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Scalable Lattice Influence Maximization
Wei Chen, Fellow of IEEE, Ruihan Wu, and Zheng Yu

Abstract—Influence maximization is the task of finding k seed
nodes in a social network such that the expected number of acti-
vated nodes in the network (under certain influence propagation
model), referred to as the influence spread, is maximized. Lattice
influence maximization (LIM) generalizes influence maximization
such that, instead of selecting k seed nodes, one selects a vector
x = (x1, . . . , xd) from a discrete space X called a lattice,
where xj corresponds to the j-th marketing strategy and x
represents a marketing strategy mix. Each strategy mix x has
probability hu(x) to activate a node u as a seed. LIM is the
task of finding a strategy mix under the constraint

∑
j xj ≤ k

such that its influence spread is maximized. We adapt the
reverse influence sampling (RIS) approach and design scalable
algorithms for LIM. We explore two complementary design
choices: one algorithm IMM-PRR is based on partial coverage
on reverse-reachable sets and the other IMM-VSN is based on
incorporating virtual strategy nodes. IMM-PRR can be applied as
a general solution to LIM, and we further improve its efficiency
for a large family of models where each strategy independently
activates seed nodes. IMM-VSN is explicitly designed for the case
of independent strategy activation, and it uses virtual nodes
to represent strategies to reduce LIM back to the original
influence maximization problem. We prove that both IMM-PRR
and IMM-VSN guarantees 1 − 1/e − ε approximation for small
ε > 0. We further extend LIM to the partitioned budget case
where strategies are partitioned into groups, each of which has
a separate budget, and show that a minor variation of our
algorithms would achieve 1/2 − ε approximation ratio with the
same time complexity. Empirically, through extensive tests we
demonstrate that IMM-VSN runs faster than IMM-PRR and much
faster than other baseline algorithms while providing the same
level of influence spread. We conclude that IMM-VSN is the
best one for models with independent strategy activations, while
IMM-PRR works for general modes without this assumption.

Index Terms—influence maximization, lattice influence max-
imization, scalable influence maximization, reverse influence
sampling

I. INTRODUCTION

THE classical influence maximization task is to find
a small set of seed nodes to maximize the expected

number of activated nodes from these seeds, referred to as
the influence spread, based on certain diffusion process in
a social network [1]. It models the viral marketing scenario
in social networks and its variants also find applications in
diffusion monitoring, rumor control, crime prevention, etc.
(e.g., [2], [3], [4], [5]). Therefore, numerous studies on influ-
ence maximization have been conducted since its inception.
One important direction is scalable influence maximization,
which aims at design efficient approximation algorithms and
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heuristics for large social networks. Many diverse approaches
including graph theoretic heuristics, sketching methods, and
random sampling have been tried for scalable influence max-
imization (e.g., [6], [7], [8], [9], [10], [11], [12]). Other
directions include competitive and complementary influence
maximization [3], [4], [13], continuous-time influence maxi-
mization [14], topic-aware influence maximization [15], etc.

However, a generalization of influence maximization al-
ready considered by Kempe et al. in their seminal paper [1]
receives much less attention and is left largely unexplored.
Kempe et al. consider viral marketing scenarios with a general
marketing strategy mix of d different strategies, with each
strategy j taking value xj (e.g., money put into strategy j). The
combined strategy mix is a vector x = (x1, x2, . . . , xd). When
applying the strategy mix x to the social network, each node u
in the social network has a probability of hu(x) to be activated
as a seed. After the seeds are probabilistically activated by the
marketing strategies, influence propagates from the seeds in
the network as dictated by an influence diffusion model. The
optimization problem is to find the best strategy mix x∗ that
maximizes the influence spread subject to the budget constraint∑
j∈[d] xj ≤ k, where notation [d] means {1, 2, . . . , d}. In

this paper, we consider strategy mixes taken from a discrete
space X referred to as a lattice, and thus we call the above
optimization problem lattice influence maximization (LIM).

LIM represents more realistic scenarios, since in practice
companies often apply a mix of marketing strategies, such as
coupons, direct mails, marketing events, and target at different
segments of users. In [1], Kempe et al. outline the basic
approach based on submodularity and greedy algorithm to
solve the problem. This direction, however, has not been
further investigated in the research community. The only
relevant study we find is [16], which investigates influence
maximization with fractional or continuous discounts on users
in the network, a special case of the LIM problem.

In this paper, we provide a detailed study on the scalable
solutions for the LIM problem. It is well known that the naive
greedy approach for influence maximization is not scalable
due to excessive Monte Carlo simulations. The problem could
be even worse for LIM when we have a large strategy space
with complicated interactions with the social network. We
tackle this problem by adapting the reverse influence sampling
(RIS) approach [9], [10], [11], which is successful for the
classical influence maximization problem. The adaption of RIS
to LIM is not straightforward, because nodes in the network
are not deterministically selected as seeds but probabilistically
selected based on the complicate function hu(x). In fact, the
study in [16] does not apply the RIS approach and only
provides some heuristic algorithms without any theoretical
guarantee.

In our study, we explore two complementary design choices
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and design two algorithms based on the RIS approach. The
first approach extends the key idea in the RIS approach, which
shows that the influence spread of a seed set S equals to
n multiplied by the probability of S covering a randomly
generated reserve-reachable set (RR set) R, where n is the
total number of nodes in the network and S covering R means
S intersects with R. Our extension shows that the influence
spread of a strategy mix x equals to n multiplied by a partial
coverage of a random RR set R. From this extension, we
design a general scalable algorithm IMM-PRR adapted from
the IMM algorithm for the classical influence maximization
problem [11].

To improve the efficiency of IMM-PRR, we identify a large
class of LIM problems in which each strategy could indepen-
dently activate nodes as seeds in the social network, which we
call independent strategy activation. We show that this class of
problem covers many practical application scenarios including
user segment marketing, personalized marketing, and repeated
event marketing.

The second design choice is to reduce the LIM problem
into a classical influence maximization problem with seed set
selection. To do so, we need to covert strategies into virtual
strategy nodes (VSNs), and properly set up the propagation
from these VSNs to real nodes to establish the equivalence.
The reduction needs a novel integration of the classical inde-
pendent cascade (IC) and linear threshold (LT) models into
a single model to make it work, and this integration could
be of independent interest by itself. We refer to the resulting
algorithm as IMM-VSN.

For both IMM-PRR and IMM-VSN, we prove that they
provide 1−1/e−ε approximation to the LIM problem for any
ε > 0, and we analyze their time complexity, which indicates
that IMM-VSN could perform better in running time.

We further generalize LIM originally proposed by [1] to
accommodate partitioned budgets (denoted as the LIM-PB
problem), that is, the strategies are partitioned into groups and
each group has a separate budget. This matches the practical
scenario when marketing activities are coordinated by multiple
parties, each of which focusing on different marketing chan-
nels with different marketing budgets. We connect the LIM-
PB problem with submodular maximization under matroid
constraints, and thus it implies that a minor variation of our
algorithms would achieve 1/2 − ε approximation ratio with
the same time complexity.

We conduct extensive experiments of our algorithms and
several baseline algorithms (including algorithms proposed
in [16]) on five real-world networks with two different type of
marketing strategies. Our experimental results demonstrate that
IMM-VSN is faster than IMM-PRR, and is much faster than
all other baseline algorithms, while IMM-VSN and IMM-PRR
provide the same or slightly better influence spread than other
algorithms. Moreover, for both IMM-VSN/IMM-PRR, we can
easily tune one parameter to balance between theoretical
guarantee and faster performance.

In summary, we make the following contributions: (a) we
explore two design approach for scalable LIM solutions and
propose two algorithms with theoretical guarantees, one is
more general and the other is more efficient in the case of

independent strategy activations; (b) we extend the problem
of LIM to the case of partitioned budgets, and show that our
scalable algorithms can still provide constant approximation,
and (c) we demonstrate through experiments that IMM-VSN
is the best for the case of independent strategy activations, and
runs much faster than other algorithms.

A. Related Work

Influence maximization for viral marketing is first studied as
a data mining task in [17], [18]. Kempe et al. [1] are the first
to formulate the problem as a discrete optimization problem.
They propose the independent cascade (IC), linear threshold
(LT), triggering, and other more general models, study their
submodularity, and propose the greedy algorithm that gives 1−
1/e−ε approximate solution for ε > 0. They also propose the
LIM problem and the greedy approach to solve the problem.

Scalable influence maximization is an important direction
and receives many attention. Some early proposals rely on the
properties of the IC and LT models as well as efficient graph
algorithms to design scalable heuristics [19], [8], [7], [20].
Borgs et al. [9] propose the novel approach of reverse influence
sampling (RIS), which is able to provide both theoretical
guarantee and scalable performance in practice. The RIS
approach is improved by a series of studies [10], [11], [21],
[22], which is also a demonstration that even with the known
RIS approach achieving scalable influence maximization still
requires significant design effort. Our algorithm is based
on RIS and is adapted from the IMM algorithm [11]. The
adaptations from other algorithms (e.g. DSSA [21] or OPIM
[22]) would be similar, and we choose IMM mainly for its
relative simplicity for illustrative purpose.

Many other directions of influence maximization have been
studied, such as competitive and complementary influence
maximization, seed minimization, etc. They are less relevant
to our study, so we refer to a monograph [23] for more
comprehensive coverage on influence maximization.

In terms of the LIM problem, the most relevant study is
the one in [16]. In their model, each user could receive a
personalized discount, which is translated to the probability
of the user being activated as a seed. This corresponds to the
personalized marketing scenario in our setting. They propose
a scalable heuristic algorithm based on coordinate decent to
solve the problem. Comparing to their study, our algorithm is
better in (a) providing theoretical guarantees on approximation
ratio and running time; (b) solving a larger class of problems
covering segment marketing, event marketing etc.; and (c) out-
performing their algorithm in both running time and influence
spread.

Demaine et al. propose a fractional influence model, in
which the fractional solution xv for a node v affects not only
on v’s activation as a seed but also on v’s activation by its
neighbors during the diffusion process [24]. Thus, their model
is incomparable with our LIM model, although both allow
fractional solutions.

DR-submodular function maximization over lattices or con-
tinuous domain receives many attentions in recent years
(e.g., [25], [26], [27]). The continuous greedy algorithm
of [25] provides a theoretical solution framework for solving
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continuous submodular maximization with various constraints
and better approximation ratios, such as matroid or knapsack
constraints, but the continuous greedy algorithm is too slow
to be implemented in practice — it requires O(n5) iterations
in its main greedy loop. Soma et al. [26] provide solutions
for submodular maximization on a lattice with difference
submodular properties and constraints. The general L-Greedy
algorithm (Algorithm 1) corresponds to their greedy algorithm
for DR-submodular functions with uniform costs, and this
algorithm is used as a baseline algorithm MCLG with Monte
Carlo simulations for function evaluation. As shown by our
experiments, this general version of greedy algorithm is not
scalable for our LIM problem. Their paper does talk about
a scalable solution, but that is for a coverage problem in
bipartite graphs, which does not apply to our LIM setting.
Hassani et al. [27] apply the gradient method to continuous
submodular maximization. Gradient method needs to assume
that the objective function is continuous and differentiable,
but our greedy solution does not require such assumptions.
Moreover, it is nontrivial to adapt the gradient method to
the context of influence maximization. Besides the above
differences, all these study focus on general DR-submodular
functions while our algorithmic design focuses on the specific
DR-submodular function related to the influence maximization
task.

Very recently, Chen et al. [28] study the application of
the gradient method to the problem of continuous influence
maximization with budget saving (CIM-BS), which has the
objective function as g(x)+λ(k−c(x)), where g(x) is the in-
fluence spread of strategy mix x, c(x) is the cost of x, k is the
budget, and λ is a balance parameter. When λ = 0 the CIM-
BS problem corresponds to our LIM problem except that our
solution space is the discrete lattice. Their main result is that
for this general objective function with λ > 0, their gradient-
based algorithms could provide constant approximation but the
greedy algorithm no longer has such a guarantee because the
objective function is no long submodular. However, as they
show, applying the gradient method is nontrivial, and their
algorithms are not scalable to moderate or large networks.

II. MODEL AND PROBLEM DEFINITION

Influence propagation in social networks is modeled by the
triggering model [1]. A social network is modeled as a directed
graph G = (V,E), where V is the set of nodes representing
individuals, and E is the set of directed edges representing
influence relationships. We denote n = |V | and m = |E|. In
the triggering model, every node v has a distribution Dv over
all subsets of its in-neighbors. Each node is either inactive or
active, and once active it stays active. Before the propagation
starts, each node v samples a triggering set Tv ∼ Dv . The
propagation proceeds in discrete time steps t = 0, 1, 2, . . ..
At time t = 0, nodes in a given seed set S ⊆ V are
activated. For any time t ≥ 1, an inactive node v becomes
active if any only if at least one of its in-neighbors in Tv
becomes active by time t − 1. The propagation ends when
there is no newly activated nodes at a step. Two classical
models, independent cascade (IC) and linear threshold (LT),

are both special cases of the triggering model: In the IC
model, each edge (u, v) has an influence probability p(u, v),
and the triggering set Tv is sampled by independently sample
every incoming edge (u, v) of v with success probability
p(u, v) and put u into Tv if the edge sample is successful;
in the LT model, each edge (u, v) has an influence weight
w(u, v) ∈ [0, 1] such that

∑
u w(u, v) ≤ 1, and at most one

in-neighbor u is sampled into Tv with probability proportional
to w(u, v). When considering time complexity, we assume that
each sample Tv can be drawn with time proportional to the
in-degree of v, and this holds for both IC and LT models.

A key quantity is the influence spread of a seed set S,
denoted as σ(S), which is defined as the expected number
of final active nodes for the propagation starting from S. The
classical influence maximization task is to select at most k
seed nodes to maximize the influence spread, i.e., to find
S∗ = arg maxS⊆V,|S|≤k σ(S). The problem is NP hard, and
[1] proposes the greedy approximation algorithm, which is
based on the submodularity of σ(S) and guarantees 1−1/e−ε
approximation for any small ε > 0.

In this paper we study the extension of influence max-
imization with general marketing strategies [1]. A mix of
marketing strategies is modeled as a d-dimensional vector
x = (x1, . . . , xd) ∈ Rd+, where R+ is the set of nonnegative
real numbers. Each dimension corresponds to a particular
marketing strategy, e.g., direct mail to one segment of the
user base. Under the marketing strategy mix x, each node
u ∈ V is independently activated as a seed with the probability
given by the strategy activation function hu(x). Then the set
of activated seed nodes propagate the influence in the network
following the triggering model. We define the influence spread
of a marketing strategy mix x as the expected number of nodes
activated, and denote it as g(x):

g(x) = ES [σ(S)] =
∑
S⊆V

σ(S) ·
∏
u∈S

hu(x) ·
∏
v/∈S

(1− hv(x)).

(1)
The above formula can be interpreted as follows: for each
subset of nodes S, under the marketing strategy mix x, the
probability that exactly nodes in S are activated as seeds
and nodes not in S are not activated as seeds is given as∏
u∈S hu(x) ·

∏
v/∈S(1 − hv(x)), which is because the node

activations are independent. Then given that exactly nodes in
S are activated as seeds, the influences spread it generates is
σ(S). Therefore, enumerating through all possible subset set
S, we obtain the above formula.

We further consider a class of functions where each strategy
j independently tries to activate v as a seed. We refer to this
case as independent strategy activation. Suppose that the set of
strategies that may activate v is Sv ⊆ [d], and the probability
that strategy j with amount xj activates v as a seed is qv,j(xj),
with qv,j(0) = 0. Then we have

hv(x) = 1−
∏
j∈Sv

(1− qv,j(xj)). (2)

Many application scenarios fit into the independent strategy
activation assumption (Eq. (2)). We now give three such exam-
ples. The first application scenario is user segment marketing,
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in which each strategy j targets at a disjoint subset of users Vj .
In this case, for each user v, it has a unique strategy targeted
at v, i.e. |Sv| = 1.

The second scenario is personalized marketing, where each
user is targeted with a personalized strategy. The personalized
discount strategies studied in [16] belongs to this scenario.
Technically, this scenario is a special case of the above
segment marketing scenario, where the user segments Vj’s are
all singletons, and d = n.

The third scenario is repeated marketing such as multi-event
marketing. For example, each strategy j is a type of events,
and xj is the number of events of type j. Suppose that for
each event of type j, a user v targeted by this event has an
independent probability rv,j to be activated as a seed, then
qv,j(xj) = 1− (1− rv,j)xj .

In this paper, we consider discretized marketing strategies
with granularity parameter δ, i.e., each strategy xi takes
discretized values 0, δ, 2δ, . . .. This set of vectors is referred to
as a lattice, and is denoted as X . We consider the marketing
strategy mix x with a total budget constraint k: |x| ≤ k,
where |x| =

∑
i∈[d] xi. The above constraint can be thought

as the total monetary budget constraint, where xj is the
monetary expense on strategy j, but other interpretations are
also possible. Since we are doing influence maximization on
lattice X , we call it lattice influence maximization, as formally
defined below.

Definition 1 (Lattice Influence Maximization). Given a social
network G = (V,E) with the triggering model parameters
{Dv}v∈V , given the strategy activation functions {hv}v∈V
and a total budget k, the task of Lattice influence maximiza-
tion, denoted as LIM, is to find an optimal strategy mix x∗

that achieves the largest influence spread within the budget
constraint, that is

x∗ = argmax
x∈X ,|x|≤k

g(x).

Note that if X = {0, 1}n and hv(x) = xv , that is, v is
activated as a seed if and only if it is selected by strategy x, the
LIM problem becomes the classical influence maximization
problem. Therefore, LIM is more general, and inherits the
NP-hardness of the classical problem. For convenience, we
sometimes also use LIM to refer to the lattice-based propaga-
tion model described above.

To solve the LIM problem, Kempe et al. [1] propose the
greedy algorithm based on the diminishing return property
of g(x), commonly referred to as the DR-submodular prop-
erty [26], [29]. For two vectors x,y ∈ Rd, we denote x ≤ y
if xi ≤ yi for all i ∈ [d]. Let ei ∈ Rd be the unit vector with
the i-th dimension being 1 and all other dimensions being 0.
For a vector function f : X → R, we say that f is DR-
submodular if for all x,y ∈ X with x ≤ y, for all i ∈ [d],
f(x+ δei)− f(x) ≥ f(y+ δei)− f(y); and we say that f is
monotone (nondecreasing) if for all x ≤ y, f(x) ≤ f(y). Note
that a set function f is monotone if f(S) ≤ f(T ) for all S ⊆
T , and submodular if f(S∪{u})−f(S) ≥ f(T ∪{u})−f(T )
for all S ⊆ T and u 6∈ T . It is clear that if we represent sets
as binary vectors and take step size δ = 1, then it coincides
with monotonicity and DR-submodularity of vector functions.

Algorithm 1 Algorithm L-Greedy(f, k, δ)

Input: monotone DR-submodular f , budget k, granularity δ
Output: vector x

1: x = 0
2: for t = 1, 2, · · · , k · δ−1 do
3: j∗ = argmaxj∈[d] f(x + δej)
4: x = x + δej∗

5: end for
6: return x

When the vector function f on lattice X is nonnegative,
monotone and DR-submodular, the lattice-greedy (denoted as
L-Greedy) algorithm as given in Algorithm 1 achieves 1 −
1/e approximation [30]. The L-Greedy algorithm searches the
coordinate that gives the largest marginal return and moves one
step of size δ on that coordinate, until it exhausts the budget.

To apply the L-Greedy algorithm to LIM, Kempe et al. [1]
show that when hv’s are monotone and DR-submodular with
σ(S) being monotone and submodular, the influence spread
g(x) given in Eq. (1) is also monotone and DR-submodular.
Therefore, the L-Greedy algorithm can be applied to g(x).
As it is #P-hard to compute the influence spread σ(S) in the
IC and LT models [8], [19], we could use Monte Carlo simu-
lations to estimate g(x) to achieve 1− 1/e− ε approximation
for any small ε > 0.

We remark that in the LIM problem, for each strategy i, we
can add an upper bound constraint xi ≤ bi without changing
the problem, because we can extend the domain of xi beyond
bi by restricting hv(x) with some xi > bi to be the value at the
boundary xi = bi. It is easy to verify that this extension will
not affect monotonicity and DR-submodularity of function hv ,
nor will it affect the lattice-greedy algorithm.

III. SCALABLE ALGORITHMS FOR LIM
It is well known that the Monte Carlo greedy algorithm is

not scalable. In this paper, we propose scalable solutions to the
LIM problem based on the seminal reverse influence sampling
(RIS) approach [9], [10], [11], [21], [22]. In particular, we
adapt the IMM (Influence Maximization with Martingales)
algorithm of [11] in two different ways, one relies on partial
reverse reachable sets and is denoted as IMM-PRR, and the
other uses virtual strategy nodes and is denoted as IMM-VSN.

These two algorithms present two complementary ap-
proaches of extending the RIS approach to the LIM set-
ting: IMM-PRR extends the connection between the influence
spread function and the RR set (as shown in Lemma 1), while
IMM-VSN reduces the LIM problem into a standard influence
maximization by adding virtual nodes in the graph to represent
strategies. We want to evaluate both approaches, and thus
we present detailed implementation of both approaches, even
though our theoretical and experimental results indicate that
IMM-VSN provides better efficiency, at least in the case of
independent strategy activation.

We remark that the IMM algorithm shares the same algo-
rithm structure with other later RIS-based algorithms such as
DSSA [21] and OPIM [22]. Thus, these algorithms can also
be incorporated in our algorithms. We choose IMM as our base
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algorithm mostly because it is relatively easy to present and
analyze.

A. Reverse Reachable Sets and Its Properties

The RIS approach is based on the key concept of the reverse
reachable sets (RR sets), as defined below.

Definition 2 (Reverse Reachable Set). Under the triggering
model, a reverse reachable (RR) set rooted at a node v,
denoted Rv , is the random set of nodes v reaches in one
reverse propagation: sample all triggering sets {Tu}u∈V , such
that edges {(w, u) | u ∈ V,w ∈ Tu} together with nodes V
form a live-edge graph, and Rv is the set of nodes that can
reach v (or v can reach reversely) in this live-edge graph. An
RR set R without specifying a root is one with root v selected
uniformly at random from V .

Intuitively, RR sets rooted at v store nodes that are likely
to influence v. Technically, it has the following important
connection with the influence spread of a seed set S: σ(S) =
n · ER[I{S ∩ R 6= ∅}], where I is the indicator function [9],
[11].

For the LIM problem, our solution space is no longer the
sets of seed nodes, so the above connection between the
influence spread σ(S) and the RR set R cannot directly help
us in efficient algorithm design. Fortunately, we could build a
new connection between the influence spread g(x) in the new
solution space of strategy mix and the RR set R, as given in the
following lemma. This connection enables us to extend the RIS
approach to the LIM setting. Our first algorithm IMM-PRR is
based on this general connection.

Lemma 1. For any strategy mix x ∈ X , we have

g(x) = n · ER

[
1−

∏
v∈R

(1− hv(x))

]
. (3)

Proof. By Eq. (1), we have g(x) = ES [σ(S)] = n·ES,R[I{S∩
R 6= ∅}] = n · ER[PrS{S ∩ R 6= ∅}]. Then PrS{S ∩ R 6= ∅}
is the probability that at least one node in R (now fixed) is
activated as a seed under strategy mix x, so it is 1−

∏
v∈R(1−

hv(x)).

Lemma 1 indicates that an RR set R is partially covered by
a strategy mix x with probability (or weight) 1−

∏
v∈R(1−

hv(x)), instead of the classical case where an RR set is either
fully covered by a seed set S or not. This lead to the partial
RR set extension of IMM, called IMM-PRR.

B. Algorithm IMM-PRR

General Structure of IMM-PRR. By Eq.(3), we can generate
θ independent RR sets as a collection R to obtain

ĝR(x) =
n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))

)
(4)

as an unbiased estimate of g(x). Moreover, we have the
following property for ĝR(x).

Algorithm 2 General structure of IMM-PRR
Input: G: the social graph; {Dv}v∈V : triggering model

parameters; {hv}v∈V : strategy activation functions (or
{qv,j}v∈V,j∈Sv for L-GreedyDelta;) k: budget; δ: granu-
larity; ε: accuracy; `: confidence

Output: x ∈ X
1: R = Sampling(G, {Dv}v∈V , k, δ, ε, `)
2: x = L-Greedy(ĝR, k, δ)

// or L-GreedyDelta(R, {qv,j}v∈V,j∈Sv , k, δ)
3: return x

Lemma 2. If hv is monotone and DR-submodular for all
v ∈ V , then functions g and ĝR are also monotone and DR-
submodular.

Proof. (Sketch) We apply the technical Lemma 3 below on∏
v∈R(1− hv(x)), and notice that 1− hv(x) is nonnegative,

monotone nonincreasing, and DR-supermodular. Therefore,
1 −

∏
v∈R(1 − hv(x)) is nonnegative, monotone increasing,

and DR-submodular.

Lemma 3. If f1 and f2 are nonnegative, monotone nonin-
creasing and DR-supermodular, then f(x) = f1(x)f2(x) is
also monotone nonincreasing and DR-supermodular.

Proof. The monotonicity is straightforward. For DR-
supermodularity, for any x ≤ y, we have

(f(x + δei)− f(x))− (f(y + δei)− f(y))

= f1(x + δei)f2(x + δei)− f1(x)f2(x)

− (f1(y + δei)f2(y + δei)− f1(y)f2(y))

= f1(x + δei)(f2(x + δei)− f2(x))

+ f2(x)(f1(x + δei)− f1(x))

− f1(y + δei)(f2(y + δei)− f2(y))

− f2(y)(f1(y + δei)− f1(y))

≤ f1(x + δei)(f2(y + δei)− f2(y))

+ f2(x)(f1(y + δei)− f1(y))

− f1(y + δei)(f2(y + δei)− f2(y))

− f2(y)(f1(y + δei)− f1(y))

= (f1(x + δei)− f1(y + δei))(f2(y + δei)− f2(y))

+ (f2(x)− f2(y))(f1(y + δei)− f1(y)) ≤ 0,

where the first inequality is due to the DR-supermodular and
nonnegative conditions, and the second inequality is due to
the monotone nonincreasing property.

With Lemma 2, we can apply the L-Greedy algorithm on
ĝR. Let x̂o = L-Greedy(ĝR, k, δ). When θ = |R| is large
enough, ĝR is very close to g, and we could show that x̂o is
a 1− 1/e− ε approximation for the LIM problem.

This leads to the general structure of the IMM-PRR algo-
rithm as given in Algorithm 2, similar to the IMM algorithm.
The algorithm takes the input as listed in Algorithm 2 and
outputs x such that x is a 1−1/e−ε approximate solution to
the LIM problem with probability at least 1−n`. The algorithm
contains two phases. In the first phase, the Sampling procedure
determines the number of RR sets needed and generates these
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RR sets; in the second phase, a lattice-greedy algorithm on
these RR sets are used to find the resulting strategy vector
x. We first discuss the second phase, which requires major
changes from the original IMM algorithm, and then introduce
the first phase.

Efficient L-Greedy on RR Sets under Independent Strat-
egy Activation. If the strategy activation function hv(·)’s
are given as black boxes, we have to compute hv(x) from
scratch. Suppose that the running time cost for computing
hv(x) is O(Thv ). Then it is straightforward to verify that
the L-Greedy(ĝ, k, δ) algorithm with the computation of ĝ(x)
as given in Eq. (4) has time complexity O(k · δ−1 · d ·∑
R∈R

∑
v∈R Thv

).
When we have further structural knowledge about hv’s, we

can greatly improve the efficiency of the L-Greedy algorithm.
In particular, we consider the case of independent strategy
activation, as given in Eq. (2). That is, each individual strategy
j independently tries to activate node v with probability of
success qv,j(xj). We assume that function qv,j(x) is non-
decreasing and concave for every node v and every strategy
j ∈ Sv . Recall that in the event marketing scenario, we have
qv,j(xj) = 1−(1−rv,j)xj , and thus in this case indeed qv,j(x)
is non-decreasing and concave. The following lemma shows
that when qv,j(x) is non-decreasing and concave, hv(x) is
monotone and DR-submodular.

Lemma 4. If function qv,j(x) is non-decreasing and concave
for every j ∈ Sv , then hv(x) is monotone and DR-submodular.

Sketch. The proof also uses Lemma 3, and we only need to
notice that one-dimensional convexity is a special case of DR-
supermodularity.

Eq. (2) enables more efficient updates for L-Greedy: In-
stead of always computing ĝR(x + δej) from scratch in
L-Greedy(ĝ, k, δ), we compute ∆j(x) = ĝR(x + δej) −
ĝR(x), which is given below.

∆j(x) =
n

θ

∑
R∈R

∏
v∈R

∏
j′∈Sv

(1− qv,j′(xj′))

 ·
(

1−
∏
v:v∈R,j∈Sv

(1− qv,j(xj + δ))∏
v:v∈R,j∈Sv

(1− qv,j(xj))

)
. (5)

The advantage of Eq. (5) is in reusing past computa-
tions. Specifically, the term within the first parentheses is
the same across all strategies, so its computation can be
shared. Moreover, since it is often the case that each user
is only exposed to a small subset of strategies (i.e. |Sv| is
smaller than d), we carefully maintain a data structure to
improve the efficiency when |Sv| < d. Algorithm 3 presents
the detailed lattice-greedy update procedure L-GreedyDelta,
which replaces L-Greedy(ĝ, k, δ) when Eq. (2) holds.

In Algorithm 3, we use si to store the term∏
v∈Ri

∏
j′∈Sv

(1 − qv,j′(xj′)) in Eq. (5) shared across
different strategies j. We use ratio to store the ratio term∏
v:v∈R,i∈Sv

(1− qv,i(xi + δ))(1− qv,i(xi))−1 in Eq. (5). The
Listj is a linked list for strategy j, and it stores the pair (i, v),
which means RR set Ri contains node v that can be affected

Algorithm 3 L-GreedyDelta: Efficient lattice-greedy imple-
mentation on RR sets
Input: R = {R1, . . . , Rθ}: RR sets; {qv,j}v∈V,j∈Sv

; k:
budget; δ: granularity

Output: x ∈ X
1: x = (x1, · · · , xd) = 0
2: // Lines 3–5 can be done while generating RR sets
3: s = (s0, s1, · · · , sθ) with s0 = 0, si =

∏
v∈Ri

∏
j∈Sv

(1−
qv,j(xj))

4: ∀j ∈ [d], Listj = ∅
5: ∀Ri ∈ R, ∀v ∈ Ri, ∀j ∈ Sv , append (i, v) to Listj
6: for t = 1, 2, · · · , k · δ−1 do
7: for j ∈ [d] do
8: ∆j = 0, prev = 0, ratio = 1
9: for (i, v) ∈ Listj do

10: if i 6= prev then
11: ∆j = ∆j + sprev · (1− ratio)
12: ratio = 1
13: prev = i
14: end if
15: ratio = ratio · 1−qv,j(xj+δ)

1−qv,j(xj)

16: end for
17: if prev 6= 0 then
18: ∆j = ∆j + sprev · (1− ratio)
19: end if
20: end for
21: j∗ = argmaxj∈[d] ∆j

22: x = x + δej∗

23: ∀i ∈ [θ] , si = si ·
∏
v∈Ri:j∗∈Sv

(1 − qv,j∗(xj∗ + δ)) ·
(1− qv,j∗(xj∗))−1

24: end for
25: return x

by strategy j. The list is ordered by RR set index i first and
then by node index v. In each round t, the algorithm iterates
through all strategies j (lines 7–20) to compute ∆j(x) for
the current x. In particular, for each strategy j, the algorithm
traverses the Listj (lines 9–16), and for the segment with the
same RR set index i, it updates ratio, and when it reaches a
new RR set index (i 6= prev ), it cumulates ∆j as given in
Eq. (5) for the corresponding RR set. The reason we maintain
Listj of pairs instead of simply looping through all RR set
indices i and then all nodes within Ri is that RR sets are
usually not very large, and it is likely that no node in RR set
Ri is affected by strategy j, and thus not looping through all
RR sets save time. After computing ∆j = ∆j(x), we find
the strategy j∗ with the largest ∆j (line 21), move along the
direction of j∗ for one step (line 22), and then update all
shared terms si’s (line 23).

Suppose that the running time cost for computing each
qv,j(xj) is a constant. Then we have:

Lemma 5. The time complexity of L-GreedyDelta is O(k ·
δ−1 · (

∑
R∈R

∑
v∈R |Sv|)).

Proof of Lemma 5 (Sketch). The algorithm has totally kδ−1

rounds. In each round, it enumerates all tuples (i, v, j) for RR
set Ri, node v ∈ Ri and strategy j ∈ Sv , and for each tuple it
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has a constant number of calls to function qv,j , so the running
time in one round t is O(

∑
R∈R

∑
v∈R |Sv|). �

Notice that if we compute ĝ(x + δej) directly instead
of ∆j(x), we have Thv

= O(d). Then time complexity
is O(k · δ−1 · d ·

∑
R∈R

∑
v∈R |Sv|), which is worse than

L-GreedyDelta by a factor of d.

The First Phase Sampling Procedure. The Sampling
procedure in the first phase is to generate enough RR sets
R to provide the theoretical guarantee on the approximation
ratio. It is a minor variation of the Sampling procedure of
IMM in [11]. In particular, they show that the number of RR
sets θ = Θ(n log n/OPT ) is enough, where OPT is the
optimal solution. They estimate a lower bound LB of OPT by
iteratively guessing n/2, n/4, n/8, . . . as lower bounds, and
using the greedy procedure on obtained RR sets to verify
if the guess is correct. We use the same procedure, with
only two differences: (a) we use L-GreedyDelta procedure to
replace the greedy procedure on RR sets; and (b) we replace
ln
(
n
k

)
with min(kδ−1 ln d, d ln(kδ−1)) in the two parameters

λ′ and λ∗, because both dkδ
−1

and (kδ−1)d are upper bounds
on the number of vectors satisfying the constraint |x| ≤ k.
The bound dkδ

−1

is because we have kδ−1 greedy steps
and each step selects one dimension among d dimensions,
and the bound (kδ−1)d is because each dimension has at
most kδ−1 choices and we have d dimensions combined
together. We can see that when d is large (e.g. personal-
ized marketing with d = n) but kδ−1 is relatively small
(coarse granularity), we would use kδ−1 ln d, but when kδ−1

is large (fine granularity) but d is small (e.g. only a few
global strategies), we could use d ln(kδ−1). Henceforth, we
let M = min(kδ−1 ln d, d ln(kδ−1)). The pseudocode for
the Sampling procedure is included in Algorithm 4, with
parameter λ∗(`) defined below.

λ∗(`) = 2n · ((1− 1/e) · α+ β)
2 · ε−2, (6)

α =
√
` lnn+ ln 2, β =

√
(1− 1/e) · (M + α2).

We remark that Chen pointed out an issue in the orig-
inal IMM algorithm and provided two workarounds [31],
and we adopt the more efficient workaround 2 (lines 2-3).
Algorithms 2, 3, and 4 form the IMM-PRR algorithm. The
following theorem summarizes the theoretical guarantee of the
IMM-PRR algorithm.

Theorem 1. Under the case of independent strategy acti-
vation (Eq. (2)), the IMM-PRR algorithm returns a (1 −
1/e − ε)-approximate solution to the LIM problem with
at least 1 − 1/n` probability. When qv,j’s are such that
the optimal solution of LIM is at least as good as
the best single node influence spread, IMM-PRR runs in
O(kδ−1(maxv∈V |Sv|)(M + ` log n)(n + m)/ε2) expected
time, where M = min(kδ−1 ln d, d ln(kδ−1)).

The proof of the theorem mainly follows the analysis of
IMM in [11], and the novel part of the analysis is already
mostly shown in the previous lemmas. The remaining part
of the proof is given in Appendix A. Note that the technical

Algorithm 4 First phase Sampling procedure
Input: G: the social graph; {Dv}v∈V : triggering model pa-

rameters; {qv,j}v∈V,j∈Sv : strategy-node activation func-
tions; k: budget, δ: granularity; ε: accuracy; `: confidence

Output: A collection of RR sets R
1: R = ∅; LB = 1
2: compute γ via binary search such that dλ∗(`+γ)e/n`+γ ≤

1/n` // workaround 2 in [31], with λ∗(`) defined in Eq. (6)

3: ` = `+ γ + ln 2/ lnn
4: Let ε′ =

√
2 · ε

5: for i = 1, 2, · · · , log2 n do
6: Let y = n/2i

7: θi = λ′

y , where λ′ =
(2+ 2

3 ε
′)·(M+`·lnn+ln log2 n)·n

ε′2 .
8: while |R| ≤ θi do
9: Select a node v from G uniformly at random

10: Generate an RR set for v, and insert it into R
11: end while
12: x = L-GreedyDelta(R, {qv,j}v∈V,j∈Sv

, k, δ)
13: if ĝR(x) ≥ (1 + ε′) · y then
14: LB = ĝR(x)/(1 + ε′)
15: break
16: end if
17: end for
18: θ = λ∗(`)/LB , where λ∗(`) is defined in Eq. (6)
19: while |R| ≤ θ do
20: Select a node v from G uniformly at random
21: Generate an RR set for v, and insert it into R
22: end while
23: return R

assumption above assuming the optimal solution is at least as
good as the best single node influence spread is reasonable,
since it means the budget and the functions qv,j’s are at least
good enough to activate one single best node. If it is not
true, the entire marketing scheme is not very useful anyway.
Comparing to the time complexity O((k+`)(m+n) log n/ε2)
of IMM in [11], the main added difficulty is that a strategy can
only partially cover an RR set (Lemma 1), which implies that
in each greedy step we have to process all RR sets. We will
overcome this issue by an alternative reduction approach in
the next subsection.

C. Algorithm IMM-VSN for Independent Strategy Activation

In this subsection, we consider an alternative design choice
under independent strategy activation. The idea is that since
each strategy independently activates nodes, we may be able
to introduce virtual nodes representing strategies such that the
LIM model is reduced to the classical triggering model, and
then we could apply algorithms such as IMM to solve the
classical influence maximization problem under the reduced
model. It turns out that we need to incorporate a mixture
of LT and IC models for the interaction between the virtual
nodes and the real nodes, and carefully argue about the
equivalence between LIM and the reduced model. We refer this
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new algorithm as IMM-VSN (VSN stands for virtual strategy
nodes).

In IMM-VSN, for every strategy j, we construct virtual
strategy node set Uj = {uj,1, uj,2, . . . , uj,kδ−1}, and for every
real node v in the original graph and every strategy j ∈ Sv ,
we connect every virtual node uj,i to v with a directed virtual
edge (uj,i, v). Let U =

⋃d
j=1 Uj be the set of all virtual nodes.

The purpose is such that the prefix set Uj,i = {uj,1, . . . , uj,i}
corresponds to the quantity xj = iδ for strategy j, and if
nodes in Uj,i are seeds, then real node v is activated with
probability qv,j(iδ), the probability that amount iδ of strategy
j would activate v (see Eq.(2)). To do so, we utilize the LT
model as follows. For each edge (uj,i, v), we assign LT weight

w(uj,i, v) = qv,j(iδ)− qv,j((i− 1)δ). (7)

When a seed set S ⊆ U of virtual nodes attempts to activate a
real node v, we first consider seed set within each strategy S∩
Uj , and nodes in S∩Uj attempt to activate v following the LT
model with weights defined in Eq. (7). Then among different
strategies, their attempts to activate v are independent, and v is
activated as long as seeds from one strategy activates v. This
is a mixture of IC and LT models, and is our key to allow the
reduction to work.

We denote the augmented graph together with the above
described propagation model as GA. In GA, only virtual nodes
can be selected as seeds, and only real nodes are counted
towards the influence spread. The propagation in GA starts
from the seeds in the virtual strategy nodes, and these seeds
activate real nodes according to the above IC and LT mixture
model. Then the propagation among real nodes follow the
original triggering model. The reason this reduction works is
justified by the following theorem.

Theorem 2. Under the independent strategy activation model
(Eq. (2)), (1) for any strategy mix x = (x1, . . . , xd) ∈ X ,
the distribution of the set of nodes activated by x in the
LIM model is the same as the distribution of the set of real
nodes activated by seed set Sx =

⋃d
j=1 Uj,xjδ−1 in GA.

(2) Conversely, for any seed set S ⊆ U , we can map S to
xS = (xS1 , . . . , x

S
d ) where xSj = |S ∩ Uj | · δ, such that the

influence spread of S in GA (only counting the activation of
the real nodes) is at most the influence spread of xS in the
LIM model. As a consequence, if an approximation algorithm
for the triggering model produces S on graph GA, then xS

would be an approximate solution for LIM with the same
approximation ratio.

Proof. First, given strategy mix x, by the LT model and our
weight construction (Eq. (7)), we know that the probability
that the seed set Sx ∩ Uj = Uj,xjδ−1 activates node v in

GA is
∑xjδ

−1

i=1 w(uj,i, v) = qv,j(xj), which coincides with
the probability that strategy j with amount xj would activate
v in the LIM model. Among different strategy seed nodes,
they attempt to activate v independently, which coincide with
Eq. (2) that governs the activation of v from strategy x. Since
the remaining propagation among real nodes follows the same
model, we can conclude that the set of nodes activated in either
the LIM model or GA follows the same distribution.

Algorithm 5 General Structure of Algorithm IMM-VSN
Input: G: the social graph; {Dv}v∈V : triggering model pa-

rameters; {qv,j}v∈V,j∈Sv : strategy-node activation func-
tions; k: budget; δ: granularity; ε: accuracy; `: confidence

Output: x ∈ X
1: generate augmented graph GA and the diffusion model on

it as follows: (1) add virtual strategy nodes U =
⋃d
j=1 Uj

to the node set, where Uj = {uj,1, uj,2, . . . , uj,kδ−1}; (2)
add directed edges {(uj,i, v)|v ∈ V, j ∈ Sv, uj,i ∈ Uj}
to the edge set; (3) each edge (uj,i, v) has LT weight
w(uj,i, v) = qv,j(iδ) − qv,j((i − 1)δ); (4) triggering set
distribution of every real node v is adjusted such that:
(4.1) real nodes are selected by Dv; (4.2) virtual nodes in
Uj with j ∈ Sv are selected independent of real nodes and
other virtual nodes; (4.3) within Uj , virtual node uj,i is
selected exclusively with probability w(uj,i, v), just like
in the LT model

2: run IMM on graph GA with budget kδ−1 and obtain seed
set S ⊆ U on virtual nodes. IMM is adapted for GA as
described in the text

3: x = (xS1 , . . . , x
S
d ) where xSj = |S ∩ Uj | · δ

4: return x

Conversely, let S be a seed set in GA. For each strategy
j, S ∩ Uj may not be the prefix set. Let Uj,xS

j
be the

corresponding prefix set with xSj = |S ∩ Uj |. We claim that
Uj,xS

j
activates v with probability at least as high as that

of S ∩ Uj activating v. Here, we need to critically use the
concaveness of qv,j : by its concaveness, we know that edge
weight w(uj,i, v) is non-increasing over i. Then the sum of
weights of the prefix set Uj,xS

j
to v is at least as large as

the sum of the weights of S ∩ Uj to v. Thus, by the LT
model, our claim holds. Once the claim holds, we know that
by moving the seeds to the prefix we always have a higher
probability of activating each real node. By the first part of the
proof, we know that the prefix seed set exactly corresponds to
the strategy mix xS = (xS1 , . . . , x

S
d ). Therefore, the influence

spread of xS in the LIM model must be at least as high as
the influence spread of S in GA.

The final part on the approximation algorithm becomes
straightforward once we have the above results.

We remark that part (2) of the theorem critically depends on
the concaveness of qv,j , and is where we need to use the LT
model construction. We could use the IC model with proper
edge probability assignment for part (1), but it appears that IC
model would not allow us to use the concaveness of qv,j to
show part (2). This is why we use a mixture of the IC and LT
models in the end.

With Theorem 2, our algorithmic design for IMM-VSN is
clear, and its general structure is summarized in Algorithm 5:
We first construct the augmented graph GA, and then apply
an existing algorithm, in our case IMM, on GA to find a
seed set S of virtual nodes with budget kδ−1, and finally we
convert S to xS as specified in Theorem 2 as our solution.
When using IMM, we also employ the following adaptations
to improve its performance for the special GA graph: (a) At
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each real node v when we want to generate one more step
in the reverse simulation, we first sample v’s triggering set
Tv ∼ Dv and put nodes in Tv in the RR set, and these
are real nodes; then for each strategy j ∈ Sv , we randomly
pick at most one virtual node uj,i with probability w(uj,i, v)
following the LT model, and and this can be efficiently imple-
mented by a binary search; finally, we do reverse simulation
for each strategy j independently, which corresponds to the
independent activation across different strategies. (b) Since
only virtual nodes are seeds, an RR set without virtual nodes
will be discarded, and greedy seed selection is only among the
virtual nodes. (c) Since only real nodes are counted towards
the influence spread, we only uniformly at random pick roots
of RR sets among real nodes. (d) By part (2) of Theorem 2, in
the greedy NodeSelection procedure of IMM (corresponding
to the L-Greedy procedure in IMM-PRR), after selecting all
the seed nodes, we convert them to the prefix node set for
each strategy. (e) The total number of possible strategy mixes
is at most M = min(kδ−1 ln d, d ln(kδ−1)) as discussed in
Section III-B, and together with part (d) above, we know the
total number of seed set outputs is also at most M , therefore,
we will use M to replace

(
n
k

)
in the original IMM algorithm.

The approximation guarantee of IMM-VSN is ensured by
the correctness of the IMM algorithm plus Theorem 2. For
time complexity, our adaptions to IMM save running time.
Overall, we have

Theorem 3. Under the case of independent strategy acti-
vation ( Eq.(2)), the IMM-VSN algorithm returns a (1 −
1/e − ε)-approximate solution to the LIM problem with at
least 1 − 1/n` probability. When qv,j’s are such that the
optimal solution of LIM is at least as good as the best
single node influence spread, IMM-VSN runs in O((M +
` log n)(m+ log(kδ−1)

∑
v∈V |Sv|)/ε2) expected time, where

M = min(kδ−1 ln d, d ln(kδ−1)).

The proof of the theorem follows that of [11], and the novel
part of the analysis is mainly summarized and proved in Theo-
rem 2. The remaining part of the proof is given in Appendix A.
Comparing the running time result of Theorem 3 with that of
Theorem 1, we can see that the key difference is between
the term (m + log(kδ−1)

∑
v∈V |Sv|) of IMM-VSN and the

term kδ−1 maxv∈V |Sv|(m + n) of IMM-PRR. IMM-VSN
seems to have a better running time especially in avoiding
an extra term of kδ−1, which is partly because it does not
require maintaining partial RR sets, and partly because of
the efficient LT reverse sampling method via binary search.
Of course, these theoretical results are all upper bounds, so
we cannot formally conclude the superiority of IMM-VSN.
We will demonstrate the superior performance of IMM-VSN
through our empirical evaluation. We also want to point out
that IMM-VSN only works for the case of independent strategy
activation, while IMM-PRR works for more general cases,
and thus we cannot say that IMM-VSN can always replace
IMM-PRR.

IV. LIM WITH PARTITIONED BUDGETS

In this section, we further generalize the LIM problem with
partitioned budgets. More specifically, marketing strategies

often belong to multiple categories, and each category may
be assigned a separate budget. Formally, the strategy set [d]
is partitioned into λ categories C1, . . . , Cλ, and each category
Cj has a budget kj , i.e.

∑
i∈Cj

xi ≤ kj . For convenience, we
use xC to denote the projection of vector x into index set
C. Then the above constraint is |xCj

| ≤ kj . The partitioned
budget problem is formally defined below.

Definition 3 (Lattice Influence Maximization with Partitioned
Budgets). Given the same input as in the LIM problem (Def-
inition 1), except that total budget k is replaced by partitions
{Cj}j∈[λ] and partitioned budgets {kj}j∈[λ], the task of lattice
influence maximization with partitioned budgets, denoted as
LIM-PB, is to find an optimal strategy mix x∗ that achieves
the largest influence spread within the partitioned budget
constraints, that is

x∗ = argmax
x∈X ,|xCj

|≤kj ,∀j∈[λ]
g(x).

Note that since the per-strategy constraint xi ≤ bi for
the original LIM problem does not change the problem, our
partitioned constraint here means that |Cj | > 1 for all j ∈ [d].

We next explain how to solve the partitioned budget con-
straint version LIM-PB. Our method relies on the submodular
maximization problem under the general matroid constraint.
A matroid on a set of elements U is a collection of subsets
of U called independent sets, which satisfy the following
two properties: (a) If I ⊆ U is an independent set, then
every subset of I is also an independent set; and (b) If I, I ′

are two independent sets with |I| < |I ′|, then there must
be some element e ∈ I ′ \ I such that I ∪ {e} is also an
independent set. The simplest matroid is the uniform matroid,
where for some parameter k all subsets I with |I| ≤ k is an
independent set. Classical influence maximization essentially
uses the uniform matroid constraint. A partition matroid is
such that, for a certain partition of U into disjoint sets
A1, . . . , Aλ, and for parameters k1, . . . , kλ, all subsets I ⊆ U
satisfying |I ∩ Ai| ≤ ki for all i ∈ [λ] are independent sets.
The classical result by [32] shows that the greedy algorithm
on a general matroid could achieve 1/2 approximation ratio
for nonnegative monotone and submodular set functions.

Through Lemma 2 we already know that our objective func-
tions g(x) and ĝR(x) are nonnegative, monotone, and DR-
submodular, but they are vector functions. We now show how
to translate them into equivalent set functions and then show
that the LIM-PB problem corresponds to a partitioned matroid
constraint under the set representation. Let b ≥

∑
j∈[λ] kj ·δ−1

be a large enough integer. Construct the set of elements
U = {(j, s) | j ∈ [d], s ∈ [b]}. For any subset A ⊆ U ,
denote A(j) = A ∩ {(j, s) | s ∈ [b]}. We map A into a vector
xA = (xA1 , . . . , x

A
d ) such that xAj = |A(j)| · δ. Conversely,

for every vector x ∈ X satisfying the partitioned budget
constraint, we map x to a set Ax = {(j, s) | j ∈ [d], s·δ ≤ xj}.
For every vector function f , we define a set function fU on
U to be fU (A) = f(xA), for all A ⊆ U . It is easy to see
that the marginal fU (A∪{(j, s)})−fU (A) = f(xA+ δej)−
f(xA). Thus, one can verify that if f is monotone and DR-
submodular, then fU is monotone and submodular. Next, for
the partitioned budget constraint |xCi | ≤ ki given partition
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C1, . . . , Cλ of [d] and budgets k1, . . . , kλ, it is equivalent to
partition U to U1, . . . , Uλ, with Ui = Ci × [b], and enforce
constraint |A ∩ Ui| ≤ ki · δ−1 for all A ⊆ U and i ∈ [λ].
Therefore, we translate the LIM-PB problem of maximizing
g(x) with the partitioned budget constraint to maximizing
gU (A) under the partition matroid constraint. Similarly we
can translate ĝ(x) to ĝU (A). Therefore, we can conclude that
the greedy algorithms under the partitioned budget constraint
could achieve 1/2 approximation.

The actual greedy algorithm is straightforward. In
IMM-PRR, in every greedy step when we need to find another
increment in one of the strategies (line 3 of Algorithm 1 or
line 21 of Algorithm 3), instead of taking argmax among all
possible j ∈ [d], we only search for j such that x + δej
still satisfies the partitioned budget constraint. Similarly, in
IMM-VSN, when we need to find another virtual strategy
node as a seed, we need to only search for those seeds that
would satisfy the partitioned budget constraint. The greedy
steps terminates until the partitioned budgets are exhausted.
The corresponding algorithms achieves 1/2−ε approximation
ratio with probability at least 1− 1/n`, and runs in the same
expected running time as in their non-partitioned versions.

V. EXPERIMENTS

A. Experiment Setup

Datasets. We ran our experiments on five real-world
networks, with statistics summarized in Table I. Three of
them, denoted DM, NetHEPT, and DBLP, are collaboration
networks: every node is an author and every edge means the
two authors collaborated on a paper. DM network is a network
of data mining researchers extracted from the ArnetMiner
archive (arnetminer.org) [33], NetHEPT is a network extracted
from the high energy physics section of arxiv.org, while DBLP
is extracted from the computer science bibliography database
dblp.org [8]. Their sizes are small (679 nodes), medium (15K
nodes), and large (654K) nodes, respectively. We include the
small DM dataset mainly to suit the slow Monte Carlo greedy
algorithm. The dataset Flixster is a user network of the movie
rating site flixster.com. Every node is a user and a directed
edge from u to v means that v has rated some movie(s)
that u rated earlier [34]. The largest dataset Orkut [35], is
a social network extracted from the friendship network of
users in Orkut. The IC model parameters of NetHEPT, DBLP
and Orkut are synthetically set using the weighted cascade
method [1]: edge p(u, v) = 1/dv , where dv is the in-degree of
node v. For the DM and Flixster networks, we obtain learned
edge parameters from the authors of [33], [34] respectively.

Network n m Average Degree
DM 679 3,374 4.96

NetHEPT 15,233 62,752 4.12
Flixster 29,357 425,228 14.48
DBLP 654,628 3,980,318 6.08
Orkut 3,072,441 117,185,083 78

TABLE I
DATASET STATISTICS

Application scenarios. We test two application scenarios of
independent strategy activation explained in Section II. The
first is the personalized marketing scenario tested in [16]. In

this scenario, each user v has one unique strategy xv such as
the personalized discount to v, hv(x) only depends on xv . We
set hv(x) = 2xv −x2v following the same setting in [16]. The
second one is the segmented event marketing scenario, which is
not covered by previous studies. In this case, each strategy j is
targeting at a disjoint subset of users Vj , and xj is the number
of marketing events for user group Vj . In our experiments,
we set d = 200 for each dataset. Moreover, we choose top
min{n, 2000} nodes V ∗ with the highest degrees from V .
For every node v ∈ V ∗, we generate iv from [d] uniformly at
random and generate rv,iv from [0, 0.3] uniformly at random.
For every v ∈ V ∗, we set Sv = {iv} and qv,iv (x) = 1 −
(1−rv,iv )x; for every v ∈ V \V ∗, Sv = ∅. This simulates the
scenario where marketing efforts are focused on top connected
nodes in the network.

We test both the non-partitioned budget and partitioned
budget cases. For the non-partitioned cases, we vary the single
budget k in our tests, while for the partitioned cases, we
randomly separate the strategies (in both the personalized
marketing and the segmented event marketing scenarios) into
two roughly equal-sized groups, and assign the same budget
of k/2 to each group, where k is the total budget we vary in
our tests.

Algorithms in Comparison. We test the following algo-
rithms.

• IMM-PRR/IMM-VSN. For both algorithms, we set ` = 1,
ε = 0.5, 1, 2. When ε = 1 or 2, IMM-PRR/IMM-VSN
no longer has the approximation guarantee, but it is still
a valid heuristic algorithm, since all other baselines are
heuristic algorithms.

• UD. UD is proposed in [16] for personalized marketing.
For each discount c ∈ {0.1, 0.2, . . . , 1}, it will return a
vector x s.t. xi = 0 or xi = c (i ∈ [d]). Then they run
an exhaustive search of c to find a best c.

• CD. CD is also proposed in [16]. CD uses the output
of UD as the initial value and runs a coordinate decent
algorithm to achieve better result.

• HD. HD is a heuristic baseline, where we choose top M
nodes with the highest degrees from V and then distribute
the budget to those M nodes proportional to their degrees.
We set M = 200 in our experiments.

• MCLG. This is L-Greedy (Algorithm 1) with Monte
Carlo simulations to estimate influence spread g(x). We
use 100, 000 simulations for each estimation of g(x).
This number is larger than the typical heuristic setting
of 10, 000 or 20, 000 used in the previous influence
maximization studies (e.g. [1], [6], [8]), because under
the same budget k we may need more greedy iterations
(a factor of δ−1 in the personalized marketing scenario),
and thus each greedy step needs more accurate evaluation
(as suggested by the analysis in [23], Theorem 3.6). We
also apply the lazy evaluation method [36] to speed up
the greedy process. We remark that this corresponds to
the greedy algorithm given in [26] with Monte Carlo
simulations for function evaluation.

For the personalized marketing scenario, we test all algo-
rithms with granularity δ = 0.1. For the segmented event
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Fig. 1. Influence spread in personalized marketing scenario.
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Fig. 2. Running time in the personalized marketing scenario.

10 20 30 40 50
k

100

150

200

250

300

in
flu

en
ce

 sp
re

ad

IMM-PRR(eps=0.5)
IMM-PRR(eps=1)
IMM-PRR(eps=2)
IMM-VSN(eps=0.5)
IMM-VSN(eps=1)
IMM-VSN(eps=2)
MCLG

(a) DM

10 20 30 40 50
k

200
400
600
800

1000
1200
1400
1600
1800

in
flu

en
ce

 sp
re

ad

IMM-PRR(eps=0.5)
IMM-PRR(eps=1)
IMM-PRR(eps=2)
IMM-VSN(eps=0.5)
IMM-VSN(eps=1)
IMM-VSN(eps=2)
MCLG

(b) NetHEPT

10 20 30 40 50
k

500

1000

1500

2000

2500

in
flu

en
ce

 sp
re

ad

IMM-PRR(eps=0.5)
IMM-PRR(eps=1)
IMM-PRR(eps=2)
IMM-VSN(eps=0.5)
IMM-VSN(eps=1)
IMM-VSN(eps=2)

(c) Flixster

10 20 30 40 50
k

2000
4000
6000
8000

10000
12000
14000
16000

in
flu

en
ce

 sp
re

ad

IMM-PRR(eps=0.5)
IMM-PRR(eps=1)
IMM-PRR(eps=2)
IMM-VSN(eps=0.5)
IMM-VSN(eps=1)
IMM-VSN(eps=2)

(d) DBLP

Fig. 3. Influence spread in the segmented event marketing scenario.
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Fig. 4. Running time in the segmented event marketing scenario.
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(a) Orkut: influence spread
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Fig. 5. Influence spread and running time in the segmented event marketing
scenario for dataset Orkut, non-partitioned budget case.

marketing scenario, we do not test UD, CD, and HD, since
they are all designed for the personalized marketing scenarios.

In this case, δ = 1 as required by the scenario. For all cases,
we test total budget k from 5 to 50. We do not include the
original influence maximization algorithm IMM for seed set
optimization in our tests, because [16] already demonstrates
that the original IMM is inferior to UD and CD in influence
spread.

We remark that for some other algorithms on submodular
maximization that we mentioned in the related work, such as
the continuous greedy algorithm of [25] and the gradient-based
algorithms of [28], they are not scalable and they are for the
continuous solution space, and thus we do not include them
in our experiments.

All our tests are run on a Ubuntu 14.04.5 LTS server with
3.3GHz and 125GB memory. All algorithms are coded in C++
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and compiled by g++. All results on influence spread are the
average of 10000 simulation runs for any given seed set, and
all results on running time are the average of five algorithm
runs.

B. Experimental Results

Our first group of results are for the non-partitioned cases
(Figures 1–5). Figure 1 shows the influence spread result and
Figure 2 shows the running time result, for the personalized
marketing scenario on the first four datasets. First compar-
ing between our two algorithms IMM-PRR and IMM-VSN,
they produce about the same influence spread but IMM-VSN
typically runs much faster than IMM-PRR, in many cases
close to or more than one-order of magnitude for the same
parameter setting. This demonstrates that the virtual strategy
node approach indeed runs faster, matching our theoretical
analysis. Moreover, changing ε from 0.5 to 2 significantly
improves the running time with very slight or no penalty on
influence spread.

The MCLG algorithm is too slow to run in most cases,
so we only run them on the DM dataset with k = 5 and
10. The result clearly shows that the running times of our
algorithms IMM-PRR/IMM-VSN are four to five orders of
magnitude faster than MCLG while their influence spreads
are almost the same to MCLG.

When comparing to UD and CD heuristics, our
IMM-PRR/IMM-VSN algorithms consistently perform better
than UD and CD in influence spread. For running time,
IMM-VSN runs much faster than UD and CD by one or two
orders of magnitude, and IMM-PRR with ε = 2 is also faster
than UD and CD (except on DM). Moreover, when moving
from the small dataset DM to the large dataset DBLP, we
see that the running time of UD and CD is getting worse
comparing to our algorithms IMM-PRR/IMM-VSN, indicating
that UD/CD algorithms do no scale as well as our algorithms.
Overall, the results demonstrate the scalable design of our
approach, in particular our algorithm IMM-VSN with ε = 0.5
can provide both theoretical guarantee and superior empirical
performance in both influence spread and running time, while
neither UD or CD provides any theoretical guarantee.

For the baseline heuristic HD, the result shows that its
influence spread is significantly lower than others (especially
in NetHEPT and Flixster), and thus it is not a competitive
heuristic, even though it is very simple and fast.

The results on segmented event marketing are shown in
Figures 3–5. For this test, we also include the largest dataset
Orkut as shown in Figure 5. MCLG is slow so it is only run on
the two small datasets DM and NetHEPT. Overall the results
are consistent with the results for personalized marketing.
IMM-VSN typically runs much faster than IMM-PRR, and
it runs 3-5 orders of magnitude faster than MCLG. Increasing
ε also significantly improve running time, with only slight
decrease in influence spread. Even when running on the largest
dataset Orkut with 3M nodes and 117M edges and a much
higher average degree than other datasets, our algorithms
run reasonable fast, with the fastest IMM-VSN with ε = 2
finishing within 50 seconds and the slowest IMM-PRR with

ε = 0.5 finishing in 700 seconds. When comparing the running
time of the personalized marketing scenario (Figure 4 vs.
Figure 2), we can see that our algorithms run in general one
to two orders of magnitude faster in the segmented marketing
scenario, because it is on a much smaller strategy space than
the personalized marketing scenario.

In terms of influence spread, IMM-VSN with ε = 0.5
has the best influence spread among different settings for
IMM-PRR/IMM-VSN, and is only slightly lower than the
influence spread achieved by MCLG. The fact that the Monte
Carlo greedy algorithm MCLG has the best influence spread
is consistent with previous studies on influence maximization
(e.g. [6], [8], [10]), which usually show that the Monte Carlo
greedy is among the best in influence spread. In our case,
because we use 100, 000 Monte Carlo simulations for more
accurate function evaluations, while the best accuracy setting
for IMM-VSN is ε = 0.5, this makes the best case of
IMM-VSN with ε = 0.5 slightly below MCLG in influence
spread.

Comparing the influence spread of IMM-PRR with that
of IMM-VSN, we see that in this scenario IMM-VSN seems
to consistently provide slightly better influence spread than
IMM-PRR (especially when comparing with the same ε
setting). This essentially means that in this case, with the
same number of RR sets, IMM-VSN is able to achieve better
influence spread estimates than IMM-PRR. We suspect that
this is because of our setting of qv,iv (x) = 1− (1−rv,iv )x for
this scenario compounding with smaller strategy dimensions
and relative small budget, making that the virtual strategy node
representations could use a smaller number of virtual nodes
to more accurately estimate the influence spread of strategies.

Our second group of results are for the partitioned LIM
setting (Figures 6–10). As explained in the experimental setup
section, for both the personalized marketing and segmented
event marketing scenarios, we partition the strategies into two
roughly equal-sized groups, and each receives half the budget.
For this test, since other baseline algorithms such as UD, CD,
MCLG are not designed for this setting, we only run our
algorithms with different ε settings. The overall results shown
in Figures 6–10 are consistent with the non-partitioned case:
in general the influence spread of IMM-PRR and IMM-VSN
are close, while IMM-VSN runs faster than IMM-PRR.

From these experiments, we can conclude that for the large
class of independent strategy activation scenarios, IMM-VSN
is the best choice that provides both theoretical guarantee
and fast running time, and it outperforms the Monte Carlo
greedy algorithm by several orders of magnitude, and is also
significantly faster than other competing heuristic algorithms.
On the other hand, IMM-PRR works for a more general class
of settings beyond independent strategy activation scenarios.
Moreover, our algorithms allow the easy tuning of parameter ε
to significantly improve running time with small or no penalty
on influence spread.

VI. CONCLUSION AND FUTURE WORK

We design two RIS-based scalable algorithms, IMM-PRR
based on partial RR sets and IMM-VSN based on virtual
strategy nodes, that guarantee 1 − 1/e − ε approximation to
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Fig. 6. Influence spread in personalized marketing scenario with partitioned budgets.
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Fig. 7. Running time in the personalized marketing scenario with partitioned budgets.
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Fig. 8. Influence spread in the segmented event marketing scenario with partitioned budgets.
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Fig. 9. Running time in the segmented event marketing scenario with partitioned budgets.
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(a) Orkut: influence spread with
partitioned budgets
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Fig. 10. Influence spread and running time in the segmented event marketing
scenario for dataset Orkut, partitioned budget case.

the lattice influence maximization problem. IMM-PRR could

solve the general LIM problem, while IMM-VSN has better
running time for the case of independent strategy activations,
as demonstrated both empirically and through theoretical anal-
ysis.

Even though IMM-VSN performs better than IMM-PRR
in the case of independent strategy activation, in our pa-
per we still present the full algorithm IMM-PRR in detail,
including its optimization L-GreedyDelta for independent
strategy activation. As we mentioned in the introduction and
at the beginning of Section III, our rationale is to present
a detailed implementation and analysis of these two natural
design choices for a fair comparison. We hope that this would
be beneficial to our readers to understand the complete details
of these design choices and avoid the effort of repeating
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one approach. Moreover, IMM-PRR is more general than
IMM-VSN, covering more scenarios beyond independent strat-
egy activation. For example, if two strategies could have an
interaction or complementary effect on a node, causing the
node to have a higher chance to be activated than independent
influence of each strategy, then this would be represented by an
activation function h(x) that is not the simple aggregation of
independent activation attempts as given in Eq.(2). It would
be a very interesting research direction to study such more
complicated activation functions and its impact on algorithm
design — how would the IMM-PRR perform in these set-
tings and can we implement more efficient algorithms than
IMM-PRR?

There are also other future directions to this study. One
direction is to study continuous domain, and investigate if
RIS-based approach can be adapted to the continuous domain.
Another direction is to study lattice or continuous influence
maximization in other influence propagation settings such as
competitive influence maximization.

APPENDIX

The remaining part of the proof of Theorem 1 is directly
modified from the proof of Theorem 4 in [11] together with
the fix in [31].

Lemma 6. Given k, δ, d, n, `, Algorithm 3 returns a (1−1/e−
ε)-approximation with at least 1 − 1/n` probability if θ, the
size of R, is at least λ∗(`)/OPT , where λ∗(`) is defined in
Eq.(6).

Proof. Denote x∗ as the solution of Algorithm 3 and x◦ as
the optimal solution of LIM problem. Through replacing the
number of possible k-seed set

(
n
k

)
of Lemma 3 and 4 in [11]

by the number of possible allocations M in our problem, we
can derive that with 1− n` probability,

ĝR(x◦) ≥
(

1− ε · α

(1− 1/e) · α+ β

)
·OPT

and

ĝR(x∗) ≤ g(x∗) +

(
ε− (1− 1/e)εα

(1− 1/e)α+ β

)
·OPT

Then by combining the greedy property that ĝR(x∗) ≥ (1 −
1/e)ĝR(x◦), we have, g(x∗) ≥ (1− 1/e− ε) ·OPT .

Lemma 7. Let ` be the input of Algorithm 4. With at least
1− 1/2n(`+γ) probability, Algorithm 4 returns a set R of RR
sets with |R| ≥ λ∗(` + γ)/OPT , where λ∗(`) is as defined
in Eq.(6) and γ is obtained in line 2.

Proof. Through replacing the number of possible k-seed set(
n
k

)
of Lemma 6 and 7 in [11] by the number of possible

allocations M in our problem, we can easily get the result of
this lemma. It’s 1 − 1/2n(`+γ) rather than 1 − 1/n` because
we reset ` as ` = `+γ+ln 2/ lnn in Algorithm 4, line 3.

Proof of Theorem 1 (Sketch). By the argument given in [31],
when combining Lemma 6 and Lemma 7, we should first take
a union bound for |R| going through λ∗(`+γ)/OPT to λ∗(`+
γ), and for each fixed length R, we apply Lemma 6 (with ` set

to ` + γ + log 2/ log n). This would properly show that with
probability at most 1/n`, the R returned by the Sampling
procedure will not lead to an output of Algorithm 3 as a (1−
1/e− ε)-approximate solution to the LIM problem.

For time complexity, when qv,j’s are such that the optimal
solution is at least as good as the best single node influence
spread, we can have the inequality EPT ≤ m·OPT/n, where
EPT is the expected number of incoming edges pointing to
nodes in a random RR set [10]. By Lemma 5 and an analysis
similar to [11], we can show that the total expected running
time is bounded by:

O

(
kδ−1(max

v∈V
|Sv|)(EPT + 1) · λ

∗(`+ γ + log 2/ log n)

OPT

)
= O

(
kδ−1(max

v∈V
|Sv|) · λ∗(`) · (n+m)

)
= O

(
kδ−1(max

v∈V
|Sv|)(M + ` log n)(n+m)/ε2

)
.

In the second inequality, besides applying EPT ≤ m·OPT/n,
we also ignores γ and log 2/ log n, because asymptotically
they are all constants.

We now give the additional details need to prove Theorem 3.
The main thing we want to clarify is the impact that we use
a binary search for the reverse sampling in the LT model part
from each real node back to each strategy’s virtual node. To
do so, we need to reformulate a previous result n ·EPT ≤ m ·
OPT in a more general setting. Let d′u be the time needed for
one-step reverse sampling from node u (previously this would
be simply the in-degree of u). Given an RR set R, let ω′(R) =∑
u∈R d

′
u. Let EPT ′ = E[ω′(R)], and EPT ′ is the expected

running time to generate one RR set. Let ṽ be a random real
node sampled from V with probability proportional to d′v’s.
Then we have

Lemma 8. n · EPT ′ =
∑
u d
′
u · E[σ({ṽ})].

Sketch. The proof essentially follows the proof of Lemma 4
in [10], but we need to replace the incoming edges of a node
u in that proof to d′u virtual elements of u, so that d′u matches
with the in-degree du of u.

Note that σ({ṽ}) defined in the above lemma refers to the
classical influence spread of ṽ in the original graph. We are
now ready to proof Theorem 3.

Proof of Theorem 3 (Sketch). The approximation ratio is en-
sured by Theorem 2 and the correctness of the IMM algorithm.
For the time complexity, due to our adaption of IMM, the run-
ning time is better than the one obtained by simply plugging
in the number of nodes n + kδ−1d and the number of edges
m+ kδ−1

∑
v∈V |Sv| into the running time formula of IMM.

The analysis follows the same structure as that of IMM, and
we sketch the main part below.

For the greedy NodeSelection procedure, given a sequence
of RR setsR of GA as input, its running time is O(

∑
R∈R |R∩

U |). The term |R ∩ U | is because we only use virtual nodes
as seeds and thus only the virtual nodes in an RR sets play a
role in the NodeSelection algorithm. In fact, we could define
an RR set in this case to only contain virtual nodes, but for
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the convenience of analyzing the running time, we still keep
real nodes in the RR sets. From the analysis in [11], [31], we
know that the total expected running time from all calls to
NodeSelection is O(E[θ] · E[|R ∩ U |]), where θ is the total
number of RR sets generated by the algorithm. Similarly, the
time spent on generating all RR sets is O(E[θ] · E[ω′(R)]).
Since ω′(R) is the running time of generating R, we have
|R ∩ U | ≤ ω′(R). Therefore, the total expected running time
of the algorithm is O(E[θ] · E[ω′(R)]) = O(E[θ] · EPT ′).

By Lemma 8, and the assumption that the optimal solu-
tion of the LIM is at least as large as the optimal single
node influence spread, we have EPT ′ ≤ m′ · OPT/n.
From [11] we know that E[θ] = O(λ∗/OPT ). By Eq. (6)
λ∗ = O(M + ` log n). Finally m′ =

∑
v∈V d

′
v = O(m +

log(kδ−1)
∑
v∈V |Sv|), because for the original graph the

reverse sampling via the triggering set uses time proportional
to the in-degree of v in the original graph, and for the virtual
nodes, the reverse sampling from each real node to each
strategy’s virtual nodes takes O(log(kδ−1)) time via a binary
search. Combining all the above together, we know that the
expected running time is O(E[θ]·EPT ′) = (M+` log n)(m+
log(kδ−1)

∑
v∈V |Sv|)/ε2).
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