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Abstract

Post-mortem diagnosis of kernel failures is crucial for op-
erating system vendors because kernel failures impact the
reliability and security of the whole system. However, de-
bugging kernel failures in deployed systems remains a chal-
lenge because developers have to speculate the conditions
leading to the failure based on limited information such as
memory dumps. In this paper, we present Kernel REPT, the
first practical reverse debugging solution for kernel failures
that is highly efficient, imposes small memory footprint and
requires no extra software layer. To meet this goal, Ker-
nel REPT employs efficient hardware tracing to record the
kernel’s control flow on each processor, recognizes the con-
trol flow of each software thread based on the context switch
history, and recovers its data flow by emulating machine in-
structions and hardware events such as interrupts and excep-
tions. We design, implement, and deploy Kernel REPT on
Microsoft Windows. We show that developers can use Ker-
nel REPT to do interactive reverse debugging and find the
root cause of real-world kernel failures. Kernel REPT also
enables automatic root-cause analysis for certain kernel fail-
ures that were hard to debug even manually. Furthermore,
Kernel REPT can proactively identify kernel bugs by check-
ing the reconstructed execution history against a set of pre-
determined invariants.

1 Introduction

Post-mortem diagnosis of software failures in deployed sys-
tems is becoming increasingly important for today’s software
development process. Many software vendors such as Mi-
crosoft and Apple have insider programs to test their latest
software before it is released to the general public. Soft-
ware developers rely more and more on debugging failures
reported from early adopters to fix critical issues before ev-
ery software release. In particular, the operating system is
of the utmost importance because it is the foundation of the
software stack and its bugs can have catastrophic impact on
the reliability and security of the whole system.
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Debugging kernel failures in deployed systems has been a
challenge. The fundamental reason is that developers have to
speculate on the conditions leading up to the failure based on
the limited information available for post-mortem diagnosis
such as crashing stacks or memory dumps. The complex-
ity of the kernel makes developers’ speculation ineffective
in many cases. For example, the Windows kernel checks a
set of invariants upon returning to the user mode, and termi-
nates the system if any invariant is violated. Such a failure
leaves developers an empty call stack, which makes it almost
impossible to debug.

This motivates us to build a practical solution that enables
developers to go back in time and examine the root cause of
kernel failures in deployed systems. Reverse debugging is
not a new idea [5, 10], and researchers and practitioners have
developed record and replay solutions that can precisely log
the execution of the whole system [16, 21, 22, 28]. How-
ever, existing whole-system record and replay solutions re-
quire the target operating system to run on top of emula-
tion or virtualization, use an excessive amount of memory
and storage space to support the record and replay, and in-
troduce significant performance slowdown. On contrary, a
practical reverse debugging solution for deployed systems
must be able to provide a high-fidelity execution history for
post-mortem diagnosis while meeting the requirements of
low performance overhead, small memory footprint, no addi-
tional setup of software emulation or virtualization, minimal
change to the operating system, and zero compromise on the
backward compatibility with existing applications.

In this paper, we present Kernel REPT, the first practical
solution for reverse debugging of kernel failures in deployed
systems. It is an extension of REPT [19], a reverse de-
bugging solution for user-mode applications. Kernel REPT
leverages online hardware tracing to log the control flow of
kernel executions and performs an offline binary analysis to
recover the data flow. By configuring the hardware to trace
the target kernel inside the kernel itself, Kernel REPT avoids
the extra layer of software emulation or virtualization, has
the minimal change to the target operating system, and is



fully compatible with existing applications. Furthermore,
hardware tracing is shown to be efficient [27].

Kernel REPT traces the kernel execution on each CPU
core instead of on each software thread as done in REPT.
This helps Kernel REPT achieve a small memory footprint
because the number of CPU cores is much less than the num-
ber of software threads in a system. In this tracing configura-
tion, one trace buffer may contain traces of multiple threads
and the trace of one thread may span multiple trace buffers.
To allow reverse debugging over the execution of a thread,
Kernel REPT requires the context switch history to assem-
ble the trace of the thread. However, Kernel REPT cannot
infer the context switch history based on the control flow or
the memory dump. Instead, Kernel REPT logs the context
switch events during runtime and uses them to reconstruct
the execution of a given thread during offline analysis. This
way Kernel REPT can provide reverse debugging over the
execution of a thread on top of the core-based tracing.

REPT performs forward and backward instruction emula-
tion to recover the program’s data flow, however, it is insuf-
ficient to just emulate the semantics of machine instructions
in Kernel REPT. This is because a processor modifies the
kernel state when a hardware event such as interrupts or ex-
ceptions occurs. To correctly recover the kernel state, Ker-
nel REPT needs to emulate the semantics of these hardware
events properly. However, these hardware events are not ex-
plicitly logged in the control flow trace, and different events
may make different changes to the kernel state. Kernel REPT
solves this problem by leveraging the kernel configuration of
hardware event handlers. For instance, Kernel REPT can tell
a page fault just happened when the page fault handler is ex-
ecuted as shown in the control flow trace.

We implement Kernel REPT and deploy it on a billion de-
vices running Microsoft Windows. Our experiments show
that Kernel REPT is efficient as it incurs less than 10% slow-
down for microbenchmarks and 2% slowdown for applica-
tions like Nginx and Chrome. Windows kernel developers
use Kernel REPT to debug real-world kernel failures and find
the root cause of some kernel bugs that have existed for a
decade and caused innumerable failures.

The usage of Kernel REPT is not limited to interactive
reverse debugging. To this end, we develop an automatic
root-cause analysis for a common class of kernel failures
where the kernel fails when it detects that certain resources
are not properly released before returning to the user mode.
This class of failures is hard to debug even manually without
Kernel REPT because the kernel stack is empty when a fail-
ure happens. Based on the execution history reconstructed
by Kernel REPT, our analysis can automatically identify the
buggy function for 136 out of 188 real-world kernel failures
of this class. This automatic root-cause analysis is deployed
as part of Microsoft’s error reporting service [24].

The reconstructed kernel execution history can enable not
only automatic root-cause analysis but also proactive bug de-

tection. A common kernel bug pattern is that the exception
handling code fails to properly release resources acquired
during the execution wrapped in the fry block. We build a
hybrid analysis to proactively look for this bug pattern by
dynamically analyzing the execution in a fry block and stati-
cally analyzing the code in the exception handling block. By
analyzing thousands of real-world kernel execution histories,
our hybrid analysis finds 17 new bugs in the Windows kernel,
and all of them are confirmed and fixed.

2 Overview

The goal of Kernel REPT is to reconstruct the execution his-
tory of kernel failures in deployed systems for effective post-
mortem diagnosis without incurring noticeable runtime over-
head. As an extension of REPT [19], it utilizes hardware
tracing to log the kernel’s control flow to a circular buffer at
runtime, and recovers its data flow by running binary anal-
ysis on the recorded control flow and the memory dump of
a failure. In the rest of this section, we first provide a back-
ground of REPT. Then we discuss the challenges faced by
Kernel REPT.

2.1 REPT

REPT shows a promising way to do reverse debugging for
user-mode failures in deployed systems. REPT logs a pro-
gram’s control flow into a per-thread circular buffer with low
runtime overhead via hardware tracing (e.g., Intel Processor
Trace [18]), and then recovers its data flow offline by com-
bining the control flow with the memory dump taken at the
failure point. To do so, REPT runs an iterative binary anal-
ysis that performs forward and backward instruction emula-
tion on the recorded instruction sequence to infer the pro-
gram state before every instruction based on the final state
stored in the memory dump. REPT checks for conflicts dur-
ing the execution history reconstruction and performs error
corrections based on heuristics. REPT also supports multi-
threaded programs by merging the instruction sequences of
different threads into a partially ordered single instruction se-
quence based on the fine-grained timestamps logged by the
hardware tracing, and limiting the use of concurrent shared
memory writes in the binary analysis if their exact order can-
not be determined. The reconstructed execution history is
not perfect, but it is shown that REPT achieves high accu-
racy and enables effective reverse debugging of real-world
application failures.

To illustrate how REPT works, we show an example bor-
rowed from the REPT paper [19, Figure 2] in Figure 1. This
example has 5 instructions in the control-flow trace (/;..[5).
The program state S; represents the state after the execu-
tion of instruction ;. Therefore, the final program state Ss
stored in the memory dump has rax=3, rbx=0, and [g]=3.
REPT performs backward and forward analysis iteratively



Iteration 1

Iteration 2 Iteration 3

Iy | lea rbx, [g] S
L | mov rax, 1 S>
I | add rax, [rbx] | S3
Iy | mov [rbx], rax | Sy
Is | xor rbx, rbx Ss

1 {rax=?, rbx=?, [g]=3}
T {rax=?, rbx=?, [g]=3}
T {rax=3, rbx=?, [g]=3}
1 {rax=3, rbx=?, [g]=3}
1 {rax=3, rbx=0, [g]=3}

So | T {rax=?, rbx=?, [g]=3} —

T {rax=?, rbx=?, [g]=2}
T {rax="?, rbx=g, [g]=2}
1 {rax=1, rbx=g, [g]=2}
T {rax=3, rbx=g, [g]=?}
T {rax=3, rbx=g, [g]=3}

J {rax=?, rbx=g, [g]=3}
} {rax=1, rbx=g, [g]=3}
J {rax=3, rbx=g, [g]=3}
J {rax=3, rbx=g, [g]=3}
J {rax=3, rbx=0, [g]=3} —

Figure 1: “This example shows how REPT’s iterative analysis recovers register and memory values when there exist irreversible

[TPL]

instructions with memory accesses. We use “?” to represent “unknown”, and use “g” to represent the memory address of a
global variable. Some values are in bold-face because they represent key updates in the analysis. We skip the fourth iteration
which will recover [g]’s value to be 2 due to the space constraint.” [19, Figure 2]

to recover data values. In the first iteration, REPT does not
update the global variable [g] in S3 because rbx’s value is
unknown. In the second iteration, there is a conflict for rax’s
value in S3. Its original value is 3, but the forward analysis
would infer value 4 for it (rax + [g]l =1 + 3 =4). REPT
keeps the original value of 3 because it is from the final pro-
gram state stored in the memory dump. In the third iteration,
REPT recovers [g]’s value to be 2 based on rax’s value be-
fore and after the add instruction /5.

For the purpose of this paper, we abstract REPT as a mech-
anism that takes as the input a final machine state and its pre-
ceding instruction sequence, and outputs the recovered ma-
chine state before every instruction with high accuracy. Ker-
nel REPT leverages this data recovery mechanism to enable
reverse debugging of kernel failures.

2.2 Challenges

A straw-man solution to support reverse debugging of kernel
failures is to modify REPT to trace the kernel execution of
each software thread and run the same binary analysis on a
kernel memory dump. However, this simple solution does
not work for two reasons.

First, it incurs unacceptable memory overhead. The ker-
nel is shared by all threads on a system and allocating a
trace buffer for each of them can consume an unpredictable
amount of memory, especially when a system can have thou-
sands or even tens of thousands of threads.

Second, the kernel has to handle hardware events of which
user-mode applications are unaware. For instance, interrupts
and exceptions can change the kernel’s stack layout with-
out executing any explicit instruction. The details of these
hardware events such as the exception vector are not logged
by the hardware tracing. However, such information is im-
portant for the data flow recovery because different types of
hardware events have different architectural effects that must
be emulated.

3 Kernel REPT

In this section, we present the design of Kernel REPT. We
first describe how Kernel REPT avoids excessive memory
consumption via per-core tracing while still allowing reverse
debugging over the execution of a thread. Then we present
how Kernel REPT handles hardware events when perform-
ing the offline binary analysis to recover the data flow.

3.1 Per-Core Tracing

To minimize the memory footprint, Kernel REPT chooses to
do per-core tracing instead of per-thread tracing for the ker-
nel. That is, Kernel REPT allocates a circular trace buffer
for each logical core and logs the kernel-mode execution on
a core to its corresponding buffer. Kernel REPT does not
log the control flow of user-mode executions because the ac-
tual machine code executed in the user mode is not directly
related to the root cause of kernel failures. Per-core trac-
ing ensures that Kernel REPT’s memory usage is linear in
the number of logical cores on a system, and the number of
logical cores is fixed and small compared to the number of
software threads. This allows Kernel REPT to configure a
large trace buffer for each core when necessary without the
risk of exhausting the memory.

Per-core tracing does come with its own problems. It is
more intuitive for developers to follow the execution on a
software thread as opposed to a hardware core. On a mul-
tiprocessor system, per-core tracing may mix traces of dif-
ferent threads into one trace buffer and spread the trace of a
single thread into multiple trace buffers. This requires Ker-
nel REPT to obtain the context switch history to identify the
trace of a single thread.

Ideally, Kernel REPT should recover the context switch
history from a per-core trace by leveraging the binary analy-
sis. However, the binary analysis cannot effectively reverse
the context switch routine because the scheduling history is
neither preserved in the memory dump nor can be inferred
from the recorded instruction sequence. We show the pseudo
code of a typical context switch routine in Figure 2. The con-
text switch routine saves the register context of the previous



1 ; pseudo code for context switch

2 ; rdi points to the old thread
3 ; rsi points to the new thread
4+ push rax ; save GPRs

5 push rbx

7 mov KernelStack[rdil], rsp ; switch stack
s mov rsp, KernelStack[rsi]

- ; restore GPRs
10 pop rbx

11 pop rax
12 ret

Figure 2: Pseudo code for context switch. Basically, the con-
text switch routine saves the register context to the previous
thread’s stack and the stack pointer to the previous thread’s
internal data structure, and then restores the context of the
new thread by doing the opposite operations.

Type Origin Details
Interrupt  User/Kernel  Vector number
Exception User/Kernel Vector number
Syscall User N/A

Table 1: Information about hardware events needed for soft-
ware emulation.

thread on its stack, swaps the stack pointer, and then restores
the register context of the newly scheduled thread to resume
its execution. In this process, the context switch routine does
not save the information about the previous thread before re-
suming the execution of the new thread, and hence the binary
analysis is unable to recover the scheduling history. This also
makes the binary analysis ineffective when applied directly
to the per-core trace because the register values before a con-
text switch cannot be recovered. Therefore, Kernel REPT
chooses to log the context switch history in software.

3.2 Handling Hardware Events

The operating system manages hardware resources and has
to handle hardware events. Therefore, the architectural ef-
fects of these hardware events, which are transparent to user-
mode execution, are part of the kernel-mode execution and
must be emulated when running the binary analysis for ker-
nel data recovery.

Different hardware events have different architectural ef-
fects, and Kernel REPT has to understand the semantics of
each hardware event for emulation. We list the information
about the hardware events required for software emulation
in Table 1. Specifically, Kernel REPT has to not only tell the
type of a hardware event, but also infer whether this event
occurred in the user or kernel mode and what it was about.

To do so, Kernel REPT first infers the occurrence of a
hardware event based on the hardware trace. Given that Ker-
nel REPT only traces the kernel-mode execution, hardware
tracing will be paused when the execution returns to the user
mode, and resumed when the execution enters the kernel
mode. Therefore, the signal of tracing being resumed already
indicates the occurrence of a hardware event—a system call
or an interrupt/exception happening in the user mode. The
hardware trace logs the occurrence of an asynchronous event
during the kernel execution. Kernel REPT uses such infor-
mation to detect the occurrence of an interrupt or exception
in the kernel mode.

Next, Kernel REPT needs to infer additional information
about a hardware event such as its type and the vector num-
ber for an interrupt. The Windows kernel configures the han-
dlers for these hardware events at the boot time and never
reconfigures the settings throughout the rest of its lifetime.
Kernel REPT assumes this invariant holds for the vast ma-
jority of kernel failures under non-adversarial scenarios, and
determines the event type as well as the vector number for
interrupts/exceptions by comparing the control flow to the
kernel configuration stored in the memory dump.

Finally, Kernel REPT emulates the architectural effect of
these events according to the hardware specification. Kernel
REPT performs the emulation during the binary analysis as
if it were emulating a special instruction. However, not all
data values are available to Kernel REPT when emulating a
hardware event. For example, when emulating an exception
from the user mode, Kernel REPT does not know the user-
mode instruction that triggers the exception, so it cannot fill
up all fields of the trap frame. Similarly, Kernel REPT does
not log the parameters of system calls, so it does not nec-
essarily have the register context of a system call event if it
cannot be recovered from the memory dump. In these cases,
Kernel REPT simply marks the register and memory values
as unknown to avoid propagating stale values during the bi-
nary analysis.

4 Automatic Analyses

In this section, we present two automatic analyses enabled by
Kernel REPT. The first analysis is an automatic root-cause
analysis that can identify the buggy function for a specific
class of kernel failures. The second analysis is a hybrid anal-
ysis that can proactively detect bugs that may lead to this
class of kernel failures.

4.1 Root-Cause Analysis

A common kernel bug is that calls to do operations (e.g.,
resource acquisition) are not matched by calls to undo op-
erations (e.g., resource release). For example, if the kernel
disables interrupts before entering a critical region but fails
to re-enable interrupts after leaving the critical region, the



system will crash eventually. Despite the simple nature of
this failure type, it is difficult to debug kernel failures caused
by these bugs simply based on a memory dump. The key
challenge is that the buggy function that missed the undo
operation may have returned a long time ago. Without an ex-
ecution history, it is hard to infer which function could be the
buggy one. Particularly, the Windows kernel checks if there
is a missing undo operation (e.g., resource not released) be-
fore it returns to the user mode. A failed check leaves devel-
opers an empty call stack, which makes it almost impossible
to debug. What makes the matter worse is that some opera-
tions allow recursion by maintaining a counter for all pend-
ing do operations (e.g., recursive lock). This requires the
developers to match the do and undo operations in a poten-
tially long history before they can identify the unmatched do
operation, which further complicates the diagnosis process.
The root-cause analysis identifies the buggy function that
misses the undo operation by searching along the execu-
tion history to find the first function where a specified value
changes between the function entry and return. For exam-
ple, to detect when the kernel fails to re-enable the inter-
rupts upon exiting a critical section, the analysis checks for
the interrupt enablement at each function entry and return,
and reports the first one that has a mismatched value. How-
ever, there are exceptions to the above analysis because some
functions are designed to just perform the do or undo opera-
tion. For example, if enabling/disabling interrupts is imple-
mented in a library function, then the function is expected to
modify the value between its entry and return. The library
functions that are designed to perform only a do or undo
operation are relatively stable across kernel versions, so we
maintain a whitelist for such functions. The root-cause anal-
ysis ignores them when searching for the buggy function.

4.2 Proactive Bug Detection

A common bug pattern that causes undo operations be-
ing missed is related to the try/catch-like primitives de-
signed to handle hardware exceptions gracefully. For exam-
ple, the Windows kernel uses Structured Exception Handling
(SEH) [9] to handle page faults when accessing a user-mode
page. An undo operation may be missed when an excep-
tion occurs if the try scope contains a do operation and the
catch scope does not have the corresponding undo opera-
tion. We show an example of this bug pattern in Figure 3.
foo calls read_user_obj in a try block to handle page
faults in case the user-mode page is not mapped with proper
permissions (line 12). read_user_obj temporarily disables
Supervisor-Mode Access Prevention (SMAP) in order to ac-
cess user-mode pages (line 4). If a page fault occurs when
read_user_obj dereferences user_ptr, the page fault han-
dler will redirect the execution back to the catch block in
foo (line 15), skipping the subsequent call to enable_smap
(line 5). The correct implementation is to apply the scope of

1 obj_t read_user_obj(int *user_ptr) {

2 obj_t obj;

3 disable_smap();

4 obj.a = *user_ptr;
5 enable_smap();

6 return obj;

702

8

9 int foo() {

10 obj_t obj;

1 try {

12 obj = read_user_obj(user_ptr);
13 }

14 catch {

15 return -1;

16 }

17 return 0;

18}

Figure 3: Example code that misuses try/catch leading to a
missing undo operation.

the try block to the dereference of user_ptr instead of the
entire read_user_obj function.

Leveraging the execution history reconstructed by Kernel
REPT, we design an automatic hybrid analysis to proactively
detect bugs of this pattern. Our hybrid analysis has two steps.
First, it uses a dynamic analysis to check if there is any do
operation in a try scope based on the execution history. Sec-
ond, it uses a static analysis to check if the matching catch
scope does not have the corresponding undo operation. The
analysis identifies try and catch scopes based on the un-
wind information in the binaries [14].

The assumption behind this analysis is that a hardware ex-
ception may happen at any time within the try scope, and
missing the undo operation in the catch scope means that
the kernel would fail to restore the state if an exception hap-
pens after the do operation. Even though this assumption
may not be true for all cases, a violation implies an overuse
of the try scope that should be addressed by developers.

The hybrid analysis is accurate and effective because it
leverages execution traces from a huge number of deployed
systems. First, a try scope may include a significant amount
of execution involving multiple levels of function calls. Stat-
ically analyzing such a try scope is challenging, and our dy-
namic analysis avoids this challenge. Second, the executions
of all kernel threads (i.e., not limited to the failure thread) in a
failure report are used in the hybrid analysis. This allows the
analysis to avoid the common constraint on completeness for
dynamic analysis. Third, the code logic in the catch scope is
usually straightforward, so simple static analysis is sufficient
for checking if an expected undo operation exists.



5 Implementation

In this section, we describe the implementation and deploy-
ment of Kernel REPT on Microsoft Windows.

5.1 Kernel Tracing

Kernel REPT logs both the context switch history and the
control flow of the Windows kernel. To log the context
switch history, Kernel REPT leverages Event Tracing for
Windows (ETW) [4]. ETW logs the timestamp, identifiers
of both the old thread and the new thread for each context
switch event. These ETW events will be included in the
memory dump of a kernel failure.

To record the kernel’s control flow, Kernel REPT enables
Intel Processor Trace (PT) [18] on each processor core for
the kernel-mode execution at system start. We adapt the
driver from REPT to enable Intel PT for the Windows kernel.
Our driver change has roughly 2K lines of C code. We mark
the virtual memory of trace buffers as read-only to prevent
the Windows kernel from accidentally corrupting them. This
can be done because Intel PT outputs the trace directly to the
physical memory and is not subject to the page permission
we set on the virtual memory. Similar to the user-mode trac-
ing in REPT, the kernel-mode trace is stored in the memory
dump when a kernel failure is reported.

Kernel REPT currently disables multithreaded analysis for
kernel failures due to a caveat of Intel PT. The timestamp log-
ging of Intel PT cannot be configured for a specific privilege
level. Without such a privilege-level filtering, the timestamps
generated during the user-mode execution will overwrite the
kernel’s control-flow trace in the circular buffer. One possi-
ble solution is to dynamically enable and disable timestamps
in software when the processor switches between the user
and kernel mode. We leave its exploration to future work.

5.2 Trace Parsing

Intel PT encodes the control flow in a highly compact for-
mat. It requires the code binary to parse the trace to recon-
struct the control flow. Meanwhile, an operating system can
swap out kernel code pages to reclaim its underlying phys-
ical memory. This can fail the trace parsing because even
capturing the entire physical memory upon a kernel failure
can be insufficient due to the unavailability of swapped-out
code pages. One possible solution to this problem is to lock
all the kernel code pages into the physical memory, but this
will increase the memory pressure to the overall system.

In Kernel REPT, we choose to reconstruct the code pages
based on the image’s metadata stored in the memory dump
and its binary file. One disadvantage of this approach is that
it does not work for third-party drivers where the binary files
are unavailable. This is not a big issue in practice because

CPUO CPU1 CPU2 CPU3

— — —
— e —

Y

Time

Figure 4: An example scenario where traces of a thread are
not contiguous. Solid lines represent the execution trace of
the interesting thread. Dashed lines represent the execution
trace of other threads. Dots (e) connecting them represent
context switches. Dotted lines mean the processor was in
sleep mode and no execution trace was generated.

the code that was executed close to the failure point is usu-
ally available in the physical memory (thanks to the memory
manager’s policy).

5.3 Binary Analysis

We implement Kernel REPT’s binary analysis in 15K lines
of C++ code on top of REPT. It includes the emulation of
hardware events, the thread trace reconstruction based on
the context switch history, and the two automated analyses.
Most of the implementation is straightforward, but there are
two technical details worth mentioning here.

First, a thread’s trace may be noncontiguous with respect
to the thread’s execution. We show an example in Figure 4.
In this example, core 2 was in sleep mode for a long period
of time, and no execution trace was generated. The trace of
the target thread in its circular buffer can be obsolete and dis-
connected from the rest of the thread’s trace on other cores.
This can happen when the trace of the target thread on core 1
was overwritten by another thread, and the overwritten trace
was more recent than the trace in core 2’s trace buffer. Kernel
REPT checks for such cases based on the timestamps of con-
text switch events, and discards those disconnected traces.

Second, certain kernel instructions can be missing from
the control-flow trace when the system is running inside
a virtual machine. In a virtualized environment, guest in-
structions that can modify the system state (e.g., wrmsr) are
trapped and emulated by the hypervisor. Kernel REPT only
traces the kernel-mode execution, so its binary analysis will
be under the illusion that these instructions are skipped ac-
cording to the Intel PT trace. This can result in an inconsis-
tent state in the data flow recovery. Kernel REPT solves this



issue by detecting VMEXIT and adding the skipped instruction
back to the instruction sequence if it is deemed as emulated
by the hypervisor. Specifically, for each asynchronous event
logged in the trace, Kernel REPT checks if there is one and
only one possible instruction between the current instruction
and the next instruction in the instruction sequence. If so,
Kernel REPT determines that the instruction is emulated by
the hypervisor, and adds it back to the instruction sequence
before running the binary analysis. This check is straightfor-
ward to implement because the hypervisor-emulated instruc-
tion is typically a non-branch instruction.

5.4 Deployment

We have deployed Kernel REPT in the ecosystem of
Microsoft Windows. The deployment of Kernel REPT
spans three parts: Windows, Windows Error Reporting
(WER) [24], and Windows Debugger [12].

On Windows, we released the kernel driver that config-
ures Intel PT tracing and the ETW context switch logger for
the kernel, and a user-mode daemon that communicates with
WER to decide when to start/stop the driver. These compo-
nents were released as part of Windows 10 version 1803.

On the WER service, we added support for requesting In-
tel PT traces for a given kernel failure. When the WER ser-
vice receives such a request, it selects devices that have re-
ported the same kernel failures in the past and are capable of
Intel PT to enable tracing for future failure reporting. The
WER service also runs the automatic root-cause analysis on
kernel failures of the specific error code [2].

On Windows Debugger, we implemented Kernel REPT’s
interactive reverse debugging by extending REPT’s debug-
ger extension. This extension allows an developer to set
breakpoints, go back and forth on the reconstructed execu-
tion history, switch to different threads, and inspect the local
and global variables.

6 Evaluation

In this section, we evaluate the performance and effective-
ness of Kernel REPT. For performance, we run both micro-
benchmarks and real-world applications with Kernel REPT
enabled to measure the runtime overhead. For effectiveness,
we evaluate Kernel REPT’s data recovery and report how it
helps developers debug real-world kernel bugs.

6.1 Performance

We evaluate the performance impact of Intel PT tracing
and context switch logging on kernel-mode execution by
running UnixBench 5.1.3 [11], ApacheBench [1] on Ng-
inx 1.17.5 [7], and JetStream 2 benchmarks [6] on Chrome
79 [3]. We choose UnixBench because it measures the
micro-level performance impact on a kernel’s key functions
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Figure 5: Performance overhead of running UnixBench with
Intel PT tracing and context switch logging.

such as system calls and context switches. We choose Ng-
inx and Chrome because they represent popular programs for
server and client scenarios, respectively. We run the exper-
iments on a Windows 10 (version 1903) machine equipped
with an Intel i7-6700K processor (8 logical cores) and 16GB
RAM. We allocate two separate circular buffers for each log-
ical core: a 1MB buffer for Intel PT tracing and a 128KB
buffer for context switch logging. We choose this default set-
ting empirically for experiments, but our real-world deploy-
ment allows developers to adjust the configuration as needed.

6.1.1 UnixBench

We run UnixBench on the Windows Subsystem for Linux
1 (WSL 1) [13]. WSL 1 implements Linux system calls
from the Windows kernel to run unmodified Linux ELF bi-
naries such as UnixBench. We show the performance re-
sults of UnixBench in Figure 5. For Intel PT tracing only,
the average performance overhead is 3.06% with no single
benchmark exceeding 5% overhead. With the context switch
logging enabled in addition, the average performance over-
head becomes 5.35% with the highest performance overhead
of 9.68%. In particular, three benchmarks, Execl, Context
Switch and Process Creation, have more frequent context
switches than other benchmarks. Therefore, they have higher
overhead when context switch logging is turned on.

6.1.2 Nginx

We evaluate the performance overhead of different tracing
setups on Nginx using ApacheBench. We run Nginx on
the test machine with 8 logical cores and 16GB RAM. We
use the default configuration provided by Nginx but mod-
ify worker_processes to 8 to use all the logical cores. We



# Instructions  Data Recovery

IRQL Fault (Kernel) 3,310,906 65.13%
Code Overwrite 1,151,315 73.18%
Stack Trash 315,046 65.75%
IRQL Fault (User) 9,176,219 61.56%
Stack Overflow 10,421,430 60.97%
Hardcoded Breakpoint 9,129,048 61.65%
Double Free 5,232,343 43.03%

Table 2: Kernel REPT’s data recovery rate on kernel failures
caused by notmyfault [8].

run ApacheBench on a separate client machine with 16 log-
ical cores. We use the client to make 100,000 HTTP re-
quests over 16 concurrent connections and then measure the
throughput (requests/second). We run each session 10 times
and report the average throughput. The reduction of the av-
erage throughout when the Intel PT tracing is enabled (with
or without the context switch logging) is about 2%.

6.1.3 Chrome

We run JetStream 2 benchmarks on the Chrome browser to
evaluate the performance impact on web browsing, one of
the most common client-side scenarios. There is no visible
performance slowdown when both the Intel PT tracing and
the context switch logging are enabled. We believe this is
because the benchmarks have most of their computation in
the user mode.

6.2 Effectiveness

We evaluate the effectiveness of Kernel REPT from four per-
spectives: (1) how well it can recover data; (2) how its inter-
active reverse debugging can help developers debug kernel
bugs; (3) how accurate the automatic root-cause analysis is;
(4) how well the proactive bug detection works.

6.2.1 Data Recovery

We evaluate Kernel REPT’s data recovery based on the same
metric as REPT [19]. Specifically, we measure the data re-
covery rate as the percentage of register uses (i.e., a register
used as the source operand or in the address of a memory
operand) for which the register value is recovered by Kernel
REPT. Register use is a good metric because it avoids dou-
ble counting (e.g., we only count it once when rax and rbx
are both known in an instruction mov rax, rbx) and memory
values are often loaded into registers first before being used
in an operation.

In our experiment, we trigger Windows kernel failures by
using a public utility program called notmyfault [8], which
injects a kernel driver to cause various types of failures such

1 bool get_desc(..., desc_t **p) {
2 int size;

3 bool success;

4 *p = malloc(sizeof (desc_t));

5 driver = find_driver();

6 success = (driver->op) (*p, &size);
7 return success;

8

9

3

1o void foo() {

1 desc_t *p;

12 bool success;

13 if (...) {

14 success = get_desc(..., &p));
15 } else {

16 success = get_desc(..., &p));
17 }

18 if (success) {

19 bar(p->owner->sid); // CRASH!
20 }

Figure 6: A real-world example that showcases how Kernel
REPT helps developers find bugs.

as stack overflow and double free. We pick notmyfault be-
cause its injected failures are reproducible. Our experiment
does not include the Buffer Overflow fault in notmyfault
because it cannot trigger a kernel failure on the latest Win-
dows. For each failure, we count the number instructions and
measure the data recovery rate for the crashing thread. Our
experimental results are shown in Table 2.

Kernel REPT’s data recovery rate is over 60% for all but
one failure even when some execution contains over 10 mil-
lion instructions. The Double Free case involves a series of
memory allocation/free operations. As reported in REPT,
memory allocation operations are hard to reverse because
their metadata may be completely overwritten by subsequent
free and reallocation operations. We believe this is the main
reason for the Double Free case to have a lower data recovery
rate than others.

Comparing with REPT’s data recovery on user-mode pro-
grams [19, Figure 4], we can see that Kernel REPT achieves
a similar data recovery rate for kernel failures. Note that
some recovered data may be incorrect, but we cannot directly
measure it due to the lack of a ground truth. However, we ex-
pect it to be in the same low percentage as REPT.

6.2.2 Interactive Reverse Debugging

We use a real-world case to demonstrate how Kernel REPT
can help developers debug kernel bugs through interactive
reverse debugging. This bug was introduced to the Windows
kernel more than a decade ago. It was not fixed until Ker-
nel REPT became available due to the lack of information in



memory dumps. We show a simplified version of the code
around the bug in Figure 6. In the code snippet, foo calls
get_desc to receive a pointer to a descriptor object. De-
pending on certain conditions (line 13), the call can happen
at two places with potentially different parameters (line 14
and 16). get_desc allocates the memory for the descrip-
tor object (line 4) and finds the driver that provides the cor-
responding callback (line 5). Then, get_desc invokes the
driver’s callback function to initialize the object, which re-
turns whether the initialization succeeds and the number of
bytes being initialized (line 6). Finally, the crash happens
when foo dereferences a pointer field (owner) inside the de-
scriptor object (line 19).

To debug this kernel failure, a developer first has to de-
termine where get_desc is called (line 14 or 16). Without
Kernel REPT, a developer would need to use some auxil-
iary information to figure it out. However, with the recorded
control flow, it is straightforward to find it. The next step is
to determine the target function of the callback (line 6). This
can be challenging without the recorded control flow because
get_desc has already returned and the relevant information
may no longer be available. In fact, the actual code involves
multiple levels of indirect function calls, making the problem
even harder. With Kernel REPT, the developer can easily
reach the correct target function based on the recorded con-
trol flow. Finally, the developer has to understand how the
descriptor is mis-initialized by the callback function. In this
particular case, it turns out that the callback function does
not attempt to initialize the descriptor object at all. It just re-
turns success with the number of initialized bytes being zero.
Unfortunately, foo does not check the number of bytes being
initialized, leading to the subsequent crash caused by deref-
erencing an uninitialized pointer value. To fix this bug, the
developer changes the callback function to return an error
code indicating that the operation is not supported.

6.2.3 Root-Cause Analysis

We run the automatic root-cause analysis described in §4.1
on 377 real-world kernel failures of a specific error code [2]
reported to Microsoft over two weeks. This error code is
used by the kernel when it detects a specific resource is not
properly released upon returning to the user mode. The anal-
ysis identifies potential buggy functions in 33 kernel compo-
nents including the core OS kernel, the GUI subsystem, the
file system, and some third-party drivers. To evaluate the ac-
curacy of the root-cause analysis, we manually check each
identified buggy function either based on the source code or
the confirmation from developers. Since the source code of
third-party drivers is unavailable and it is difficult to reach
their developers, we exclude the 189 kernel failures whose
buggy functions are in a third-party driver.

We show the accuracy of the root-cause analysis for the
remaining 188 kernel failures in Table 3. The root-cause

True Blame | False Blame
Try/Catch ‘ Misc. ‘ Manual ‘ Unresolved
136 | 12 | 23 | 17

Table 3: The accuracy of the automatic root-cause analy-
sis on 188 real-world kernel failures for which Kernel REPT
blames a function in the first-party components.

analysis correctly identifies the buggy function for 148 fail-
ures. 136 of these failures are caused by unsafe try/catch
operations and 12 of them are caused by other miscellaneous
issues (e.g., the code fails to properly clean up the state on an
error handling path). The root-cause analysis fails to identify
the true buggy function for 40 kernel failures. We manually
analyze them via interactive reverse debugging and find that
we can find the true buggy function for 23 failures. The rest
17 failures cannot be resolved due to the limited trace size or
data recovery.

While analyzing the memory dumps of the 23 failures
manually, we find that one common reason for the automatic
root-cause analysis to miss the true buggy function is that
the do and undo operation pair is tied to an object’s lifetime
instead of a function’s lifetime. For example, one way to
manage the acquisition and release of a lock is to implement
the acquire operation in a constructor function and the re-
lease operation in the corresponding destructor function. In
this case, a function can indirectly acquire the lock by cre-
ating such an object, and then passes it to another function
that releases this lock by destructing the object. If the kernel
fails to destruct the object due to programming errors, it not
only causes memory leaks but also leads to the missing undo
issue. The root cause of such programming errors can vary
case by case, and blaming the function that creates the object
and seemingly misses the destruction does not always lead
to the correct outcome. However, even in these cases, the
root-cause analysis can provide useful information to help
developers find the root cause.

6.2.4 Proactive Bug Detection

We run the proactive bug detection described in §4.2 over
2000 execution histories reconstructed from memory dumps
of real-world kernel failures. We do not limit the failure
type, and use the execution histories of all threads in a mem-
ory dump. We use memory dumps of kernel failures instead
of normal executions because they are currently the major
source of recorded real-world kernel executions.

We have found a total of 17 previously unknown kernel
bugs, and all are confirmed and fixed. For one of the bugs,
we observed an actual kernel failure caused by it a few days
after we reported it to the developer. This shows the potential
of using Kernel REPT to uncover bugs even before they are
triggered in practice.



7 Discussion

Kernel REPT extends REPT’s support for reverse debugging
of user-mode failures to kernel-mode failures. Therefore, it
shares two limitations with REPT. First, the reconstructed
execution history is incomplete because the circular trace
buffer only captures a fixed amount of control-flow infor-
mation before the kernel failure. Second, the reconstructed
execution history is imperfect because many instructions are
not reversible. Despite the two limitations, Kernel REPT’s
reverse debugging capability allows successful diagnosis of
many real-world kernel failures that were impossible to de-
bug before.

The automatic root-cause analysis described in §4.1 re-
quires a whitelist of functions that perform only a do or
undo operation by design. It requires manual effort to con-
struct and update the whitelist. The root-cause analysis may
have false blames due to the incompleteness of the whitelist.
In practice, we rely on developers’ feedback to keep the
whitelist up to date.

One interesting observation we have is that REPT-style re-
verse debugging is more effective for kernel-mode failures
than for user-mode failures. We believe the key reason is
that the Windows kernel operates in a more defensive man-
ner: it performs various checks of invariants in kernel state
at different times of the execution, such as checking missing
undo operations before returning to the user mode (see §4.1
for details). These checks shorten the execution between the
program defect and the program failure. This is crucial for
the effectiveness of REPT-style reverse debugging since its
reconstructed execution history is incomplete and imperfect.

8 Related Work

In this section, we discuss the previous work related to Ker-
nel REPT in three categories: record and replay, failure anal-
ysis and failure reproduction. We omit the discussion of
REPT [19] as we have covered it comprehensively in §2.1.

8.1 Record and Replay

Record and replay tools have been applied to debugging for
both user-mode applications [15, 25, 30, 33] and operating
systems [16,21-23,28,31,32,34,35]. Software-based record
and replay tools [16, 21-23, 28, 35] for operating systems
require running the whole system in a virtualized environ-
ment to log all non-deterministic inputs to the target system.
These tools are rarely deployed in production environments
because of their significant runtime overhead and compati-
bility issue. The latter is caused by the requirement for a
special setup such as installing a custom virtual machine.
Hardware-based record and replay tools [31,32,34] mod-
ify the underlying hardware to record the execution of a tar-
get system. For example, Flight Data Recorder (FDR) [34]

instruments the processor’s cache coherency protocol to en-
able record and replay of a multiprocessor system. The re-
quired hardware modification makes these systems expen-
sive to build and adopt in practice.

Compared to the above record and replay tools, Kernel
REPT enables effective reverse debugging for operating sys-
tems running on commodity hardware with low performance
and space overhead at runtime, making it practical for de-
ployment on real-world systems.

8.2 Failure Analysis

RETracer [20] is a triaging system for both user-mode and
kernel-mode failures. It starts with a corrupted pointer, per-
forms backward taint analysis on memory dumps, and as-
signs the blame to a function that contributes to the access
violation. RETracer uses the crashing stack as an approxi-
mate execution trace when performing backward taint anal-
ysis, so it cannot effectively analyze kernel failures with an
empty call stack.

Postmortem Symbolic Evaluation (PSE) [29] performs
static backward slicing on memory dumps to identify where
a bad pointer is originated. PSE is also limited by the infor-
mation available in the dump, and can have false positives
due to unresolved memory aliases.

SherLog [36] analyzes the log messages generated during
a failed execution to infer control and data values before the
failure point. While this approach may be useful to diag-
nose logical bugs in a program, log messages cannot be used
to diagnose low-level software bugs such as memory safety
errors. In addition, its effectiveness depends on the devel-
oper’s expertise in determining the key information to log,
which varies case by case.

Kernel REPT is complementary to the above production
failure analysis techniques. For instance, we integrated
REPT-style reverse debugging into RETracer so that the lat-
ter can run its backward taint analysis on the reconstructed
execution history to derive a more precise blame for produc-
tion failures.

8.3 Failure Reproduction

Execution Synthesis (ESD) [37] explores possible program
paths to search for inputs that can lead to the same failure.
ESD relies solely on memory dumps, and its symbolic exe-
cution [17] may not be able to solve complicated constraints
when exploring a long execution history of complex program
state. This makes it difficult to work for complex programs
such as the operating system kernel.

BugRedux [26] reproduces a production failure by instru-
menting the program to collect execution data at different
levels and employing symbolic execution to compute an in-
put leading to a similar execution. Program instrumentation



incurs overhead even for normal executions, and symbolic
execution is known to have path explosion problems.

Kernel REPT allows developers to examine the execution
history of a kernel failure without the need to reproduce it.

9 Conclusion

We have presented the design and implementation of Kernel
REPT, the first practical solution for reverse debugging of
kernel failures in deployed systems. Kernel REPT records
the kernel’s control flow and context switch events on each
processor, and recovers its data flow on each software thread
via binary analysis. Its analysis emulates both machine in-
structions and hardware events such as interrupts and excep-
tions. In addition to the support for interactive reverse de-
bugging, we have developed two automatic analyses on top
of Kernel REPT: a root-cause analysis that can identify the
buggy function for a class of kernel failures, and a hybrid
analysis that can proactively detect bugs due to a misuse of
the try/catch primitive. We show that Kernel REPT is effi-
cient for real-world deployment and effective for debugging
real-world kernel failures.
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