≤ 1

2 using a union bound over the p coordinates we have that maxi∈[p](Σ̂n)ii ≥
1, with probability less than p exp

(
−n2 min( t

2

κ′2 ,
t
κ′ )
)

. If t = 1
2 and n ≥ 2amax(κ

′2

t2 ,
κ′

t ) log p the stated conclusion
holds.

Similarly, although the sample covariance will not be invertible for p > n we require it to be nonsingular along a restricted
set of directions. To this end we introduce the strong restricted eigenvalue condition (or SRE condition) defined in (Bellec
et al., 2016, Equation 4.2) which is most convenient for our purposes.

Definition 2. Given a symmetric covariance matrix Q ∈ Rp×p satisfying maxi∈[p] Qii ≤ 1, an integer s, and parameter L,
the strong restricted eigenvalue of Q is,

φ2SRE(Q, s, L) ≡ min
θ

{
〈θ,Qθ〉
‖θS‖22

: θ ∈ Rp, ‖θ‖1 ≤ (1 + L)
√
s‖θ‖2

}
.

In general the cone to which θ belongs in Definition 2 is more constraining then the cone associated with the standard
restricted eigenvalue condition of Bickel et al. (2009). Interestingly, due to the inclusion of the 1-column normalization
constraint in Definition 2, up to absolute constants, the SRE condition is equivalent to the standard RE condition (with the
1-column normalization constraint also included in its definition) (Bellec et al., 2016, Proposition 8.1).

Importantly, using further equivalence with s-sparse eigenvalue condition, (Bellec et al., 2016, Theorem 8.3) establishes the
SRE condition holds with high probability under the sub-gaussian design assumption.

Theorem 11. Bellec et al. (2016, Theorem 8.3). Let Assumptions 2 and 3 hold. Then there exist absolute constants
c1, c2 > 0 such that for L ≥ 0, if n ≥ c1κ

4(2+L)2

Cmin
s log(2ep/s), then with probability at least 1− 3 exp

(
−c2n/κ4

)
, we have

that

max
i∈[p]

(Σ̂n)ii ≤ 1

and

φ2SRE(Σ̂n, s, L) ≥ Cmin

2
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This result follows from (Bellec et al., 2016, Theorem 8.3), the stated implication therein that the weighted restricted
eigenvalue condition implies the strong restricted eigenvalue condition with adjusted constants, along with the fact that
φ2SRE(Σ, s, L) ≥ Cmin.

We define the sequence of sets,

En(s, L) = {X ∈ Rn×p : φ2SRE(Σ̂n, s, L) ≥ Cmin

2
,max
i∈[p]

Σ̂ii ≤ 1, Σ̂ = X>X/n}

characterizing the class of design matrices satisfying both Definitions 1 and 2.

There are many classical results on `1/`2 consistency of the Lasso program,

β̂L = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

for sparse regression (see for example (van de Geer, 2014b, Ch. 6)) when the model is specified as y = Xβ0 + ε for εi i.i.d.
that are sub-Gaussian with variance parameter σ2. Such classical results have the confidence level of the non-asymptotic
error tied directed directly to the tuning parameter. However, recently (Bellec et al., 2016), through a more refined analysis,
has obtained optimal rates for the Lasso estimator over varying confidence levels for a fixed regularization parameter. These
results allow us to provide clean upper bounds on the Lasso parameter error in expectation.

Lemma 10. Let s ∈ [p], assume that the deterministic design matrix X ∈ En(s, 7), and let Assumption 4 hold with

εi ∼ N (0, σ2). If β̂L(λ) denotes the Lasso estimator with λ ≥ (8 + 2
√

2)σ
√

log(2ep/s)
n , 1 ≤ q ≤ 2, and ‖β0‖0 ≤ s then

letting φ20 = φ2SRE(s, 7),

E[‖β̂L(λ)− β0‖kq ] ≤
(

49λs1/q

8φ20

)k
+

(
49

8

(8 + 2
√

2)σ

s1−1/q
√
n

)k
k(k − 1)

2

Proof. The proof follows easily by integrating the tail bound in Bellec et al. (2016, Theorem 4.2), which provides that,

‖β̂L(λ)− β0‖q ≤
49

8

(
log(1/δ0)

s log(1/δ(λ))
∨ 1

φ20

)
λs1/q

with probability at least 1− δ0/2, where δ(λ) = exp
(
−( λ

√
n

(8+2
√
2)σ

)
)

, which satisfies δ(λ) ≤ s
2ep . Now, define δ∗0 as the

smallest δ0 ∈ (0, 1) for which 1
φ2
0

= log(1/δ0)
s log(1/δ(λ)) , in which case δ∗0 = (δ(λ))

s

φ20 .

Then,Zq = 8s log(1/δ(λ))
49λs1/q

≤ log(1/δ0) with probability at least 1−δ0/2, for all δ0 ∈ (0, δ∗0 ]. Equivalently, Pr[Zq > t] ≤ e−t

2
for all t ≥ T = log(1/δ∗0) = s

φ2
0

log(1/δ(λ)). Thus,

E[Zkq ] =

∫ ∞
0

ktk−1 Pr[Zq > t]dt =

∫ T

0

ktk−1 +

∫ ∞
T

ktk−1
e−t

2
≤

T k +

∫ ∞
0

ktk−1
e−t

2
≤ T k +

k(k − 1)

2
.

which implies the conclusion,

‖β̂L(λ)− β0‖kq ≤
(

49

8

Tλs1/q

s log(1/δ(λ))

)k
+

(
49

8

λs1/q

s log(1/δ(λ))

)k
k(k − 1)

2
≤

(
49λs1/q

8φ20

)k
+

(
49

8

(8 + 2
√

2)σ

s1−1/q
√
n

)k
k(k − 1)

2

where λ ≥ (8 + 2
√

2)σ
√

log(2ep/s)
n .
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Although the main results of Bellec et al. (2016) are stated for Gaussian noise distributions, Bellec et al. (2016, Theorem 9.1)
also provides a complementary high-probability upper bound for the empirical process 1

nε
>Xu when ε is sub-gaussian:

Lemma 11. Bellec et al. (2016, Theorem 9.1) Let δ0 ∈ (0, 1), and let Assumption 4 hold (with variance parameter renamed
to σ2) and assume the deterministic design matrix X ∈ Rn×p satisfies maxi∈[p] ‖Xei‖2/

√
n ≤ 1. Then with probability at

least 1− δ0, for all u ∈ Rp,

1

n
ε>Xu ≤ 40σmax

 p∑
j=1

u]j

√
log(2p/j)

n
,
‖Xu‖2√

n

√
π/2 +

√
2 log(1/δ0)√
n



The upper bound contains an additional, additive
√
π/2√
n

correction along with a change in absolute constants with respect
to Bellec et al. (2016, Theorem 4.1). Hence we trace through the proof of Bellec et al. (2016, Theorem 4.2) to derive a
corresponding statement of Bellec et al. (2016, Theorem 4.2) for sub-gaussian distributions.

Lemma 12. Let s ∈ [p], γ ∈ (0, 1) and τ ∈ (0, 1− γ] and assume the SRE(s, c0) condition holds c0(γ, τ) = 1+γ+τ
1−γ−τ . Let

λ ≥ 40σ
γ

√
log(2ep/s)

n . Then on the event in Lemma 11, for 1 ≤ q ≤ 2,

‖β̂L(λ)− β0‖q ≤
(
Cγ,τ (s, λ, δ0)

τ
λs+

π(1 + τ + γ)2

γ2τnλ

)2/q−1(
3(
Cγ,0(s, λ, δ0)

1 + γ
λ
√
s+

π(1 + γ)

γ2λ
√

2sn
)

)2−2/q

where Cγ,τ = (1 + γ + τ)2
(

log(1/δ0)
s log(1/δ(λ)) ∨ 1

φ2
0(s,c0(γ,τ))

)
.

Proof. The argument simply requires tracing through the proof of Bellec et al. (2016, Theorem 4.2) to accommodate the
additional O( 1√

n
) term (and is nearly identical to Bellec et al. (2016, Theorem 4.2)), so we only highlight the important

modifications.

Following the proof of Bellec et al. (2016, Theorem 4.2) we have,

2τλ‖β̂L(λ)− β0‖1 + 2‖X(β̂L(λ)− β0)‖22/n ≤ ∆∗ (11)

where ∆∗ = 2τλ‖β̂L(λ)− β0‖1 + 2
nε
>X(β̂L(λ)− β0) + 2λ‖β0‖1 − 2λ‖β̂L(λ)‖1 Letting u = β̂L(λ)− β0, we obtain

∆∗ ≤ 2λ

(1 + τ)
√
s‖u‖2 − (1− τ)

p∑
j=s+1

u]j

+ 2 max(F (u), G(u))

where F (u) = γλ
(√

s‖u‖2 +
∑p
j=s+1 u

]
j

)
and G(u) = 40σ(

‖Xu‖2√
n

√
π/2+
√

2 log(1/δ0)√
n

). By definition of δ(λ) =

exp
(
−(γλ

√
n

40σ )2
)

we have equivalently that, G(u) =

(
λ
√
sγ
√

log(1/δ0)/(s log(1/δ(λ))) +
40
√
π/2σ√
n

)
‖Xu‖2/

√
n.

We now consider two cases

1. G(u) > F (u). Then,

‖u‖2 ≤
(√

log(1/δ0)

s log(1/δ(λ))
+

40
√
π/2σ

λ
√
sγ
√
n

)
‖Xu‖2/

√
n (12)

Thus,

∆∗ ≤ 2λ(1 + τ)
√
s‖u‖2 + 2G(u)

2λ
√
s(1 + τ + γ)

(√
log(1/δ0)

s log(1/δ(λ))
+

40
√
π/2σ

λ
√
sγ
√
n

)
‖Xu‖2/

√
n ≤
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2λ2s(1 + τ + γ)2
(

log(1/δ0)

s log(1/δ(λ))
+

800πσ2

λ2sγ2n

)
+ ‖Xu‖22/n =

2λ2s(1 + τ + γ)2(
log(1/δ0)

s log(1/δ(λ))
) + ‖Xu‖22/n+

1600πσ2(1 + τ + γ)2

γ2n
(13)

2. G(u) ≤ F (u). In this case,

∆∗ ≤ 2λ

(1 + γ + τ)
√
s‖u‖2 − (1− γ − τ)

p∑
j=s+1

u]j

 = ∆ (14)

Since ∆ > 0, u belongs to the SRE(s, c0) cone and hence φ0(s, c0)‖u‖2 ≤ ‖Xu‖2. So,

∆∗ ≤ ∆ ≤ 2(1 + γ + τ)λ
√
s

φ0(s, c0)
‖Xu‖/√n ≤

(
(1 + γ + τ)λ

√
s

φ0(s, c0)
)

)2

+ ‖Xu‖2/n (15)

Assembling the two cases we conclude that,

2τ‖β̂L(λ)− β0‖1 ≤ 2Cγ,τ (s, λ, δ0)λs+
1600πσ2(1 + τ + γ)2

γ2nλ

where Cγ,τ (s, λ, δ0) = (1 + γ + τ)2
(

log(1/δ0)
s log(1/δ(λ)) ∨ 1

φ2
0(s,c0(γ,τ))

)
.

Turning to upper bounding u in the `2 norm, we specialize to τ = 0 and consider cases 1 and 2 from before.

1. G(u) > F (u), then using Equations 11 and 13 we have,

‖Xu‖22/n ≤ 2λ2s(1 + γ)2(
log(1/δ0)

s log(1/δ(λ))
) +

1600πσ2(1 + γ)2

γ2n

Combining the previous display with (12) we have,

‖u‖2 ≤
(√

2λ2s(1 + γ)2(
log(1/δ0)

s log(1/δ(λ))
) +

√
1600πσ2(1 + γ)2

γ2n

)(√
log(1/δ0)

s log(1/δ(λ))
+

40
√
π/2σ

λ
√
sγ
√
n

)

=
√

2s(1 + γ)λ

(
log(1/δ0)

s log(1/δ(λ))

)
+

1600π(1 + γ)σ2

γ2λ
√

2sn
+

√
√

2s(1 + γ)λ
log(1/δ0)

s log(1/δ(λ))
· 1600πσ2(1 + γ)

γ2λ
√

2sn

≤ 3

2

(√
2s(1 + γ)λ

(
log(1/δ0)

s log(1/δ(λ))

)
+

1600πσ2(1 + γ)

γ2λ
√

2sn

)
using subadditivity of

√·.
2. G(u) ≤ F (u). Equations 11 and 14 implies that ∆ ≥ ∆∗ ≥ 0 a.s. Hence u is contained in SRE(s, 1+γ1−γ ), and

‖u‖2 ≤
‖Xu‖2

nφ0(s, 1+γ1−γ )
≤ (1 + γ)λ

√
s

φ20(s, 1+γ1−γ )

using (11) and (15), and recalling we set τ = 0. Assembling these two cases we conclude,

(1 + γ)‖β̂L(λ)− β0‖2 ≤ 3

(
Cγ,0(s, λ, δ0)λ

√
s+

1600πσ2(1 + γ)2

γ2λ
√

2sn

)
So using the norm interpolation inequality ‖β̂L(λ)− β0‖q ≤ ‖β̂L(λ)− β0‖2/q−11 ‖β̂L(λ)− β0‖2−2/q2 ,

‖β̂L(λ)− β0‖q ≤
(
Cγ,τ (s, λ, δ0)

τ
λs+

1600πσ2(1 + τ + γ)2

γ2τnλ

)2/q−1(
3(
Cγ,0(s, λ, δ0)

1 + γ
λ
√
s+

1600πσ2(1 + γ)

γ2λ
√

2sn
)

)2−2/q



Single Point Transductive Prediction

We can now derive a corresponding moment bound for error as before6,

Lemma 13. Let s ∈ [p], assume that the deterministic design matrix X ∈ En(s, 7), and let Assumption 4 hold (with

variance parameter renamed to σ2). If β̂L(λ) denotes the Lasso estimator with λ ≥ 80σ
√

log(2ep/s)
n , 1 ≤ q ≤ 2, and

‖β0‖0 ≤ s then letting φ20 = φ2SRE(s, 7),

E[‖β̂L(λ)− β0‖k1 ] ≤ 2k−1

((
13
λs

φ20

)k
+

(
13

40σ√
n

)k
k(k − 1)

2
+ (

250000

nλ
)k

)

E[‖β̂L(λ)− β0‖k2 ] ≤ 2k−1

((
5
λ
√
s

φ20

)k
+

(
13

40σ√
ns

)k
k(k − 1)

2
+ (

25000

nλ
√
s

)k

)

Proof. We instantiate the result of Lemma 13 with γ = 1/2 and τ = 1/4 in which case c0 = 7, (1 + γ + τ)2 = 49/16,
1+γ
1−γ = 3, 1 + γ = 3/2. Defining D(δ0, λ, s) =

(
log(1/δ0)

s log(1/δ(λ)) ∨ 1
φ2
0

)
and φ20 = φ20(s, 7) we have,

‖β̂L(λ)− β0‖1 ≤ 13D(δ0, λ, s)λs+
250000σ2

nλ

‖β̂L(λ)− β0‖2 ≤ 5D(δ0, λ, s)λ
√
s+

25000σ2

λ
√
sn

with probability 1−δ0 where δ(λ) = exp
(
−(λ

√
n

80σ )
)

. Now, define δ∗0 as the smallest δ0 ∈ (0, 1) for which 1
φ2
0

= log(1/δ0)
s log(1/δ(λ)) ,

in which case δ∗0 = (δ(λ))
s

φ20 .

Then, Z1 =
(‖β̂L(λ)−β0‖1− 250000σ2

nλ )s log(1/δ(λ))

13λs ≤ log(1/δ0) and Z2 =
(‖β̂L−β0‖2− 25000σ2

nλ
√
s

)s log(1/δ(λ))

5λ
√
s

with probability
at least 1 − δ0, for all δ0 ∈ (0, δ∗0 ]. Equivalently, Pr[Zq > t] ≤ e−t for all t ≥ T = log(1/δ∗0) = s

φ2
0

log(1/δ(λ)) for
q ∈ {1, 2}. As before,

E[Zkq ] ≤ T k + k(k − 1).

Since E[‖β̂L(λ)− β0‖kq ] = E[(‖β̂L(λ)− β0‖q − c+ c)k] ≤ 2k−1
(
E[(‖β̂L(λ)− β0‖q − c)k] + ck

)
, we conclude,

E[‖β̂L(λ)− β0‖k1 ] ≤ 2k−1

((
13

Tλs

s log(1/δ(λ))

)k
+

(
13

λs

s log(1/δ(λ))

)k
k(k − 1)

2
+ (

250000σ2

nλ
)k

)
≤

2k−1

((
13
λs

φ20

)k
+

(
13

40σ√
n

)k
k(k − 1)

2
+ (

250000σ2

nλ
)k

)
and

E[‖β̂L(λ)− β0‖k2 ] ≤ 2k−1

((
5

Tλ
√
s

s log(1/δ(λ))

)k
+

(
5

λ
√
s

s log(1/δ(λ))

)k
k(k − 1)

2
+ (

25000σ2

nλ
√
s

)k

)
≤

2k−1

((
5
λ
√
s

φ20

)k
+

(
5

40σ√
ns

)k
k(k − 1)

2
+ (

25000σ2

nλ
√
s

)k

)

where λ ≥ 80σ
√

log(2ep/s)
n .

The aforementioned results establish Lasso consistency (in expectation) conditioned on the event X ∈ En(s, 7). Generalizing
these results to an unconditional statement (on X) requires the following deterministic lemma to control the norm of the
error vector

∥∥∥β̂L(λ)− β0

∥∥∥
1

on the “bad" events X /∈ En(s, 7) where we cannot guarantee a “fast" rate for the Lasso.

6for convenience we only state for the `1 and `2 norms an analagous result to Lemma 10 can be derived with more computation.
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Lemma 14. Let β̂L(λ) be the solution of the Lagrangian lasso, then∥∥∥β̂L(λ)− β0

∥∥∥
1
≤ 1

2n
‖ε‖22/λ+ 2‖β0‖1.

Proof. By definition we have that,

1

2n

∥∥∥y −Xβ̂L(λ)
∥∥∥2
2

+ λ
∥∥∥β̂L∥∥∥

1
≤ 1

2n
‖ε‖22 + λ‖β0‖1 =⇒

∥∥∥β̂L(λ)
∥∥∥
1
≤ 1

2n
‖ε‖22/λ+ ‖β0‖1

So by the triangle inequality we obtain that,∥∥∥β̂L(λ)− β0

∥∥∥
1
≤ 1

2n
‖ε‖22/λ+ 2‖β0‖1.

With this result in hand we can combine our previous results to provide our final desired consistency result for the Lasso.

Lemma 15. Let Assumptions 1, 2, 3, 4 hold (with variance parameter renamed to σ2). Then there exist absolute constants
c1, c2 > 0 such that if n ≥ c1(k)κ

4

Cmin
s log(2ep/s), and β̂L(λ) is a solution of the Lagrangian Lasso then for q ∈ 1, 2

EX,ε

[
‖β̂L(λ)− β0‖kq

]
≤ EX,ε

[
‖β̂L(λ)− β0‖kq1[X ∈ En(s, 7)]

]
+

(
σ2k

λk
+ 22k‖β0‖k1

)(
2e−

c2
2 n
)

where the first term can be bounded exactly as the conclusion of either Lemmas 10 or 13 with appropriate choice of
regularization parameter λβ.

Proof. Consider the event {X /∈ En(s, 7)}. For q ∈ 1, 2, we can split the desired expectation over the corresponding
indicator r.v. giving,

EX,ε[‖β̂L(λ)− β0‖kq ] = EX,ε

[
‖β̂L(λ)− β0‖kq1[X ∈ En(s, 7)]

]
+ EX,ε

[
‖β̂L(λ)− β0‖kq1[X /∈ En(s, 7)]

]
(16)

The first term can be bounded using independence of X and ε to integrate over ε restricted to the set {X /∈ En(s, 7)} (by
applying Lemmas 10 and 13). The second term can be bounded using Cauchy-Schwarz and Lemma 14 which provides a
coarse bound on the Lasso performance which always holds,

EX,ε

[
‖β̂L(λ)− β0‖kq1[X /∈ En(s, 7)]

]
≤
√

EX,ε

[
‖β̂L(λ)− β0‖2kq

]√
Pr
X

[X /∈ En(s, 7))] (17)

The hypotheses of Theorem 11 are satisfied, so
√

PrX[X /∈ En(s, 7))] ≤ 2e−
c2
2 n. Using Lemma 14 along with the identity

(a+ b)k ≤ 2k−1(ak + bk) we have that,

EX,ε[‖β̂L(λ)− β0‖2kq ] ≤ EX,ε[‖β̂L(λ)− β0‖2k1 ] ≤ 22k−1 · Eε

[
(
∑n
i=1 ε

2
i /n)2k

22kλ2k
+ 22k‖β0‖2k1

]
Since the εi ∼ sG(0, σ2), ε2i ∼ sE(8σ2, 8σ2) by Lemma 8, so Z =

∑n
i=1 ε

2
i /n ∼ sE(8σ2, 8σ2) satisfies the tail bound

Pr[Z − E[Z] ≥ t] ≤ exp
(
−n/2 min(t2/(8σ2)2, t/(8σ2))

)
since the εi are independent. Defining c = 8σ2, we find by

integrating the tail bound,

E[Zk] =

∫ E[Z]

0

ktk−1 +

∫ c

E[Z]

exp
(
−n/2 · t2/c2

)
+

∫ ∞
c

exp(−n/2 · t/c) ≤

(σ2)k +
k2k/2−1ckΓ(k/2)

nk/2
+
k2kckΓ(k)

nk
≤ 2(σ2)k.
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since E[Z] ≤ σ2, and we choose n2k/2 ≥ 2(2k)22k/2(82k)(2k)!. Assembling, we have the bound

EX,ε[‖β̂L(λ)− β0‖2kq ] ≤ σ4k

λ2k
+ 24k‖β0‖2k1 (18)

Inserting the coarse bound in (18) into (17) and combining with (16) gives the result using subadditivity of
√·,

EX,ε

[∥∥∥β̂L(λ)− β0

∥∥∥k
q

]
≤ EX,ε

[
‖β̂L(λ)− β0‖kq1[X ∈ En(s, 7)]

]
+

(
σ2k

λk
+ 22k‖β0‖k1

)(
2e−

c2
2 n
)

(19)

As previously noted the first term in Equation (19) is computed exactly as the final result of either Lemmas 10 or 13.

F.2. Random Design Matrices and Ridge Regression Consistency

Here we collect several useful results we use to show consistency of the ridge regression estimator in the random design
setting. There are several results showing risk bounds for ridge regression in the random design setting, see for example Hsu
et al. (2012). Such results make assumptions which do not match our setting and also do not immediately imply control over
the higher moments of the `2-error which are also needed in our setting. Accordingly, we use a similar approach to that used
for the Lasso estimator to show appropriate non-asymptotic risk bounds (in expectation) for ridge regression.

To begin recall we define the ridge estimator β̂R(λ) = arg minβ
1
2

(
‖y −Xβ‖22 + λ‖β‖22

)
which implies β̂R(λ) =

(X>X + λIp)
−1X>y. Throughout we also use Σ̂n = X>X

n , Σ̂λ = X>X
n + λ

nIp and Πλ = Ip − (Σ̂λ)−1Σ̂n. Note that
under Assumption 1, β̂λ−β0 = −Πλβ0+Σ̂−1λ X>ε/n, which can be thought of as a standard bias-variance decomposition
for the ridge estimator.

We first introduce a standard sub-Gaussian concentration result providing control on the fluctuations of the spectral norm of
the design matrix which follows immediately from Wainwright, Theorem 6.5,
Lemma 16. Let x1, . . . ,xn be i.i.d. random vectors satisfying Assumptions 2 and 3 with sample covariance Σ̂n = 1

nX>X,
then there exist universal constants c1, c2, c3 such that for n ≥ c1κ4C2

condp,∥∥∥Σ̂n −Σ
∥∥∥
2
≤ Cmin

2

with probability at least 1− c2e−c3n/(κ
4C2

cond).

With this result we first provide a conditional (on X) risk bound for ridge regression. For convenience throughout this
section we define the set of design matrices En = {X : ∀v such that ‖v‖2 = 1,v>Σ̂v ≥ Cmin

2 }.
Lemma 17. Let Assumptions 2 and 4 hold (with variance parameter renamed to σ2) and assume a deterministic design
matrix X ∈ En and that n ≥ p. Then if β̂R(λ) denotes the solution to the ridge regression program, with λ ≤ λ∗ =

arg minλ

(
( λ/n
Cmin+λ/n

)4‖β0‖42 + σ4p2/n2( Cmax

(Cmin+λ/n)2
)2
)

,(
E
[∥∥∥β̂R(λ)− β0

∥∥∥4
2

])1/2

≤ O
(
σ2Ccond

Cmin

p

n

)
.

Proof. Recall the standard bias variance decomposition β̂R(λ) − β0 = −Πλβ0 + Σ̂−1λ X>ε/n. So
∥∥∥β̂R(λ)− β0

∥∥∥4
2
≤

64
(

(β0Π
2
λβ0)2 + (ε>XΣ̂−1λ · Σ̂−1λ X>ε/n2)2

)
. Using the SVD of X/

√
n = U>ΛV we see that Σ̂n = V>Λ2V =

V>DV. Further, on the event En we have that 1
2Cmin ≤ di ≤ 3

2Cmax for i ∈ [p] where di = Dii by the Weyl inequalities.
So on En, β>0 Π2

λβ0 = β>0 V>(diag( λ/n
di+λ/n

))2Vβ0 ≤ O(( λ/n
Cmin+λ/n

)2‖β0‖22). Define S = ε>XΣ̂−1λ · Σ̂−1λ X>ε/n,

we have that S = U> diag( zi
(zi+λ/n)2

)U � O(U> diag( Cmax

(Cmin+λ/n)2
)U) on En, which also has at most rank p since Λ

has at most p non-zero singular values. Hence applying Lemma 20 we find that E[(ε>Sε)2] ≤ O(σ4p2( Cmax

(Cmin+λ/n)2
)2).

Combining, gives that

E
[∥∥∥β̂R(λ)− β0

∥∥∥4
2

]
≤ c1

(
(

λ/n

Cmin + λ/n
)4‖β0‖42 + σ4p2/n2(

Cmax

(Cmin + λ/n)2
)2
)
.
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for some universal constant c1. Since by definition λ∗ minimizes the upper bound in the above expression it is upper
bounded by setting λ = 0 in the same expression so,

E
[∥∥∥β̂R(λ)− β0

∥∥∥4
2

]
≤ O

(
σ4p2/n2(

Cmax

C2
min

)2
)
.

We can further check that the upper bound is decreasing over the interval [0, λ∗] and hence the conclusion follows. As an
aside a short computation shows the optimal choice of λ∗/p = (CcondCmax

n
p

σ4

‖β0‖42
)1/3.

We now prove a simple result which provides a crude bound on the error of the ridge regression estimate we deploy when
X /∈ En.

Lemma 18. Let β̂R(λ) be the solution of the ridge regression program β̂R(λ) = arg minβ ‖y −Xβ‖22 + λ‖β‖22, then∥∥∥β̂R(λ)− β0

∥∥∥2
2
≤ 4

(
‖ε‖22/λ+ ‖β0‖22

)
.

Proof. By definition we have that,∥∥∥y −Xβ̂R(λ)
∥∥∥2
2

+ λ
∥∥∥β̂R(λ)

∥∥∥2
2
≤ ‖ε‖22 + λ‖β0‖22 =⇒

∥∥∥β̂R(λ)
∥∥∥2 ≤ ‖ε‖22/λ+ ‖β0‖2

So we obtain that, ∥∥∥β̂R(λ)− β0

∥∥∥2
2
≤ 2(

∥∥∥β̂R(λ)
∥∥∥2
2

+ ‖β0‖2)2 ≤ 4(‖ε‖22/λ+ ‖β0‖22).

Finally, we prove the final result which will provide an unconditional risk bound in expectation for the ridge regression
estimator,

Lemma 19. Let Assumptions 1, 2, 3, 4 hold (with variance parameter renamed to σ2). Then there exist universal
constants c1, c2, c3 > 0 such that if n ≥ c1κ

4C2
condp, and β̂R(λ) a solution of the ridge regression program with

c2
n2Cmin

pCcond
e−nc3/κ

4C2
cond ≤ λ ≤ λ∗ = arg minλ

(
( λ/n
Cmin+λ/n

)4‖β0‖42 + σ4p2( Cmax

(Cmin+λ/n)2
)2
)

= p(CcondCmax
n
p

σ4

‖β0‖42
)1/3

EX,ε

[
‖β̂R(λ)− β0‖42

]
≤ EX,ε

[
‖β̂R(λ)− β0‖4q1[X ∈ En]

]
+O

(
(
n2σ4

λ2
+ ‖β0‖42)e

− c3
κ4C2

cond
n
)
.

Moreover if ‖β0‖∞ = O(1) then, √
EX,ε

[∥∥∥β̂R(λ)− β0

∥∥∥4
2

]
≤ O(

σ2Ccond

Cmin

p

n
).

where the O hides universal constants in Cmax, Cmin, Ccond, κ in the final statement.

Proof. Decomposing as

E
[∥∥∥β̂R(λ)− β0

∥∥∥4
2

]
= EX,ε

[
‖β̂R(λ)− β0‖421[X ∈ En]

]
+ EX,ε

[
‖β̂R(λ)− β0‖4q1[X /∈ En]

]
We can bound the second term explicitly using the Cauchy-Schwarz inequality as,

E[
∥∥∥β̂R(λ)− β0

∥∥∥4
2
1[X /∈ En]] ≤

√
EX,ε

[
‖β̂R(λ)− β0‖82

]√
Pr
X

[X /∈ En] ≤ O(
n2σ4

λ2
+ ‖β0‖42)e

− c3
κ4C2

cond
n

using the crude upper bound from Lemma 18 to upper bound the first term and Lemma 16 to bound the probability in the
second term.
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For the second statement note that we can bound the first term using the using the independence of X, ε and Lemma 17, to
conclude, √

EX,ε

[
‖β̂R(λ)− β0‖421[X ∈ En]

]
≤ O(

σ2Ccond

Cmin

p

n
).

With the specific lower bound on λ in the theorem statement, when ‖β0‖∞/σε = O(1) and n & κ4C2
condp we have,√

O(
n2σ4

λ2
+ ‖β0‖42)e

− c3
κ4C2

cond
n ≤ O(

σ2Ccond

Cmin

p

n
)

Finally, we prove a simple matrix expectation upper bound,

Lemma 20. Let S ∈ Rn×n be a (deterministic) p.s.d. matrix with rank at most p satisfying ‖S‖2 ≤ z, and let ε ∈ Rn
satisfy Assumption 4. Then

E
[
(ε>Sε)2

]
≤ O(σ4z2p2).

Proof. This follows by a straightforward computation using the sub-Gaussianity of each εi:

E
[
(ε>Sε)2

]
≤ O(

∑
i

S2
iiE[ε4i ] +

∑
i 6=j

S2
ijE[ε2i ε

2
j ] +

∑
i 6=j

SiiSjjE[ε2i ε
2
j ]) ≤ O(σ4‖S‖2F + σ4 Tr[S]

2
) ≤ O(σ4p2z2).

G. Experimental Details
G.1. Implementation Details

All algorithms were implemented in Python (with source code to be released to be upon publication). The open-source
library scikit-learn was used to fit the Lasso estimator, the cross-validated Lasso estimators, and the random forest regression
models used in the synthetic/real data experiments. The convex program for the JM-style estimator was solved using the
open-source library CVXPY equipped with the MOSEK solver (Diamond & Boyd, 2016).

Note the debiased estimators presented require either refitting the auxiliary regression for g(·) (i.e. the Lasso estimator or a
random forest) in the case of the OM estimators, or resolving the convex program in Eq. (4) for each new test point x?.
Although this presents a computational overhead in both our synthetic and real-data experiments, such computations are
trivially parallelizable across the test points x?. As such, we used the open-source library Ray to parallelize training of the
aforementioned models (Moritz et al., 2018). All experiments were run on 48-core instances with 256 GB of RAM.

G.2. Data Preprocessing and Cross-Validation Details

In all of the experiments (both synthetic and real data) the training covariates (in the design X) was first centered and scaled
to have features with mean zero and unit variance. Subsequently the vector of y values was also centered by subtracting
its mean; that is y → y − ȳ. After any given model was fit the mean ȳ was added back to the (y-centered) prediction θ
of the model. On account of this centering, the Lasso estimators were not explicitly fit with an intercept term (we found
the performance was unchanged by not performing the demeaning and instead explicitly fitting the intercept for the Lasso
baseline). In each case the cross-validated Lasso estimator was fit, the regularization parameter was selected by cross
validation over a logarithmically spaced grid containing a 100 values spaced between 10−6 and 101. The cross-validated
ridge estimator was fit by using leave-one-out cross-validation to select the regularization parameter over a logarithmically
spaced grid containing a 100 values spaced between 10−2 and 106 for the synthetic experiments, while a range of 10−6 and
101 was used for the real data. The `1 and `1/`2 ratio parameter for the elastic net were also set using cross-validation by
letting the `1 regularization parameter over a logarithmically spaced grid containing a 100 values spaced between 10−6

and 101, while the `1/`2 ratio parameter was allowed to range over [.1, .5, .7, .9, .95, .99, 1]. In the case of the real data
experiments the random forest regressors (RF) used in the g(·) models were fit using a default value of 50 estimators in each
RF.
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G.3. JM-style Estimator Details

Note that λw was chosen for the JM-style estimator using the heuristic to search for the smallest λw in a set for which the
convex program in Eq. (4) is feasible. If no such value existed (i.e. all the programs were infeasible) we defaulted to simply
predicting using the base Lasso regression in all cases (which is equivalent to using w = 0).

G.4. OM Estimators Details

As described in the main text, the OM estimators use 2-fold data-splitting. Such a procedure can be sample-inefficient since
only a fraction of the data is used in each stage of the procedure. For the OM methods used in the experiments we instead
used a more general K-fold cross-fitting as described in (Chernozhukov et al., 2017), with K = 5 and K = 10.

The OM methods can be fit exactly as described in the paper with the following modifications. First the original dataset is
split into K equally-sized folds we denote as (XI1 ,yI1), . . . , (XIK ,yIK ); here the index sets range over the datapoints
as I1 = {1, . . . , nK }, I2 = { nK + 1, . . . , 2nK } etc... We also use (XI−i ,yI−i) to describe K-leave-one-out subsets of the
original folds which contain the union of datapoints in all but the Iith fold of data.

Then, K sets of first-stage regressions are trained on the K-leave-one-out subsets to produce (f−1,g−1), . . . , (f−K ,g−K);
explicitly the pair (f−i,g−i) is fit on (XI−i ,yI−i). Finally the empirical moment equations can be solved for ŷOM by
summing over the entire dataset, but evaluating the (f−i,g−i) model on only the ith fold:∑

i∈K
∑
j∈Ii m(tj , yj , ŷOM, z

>
j f−i,g−i(zj)) = 0.

The estimator for the variance µ2 can also be computed in an analogous fashion,
∑
i∈K

∑
j∈Ii tj(tj − g−i(zj). More

details on this procedure can be found in Chernozhukov et al. (2017) and Mackey et al. (2017). Note that since K is chosen
to be constant, our theoretical guarantees also apply to this estimator up to constant factors.

Also though the thresholding step (with the parameter τ ) is used in our theoretical analysis to control against the denominator
µ2 being too small, we found in practice the estimate of µ2 concentrated quickly and was quite stable. Hence we found
explicitly implementing the thresholding step was unnecessary and we did not include this in our implementation.

G.4.1. OM q MOMENTS

In Section 3.2 we focus our analysis on the OM f moments but also introduce the first-order orthogonal q moments, whose
practical efficacy we explore in our real data experiments. For completeness we include the details of the algorithm to
predict with q-moments here. The primary difference with respect to the f -moments is with respect to how the q or f
regression is fit, the g regression is handled identically. For simplicity, we present the algorithm in parallel to how the f
moments are introduced in the main text (without the K-fold cross-fitting), although K-fold cross-fitting is used in practice
exactly as described above.

After the data reparametrization we have x′i = [ti, zi] = (U−1)>xi. In the reparametrized basis, the linear model becomes,

yi = θti + z>i f0 + εi ti = g0(zi) + ηi

where q0(zi) = θg0(zi) + z>i f0.

• The first fold (X(1),y(1)) is used to run two first-stage regressions. We estimate q0 using a linear estimator (such as the
Lasso) by directly regressing y(1) onto z(1) to produce the vector q̂. Second we estimate g0(·) by regressing t(1) onto
z(1) to produce a regression model ĝ(·) : Rp−1 → R.

• Then, we estimate E[η21 ] as µ2 = 1
n/2

∑n
i=n/2+1(ti − ĝ(zi))

2 where the sum is taken over the second fold of data;
crucially (ti, z) are (statistically) independent of ĝ(·) in this expression.

• If µ2 ≤ τ for a threshold T we simply output ŷOM = x>? β̂. If µ2 ≥ τ we estimate θ by solving the empirical moment
equation: ∑n

i=n/2+1m(ti, yi, ŷOM, z
>
i q̂, ĝ(zi)) = 0 =⇒ ŷOM =

1
n/2

∑n
i=n/2+1(yi−z>i q̂)(ti−ĝ(zi))

µ2

where the sum is taken over the second fold of data and m is defined in (7).
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G.4.2. SYNTHETIC DATA EXPERIMENT DETAILS

The experiments on synthetic data were conducted as described in the main text in Section 4. In each case for the JM-style
estimator the base regression was fit using the cross-validated Lasso, while the auxiliary parameter for the regression was
chosen to be the smaller of

√
log p/n and 0.01

√
log p/n for which the convex program in Eq. (4) was feasible. The OM f

moments were fit as described above using 5-fold cross-fitting with the Lasso estimator (with either theoretically-calibrated
values for the hyperparameters or hyperparameters chosen by cross-validation) used for both the first-stage regressions.

In Section 4.1 all hyperparameters wer set to their theoretically-motivated values: λβ = λg = 4
√

log p/n for the Lasso
regressions, and, inspired by the feasibility heuristic of (Javanmard & Montanari, 2014), we set λw to the smallest value
between

√
log p/n and .01

√
log p/n for which the JM-style program (4) was feasible. The RMSRE in each experiment

was computed over 500 test datapoints (i.e., 500 independent x?’s) generated from the training distribution; each experiment
was repeated 20 times, and the average RMSRE is reported.

G.4.3. REAL DATA EXPERIMENT DETAILS

For the base regression procedures five-fold CV was used to select hyperparameters for the Lasso and elastic net estimators,
while leave-one-out CV was used for ridge regression.

OM methods The OM f and q moments were implemented as above with 10-fold cross-fitting. However to exploit the
generality of the OM framework in addition to allowing ĝ(·) to be estimated via the cross-validated Lasso estimator, we also
allowed ĝ(·) to be estimated via random forest regression, and a g = 0 baseline. However, note that f̂ and q̂ were always fit
with the cross-validated Lasso (a linear estimator) since our primary purpose is to investigate the impacts of debiasing linear
prediction with the f̂ and q̂ moments.

For each x? we fit a cross-validated Lasso estimator, a random forest regressor, and a ĝ = 0 baseline on each of the
K-leave-one-subsets of data. We adaptively chose between these models in a data-dependent fashion by selecting the
method that produced the minimal (estimated) variance for ŷOM. We used a plug-in estimate of the asymptotic variance
which can be computed as,

q-var(method) =
∑
i∈K

∑
j∈Ii

(tj−g−imethod(zj))
2

V

and

f-var(method) =
∑
i∈K

∑
j∈Ii

ti(tj−g−imethod(zj))

V

where Vmethod =
∑
i∈K

∑
j∈Ii(tj − g−imethod(zj))

2 − (
∑
i∈K

∑
j∈Ii(tj − g−imethod(zj))

2 for each method. These asymptotic
variance expressions can be computed from a general formula for the asymptotic variance from Mackey et al. (2017,
Theorem 1). Upon selecting the appropriate ĝ(·) method for either the f or q moments the algorithm proceeds as previously
described with the given choice of ĝ(·).

JM-style method For the real data experiments the λw for the JM-style estimator was selected by constructing a
logarithmically-spaced grid of 100 values of λw between 10−7 and 102 and selecting the smallest value of λw for which the
convex program in Eq. (4) was feasible.

Datasets All regression datasets, in this paper were downloaded from the publicly available UCI dataset repository (Dua &
Graff, 2017). The triazines dataset was randomly split in an 80/20 train-test split and selected since ntrain ≈ p for it. The
other 4 datasets were selected due to the fact they can be naturally induced to have distributional shift. The Parkinsons and
Wine datasets were selected exactly as in Chen et al. (2016). The Parkinsons dataset, where the task is to predict a jitter
index, was split into train and test as in Chen et al. (2016), by splitting on the "age" feature of patients: ≤ 60→ train and
> 60→ test. The task for prediction in the Wine dataset, as in Chen et al. (2016), is to predict the acidity levels of wine but
given training data comprised only of red wines with a test set comprised only of white wines. In the fertility dataset, where
the task is to predict the fertility of a sample, we split into train and test by splitting upon the binary feature of whether
patients were in the 18− 36 age group (→ train) or not (→ test). Finally, for the Forest Fires dataset, where the task it to
predict the burned area of forest fires that occurred in Portugal during a roughly year-long period, we split into train/test
based on the "month" feature of the fire: those occurring before the month of September (→ train) and those after the month
of September (→ test).
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Note in all the cases the feature that was split upon was not used as a covariate in the prediction task. In Table 2 we include
further information these datasets,

Table 2. Information on Real Datasets.
Dataset ntrain ntest p Distrib. Shift?

Fertility 69 31 8 Yes
Forest Fires 320 197 10 Yes
Parkinson 1877 3998 17 Yes
Wine 4898 1599 11 Yes
Triazines 139 47 60 No


