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Abstract
Specifying a Reinforcement Learning (RL) task
involves choosing a suitable planning horizon,
which is typically modeled by a discount factor.
It is known that applying RL algorithms with a
lower discount factor can act as a regularizer, im-
proving performance in the limited data regime.
Yet the exact nature of this regularizer has not
been investigated. In this work, we fill in this
gap. For several Temporal-Difference (TD) learn-
ing methods, we show an explicit equivalence be-
tween using a reduced discount factor and adding
an explicit regularization term to the algorithm’s
loss. Motivated by the equivalence, we empiri-
cally study this technique compared to standard
L2 regularization by extensive experiments in dis-
crete and continuous domains, using tabular and
functional representations. Our experiments sug-
gest the regularization effectiveness is strongly
related to properties of the available data, such as
size, distribution, and mixing rate.

1. Introduction
The ability to perform well in new and unfamiliar situations
following a limited learning experience is a hallmark of
human intelligence. Similarly, the generalization ability of
Reinforcement Learning (RL) algorithms is often measured
by expected performance achieved by the agent in a Markov
Decision Process (MDP) after being exposed to a limited
amount of training data. Developing RL agents that gen-
eralize well is a longstanding challenge (Boyan & Moore,
1995; Sutton, 1996) that has recently been gaining more
attention (Cobbe et al., 2018; Zhang et al., 2018b;a; Wang
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et al., 2019; Zhao et al., 2019). In particular, generalization
is critical for successfully deploying RL agents that were
trained in a simulator in complex real-world scenarios that
contain elements not seen in the simulation.

There are several known approaches for improving gener-
alization in RL. Selecting an appropriate function approxi-
mation model is one way to facilitate generalization across
states and actions (Boyan & Moore, 1995). Regularization
methods can further improve the generalization capacity.
For example, it is very common to perform regularization
in policy space by encouraging policies with high entropy
(Williams, 1992; Mnih et al., 2016; Ahmed et al., 2019;
Vieillard et al., 2020). Our focus is instead on policy evalua-
tion. Traditionally, there have been two common approaches
to such regularization. First, one can use traditional regu-
larization methods from supervised learning to estimate
the value function. Most commonly, this means adding an
L2 or L1 penalty on the parameters of the value function
(critic) (Kolter & Ng, 2009; Liu et al., 2012; Dann et al.,
2014; Lillicrap et al., 2015; Cobbe et al., 2018; Liu et al.,
2019). Second, one can apply indirect regularization by
running the learning algorithm with a discount factor lower
than specified by the task. We refer to this method as dis-
count regularization. By focusing learning on short-term
gains, this approach may improve generalization by reduc-
ing variance (Petrik & Scherrer, 2009; Jiang et al., 2015b;a;
François-Lavet et al., 2019; van Seijen et al., 2019). This
leads to the question:

What are the factors that influence the effectiveness of
discount regularization?

This paper contributes to answering this question in three
ways. First, for a few variants of TD learning, we show
an equivalence between using a reduced discount and acti-
vation regularization, a technique used to train Recurrent
Neural Networks (RNNs) (Merity et al., 2017; 2018; Herold
et al., 2018).

Second, we empirically investigate the effectiveness of dis-
count regularization in both tabular MDPs and large scale
continuous control benchmarks. We show the benefit of
discount regularization is strongly linked to the number of
samples, uniformity of the state visitation and mixing rate
of the data collection. Generally, discount regularization
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is more effective when data is limited, data distribution
is highly uniform, and the mixing rate is low. In general,
we fond discount regularization and L2 regularization have
similar performance in tabular settings, but vary in some
function approximation settings.

Section 2 provides background on TD learning. In Sec-
tion 3.1 we formalize the equivalence between using an
artificially lowered discount and activation regularization.
In Sections 4.1 and 4.2 we investigate our predictions em-
pirically in tabular and deep RL benchmarks respectively.
Section 5 discusses related work.

2. Background
2.1. Problem Setting

An MDP (Bellman, 1957) is defined as a tuple M :=
(S,A, P,R, µ), where S is the state set, A is the ac-
tion set, P : S × A → M(S) is the transition proba-
bility function, M(S) is the set of distributions over S,
R : S × A → M([0, Rmax]) is the reward distribution
function,M([0, Rmax]) is the set of distributions supported
on [0, Rmax] and µ ∈ M(S) is the initial state distribution.
A Markovian stationary policy is defined by a mapping
π : S → M(A). At each time-step t the agent draws
an action at from π(st) where st is the current state. The
agent then receives a random reward rt ∼ R(st, at) and
transitions to the next state st+1 drawn from P (st, at).
This process produces a (possibly infinite) trajectory τ :=
(s0, a0, r0, s1, a1, r1, ...). Given a discount factor γ ∈ [0, 1]
the value function at state s is defined by the expected dis-
counted return V πγ (s) := Eτ :s0=s[

∑∞
t=0 γ

trt|s0 = s]. Sim-
ilarly we define the Q-function given state s and action a as
Qπγ (s, a) := Eτ :s0=s,a0=a[

∑∞
t=0 γ

trt|s0 = s, a0 = a].

In our setting, the agent is allowed to observe a limited
number of samples of trajectories generated fromM. We
define a sample as a single transition (s, a, r, s′), where s is
the current state, a is the action taken, r is the immediate
reward , and s′ is the next state. We investigate two types of
goals: policy evaluation and control. In policy evaluation
the agent is given a fixed policy π and aims to estimate
V πγe(s) where γe ∈ [0, 1] is the evaluation discount factor.
In the control setting the agent aims to find a policy π that
maximizes the expected return Eτ :π[

∑∞
t=0 γ

t
ert]. In this

paper we investigate control algorithms that include policy
evaluation as one constituent component.

We consider policy evaluation with function approxima-
tion, where the estimated value function is chosen from
a parametric family

{
V̂θ : S → R|θ ∈ Rd

}
. We assume

the functions in this family are differentiable w.r.t. θ. The
tabular setting can be considered as a special case with
V̂θ(s) := θs, θ ∈ R|S|.

2.2. Temporal-Difference Learning

The Temporal-Difference (TD) learning algorithm family
(Sutton, 1988) is used for efficient policy evaluation. While
our insights apply to a wide range of TD methods, we focus
our discussion on TD(0) as a representative algorithm. We
address the m-step variant and the SARSA algorithm in
Appendices A.2 and A.3. We will consider a batch setting,
in which the task is to estimate the value function V πγe(s) of
a known policy π given samples from trajectories generated
by interaction of π with the MDPM. We assume the finite
data setting, i.e, we are given a data set D of n samples.
Since we are interested in effects of finite sample size and
not a finite number of iterations, we choose to focus on the
batch rather than an online setting. In the batch setting, we
can reuse each sample in the data set for many iterations.

Algorithm 1 is a generic form of a regularized batch
TD(0) algorithm. In the special case of the standard non-
regularized TD(0), there is no added regularization term
(Ψ ≡ 0), there is no reward scaling ξ = 1, and the dis-
count factor used is the one desired in the problem def-
inition (γ = γe). The algorithm is initialized at some
initial parameters θ0 and takes steps aiming to minimize

E(s,a,r,s′)∼D

{(
r + γV̂θ̃(s

′)− V̂θ(s)
)2

+ Ψ

}
, where the

expectation is w.r.t. a the empirical distribution over samples
D. Similarly to Stochastic Gradient Descent (SGD), in each
iteration only one transition (s, a, r, s′) is sampled from D
to approximate the full gradient. For stability considerations,
instead of the standard gradient, the algorithm computes a

‘semi-gradient’ (Sutton & Barto, 2018), i.e. the next state
value estimate, V̂θ̃(s

′), is fixed. The learning rate αi ∈ R+

is usually set to be monotonically decaying at rate O(1/i)
in table-lookup settings and scaled automatically (Kingma
& Ba, 2015) in deep learning settings.

Algorithm 1 Generic Regularized Batch TD(0)
Hyper-parameters: γ ∈ [0, γe], ξ ∈ R+ (global reward
scaling), Ψ (regularization function)
Input: D
for i = 0, 1, ..., Niter − 1 do

Get uniformly random (s, a, r, s′) from D

θi+1 := θi + αi

(
ξr + γV̂θi(s

′)− V̂θi(s)
)
∇V̂θi(s)−

αi∇(Ψ).
end for

We are interested in the result in the limit of an infinite num-
ber of iterations Niter →∞ for which all samples from D
are used infinitely often. Note that since we are dealing with
finite data, convergence to the true value is not guaranteed
even for γ := γe. We refer to the discount factor γ ∈ (0, 1)
used by the algorithm as the guidance discount factor (Jiang
et al., 2015b). In this paper we study the regularizing effect
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of using γ lower than the evaluation discount factor γe and
compare it with other regularization methods.

Q-function evaluation. In many cases (e.g., control) we
are interested in estimating the action-value Qπ function
rather than V π. The naive variant of TD(0) for estimating
the Q-function is the SARSA(0) algorithm (Rummery &
Niranjan, 1994). In Appendix A.2, we also discuss a vari-
ant called Expected SARSA(0) (Sutton et al., 1998) which
utilizes knowledge of π to perform lower variance updates
(Van Seijen et al., 2009).

Policy iteration. In our work, we investigate control algo-
rithms that fit the policy iteration framework, i.e, algorithms
that alternate between policy evaluation and policy improve-
ment. Specifically, we investigate algorithms that use TD-
style policy evaluation. Many control RL algorithms fit
this framework, including modern actor-critic methods such
as DPG (Silver et al., 2014), SAC (Haarnoja et al., 2018),
DDPG (Lillicrap et al., 2015), and Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018), which is investigated in the
experiments section.

3. Discount Regularization in TD Learning
3.1. Equivalence of Reduced Discount Factor and

Activation Regularization

In this section, we formulate the equivalence between TD
learning with a reduced discount and TD learning with a
high discount with an added regularization term. The equiv-
alence will provide insights about the effectiveness of dis-
count regularization in various settings.

For simplicity of presentation, we first show that TD(0) with
guidance discount factor γ < γe is equivalent to an added
activation regularization term to the standard γe-discounted
update. Analogous results can obtained for SARSA (Ap-
pendix A.2), m-step TD (Appendix A.3) and LSTD (Ap-
pendix A.4). The proof is in Appendix A.1.

Proposition 1. Let θ1, θ2, . . . be the parameters produced
by Algorithm 1 using a discount factor γ < γe, with
ξ = 1,Ψ ≡ 0, initial parameters θ0 and learning rate αi.
The algorithm, produces the same sequence of parameters
θ1, θ2 . . . if it is run with the discount factor γ = γe, but

with added regularization function Ψ(s, θ) := λ
(
V̂θ(s)

)2

,

λ := γe−γ
2γ , reward scaling ξ := γe

γ , learning rate
α′i := γ

γe
αi and the same initial parameters θ0.

Proposition 1 implies that running TD(0) with a reduced
discount factor is equivalent to minimizing the objective

E(s,a,r,s′)∼D

{(
ξr + γeV̂θ̃(s

′)− V̂θ(s)
)2

+ λ
(
V̂θ(s)

)2
}

.

We refer to the added regularization term as activation

regularization1. In TD(0), this term is the mean value of the
square of the learned value function over the distribution

of observed states λEs
(
V̂θ(s)

)2

. In the SARSA algorithm

we have a similar term λE(s,a)

(
Q̂θ(s, a)

)2

(see Appendix
A.2). This term penalizes large value estimates and
therefore encourages consistent value estimates across
state-action pairs, which may encourage generalization by
reducing the effect of spurious approximation errors. Reduc-
ing γ increases the factor of the equivalent regularization
term λ := γe−γ

2γ .

We can get a more explicit form for the activation regulariza-
tion when using a tabular function or a linear approximation
with orthogonal features, where the activation regularization
term is equal to a weighted L2 norm on the parameters. De-
fine V̂θ(s) := φ(s)>θ for some fixed feature mapping φ and
some weight vector θ ∈ Rk. Assume orthogonal features,
i.e, that we have2 Es

[
φ(s)φ(s)>

]
= Λ for some diagonal

matrix Λ. This assumption holds for the tabular case for
which φ(s) = es where es is the standard basis of R|S|. The
activation regularization term can be written as

λEs
(
V̂θ(s)

)2

= λEs
[
(θ>φ(s)φ(s)>θ)

]
(1)

= λθ>Λθ = λ‖θ‖2Λ.

If, in addition, the features are also orthonormal, i.e, Λ =
Es
[
φ(s)φ(s)>

]
= Ik×k then the activation regularization

term becomes equivalent to the an L2 regularization term
‖θ‖22. For example, this case applies for tabular representa-
tion when the data distribution is uniform across states. Note
that even in this case, if we want discount regularization
to be equivalent to L2 regularized algorithm with γ := γe,
Proposition 1 claims that we should adjust the reward scal-
ing and learning rate: ξ := γe

γ , α
′
i := γ

γe
αi (i.e, the inverse

transformation to the one described in the proposition).

Proposition 1 showed that a reduced discount is equivalent

to adding a activation regularization term λEs∼D
(
V̂θ(s)

)2

to the learning objective. Notice that this term is sensitive
to the distribution over the observed states. For example, in
the tabular case, V̂θ(s) := θs, the activation regularization
term is simplified to λEs∼Dθ2

s . This form demonstrates that
states that are visited less often are less regularized, i.e, the
regularization factors for these states are lower. If a state
is not visited at all, the value estimation for this state is not
regularized at all.

1This naming relates to activation regularization in RNNs,
which refers to L2 penalty on the RNN activations, rather than on
the weights of the network in standard L2 regularization (Merity
et al., 2017; 2018)

2The expectation is w.r.t a uniform distribution over the samples
(s, a, r, s′) ∈ D.
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This phenomenon raises a concern that activation regular-
ization (or equivalently small discount) may be less helpful
for generalization state visitation is farther from a uniform
distribution. In Section 4.1 we will demonstrate empirically
that discount regularization is indeed less beneficial when
the data distribution is highly non-uniform.

4. Empirical Demonstrations
The goal of the of the experiments in this section is to inves-
tigate the following questions3. Can reducing the discount
factor improve generalization performance with TD learn-
ing? How is the optimal discount factor related to data size?
What is the effect of data uniformity and mixing rate? What
is the benefit of discount regularization compared to L2

regularization (in both tabular and function approximation
settings)?

4.1. Tabular Experiments

We first investigate the effectiveness and discount regular-
ization in various setting we conducted a simple GridWorld
experiment.

In the GirdWorld environment the state space is a 4×4 grid,
and the agent can move to along the gird. In each exper-
iment, we randomly choose a ‘goal state’ to be assigned
with a high reward mean. The other reward means and the
transition probabilities are also generated randomly. The
full details of the experiment appear in Appendix A.5.

We first experiment in a batch policy evaluation setting, for
a fixed uniform policy. The evaluation metric we use is the
L2 distance of the estimated value from the true value V πγe ,
‖V̂ − V πγe‖2, where V πγe is evaluated with γe = 0.99. In our
first set of experiments we generate the data by simulating
trajectories starting at a random initial state and following a
uniform policy for 50 time-steps. We varied the number of
trajectories to change the sample size.

The results are summarized in Figure 3. Each plot shows
the average loss across 1000 MDP instances and the 95%
confidence intervals. In Figure 1(a), we clearly see that
using a smaller discount factor γ < γe can significantly
improve performance when the available data set is small.
This corresponds to our observation that a smaller discount
is equivalent to a stronger activation regularization term. In
Figure 1(b), we see the effect of L2 regularization with no
discount regularization (γ = γe). The results show L2 reg-
ularization achieves similar performance gain as discount
regularization. Figures 1(c) and 1(d) show the correspond-
ing results with the LSTD algorithm. In contrast to TD(0),

3Code for all the experiments is available at:
https://github.com/ron-amit/Discount_as_
Regularizer.

for LSTD we see that regularization can improve perfor-
mance for all data set sizes, and the loss when not using
regularization is higher.

In some case, the actual values of the estimates are less
important than the relative rankings of the values of states.
Therefore, we repeated the experiment with a loss function
that compares state rankings (see Appendix A.6.1). The
results show similar behaviour as with the L2 loss.

We have seen that regularization is more helpful when the
data size is limited. But there are other properties of the
data that indicate that regularization may be more effective.
Next, we will investigate the influence of the uniformity
of the data distribution and of the mixing rate of the data
generating process.

Influence of the uniformity of the data state distribution.
We consider a batch setting, where the state-action tuples
are drawn independently from fixed distributions (while the
reward, next state, and next action are drawn according to
the environment stochasticity and the evaluated policy). To
measure the uniformity of the distributions, we evaluated the
total variation distance from a uniform distribution. In each
experiment repetition, we randomly generated distributions
with various distances via rejection sampling. The data
consists of 400 sampled tuples.

Figures 2(a) and 2(b) show the loss when using each of
the regularization methods, for various distances from a
uniform distribution, when using the LSTD algorithm. As
seen in the figure, for data distributions close to uniform,
the benefit of regularization is greater. In section 3.1 we
predicted that discount regularisation will be more helpful
for more uniform distributions. Interestingly, we find that
the effectiveness of L2 regularization is influenced in the
same manner as discount regularization.

Mixing-time influence. Another interesting question re-
gards the effect of the mixing-time on regularization effec-
tiveness. In Markov chains, the mixing-time describes the
typical convergence time of the state distribution to the sta-
tionary distribution. It can be computed using the inverse
spectral gap of the transition probabilities matrix (Levin &
Peres, 2017; Jerison, 2013).

To create trajectories with a specific mixing time we aug-
mented the transition probabilities matrix to have the ap-
propriate spectral gap for the specified mixing time (see
full details in Appendix A.5.3). We study a batch policy
evaluation setting, where the behavioral policy is uniform,
and the data is collected from two trajectories of length 50.
The value is estimated using LSTD. In each experiment
repetition, we randomly create an MDP, derive the Markov
process induced by a uniform policy, and apply the mix-
ing time augmenting procedure. As seen in Figures 2(c)

https://github.com/ron-amit/Discount_as_Regularizer
https://github.com/ron-amit/Discount_as_Regularizer
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(a) TD(0), L2 loss vs. discount factor
γ, several numbers of trajectories.
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(b) TD(0), L2 loss vs. L2 regulariza-
tion factor, several numbers of trajecto-
ries.
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(c) LSTD, L2 loss vs. discount γ,
several numbers of trajectories.
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(d) LSTD, L2 loss vs. L2 regulariza-
tion factor, several numbers of trajecto-
ries.

Figure 1. Tabular experiments - effect of dataset size. Loss vs. regularization factor for different regularizers, and algorithms, averaged
over 1000 MDP instances. In each figure, the curves correspond to different number of samples per episode. The star shapes mark the
minimum of the curve. Error bars represent 95% confidence interval.

and 2(d), discount regularization and L2 regularization are
more effective in the slow mixing regime. Intuitively, in
this regime, limited data is less representative of the whole
state space, which leads to higher estimation variance and
so more regularization is needed.

Policy optimization. Improving performance of policy
evaluation with regularization can improve performance of
policy-iteration based algorithms. To demonstrate this, we
run 5 episodes of approximate policy iteration: (i) gather
data by generating trajectories with 10 time-steps by rolling
out ε-greedy policy with ε = 0.1, (ii) run policy evaluation
with SARSA, and (iii) derive greedy policy w.r.t estimated
value function. The evaluation metric, optimality loss, is
the L1 distance of the value of the learned policy V π to the
value of the optimal policy V ∗, ‖V π − V ∗‖1, where the
values are computed with the true model and γe = 0.99.

In Figures 3(a) and 3(b) we see the results for discount and
L2 regularization respectively. Both methods can achieve
similar performance improvement. As in previous experi-
ments, when less data is available, stronger regularization
is needed. Note that while this experiment only tested one
regularizer at a time, using a combination of both L2 and
discount regularization can considerably improve general-
ization, as seen in Figure 4.

4.2. Deep RL Experiments

In this section, we investigate whether a reduced discount
(or equivalently activation regularization) will benefit gener-
alization from a finite sample in a continuous control with
function approximation setting. Our experiments use the
Mujoco environment (Todorov et al., 2012). To test the
ability to generalize from finite data, we limited the number
of time-steps from the environment to 200,000 or less.

As a learning algorithm, we used the Twin Delayed DDPG
(TD3) algorithm (Fujimoto et al., 2018), a recent actor-

critic algorithm that achieves state-of-the-art performance
in continuous control tasks. The policy evaluation stage of
TD3 uses a variant of expected SARSA called target policy
smoothing to estimate state-action values. Similar experi-
ments with the DDPG algorithm (Lillicrap et al., 2015) are
in Appendix A.8.

All hyper-parameters are identical to those suggested by
(Fujimoto et al., 2018) except the following changes. We
tested with several amounts of total time-steps to simulate
a limited data setting. As in Fujimoto et al. (2018), The
first 104 time steps are used only for exploration. Another
change to improve learning stability is increasing the batch
size from 100 to 256. See Appendix A.7 for the complete
implementation details. We tested two regularization meth-
ods: (i) discount regularization - γ is varied and the L2

factor is zero. (ii) L2 regularization - the L2 factor is varied
and γ is fixed to high value of 0.999.

Since the focus of this paper is regularization of the value
estimation phase, we tested L2 regularization only for the
critic network. As in common practice in deep learning,
only the non-bias weight parameters are regularized and
since they are less prone to over-fitting (Goodfellow et al.,
2016).

For each tested hyper-parameter we repeated the experi-
ments for 20 different initial random seeds. The averaging
over a number of seeds allows for statistically significant re-
sults despite the high variance of the simulation environment
(Henderson et al., 2018). In each repetition, the performance
evaluation of the final policy is done by averaging the total
undiscounted return (i.e, γe = 1) on 1000 new episodes.

The results appear in Figure 5. The results demonstrates that
discount regularization can lead to significant performance
gain. In the case of 200,000 time-steps, we can see that
γ values of around 0.99 are optimal. For lower numbers
of time-steps, lower discount factors are generally more
favourable. For example, in the Ant-v2 experiment γ = 0.8
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(a) L2 loss vs. discount factor γ, for
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uniform data distribution.
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(b) L2 loss vs. L2 regularization factor,
for several total-variation distances from
a uniform data distribution.
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(c) L2 loss vs. discount factor γ, for
several mixing-times τ .
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(d) L2 loss vs. L2 regularization
factor, for several mixing-times τ .

Figure 2. Tabular Experiments - effect of data properties. Loss vs. regularization factor for different regularizers, averaged over 1000
MDP instances. All results are with the LSTD algorithm. The star shapes mark the minimum of the curve. Error bars represent 95%
confidence interval.
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(a) SARSA algorithm, Optimality loss
vs. discount factor γ, several numbers of
trajectories per episode.
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(b) SARSA algorithm, Optimality loss
vs. L2 regularization factor, several
numbers of trajectories per episode.

Figure 3. Tabular experiments - policy optimization. Optimal-
ity loss vs. regularization factor for different regularizers, averaged
over 1000 MDP instances. The number of trajectories per episode
is 16. The star shapes mark the minimum of the curve. Error bars
represent 95% confidence interval.

is optimal for 100,000 time-steps (Fig. 5(g)).

If we compare L2 regularization to discount regularization,
we see that sometimes it gives lower performance gain (e.g,
Fig. 5(e) and 5(b)), but in other cases it gives a higher gain,
especially for smaller amount of time-steps (e.g., Fig. 5(d)
and 5(k)).

We note that there is a wide variability of behavior across
the different Mujoco tasks (as has been observed also in pre-
vious work (Ahmed et al., 2019)). In practice, the discount
factor should be chosen using a grid search for a specific en-
vironment and amount of available data. However, our work
suggests a few helpful guidelines: if less data is available,
lower discounts become more favourable, in scenarios with
non-uniform data coverage, or a fast mixing time, lowering
the discount is likely to be less helpful.

Note that the common practice in actor-critic algorithms
for learning Mujoco environments is to regularize the pol-
icy evaluation by setting γ = 0.99 and L2 factor of about
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Figure 4. Optimality loss per guidance discount factor γ and L2

factor. Results for 5 episodes of policy-iteration with 8 trajec-
tories of length 10 per episode. The results are averaged across
1000 MDP instances from the environment. The 95% confidence
interval is less than 2.5% relative to the mean.

10−2 (e.g, Lillicrap et al. (2015)). Our results suggest that
this hyper-parameter choice works well in some cases, but
in other cases increasing the amount of regularization can
significantly improve final performance.

5. Related Work
It is well-known that lower γ increases convergence rate in
many RL algorithms (Bertsekas & Tsitsiklis, 1996), but sev-
eral works showed that it can also improve final performance
in the cae of limited data or approximation error. Petrik &
Scherrer (2009) studied approximate dynamic-programming
and showed that planning with a lower discount factor might
be advised when the approximation error is large. Chen et al.
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Figure 5. Regularization in Mujoco experiments with limited data and TD3 algorithm. Average total reward in evaluation episodes
vs. regularization factor. Results are averaged over 20 simulations and 1000 evaluation episodes. Shaded area represent 95% confidence
interval.

(2018) and François-Lavet et al. (2019) studied similar phe-
nomena in POMDPs. Jiang et al. (2015b; 2016) studied a
model-based RL setting and suggested that in the limited
data regime, the performance of model-based RL can be
improved by using a low discount factor in the planning
phase. Our work identifies new elements that contribute to
the effectiveness of discount regularization: uniformity and
mixing rate.

In the planning setting, a classic result by Blackwell (1962)
shows that for every finite MDP, there exists a discount
factor γ∗ such that planing with any greater discount factor
(γ ≥ γ∗) leads to an optimal policy in the average reward
sense. (Kakade, 2001) showed that for faster mixing MDPs,
lowered discount factors introduces less bias int the average
reward sense. Our work shows that in the learning setting,
lowered discounts can even allow better generalization in
faster mixing scenarios.

The importance of regularization of generalization has also
been demonstrated empirically with deep RL algorithms.

Cobbe et al. (2018) suggested benchmarks for measuring
generalization in deep RL and demonstrated that common
regularization methods like L2, can significantly improve
generalization using the PPO algorithm (Schulman et al.,
2017). Farebrother et al. (2018) showed regularization can
improve generalization in Atari benchmarks when using the
DQN algorithm (Mnih et al., 2015). Parisi et al. (2019) sug-
gested a method for regularizing actor-critic algorithms by
adding a TD error penalty in the actor’s objective. Prokhorov
& Wunsch (1997) demonstrated the benefit of discount reg-
ularization using a schedule for increasing γ as learning
progresses. Similar scheduling is used in modern large scale
RL applications (OpenAI, 2018). Xu et al. (2018) showed a
gradient-based automatic hyper-parameter tuning method
that achieved significant performance enhancement by tun-
ing the discount. Sherstan et al. (2019) and Romoff et al.
(2019) suggested methods for TD learning with a high dis-
count via learning a sequence of value functions with lower
discount factors. A recent line of works (Efroni et al., 2018;
Tomar et al., 2019; Tessler & Mannor, 2020) proposes al-
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gorithmic schemes for using a small discount factor that
asymptotically converge to the solution of the problem with
the original discount.

While the benefits of a low discount factor have been shown
in some settings, in other settings it has been shown to
have adverse effects. The work of van Seijen et al. (2019)
analyze a family of small MDPs and show the existence of
a sweet-spot in γ selection.

6. Conclusions
In this paper, we studied the regularization effect of using
a low discount factor in RL algorithms. In summary, our
work demonstrated empirically that discount regularization
can significantly improve generalization performance when
learning from limited data. In the tabular setting, we demon-
strated that discount regularization is more effective for
more uniform empirical state distribution or slower mixing
rate. In our experiments, discount and L2 regularization
had similar performance gain in the tabular settings, but
different gains in the deep RL settings.

Our work opens several directions for further research. (i)
Can theoretical results explain the phenomena observed
in our experiments? (ii) Can we explain the variation in
performance between discount and L2 regularization in the
function approximation setting? (iii) Can we develop RL
algorithms that utilize L2 and discount regularization in an
adaptive manner?
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