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Abstract

Recent success of pre-trained language models crucially hinges on fine-tuning
them on large amounts of labeled data for the downstream task, that are typically
expensive to acquire or difficult to access for many applications. We study self-
training as one of the earliest semi-supervised learning approaches to reduce the
annotation bottleneck by making use of large-scale unlabeled data for the target task.
Standard self-training mechanism randomly samples instances from the unlabeled
pool to generate pseudo-labels and augment labeled data. We propose an approach
to improve self-training by incorporating uncertainty estimates of the underlying
neural network leveraging recent advances in Bayesian deep learning. Specifically,
we propose (i) acquisition functions to select instances from the unlabeled pool
leveraging Monte Carlo (MC) Dropout, and (ii) learning mechanism leveraging
model confidence for self-training. As an application, we focus on text classification
with five benchmark datasets. We show our methods leveraging only 20-30 labeled
samples per class for each task for training and for validation perform within 3%
of fully supervised pre-trained language models fine-tuned on thousands of labels
with an aggregate accuracy of 91% and improvement of up to 12% over baselines.

1 Introduction

Motivation. Deep neural networks are the state-of-the-art for various applications. However, one
of the biggest challenges facing them is the lack of labeled data to train these complex networks.
Not only is acquiring large amounts of labeled data for every task expensive and time consuming,
but also it is not feasible to perform large-scale human labeling, in many cases, due to data access
and privacy constraints. Recent advances in pre-training help close this gap. In this, deep and large
neural networks like BERT [Devlin et al., 2019], GPT-2 [Radford et al., 2019] and RoBERTa [Liu
et al., 2019] are trained on millions of documents in a self-supervised fashion to obtain general
purpose language representations. However, even with a pre-trained model, we still need task-specific
fine-tuning that typically requires thousands of labeled instances to reach state-of-the-art performance.
For instance, our experiments show 16% relative improvement when fine-tuning BERT with the full
training set (25K-560K labels) vs. fine-tuning with only 30 labels per class. Recent work [Wang
et al., 2020a] show this gap to be bigger for structured learning tasks such as sequence labeling.

Semi-supervised learning (SSL) [Chapelle et al., 2010] is one of the promising paradigms to address
this shortcoming by making effective use of large amounts of unlabeled data in addition to some
labeled data for task-specific fine-tuning. Recent work [Xie et al., 2019] on leveraging SSL with
consistency learning has shown state-of-the-art performance for text classification with limited labels
leveraging auxiliary resources like back-translation and forms a strong baseline for our work.

Self-training (ST, [Scudder, 1965]) as one of the earliest SSL approaches has recently been shown to
obtain state-of-the-art performance for tasks like neural machine translation [He et al., 2019], named
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Figure 1: Uncertainty-aware self-training framework.
entity recognition and slot tagging for task-oriented dialog systems [Wang et al., 2020a]; performing
at par with supervised systems without using any auxiliary resources. For self-training, a base model
(teacher) is trained on some amount of labeled data and used to pseudo-annotate (task-specific)
unlabeled data. The original labeled data is augmented with the pseudo-labeled data and used to train
a student model. The student-teacher training is repeated until convergence. Such frameworks have
also been recently used for distillation [Wang et al., 2020b, Mukherjee and Hassan Awadallah, 2020]
to transfer knowledge from huge pre-trained language models to shallow student models for efficient
inference often operating over task-specific labeled data and unlabeled transfer data.

Traditionally, self-training mechanisms do not consider the teacher uncertainty or perform any sample
selection during the pseudo-labeling process. This may result in gradual drifts from self-training on
noisy pseudo-labeled instances [Zhang et al., 2017]. Sample selection leveraging teacher confidence
has been studied in curriculum learning [Bengio et al., 2009] and self-paced learning [Kumar et al.,
2010] frameworks. These works leverage the easiness of the samples to inform a learning schedule
like training on easy concepts first followed by complex ones. Since it is hard to assess the easiness of
a sample, especially in deep neural network based architectures, these works rely only on the teacher
model loss, while ignoring its uncertainties, for sample selection.

Intuitively, if the teacher model already predicts some samples with high confidence, then there is
little to gain with self-training if we focus only on these samples. On the other hand, hard examples
for which the teacher model has less confidence are hard to rely on for self-training as these could
be noisy or too difficult to learn from. In this scenario, the model could benefit from judiciously
selecting examples for which the teacher model is uncertain about. However, it is non-trivial to
generate uncertainty estimates for non-probabilistic models like deep neural networks. To this end, we
leverage recent advances in Bayesian deep learning [Gal and Ghahramani, 2016] to obtain uncertainty
estimates of the teacher for pseudo-labeling and improving the self-training process.

Our task and framework overview. We focus on leveraging pre-trained language models for
classification with few labeled samples (e.g., K = {20, 30}) per class for training and validation, and
large amounts of task-specific unlabeled data. Figure 1(a) shows an overview of a traditional self-
training framework, where augmented data is obtained from hard pseudo-labels from the teacher (e.g.,
BERT [Devlin et al., 2019]) without accounting for its uncertainty. Figure 1(b) shows an overview
of our uncertainty-aware self-training framework (UST)1. We extend the traditional self-training
framework with three core components, namely: (i) Masked model dropout for uncertainty estimation:
We adopt MC dropout [Gal and Ghahramani, 2016] as a technique to obtain uncertainty estimates
from the pre-trained language model. In this, we apply stochastic dropouts after different hidden
layers in the neural network model and approximate the model output as a random sample from the
posterior distribution. This allows us to compute the model uncertainty in terms of the stochastic
mean and variance of the samples with a few stochastic forward passes through the network. (ii)
Sample selection. Given the above uncertainty estimates for a sample, we employ entropy-based
measures to select samples that the teacher is most or least confused about to infuse for self-training
corresponding to easy- and hard-entropy-aware example mining. (iii) Confident learning. In this,
we train the student model to explicitly account for the teacher confidence by emphasizing on the
low variance examples. All of the above components are jointly used for end-to-end learning. We
adopt BERT as our encoder and show that its performance can be significantly improved by an
average of 12% for few-shot settings without using any auxiliary resources. Furthermore, we also

1Code is available at http://aka.ms/UST
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outperform recent models [Xie et al., 2019] that make use of auxiliary resources like back-translation.
In summary, our work makes the following contributions. (i) Develops an uncertainty-aware self-
training framework for few-shot text classification. (ii) Compares the effectiveness of various sample
selection schemes leveraging teacher uncertainty for self-training. (iii) Demonstrates its effectiveness
for text classification with few labeled samples on five benchmark datasets.

2 Background

Consider Dl = {xi, yi} to be a set of n labeled instances with yi being the class label for xi. Each
xi is a sequence of m tokens: xi = {xi1, xi2 · · ·xim}. Also, consider Du = {xj} to be a set of N
unlabeled instances, where n� N . For most tasks, we have access to a small amount of labeled data
along with a larger amount of unlabeled ones.

Self-training starts with a base teacher model trained on the labeled set Dl. The teacher model
is applied to a subset Su ⊂ Du of the unlabeled data Du to obtain pseudo-labeled instances. The
augmented data Dl ∪ Su is used to train a student model. The teacher-student training schedules are
repeated till a convergence criterion is satisfied. The unlabeled subset S is usually selected based on
confidence scores of the teacher model. In Section 3.1, we study different techniques to generate this
subset leveraging uncertainty of the teacher model. Self-training process can be formulated as:

minW Exl,yl∈Dl [−log p(yl|xl;W )] + λExu∈Su,Su⊂DuEy∼p(y|xu;W∗)[−log p(y|xu;W )] (1)

where p(y|x;W ) is the conditional distribution under model parameters W . W ∗ is given by the
model parameters from the last iteration and fixed in the current iteration. Similar optimization
functions have been used recently in variants of self-training for neural sequence generation [He et al.,
2019], data augmentation [Xie et al., 2019] and knowledge distillation.

Bayesian neural network (BNN) [Gal and Ghahramani, 2015] assumes a prior distribution over its
weights, thereby, replacing a deterministic model’s weight parameters by a distribution over these
parameters. For inference, instead of directly optimizing for the weights, BNN averages over all the
possible weights, also referred to as marginalization.

Consider fW (x) ∈ Rh to be the h−dimensional output of such a neural network where the model
likelihood is given by p(y|fW (x)). For classification, we can further apply a softmax likelihood to the
output to obtain: P (y = c|x,W ) = softmax(fW (x)). (2)

Bayesian inference aims to find the posterior distribution over the model parameters p(W |X,Y ).
Given an instance x, the probability distribution over the classes is given by marginalization over the
posterior distribution as: p(y = c|x) =

∫
W
p(y = c|fW (x))p(W |X,Y )dW .

This requires averaging over all possible model weights, which is intractable in practice. Therefore,
several approximation methods have been developed based on variational inference methods and
stochastic regularization techniques using dropouts. Here, the objective is to find a surrogate
distribution qθ(w) in a tractable family of distributions that can replace the true model posterior
that is hard to compute. The ideal surrogate is identified by minimizing the Kullback-Leibler (KL)
divergence between the candidate and the true posterior.

Consider qθ(W ) to be the Dropout distribution [Srivastava et al., 2014] which allows us to sample T
masked model weights {W̃t}Tt=1 ∼ qθ(W ). For classification tasks, the approximate posterior can be
now obtained by Monte-Carlo integration as:

p(y = c|x) ≈ p(y = c|fW (x))qθ(W )dW

≈ 1

T

T∑
t=1

p(y = c|fW̃t(x)) =
1

T

T∑
t=1

softmax(fW̃t(x))
(3)

3 Uncertainty-aware Self-training

Given a pre-trained language model as the teacher, we first fine-tune it on the small amount of labeled
data. To this end, we use a small batch size to gradually expose the teacher model to the few available
labels. Given our low-resource setting, we do not compute uncertainty estimates over the small
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labeled set. Instead, given the teacher model, we compute uncertainty estimates over each instance
from the large unlabeled set as follows. Considering dropouts enabled before every hidden layer
in the teacher model, we perform several stochastic forward passes through the network for every
unlabeled sample. For computational efficiency, we perform these stochastic passes and hence the
self-training over sampled mini-batches.

For each unlabeled instance xu, given T stochastic forward passes through the network with dropout,
each pass t ∈ T with corresponding model parameters W̃t ∼ qθ(W ), generates a pseudo-label given
by Equation (2) as p(yt∗) = softmax(fW̃t(xu)).

There are several choices to integrate this pseudo-label for self-training, including, considering
E(y) = 1

T

∑T
t=1 softmax(f

W̃t(x)) for the soft pseudo-labels as well as discretizing them for hard
labels and aggregating predictions from the T passes as:

yu = argmaxc

T∑
t=1

I[argmaxc′(p(yt∗ = c′)) = c] (4)

where I(.) is an indicator function. Empirically, the hard pseudo-labels work better in our framework
with standard log loss. Similar observation has been reported in contemporary works [Kumar et al.,
2020, Wang et al., 2020a] in self-training, which refer to this as label sharpening. The pseudo-labeled
data is used to augment and re-train the model with the steps repeated until convergence. At each
self-training iteration, the model parameters W ∗ from the previous iteration are used to compute
the predictive mean E(y) of the samples before re-training the model end-to-end on the augmented
(pseudo-labeled) data to learn the new parameters W .

In order to incorporate the above uncertainty measures in the self-training framework, we modify the
loss component over unlabeled data in the original self-training learning process (Equation 1) as:

minW,θ Exu∈Su,Su⊂Du E
W̃∼qθ(W∗)

E
y∼p(y|fW̃ (xu))

[−log p(y|fW (xu))] (5)

where W ∗ denotes the model parameters from the previous iteration of the self-training process.

3.1 Sample Selection

Prior works have leveraged various measures to sample instances based on predictive entropy [Shan-
non, 2001], variation ratios [Freeman, 1965], standard deviation and more recently based on model
uncertainty, like Bayesian Active Learning by Disagreement (BALD) [Houlsby et al., 2011] lever-
aging stochastic dropouts. Consider D′u = {xu, yu} to be the pseudo-labeled dataset obtained
by applying the teacher model to the unlabeled data. The objective of the BALD measure is
to select samples that maximize the information gain about the model parameters, or in other
words, maximizing the information gain between predictions and the model posterior given by:
B(yu,W |xu, D′u) = H[yu|xu, D′u]− Ep(W |D′u)[H[yu|xu,W ]], where H[yu|xu,W ] denotes the en-
tropy of yu given xu under model parameters W . Gal et al. [2017] show that the above measure can
be approximated with the Dropout distribution qθ(W ) such that:

B̂(yu,W |xu, D′u) = −
∑
c

( 1
T

∑
t

p̂tc
)
log
( 1
T

∑
t

p̂tc
)
+

1

T

∑
t,c

p̂tclog
(
p̂tc
)

(6)

where, p̂tc = p(yu = c|fW̃t(xu)) = softmax(fW̃t(xu)).

The above measure depicts the decrease in the expected posterior entropy in the output space y.
This results in a tractable estimation of the BALD acquisition function with B̂(yu,W |.) −−−−→

T→∞
B(yu,W |.). A high value of B̂(yu,W |xu, D′u) indicates that the teacher model is highly confused
about the expected label of the instance xu. We use this measure to rank all the unlabeled instances
based on uncertainty for further selection for self-training.

Class-dependent selection. We can further modify this measure to take into account the expected
class label of the instance. This helps in sampling equivalent number of instances per class, and
avoids the setting where a particular class is typically hard, and the model mostly samples instances
from that class. Given the pseudo-labeled set Su, we can construct the set {xu ∈ Su,c : yu = c} for
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Algorithm 1: Uncertainty-aware self-training (UST).
Continue pre-training teacher language model on task-specific unlabeled data Du ;
Fine-tune model fW with parameters W on task-specific small labeled data Dl ;
while not converged do

Randomly sample Su unlabeled examples from Du ;
for x ∈ Su do

for t← 1 to T do
Wt ∼ Dropout(W ) ;
y∗
t = softmax(fWt(x));

end
Compute predictive sample mean E(y) and predictive sample variance V ar(y) with Equation 9 ;
Compute BALD acquisition function with Equation 6 ;

end
Sample R instances from Su employing sample selection with Equations 7 or 8 ;
Pseudo-label R sampled instances with model fW ;
Re-train model on R pseudo-labeled instances with Equation 12 and update parameters W ;

end

every class c. Now, we use the BALD measure to select instances from each class-specific set instead
of a global selection.

Selection with exploration. Given the above measure, there are choices to select the pseudo-labeled
examples for self-training, including mining hard ones and easy ones (as in curriculum learning and
self-paced learning). To this end, we can select the top-scoring instances for which the model is least
or most uncertain about, ranked by 1− B̂(yu,W |xu, D′u) and B̂(yu,W |xu, D′u) respectively. In the
former case, if the model is always certain about some examples, then these might be too easy to
contribute any additional information. In the latter case, emphasizing only on the hard examples
may result in drift due to noisy pseudo-labels. Therefore, we want to select examples with some
exploration to balance these schemes with sampling using the uncertainty masses. To this end, given a
budget of R examples to select, we sample instances xu ∈ Su,c without replacement with probability:

peasyu,c =
1− B̂(yu,W |xu, D′u)∑

xu∈Su,c 1− B̂(yu,W |xu, D′u)
(7) phardu,c =

B̂(yu,W |xu, D′u)∑
xu∈Su,c B̂(yu,W |xu, D

′
u)

(8)

Our framework can use either of the above two strategies for selecting pseudo-labeled samples from
the unlabeled pool for self-training; where these strategies bias the sampling process towards picking
easier samples (less uncertainty) or harder ones (more uncertainty) for re-training.

3.2 Confident Learning

The above sampling strategies select informative samples for self-training conditioned on the posterior
entropy in the label space. However, they use only the predictive mean, while ignoring the uncertainty
of the model in terms of the predictive variance. Note that many of these strategies implicitly
minimize the model variance (e.g., by focusing more on difficult examples for hard example mining).
The prediction uncertainty of the teacher model is given by the variance of the marginal distribution,
where the overall variance can be computed as:

V ar(y) = V ar[E(y|W,x)] + E[V ar(y|W,x)] (9)

= V ar(softmax(fW (x)) + σ2 (10)

≈
(
1

T

T∑
t=1

yt
∗(x)T yt

∗(x)− E(y)TE(y)

)
+ σ2 (11)

where, yt∗(x) = softmax(fW̃t(x)) and the predictive mean computed as: E(y) = 1
T

∑T
t=1 yt

∗(x).

We observe the total variance can be decomposed as a linear combination of the model uncertainty
from parameters W and the second component results from noise in the data generation process.
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In this phase, we want to train the student model to explicitly account for the teacher uncertainty for
the pseudo-labels in terms of their predictive variance. This allows the student model to selectively
focus more on the pseudo-labeled samples that the teacher is more confident on (corresponding
to low variance samples) compared to the less certain ones (corresponding to high variance ones).
Accordingly, we update the loss function over the unlabeled data in the self-training mechanism given
by Equation 5 to update the student model parameters as:

minW,θ Exu∈Su,Su⊂Du E
W̃∼qθ(W∗)

E
y∼p(y|fW̃ (xu))

[log p(y|fW (xu)) · log V ar(y)] (12)

In the above equation, the per-sample loss for an instance xu is a combination of the log loss
−log p(y) and (inverse of) its predictive variance given by log 1

V ar(y) with log transformation for
scaling. This penalizes the student model more on mis-classifying instances that the teacher is more
certain on (i.e. low variance samples), and vice-versa.

Implementation details. Algorithm 1 outlines the uncertainty-aware self-training process. In
our experiments, we employ a single model for self-training. Essentially, we copy teacher model
parameters to use as the student model and continue self-training. Although, some works re-initialize
the student model from scratch. Sample size. Ideally, we need to perform T stochastic forward passes
for each sample in the large unlabeled pool which is quite slow for all practical purposes. Therefore,
for computational efficiency, at each self-training iteration, we randomly select Su samples from the
unlabeled set, and then select R ∈ Su samples from therein based on uncertainty estimates using
several stochastic forward passes.

4 Experiments

Encoder. Pre-trained language models like BERT [Devlin et al., 2019], GPT-2 [Radford et al., 2019]
and RoBERTa [Liu et al., 2019] have shown state-of-the-art performance for various natural language
processing tasks. In this work we adopt one of these namely, BERT as our base encoder or teacher
model. We initialize the teacher model with the publicly available pre-trained checkpoint [Devlin
et al., 2019]. To adapt the teacher language model for every downstream task, we further continue
pre-training on task-specific unlabeled data Du using the original language modeling objective. The
teacher is finally fine-tuned on task-specific labeled data Dl to give us the base model for self-training.

Table 1: Dataset summary (W: avg. words / doc).
Dataset Class Train Test Unlabeled #W

IMDB 2 25K 25K 50K 235
DBpedia 14 560K 70K - 51
AG
News

4 120K 7.6K - 40

Elec 2 25K 25K 200K 108

Datasets. We perform large-scale experiments
with data from five domains for different tasks
as summarized in Table 1. SST-2 [Socher
et al., 2013], IMDB [Maas et al., 2011] and
Elec [McAuley and Leskovec, 2013] are used
for sentiment classification for movie reviews
and Amazon electronics product reviews respec-
tively. The other two datasets Dbpedia [Zhang
et al., 2015] and Ag News [Zhang et al., 2015]
are used for topic classification of Wikipedia and news articles respectively. For every dataset, we
sample K labeled instances from Train data, and add remaining to the Unlabeled data in Table 1.

Evaluation setting. For self-training, we fine-tune the base model (teacher) on K labeled instances
for each task to start with. Specifically, we consider K = 30 instances for each class for training and
similar for validation, that are randomly sampled from the corresponding Train data in Table 1. We
also show results of the final model on varying K ∈ {20, 30, 50, 100, 500, 1000}. We repeat each
experiment five times with different random seeds and data splits, use the validation split to select
the best model, and report the mean accuracy on the blind test data. We implement our framework
in Tensorflow and use four Tesla V100 GPUs for experimentation. We use Adam [Kingma and Ba,
2015] as the optimizer with early stopping and use the best model found so far from the validation
loss for all the models. Hyper-parameter configurations with detailed model settings presented in
Appendix. We report results from our UST framework with easy sample selection strategy employing
Equation 7, unless otherwise mentioned.

Baselines. Our first baseline is BERT-Base with 110 MM parameters fine-tuned onK labeled samples
Dl for downstream tasks with a small batch-size of 4 samples, and remaining hyper-parameters
retained from its original implementation. Our second baseline, is a recent work UDA [Xie et al.,
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Table 2: Accuracy comparison of different models for text classification on five benchmark datasets.
All models use the same BERT-Base encoder and pre-training mechanism. All models (except ‘all
train’) are trained with 30 labeled samples for each class and overall accuracy aggregated over five
different runs with different random seeds. The accuracy number for each task is followed by the
standard deviation in parentheses and percentage improvement (↑) over few-shot BERT.

Dataset All train 30 labels per class for training and for validation

BERT BERT UDA Classic ST UST (our method)

SST 92.12 69.79 (6.45) 83.58 (2.64) (↑ 19.8) 84.81 (1.99) (↑ 21.5) 88.19 (1.01) (↑ 26.4)

IMDB 91.70 73.03 (6.94) 89.30 (2.05) (↑ 22.3) 78.97 (8.52) (↑ 8.1) 89.21 (0.83) (↑ 22.2)

Elec 93.46 82.92 (3.34) 89.64 (2.13) (↑ 8.1) 89.92 (0.36) (↑ 8.4) 91.27 (0.31) (↑ 10.1)

AG News 92.12 80.74 (3.65) 85.92 (0.71) (↑ 6.4) 84.62 (4.81) (↑ 4.8) 87.74 (0.54) (↑ 8.7)

DbPedia 99.26 97.77 (0.40) 96.88 (0.58) (↓ 0.9) 98.39 (0.64) (↑ 0.6) 98.57 (0.18) (↑ 0.8)

Average 93.73 80.85 (4.16) 89.06 (1.62) (↑ 10.2) 87.34 (3.26) (↑ 8.0) 91.00 (0.57) (↑ 12.6)

2019] leveraging back-translation2 for data augmentation for text classification. UDA follows similar
principles as Virtual Adversarial Training (VAT) [Miyato et al., 2017] and consistency training [Laine
and Aila, 2017, Sajjadi et al., 2016] such that the model prediction for the original instance is similar
to that for the augmented instance with a small perturbation. In contrast to prior works for image
augmentation (e.g., flipping and cropping), UDA leverages back-translation for text augmentation.
In contrast to other baselines, this requires auxiliary resources in terms of a trained NMT system to
generate the back-translation. Our third baseline is the standard self-training mechanism without
any uncertainty. In this, we train the teacher model on Dl to generate pseudo-labels on Du, train
the student model on pseudo-labeled and augmented data, and repeat the teacher-student training
till convergence. Finally, we also compare against prior SSL works – employing semi-supervised
sequence learning [Dai and Le, 2015], adversarial training [Goodfellow et al., 2015, Miyato et al.,
2017], variational pre-training [Gururangan et al., 2019], reinforcement learning [Li and Ye, 2018],
temporal ensembling and mean teacher models [Laine and Aila, 2017, Tarvainen and Valpola, 2017,
Sajjadi et al., 2016], layer partitioning [Li and Sethy, 2019] and delta training [Jo and Cinarel, 2019] –
on these benchmark datasets on the same Test data and report numbers from corresponding works.

Overall comparison. Table 2 shows a comparison between the different methods. We observe
that the base teacher model trained with only 30 labeled samples for each class for each task has
a reasonable good performance with an aggregate accuracy of 80.85%. This largely stems from
using BERT as the encoder starting from a pre-trained checkpoint instead of a randomly initialized
encoder, thereby, demonstrating the effectiveness of pre-trained language models as natural few-shot
learners. We observe the classic self-training approach leveraging unlabeled data to improve over
the base model by 8%. UDA leverages auxiliary resources in the form of back-translation from an
NMT system for augmentation to improve by over 10%. Finally, our UST method obtains the best
performance by improving more than 12% over the base model, 4% over classic ST and 2% over
UDA without any additional resources. Note that our UDA results are different from the original
work due to different sequence length and batch sizes resulting from V100 GPU memory constraints.

Our method reduces the overall model variance in terms of both implicit reduction by selecting
samples with low uncertainty for self-training and explicit reduction by optimizing for the sample
variance for confident learning. This is demonstrated in a consistent performance of the model across
different runs with an aggregated (least) standard deviation of 0.57 across different runs of the model
for different tasks with different random seeds. UDA with its consistency learning closely follows
suit with an aggregated standard deviation of 1.62 across different runs for different tasks. Classic ST
without any such mechanism shows high variance in performance across runs with different seeds. In
Table 4, we show the results from other works on these datasets as reported in [Li and Ye, 2018, Jo
and Cinarel, 2019, Li and Sethy, 2019, Gururangan et al., 2019]3. We observe our model to obtain at
least 7% improvement in IMDB and 4% improvement in AG News over our closest baseline in the

2A sentence is translated to a foreign language followed by back-translation to the source language. Due to
noise injected by Neural Machine Translation systems, back-translation is often a paraphrase of the original.

3Note that these models use different encoders and pre-training mechanisms.
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Table 3: Ablation analysis of our framework with different sample selection strategies and components
including class-dependent sample selection with exploration (Class) and confident learning (Conf)
for uncertainty-aware self-training with 30 labeled examples per class for training and for validation.

SST IMDB Elec AG News Dbpedia Average

BERT 69.79 73.03 82.92 80.74 97.77 80.85

Classic ST (Uniform) 84.81 78.97 89.92 84.62 98.39 87.34

UST (Easy) 88.19 89.21 91.27 87.74 98.57 91.00
- removing Class 87.33 87.22 89.18 86.88 98.27 89.78
- removing Conf 86.73 90.00 90.40 84.17 98.49 89.96

UST (Hard) 88.02 88.49 90.00 85.02 98.56 90.02
- removing Class 80.45 89.28 90.07 83.07 98.46 88.27
- removing Conf 88.48 87.93 88.74 84.45 98.26 89.57

form of variational pre-training [Gururangan et al., 2019] and reinforcement learning with adverarial
training [Li and Ye, 2018], while using 3x-6x less training labels (shown by K in Table 4).
Ablation analysis. We compare the impact of different components of our model for self-training
with 30 labeled examples per class for each task for training and for validation with results in Table 3.
Sampling strategies. The backbone of the sample selection method in our self-training framework is
given by the BALD measure [Houlsby et al., 2011] that has been shown to outperform other active
sampling strategies leveraging measures like entropy and variation ratios in Gal et al. [2017] for
image classification. We use this measure in our framework to sample examples based on whether the
model is confused about the example or not by leveraging sampling strategies in Equations 8 or 7 and
optimized by self-training with Equation 12 – denoted by UST (Hard) and UST (Easy) respectively in
Table 3. In contrast to works in active learning that find hard examples to be more informative than
easy ones for manual labeling, in the self-training framework we observe the opposite, where hard
examples often contribute noisy pseudo-labels. We compare this with uniform sampling in the classic
ST framework, and observe that sample selection bias (easy or hard) benefits self-training.
Class-dependent selection with exploration. In this, we remove the class-dependent selection and
exploration with global selection of samples based on their easiness or hardness for the corresponding
UST sampling strategy. Class-dependent selection ameliorates model bias towards picking samples
from a specific class that might be too easy or hard to learn from with balanced selection of samples
across all the classes, and improves our model on aggregate.
Confident learning. In this, we remove confident learning from the UST framework. Therefore, we
optimize the unlabeled data loss for self-training using Equation 5 instead of Equation 12 that is used
in all other UST strategies. This component helps the student to focus more on examples the teacher
is confident about corresponding to low-variance ones, and improves the model on aggregate.
Overall, we observe that each of the above uncertainty-based sample selection and learning strategies
outperform the classic self-training mechanism selecting samples uniform at random.

Impact of K labeled examples. In Figure 2, we fix the random seed and vary the training labels.
We observe the self-training accuracy to gradually improve with increase in the number of labeled
examples per class to train the base teacher model leading to better initialization of the self-training
process. With only 20 labeled examples for each task for training and for validation, we observe the
aggregate performance across five tasks to be 89.27% with further improvements with more labeled
data coming from IMDB and AG news datasets. For tasks like DBpedia and Elec with very high
performance given few training labels, there is diminishing returns on injecting more labels.

Impact of self-training iterations. Figure 3 shows increase in self-training accuracy of UST over
iterations for a single run. In general, we observe the self-training performance to improve rapidly
initially, and gradually converge in 15-20 iterations. We also observe some models to drift a bit while
continuing the self-training process and similar for consistency learning in UDA beyond a certain
point. This necessitates the use of the validation set for early termination based on validation loss.

5 Related Work

Semi-supervised learning has been widely used in many different flavors including consistency
training [Bachman et al., 2014, Rasmus et al., 2015, Laine and Aila, 2017, Tarvainen and Valpola,
2017], latent variable models [Kingma et al., 2014] for sentence compression [Miao and Blunsom,
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Figure 2: UST accuracy withK train labels/class.

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SST IMDB Elec AG News DbPedia

Figure 3: UST accuracy over iterations.

Datasets Model K Labels Acc.
IMDB UST (ours) 30 89.2

Variational Pre-training 200 82.2
Reinforcement + Adv. Training 100 82.1
SeqSSL + Self-training 100 79.7
SeqSSL 100 77.4
Layer Parti. + Temp. Ensembling 100 75.9
SeqSSL + Adv. Training 100 75.7
Delta-training 212 75.0
Layer Parti. + Π Model 100 69.3

AG News UST (ours) 30 87.7
Variational Pre-training 200 83.9
Reinforcement + Adv. Training 100 81.7
SeqSSL + Self-training 100 78.5
SeqSSL 100 76.2
SeqSSL + Adv. Training 100 73.0

DBpedia UST (ours) 30 98.6
Reinforcement + Adv. Training 100 98.5
SeqSSL + Self-training 100 98.1
SeqSSL + Adv. Training 100 96.7
SeqSSL 100 96.1

Table 4: SSL methods with K train labels/class (Adv:
Adversarial, Parti: Partitioning, Temp: Temporal).

2016] and code generation [Yin et al., 2018]. More recently, consistency-based model like UDA [Xie
et al., 2019] has shown promising results for few-shot learning for classification leveraging auxiliary
resources like paraphrasing and back-translation (BT) [Sennrich et al., 2016].

Sample selection. One of the earlier works in neural networks leveraging easiness of the samples for
learning is given by curriculum learning [Bengio et al., 2009]. This is based on the idea of learning
easier aspects of the task first followed by the more complex ones. However, the main challenge is
the identification of easy and hard samples in absence of external knowledge. Prior work leveraging
self-paced learning [Kumar et al., 2010] and more recently self-paced co-training [Ma et al., 2017]
leverage teacher confidence (or lower model loss) to select easy samples during training. In a
similar flavor, some recent works have also focused on sample selection for self-training leveraging
meta-learning [Li et al., 2019] and active learning [Panagiota Mastoropoulou, 2019, Chang et al.,
2017] based on teacher confidence. However, all of these techniques rely on only the teacher
confidence while ignoring the uncertainty associated with its predictions. In a recent extension of
this work to sequence labeling for named entity recognition and slot tagging for task-oriented dialog
systems, Wang et al. [2020a] leverage meta-learning for adaptive sample re-weighting to mitigate
error propagation from noisy pseudo-labels. There are also works on anti-curriculum learning (or
hard example mining) [Shrivastava et al., 2016] that leverage hardness of the samples.

Uncertainty in neural networks. A principled mechanism to generate uncertainty estimates is
provided by Bayesian frameworks. A Bayesian neural network Gal and Ghahramani [2016] replaces
a deterministic model’s weight parameters with distributions over model parameters. Parameter
optimization is replaced by marginalisation over all possible weights. It is difficult to perform
inference over BNN’s as the marginal distribution cannot be computed analytically, and we have to
resort to approximations such as variational inference to optimize for variational lower bound [Graves,
2011, Blundell et al., 2015, Hernández-Lobato et al., 2016, Gal and Ghahramani, 2015].

6 Conclusions

In this work we developed an uncertainty-aware framework to improve self-training mechanism
by exploiting uncertainty estimates of the underlying neural network. We particularly focused on
better sample selection from the unlabeled pool based on posterior entropy and confident learning to
emphasize on low variance samples for self-training. As application, we focused on task-specific
fine-tuning of pre-trained language models with few labels for text classification on five benchmark
datasets. With only 20-30 labeled examples and large amounts of unlabeled data, our models perform
close to fully supervised ones fine-tuned on thousands of labeled examples. While pre-trained
language models are natural few-shot learners, we show their performance can be improved by up
to 12% using uncertainty-aware self-training. Some interesting future work include extending these
methods to structured learning tasks like semantic parsing, multi-lingual settings with low-resource
languages, and more real-world scenarios involving noisy or out-of-domain transfer data.
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Broader Impact

In this work, we introduce a framework for self-training of neural language models with only a few
labeled examples.

This work is likely to increase the progress of NLP applications and drive the development of
general-purpose language systems especially for domains with limited resources. While it is not only
expensive to acquire large amounts of labeled data for every task and language, in many cases, we
cannot perform large-scale labeling due to access constraints from privacy and compliance concerns.
The latter concerns are amplified when dealing with sensitive user data for various personalization
and recommendation tasks. Our framework helps in this regard for the NLP systems to obtain
state-of-the-art-performance while alleviating privacy concerns.

To this end, our framework can be used for applications in finance, legal, healthcare, retail and other
domains where adoption of deep neural network may have been hindered due to lack of large-scale
manual annotations on sensitive user data.

While our framework accelerates the progress of NLP, it also suffers from associated societal
implications of automation ranging from job losses for workers who provide annotations as a service
as well as for other industries relying on human labor. Additionally, it suffers from similar concerns as
with the use of NLP models by malicious agents for propagating bias, misinformation and indulging
in other nefarious activities.

However, many of these concerns can also be alleviated with our framework to develop better
detection models and mitigation strategies with only a few representative examples of such intents.
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