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Abstract
In this paper, we study combinatorial pure explo-
ration for dueling bandits (CPE-DB): we have
multiple candidates for multiple positions as mod-
eled by a bipartite graph, and in each round we
sample a duel of two candidates on one position
and observe who wins in the duel, with the goal of
finding the best candidate-position matching with
high probability after multiple rounds of samples.
CPE-DB is an adaptation of the original combi-
natorial pure exploration for multi-armed bandit
(CPE-MAB) problem to the dueling bandit set-
ting. We consider both the Borda winner and the
Condorcet winner cases. For Borda winner, we
establish a reduction of the problem to the origi-
nal CPE-MAB setting and design PAC and exact
algorithms that achieve both the sample complex-
ity similar to that in the CPE-MAB setting (which
is nearly optimal for a subclass of problems) and
polynomial running time per round. For Con-
dorcet winner, we first design a fully polynomial
time approximation scheme (FPTAS) for the of-
fline problem of finding the Condorcet winner
with known winning probabilities, and then use
the FPTAS as an oracle to design a novel pure ex-
ploration algorithm CAR-Cond with sample com-
plexity analysis. CAR-Cond is the first algorithm
with polynomial running time per round for iden-
tifying the Condorcet winner in CPE-DB.

1. Introduction
Multi-Armed Bandit (MAB) (Lai & Robbins, 1985; Thomp-
son, 1933; Auer et al., 2002; Agrawal & Goyal, 2012) is a
classic model that characterizes the exploration-exploitation
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tradeoff in online learning. The pure exploration task (Even-
Dar et al., 2006; Chen & Li, 2016; Sabato, 2019) is an
important variant of the MAB problems, where the objec-
tive is to identify the best arm with high confidence, using
as few samples as possible. A rich class of pure explo-
ration problems have been extensively studied, e.g., best
K-arm identification (Kalyanakrishnan et al., 2012) and
multi-bandit best arm identification (Bubeck et al., 2013).
Recently, Chen et al. (2014) proposes a general combina-
torial pure exploration for multi-armed bandit (CPE-MAB)
framework, which encompasses previous pure exploration
problems. In the CPE-MAB problem, a learner is given a
set of arms and a collection of arm subsets with certain com-
binatorial structures. At each time step, the learner plays
an arm and observes the random reward, with the objective
of identifying the best combinatorial subset of arms. Gabil-
lon et al. (2016); Chen et al. (2017) follow this setting and
further improve the sample complexity.

However, in many real-world applications involving implicit
(human) feedback including social surveys (Alwin & Kros-
nick, 1985), market research (Ben-Akiva et al., 1994) and
recommendation systems (Radlinski et al., 2008), the infor-
mation observed by the learner is intrinsically relative. For
example, in voting and elections, it is more natural for the
electors to offer preference choices than numerical evalu-
ations on candidates. For this scenario, the dueling bandit
formulation (Yue et al., 2012; Ramamohan et al., 2016; Sui
et al., 2018) provides a promising model for online decision
making with relative feedback.

In this paper, we contribute a model adapting the original
CPE-MAB problem to the dueling bandit setting. Specifi-
cally, we formulate the combinatorial pure exploration for
dueling bandit (CPE-DB) problem as follows. A CPE-DB
instance consists of a bipartite graph G modeling multiple
candidates that could fit into multiple positions, and an un-
known preference probability matrix specifying when we
play a duel between two candidates for one position, the
probability that the first would win over the second. At each
time step, a learner samples a duel of two candidates on one
position and observes a random outcome of which candidate
wins in this duel sampled according to the preference prob-
ability matrix. The objective is to use as few duel samples
as possible to identify the best candidate-position matching
with high confidence, for two popular optimality metrics
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in the dueling bandit literature, i.e., Condorcet winner and
Borda winner.

The CPE-DB model represents a novel preference-based
version of the common candidate-position matching prob-
lems, which occurs in various real-world scenarios, includ-
ing social choice (McLean, 1990), multi-player game (Grae-
pel & Herbrich, 2006) and online advertising (Joachims
et al., 2017). For instance, a committee selection procedure
(Gehrlein, 1985) may want to choose among multiple candi-
dates one candidate for each position to form a committee.
For any two candidates on one position, we can play a duel
on them, e.g., by surveying a bystander, to learn a sample of
which candidate would win on this position, and the sample
follows an unknown preference probability. We hope to play
as few duels as possible (or by surveying as few people as
possible) to identify the best performing committee.

The CPE-DB problem raises interesting challenges on ex-
ponentially large decision space and relative feedback. The
key issue here is how to exploit the problem structure and
design algorithms that guarantee both high computational
efficiency and low sample complexity. Therefore, the de-
sign and analysis of algorithms for CPE-DB demand novel
computational acceleration techniques. The contributions
of this work are summarized as follows:

(1). We formulate the combinatorial pure exploration for du-
eling bandit (CPE-DB) problem, adapted from the orig-
inal combinatorial pure exploration for multi-armed
bandit (CPE-MAB) problem to the dueling bandit set-
ting, and associate it with various real-world appli-
cations involving preference-based bipartite matching
selection.

(2). For the Borda winner metric, we reduce CPE-DB
to the original CPE-MAB problem, and design algo-
rithms CLUCB-Borda-PAC and CLUCB-Borda-Exact
with polynomial running time per round. We provide
their sample complexity upper bounds and a problem-
dependent lower bound for CPE-DB with Borda win-
ner. Our upper and lower bound results together show
that CLUCB-Borda-Exact achieves near-optimal sam-
ple complexity for a subclass of problems.

(3). For the Condorcet winner metric, we design a fully
polynomial time approximation scheme (FPTAS) for
a proper extended version of the offline problem, and
then adopt the FPTAS to design a novel online algo-
rithm CAR-Cond with sample complexity analysis. To
our best knowledge, CAR-Cond is the first algorithm
with polynomial running time per round for identifying
the Condorcet winner in CPE-DB.

1.1. Related Works

Combinatorial pure exploration The combinatorial
pure exploration for multi-armed bandit (CPE-MAB) prob-

lem is first formulated by Chen et al. (2014) and generalizes
the multi-armed bandit pure exploration task to general
combinatorial structures. Gabillon et al. (2016) follow the
setting of (Chen et al., 2014) and propose algorithms with
improved sample complexity but a loss of computational
efficiency. Chen et al. (2017) further design algorithms
for this problem that have tighter sample complexity and
pseudo-polynomial running time. Wu et al. (2015) study
another combinatorial pure exploration case in which given
a graph, at each time step, a learner samples a path with the
objective of identifying the optimal edge.

Dueling bandit The dueling bandit problem (Yue et al.,
2012; Ramamohan et al., 2016; Sui et al., 2018), first pro-
posed by (Yue et al., 2012), is an important variation of the
multi-armed bandit setting. According to the assumptions
on preference structures and definitions of the optimal arm
(winner), previous methods can be categorized as methods
on Condorcet winner (Komiyama et al., 2015; Xu et al.,
2019), methods on Borda winner (Jamieson et al., 2015;
Xu et al., 2019), methods on Copeland winner (Wu & Liu,
2016; Agrawal & Chaporkar, 2019), etc. Recently, Saha &
Gopalan (2019) propose a variant of combinatorial bandits
with relative feedback. In their setting, a learner plays a
subset of arms (assuming each arm has an unknown positive
value) in a time step and observes the ranking feedback, and
the goal is to minimize the cumulative regret. Therefore,
their model is quite different from ours.

2. Problem Formulation
In this section, we formally define the combinatorial pure
exploration problem for dueling bandits. Suppose that there
are n candidates C = {c1, . . . , cn} and ` positions S =
{s1, . . . , s`} with n ≥ `. Each candidate is available for
several positions, and we use bipartite graph G(C, S,E)
to denote this relation, where each edge e = (ci, sj) ∈ E
denotes that candidate ci is capable for position sj . We
define m = |E|. We use Ej to denote the set of edges
connected to position j, i.e., Ej = {e = (c, sj) ∈ E : c ∈
C} and we also use s(e) to denote the position index of e.

Two edges e and e′ are comparable if they have the same
position indices, i.e. s(e) = s(e′). For any two comparable
edges e = (c, sj) and e′ = (c′, sj), there is an unknown
preference probability pe,e′ , which means that with proba-
bility pe,e′ , e wins e′, or c wins c′ on position j. We have
pe,e′ = 1− pe′,e. For any e ∈ E, we define pe,e = 1

2 .

Given the graph G(C, S,E), we define an order of edges
in E by first ranking them by their position indices from
smallest to the largest and then ranking them by their candi-
date index from the smallest to the largest. Given the order
of the edges, we use ei to denote the i-th edge in the order,
and define χM ∈ {0, 1}m as the vector representation of
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Figure 1. Graph

e1 e2 e3 e4 e5

e1 0.5 0.45 1 0 0
e2 0.55 0.5 0.55 0 0
e3 0 0.45 0.5 0 0
e4 0 0 0 0.5 0
e5 0 0 0 1 0.5

Figure 2. Preference Matrix
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Figure 3. Borda Winner
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Figure 4. Condorcet Winner

the edges M ⊂ E, where (χM )i = 1 if and only if ei ∈M .
We also use a preference matrix P ∈ ([0, 1])m×m to record
all preference probabilities. Specifically, for any two compa-
rable edges ei, ej , Pi,j = pei,ej is the preference probability
of ei over ej . For two incomparable edges ei′ , ej′ , Pi′,j′ is
set to 0 for the convenience of later computations. Figure 1
show an example bipartite graph and Figure 2 shows its
corresponding preference matrix.

Note that for each position sj , any two edges connecting to
sj can be compared with a preference probability. This is
similar to the dueling bandit setting (Yue et al., 2012), where
each edge is an arm, and we can compare the arms (edges)
to find the best arm (edge), i.e., finding the best candidate
for a position. Thus, from now on, we will use arms and
edges interchangeably. We define K =

∑`
j=1

|Ej |(|Ej |−1)
2 ,

which is the number of all possible duels between any two
comparable arms.

We assume that there is at least one matching with cardinal-
ity ` in G, meaning that we can find at least one candidate
for each position without a conflict. The decision class
M ⊂ 2E is the set of all maximum matchings in G. We
can also view a matching as a team that specifies which
candidate shall play which position for all the positions.
Given a matching M and a position sj , we use e(M, j) to
represent the edge in M that connects to position sj . For
any two matchings M1,M2 ∈M, we define the preference
probability of M1 over M2 as follows:

f(M1,M2, P ) :=
1

`

∑̀
j=1

pe(M1,j),e(M2,j). (1)

It is easy to show that f(M1,M2, P ) = 1− f(M2,M1, P ).
Written in vector representation, we have f(M1,M2, P ) =
1
`χ

T
M1
· P · χM2

.

Now, we define the “best” matching in the decision classM.
There are several different definitions, e.g., Borda winner
(Emerson, 2013; 2016), Condorcet winner (Black, 1948),
and Copeland winner (Copeland, 1951; Saari & Merlin,
1996). In this paper, we focus on the Borda winner and the

Condorcet winner, the definitions of which are given below.

Borda winner The Borda winner refers to the winner that
maximizes the average preference probability over the deci-
sion class, which we call “Borda score”. Mathematically, in
our framework, the Borda score of any matching Mx ∈M
and the Borda winner are defined as:

B(Mx) =
1

|M|
∑

My∈M
f(Mx,My, P ), (2)

MB
∗ = argmax

Mx∈M
B(Mx). (3)

For the pure exploration task, we assume that there is a
unique Borda winner, similar to the assumption in other pure
exploration tasks (Even-Dar et al., 2006; Bubeck et al., 2013;
Chen et al., 2014; 2017). Figure 3 shows the Borda winner
as the matching with the red edges, because according to
the preference matrix in Figure 2, it has the largest Borda
score of 0.64.

Condorcet winner The Condorcet winner is the matching
that always wins when compared to others. In our frame-
work, the Condorcet winner is defined as the matching MC

∗
such that f(MC

∗ ,M, P ) ≥ 1
2 for any matching M ∈ M.

We assume that the Condorcet winner exists as several previ-
ous works (Zoghi et al., 2014; Komiyama et al., 2015; Chen
& Frazier, 2017) do, and the Condorcet winner wins over
any other matching with probability strictly better than 1

2 ,
i.e. f(MC

∗ ,M, P ) > 1
2 for any M ∈M\{MC

∗ }. Figure 4
shows the Condorcet winner as the matching with the red
edges. It is different from the Borda winner in this example,
since this matching wins over all other matchings, but its
average winning score (the Borda score) 0.615 is not as
good as the Borda winner.

Our goal is to find the best matching (Borda winner or the
Condorcet winner) by exploring the duels at all the posi-
tions, and we want the number of duels that we need to
explore as small as possible. This is the problem of com-
binatorial pure exploration for dueling bandits (CPE-DB).
More precisely, at the beginning, the graph G(C, S,E) is
given to the learner, but the preference matrix P is un-
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known. Because the learner does not know the preference
probability for arms connected to the same position, she
needs to sample the duel between edges. In each round
the learner samples one duel pair (e, e′) for some position,
and she observes a Bernoulli random variable Xe,e′ with
Pr{Xe,e′ = 1} = pe,e′ . The observed feedback could be
used to help to select future pairs to sample. Our objective
is to find the Borda winner MB

∗ or the Condorcet winner
MC
∗ with as few samples as possible.

3. Efficient Exploration for Borda Winner
In this section, we first show the reduction of the Borda
winner identification problem to the combinatorial pure
exploration for multi-armed bandit (CPE-MAB) problem,
originally proposed and studied in (Chen et al., 2014).
Next, we introduce an efficient PAC pure exploration al-
gorithm CLUCB-Borda-PAC for Borda winner, and show
that with an almost uniform sampler for perfect matchings
(Jerrum et al., 2004), CLUCB-Borda-PAC has both tight
sample complexity and fully-polynomial time complexity.
Then, based on the PAC algorithm CLUCB-Borda-PAC,
we further propose an exact pure exploration algorithm
CLUCB-Borda-Exact for Borda Winner, and provide its
sample complexity upper bound. Finally, we present the
sample complexity lower bound for identifying the Borda
winner.

3.1. Reduction to Conventional Combinatorial Pure
Exploration

In order to show the reduction of CPE-DB for Borda winner
to the conventional CPE-MAB (Chen et al., 2014) problem,
we first define the rewards for edges. Then, we define the re-
ward of a matching to be the sum of its edge rewards. Based
on the reward definitions, it can be shown that the problem
of identifying the Borda winner is equivalent to identifying
the matching with the maximum reward. Specifically, for
any edge e = (ci, sj) ∈ E and matching M ∈ M, we
define their rewards and the reduction relationship between
the two problems as follows:

w(e) =
1

|M|
∑
M∈M

pe,e(M,j),

w(M) =
∑
e∈M

w(e)
(a)
= ` ·B(M), (4)

MB
∗ = argmax

M∈M
B(M) = argmax

M∈M
w(M),

where the equality (a) is due to the definitions of the Borda
score (Eq. (2)) and preference probability between two
matchings (Eq. (1)) (see Appendix B.1 for a detailed proof
of equality (a)).

It remains to show how to efficiently learn the reward w(e)

for edge e, by sampling arm pairs in CPE-DB.

First, we can see that for any edge e = (ci, sj), w(e) is ex-
actly the expected preference probability of e over e(M̄, j),
where M̄ is a uniformly sampled matching from M. In
other words, we could treat e as a base arm in the CPE-
MAB setting with mean reward w(e), and we could obtain
an unbiased sample for e if we can uniformly sample M̄
fromM and then play the duel (e, e(M̄, j)) to observe the
outcome. However, a naive sampling method onM would
take exponential time. To resolve this issue, we employ a
fully-polynomial almost uniform sampler for perfect match-
ings (Jerrum et al., 2004) S(η) to obtain an almost uniformly
sampled matching M ′ fromM. Below we give the formal
definition of S(η).

Definition 1. An almost uniform sampler for perfect match-
ings is a randomized algorithm S(η) that, if given any bi-
partite graph G and bias parameter η, it returns a random
perfect matching from a distribution π′ that satisfies

dtv(π′, π) =
1

2

∑
x∈Θ

|π′(x)− π(x)| ≤ η,

where dtv is the total variation, Θ is the set of all perfect
matchings in G and π is the uniform distribution on Θ.

Next, we show how to obtain M ′ using S(η). We add some
ficticious vertices in S and ficticious edges in E to con-
struct a new bipartite graph G′(C, S′, E′) where |C| = |S′|.
There is a one-to-n relationship between a maximum match-
ings in G and a perfect matchings in G′. Then, with S(η),
we can almost uniformly sample a maximum matching M ′

from G in fully-polynomial time. We defer the details for
sampling with S(η) to Appendix B.2.

3.2. Efficient PAC Pure Exploration Algorithm

In the previous subsection, we present a reduction of CPE-
DB for Borda winner to the conventional CPE-MAB (Chen
et al., 2014) problem. However, directly applying the exist-
ing CLUCB algorithm in (Chen et al., 2014) cannot obtain
an efficient algorithm for our problem. The main obstacle
is that there is currently no efficient algorithm to sample
from an exact uniform distribution over all the maximum
matchings in a general bipartite graph, and thus the origi-
nal CLUCB algorithm is not directly applicable. To tackle
this problem, we need to use an approximate sampler and
modify the original CLUCB algorithm to handle the bias
introduced by the approximate sampler.

Algorithm 1 illustrates an efficient PAC pure exploration
algorithm CLUCB-Borda-PAC for the Borda winner case.
Given a confidence level δ and an accuracy requirement ε,
CLUCB-Borda-PAC returns an approximate Borda winner
Out such that B(Out) ≥ B(MB

∗ ) − ε with probability at
least 1− δ.
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CLUCB-Borda-PAC is built on the CLUCB (Chen et al.,
2014) algorithm designed for the conventional CPE-MAB
problem, and CLUCB-Borda-PAC efficiently transforms
the original numerical observations to the equivalent rel-
ative observations. In particular, the maximization ora-
cle MWMC(·) called in CLUCB-Borda-PAC is exactly the
maximum-weighted maximum-cardinality matching algo-
rithm, performed in fully-polynomial time. The main struc-
ture follows the CLUCB algorithm: in each round, we
first use the empirical mean w̄t as the input to the ora-
cle MWMC(·) to find a matching Mt. Then we use the
lower confidence bounds for all edges in Mt and upper con-
fidence bounds for all edges outside Mt as the input and
call MWMC(·) again to find an adjusted matching M̃t. If
the difference in weights of the adjusted and non-adjusted
matchings are small (line 15), the algorithm stops and re-
turns Mt as the final matching. If not, the algorithm finds
the edge zt in the symmetric difference of M̃t andMt. Then,
the algorithm samples a matching M ′ using sampler S(η),
and plays a duel between zt and the corresponding edge in
M ′ with the same position as zt. After playing the duel, the
algorithm observes the result and updates empirical mean
w̄t+1(zt). With the fast maximization oracle MWMC(·)
and sampler S(η), the CLUCB-Borda-PAC algorithm can
be performed in fully-polynomial time.

To formally state the sample complexity upper bound of the
CLUCB-Borda-PAC algorithm, we need to first define the
width of G, the Borda gap and the Borda hardness.

Definition 2 (Width). For a bipartite graph G, letM(G)
denote the set of all its maximum matchings. For any
M1,M2 ∈ M(G) such that M1 6= M2, we define
width(M1,M2) as the number of edges of the maximum
connected component in their union graph. Then, we define
the width of bipartite graph G as

width(G) = max
M1,M2∈M(G)

M1 6=M2

width(M1,M2).

This width definition for bipartite maximum matching is
inline with the general width definition in (Chen et al., 2014).
We establish the equivalency between our width definition
for bipartite maximum matching and that in (Chen et al.,
2014), and defer the proof to Appendix B.3.

Definition 3 (Borda gap). We define the Borda gap ∆B
e for

any edge e ∈ E as

∆B
e =

{
w(MB

∗ )− max
M∈M:e∈M

w(M) if e /∈M∗,
w(MB

∗ )− max
M∈M:e/∈M

w(M) if e ∈M∗,

where we make the convention that the maximum value of
an empty set is −∞.

Algorithm 1 CLUCB-Borda-PAC

1: Input: confidence δ, accuracy ε, bipartite graph G,
maximization oracle MWMC(·): Rm →M and almost
uniform sampler for perfect matchings S(η)

2: Set bias parameter η ← 1
8ε

3: Initialize T1(e)← 0 and w̄1(e)← 0 for all e ∈ E
4: for t = 1, 2, ... do
5: Mt ← MWMC(w̄t)

6: Compute confidence radius ct(e)←
√

ln( 4Kt3

δ )

2Tt(e)
for

all e ∈ E // x0 := 1 for any x
7: for all e ∈ E do
8: if e ∈Mt then
9: w̃t(e)← w̄t(e)− ct(e)− 1

4ε
10: else
11: w̃t(e)← w̄t(e) + ct(e) + 1

4ε
12: end if // w̄t(e) := 0 if Tt(e) = 0
13: end for
14: M̃t ← MWMC(w̃t)
15: if w̃t(M̃t)− w̃t(Mt) ≤ `ε then
16: Out←Mt

17: return Out
18: end if
19: zt ← arg maxe∈(M̃t\Mt)∪(Mt\M̃t)

ct(e)

20: Sample a matching M ′ fromM using S(η)
21: Pull the duel (zt, e

′), where e′ = e(M ′, s(zt))

22: Update w̄t+1(zt) ← w̄t(zt)·Tt(zt)+Xt(zt)
Tt(zt)+1 where

Xt(zt) takes value 1 if zt wins, 0 otherwise, and
Tt+1(zt)← Tt(zt) + 1

23: end for

Definition 4 (Borda hardness). We define the hardness HB

for identifying Borda winner in CPE-DB as

HB :=
∑
e∈E

1

(∆B
e )2

.

The Borda gap and Borda hardness definitions are naturally
inherited from those in (Chen et al., 2014). For each edge
e /∈MB

∗ , the Borda gap ∆B
e is the sub-optimality of the best

matching that includes edge e, while for each edge e ∈MB
∗

the Borda gap ∆B
e is the sub-optimality of the best matching

that does not include edge e. The Borda hardness HB is the
sum of inverse squared Borda gaps, which represents the
problem hardness for identifying the Borda winner.

Now we present a problem-dependent upper bound of the
sample complexity for the CLUCB-Borda-PAC algorithm.

Theorem 1 (CLUCB-Borda-PAC). With probability at
least 1− δ, the CLUCB-Borda-PAC algorithm (Algorithm
1) returns an approximate Borda winner Out such that
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B(Out) ≥ B(MB
∗ )− ε with sample complexity

O

(
HB
ε ln

(
HB
ε

δ

))
,

where HB
ε :=

∑
e∈E min

{
width(G)2

(∆B
e )2

, 1
ε2

}
.

We can see that when the accuracy parameter ε is small
enough, HB

ε coincides with the hardness metric HB . We
defer the detailed proof of Theorem 1 to Appendix B.4.

3.3. Efficient Exact Pure Exploration Algorithm

Based on the PAC algorithm CLUCB-Borda-PAC, we fur-
ther design an efficient exact pure exploration algorithm
CLUCB-Borda-Exact for Borda winner and analyze its
sample complexity upper bound. Generally speaking,
CLUCB-Borda-Exact performs CLUCB-Borda-PAC as a
sub-procedure, and guesses the smallest Borda gap ∆B

min :=
mine∈E ∆B

e . Iterating epoch q = 1, 2, . . . , we set accuracy
εq = 1

2q and confidence δq = δ
2q2 . CLUCB-Borda-Exact

will guess ∆B
min > `εq, and call CLUCB-Borda-PAC as

a sub-procedure with parameters εq, δq. If the adjusted
matching M̃t has exactly the same weight as the non-
adjusted matching Mt (w̃t(M̃t) = w̃t(Mt), similar as in
line 15 of Algorithm 1), then the algorithm stops and re-
turns Mt as the final matching. If w̃t(M̃t) 6= w̃t(Mt) but
they differ within `εq, then the current epoch stops and
CLUCB-Borda-Exact will enter the next epoch and cut the
guess in half (εq+1 = εq/2). (See Appendix B.5 for the
algorithm pseudocode.) Using this technique, we can obtain
an algorithm to identify the exact Borda winner with a loss
of logarithmic factors in its sample complexity upper bound.

Below we present a problem-dependent upper bound of the
sample complexity for the CLUCB-Borda-Exact algorithm
and defer the detailed algorithm and proof to Appendix B.5.
Theorem 2 (CLUCB-Borda-Exact). With probability at
least 1− δ, the CLUCB-Borda-Exact algorithm (Algorithm
5) returns the Borda winner with sample complexity

O

(
width(G)2HB · ln

(
`

∆B
min

)
·(

ln

(
width(G)HB

δ

)
+ ln ln

(
`

∆B
min

)))
,

where ∆B
min := min

e∈E
∆B
e .

3.4. Lower Bound

To formally state our result for lower bound, we first intro-
duce the definition of δ-correct algorithm as follows. For
any δ ∈ (0, 1), we call an algorithm A a δ-correct algorithm
if, for any problem instance of CPE-DB with Borda winner,

algorithm A identifies the Borda winner with probability at
least 1− δ.

Now we give a problem-dependent lower bound on the
sample complexity for CPE-DB with Borda winner.

Theorem 3 (Borda lower bound). Consider the problem of
combinatorial pure exploration for identifying the Borda
winner. Suppose that, for some constant γ ∈ (0, 1

4 ), 1
2−γ ≤

pei,ej ≤ 1
2 + γ, ∀ei, ej ∈ E and |M|

|M|−|Me| ≤
1−4γ
4γ` , ∀e ∈

E. Then, for any δ ∈ (0, 0.1), any δ-correct algorithm has

sample complexity Ω
(
HB ln

(
1
δ

))
, whereMe := {M ∈

M : e ∈M}.

We defer the detailed proof of Theorem 3 to Appendix B.6.

From the upper bounds (Theorems 1,2) and lower bound
(Theorem 3), we see that when ignoring the logarithmic
factors, our algorithms are tight on the hardness metric
HB . However, whether the width(G) factor is tight or not
remains unclear and we leave it for future investigation.

4. Efficient Exploration for Condorcet
Winner

In this section, we introduce the efficient pure exploration al-
gorithm CAR-Cond to find a Condorcet winner. We first in-
troduce the efficient pure exploration part assuming there ex-
ists “an oracle” that performs like a black-box, and we show
the correctness and the sample complexity of CAR-Cond
given the oracle. Next, we present the details of the oracle
and show that the time complexity of the oracle is polyno-
mial. Then, we apply the verification technique (Karnin,
2016) to improve our sample complexity further. Finally,
we give the sample complexity lower bound for finding the
Condorcet winner.

4.1. Efficient Pure Exploration Algorithm: CAR-Cond

We first introduce our algorithm CAR-Cond for CPE-DB
for the Condorcet winner assuming that there is a proper
“oracle”. Note that finding the Condorcet winner if existed
is equivalent to the following optimization problem,

max
x=χM1

min
y=χM2

1

`
xTPy,

where M1,M2 ∈ M are feasible matchings and the value
is optimal when x = y = χMC

∗
. This is because if

M1 is not the Condorcet winner MC
∗ , it will lose to MC

∗
with score χTM1

PχMC
∗
< 1/2, and only when x = χMC

∗
,

miny=χM2

1
`x
TPy reaches 1/2 when y = χMC

∗
. However,

the optimization problem is “discrete” and we first use the
continuous relaxation technique to solve the following opti-
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mization problem

max
x∈P(M)

min
y∈P(M)

1

`
xTPy, (5)

where P(M) = {
∑
i λiχMi : Mi ∈ M,

∑
i λi = 1, λi ≥

0} is the convex hull of the vectors χM ,M ∈M. There is
an algorithm that can solve x, y approximately in polyno-
mial time, but solving the optimization problem of Eq. (5)
is not enough for our CPE-DB problem. Therefore, we need
the following more powerful oracle.

We assume that there is an oracle Oε that takes the in-
puts ε,A1, R1, A2, R2, Q, where ε is the error of the oracle,
A1, R1, A2, R2 ⊂ E and Q ∈ [0, 1]m×m. The oracle can
approximately solve the following optimization

max
x∈P(M,A1,R1)

min
y∈P(M,A2,R2)

1

`
xTQy, (6)

where P(M, A,R) = {
∑
i λiχMi

: Mi ∈ M, A ⊂
Mi, R ⊂ (Mi)

c,
∑
i λi = 1, λi ≥ 0} is the convex hull

of the vector representations of the matchings, such that all
edges in A are included in the matching and none of the
edges in R is included in the matching. More specifically,
we assume that the oracle Oε will compute a solution x0 that
satisfies both the constraint and the following guarantee:

min
y∈P(M,A2,R2)

1

`
xT0 Qy

≥ max
x∈P(M,A1,R1)

min
y∈P(M,A2,R2)

1

`
xTQy − ε.

In the algorithm, we only require that the oracle Oε returns
the value miny∈P(M,A2,R2)

1
`x
T
0 Qy, not the x0.

Given the oracle Oε, the high level idea of CAR-Cond (Al-
gorithm 2) is as follows: If we know how to set the approxi-
mation parameter properly, then in every round we partition
the edge set E into A, R, and U , where A is the set of the
edges that should be included in the Condorcet winner, R
is the set of edges that should be excluded, and U are the
remaining undecided edges. In each round, we only sample
the duel between two comparable edges in the set U (Line
6). Then, we use the upper and lower confidence bounds to
estimate the real preference matrix P (Line 7). After that,
for every undecided edge e, we enforce it to be included
in the optimal solution or to be excluded in the solution,
and use the oracle to see if the included and excluded cases
vary much. If so, we classify edge e into A or R in the
next round (Line 9). Since we do not know how to set the
approximation parameter properly, we use the “doubling
trick” to shrink the approximation parameter εq by a factor
of 2 in each epoch q (Line 4).

For the value of the confidence radius and the upper and
lower confidence bound for the matrix P , we use the fol-
lowing quantity for the confidence radius of the winning

Algorithm 2 CAR-Cond

1: Input: Bipartite graph G, Oracle Oε with accuracy ε
2: A0 ← φ,R0 ← φ,U0 ← E, e0 = 0.
3: for q = 1, 2, . . . do
4: εq ← 1

2q , eq ←
1
ε2q

5: for t = eq−1 + 1, eq−1 + 2, . . . , eq do
6: For every e1 6= e2 and e1, e2 ∈ Ej for some j and

e1, e2 ∈ Ut−1, sample duel between e1, e2

7: Compute P̄t, P t
8: At ← At−1, Rt ← Rt−1, Ut ← Ut−1

9: for e ∈ Ut−1 do
10: // We use A,R as shorthands for At−1, Rt−1

11: InU = Oεq (A ∪ {e}, R,A,R, P̄t)
12: InL = Oεq (A ∪ {e}, R,A,R, P t)
13: ExU = Oεq (A,R ∪ {e}, A,R, P̄t)
14: ExL = Oεq (A,R ∪ {e}, A,R, P t)
15: if InL > ExU + εq then
16: At ← At ∪ {e}, Ut ← Ut \ {e}
17: else if ExL > InU + εq then
18: Rt ← Rt−1 ∪ {e}, Ut ← Ut \ {e}
19: end if
20: if |At| = ` then Out← A, return Out
21: end for
22: end for
23: end for

probability of the duel between any two comparable arms.

ct(ei, ej) =

√
ln(4Kt3/δ)

2Tt(ei, ej)
, (7)

where Tt(ei, ej) is the number of duels between two com-
parable arms ei, ej at the beginning of round t. Now given
some duels (at least one) between ei, ej , we define p̂t(ei, ej)
as the empirical winning probability of ei over ej up to
round t’s exploration phase, and we define

p̄t(ei, ej) := min{1, p̂t(ei, ej) + ct(ei, ej)}, (8)
p
t
(ei, ej) := max{0, p̂t(ei, ej)− ct(ei, ej)}.

p̄t(ei, ej) and p
t
(ei, ej) can be interpreted as the upper and

lower confidence bounds of the winning probability of e1

over e2. Then we denote P̄t as the matrix where P̄t,ij :=
p̄t(ei, ej) where i, j are edge indices, P̄t,ii := 0.5, and
P̄t,ij = 0 for any 2 incomparable indices. Similarly, we
define P t as the matrix where P t,ij := p

t
(ei, ej), P t,ii :=

0.5, and P t,ij = 0 for any two incomparable indices.

Sample complexity for CAR-Cond To present our main
result on the sample complexity of CAR-Cond, we need
to first introduce the notion of gap for each edge and each
comparable pair under the Condorcet setting.
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Definition 5 (Condorcet gap). We define the Condorcet gap
∆C
e of an edge e as the following quantity.

∆C
e =


1/2− max

χM ,e∈M

1

`
χTMPχMC

∗
, if e /∈MC

∗

1/2− max
χM ,e/∈M

1

`
χTMPχMC

∗
, if e ∈MC

∗

Then we define the gap ∆C
e,e′ for a pair of arms e 6=

e′ and e, e′ ∈ Ej as the following quantity ∆C
e,e′ =

max{∆C
e ,∆

C
e′}.

The definition of gap is very similar to the gap defined in
(Chen et al., 2014). Intuitively speaking, the definition of
the gap of each edge e is a measurement of how easily e
will be classified into the accepted set A or the rejected set
R. Given the definition of the gap, we have the following
main theorem for the Condorcet setting.

Theorem 4 (CAR-Cond). With probability at least 1 − δ,
algorithm CAR-Cond returns the correct Condorcet winner
with a sample complexity bounded by

O

∑̀
j=1

∑
e 6=e′,e,e′∈Ej

1

(∆C
e,e′)

2
ln

(
K

δ(∆C
e,e′)

2

) .

Generally speaking, our algorithm sequentially classifies
each edge into MC

∗ or (MC
∗ )c. The definition of the gap

shows the sub-optimality of wrongly classifying each edge,
and 1

(∆C
e )2

is roughly the number of times to correctly clas-
sify the edge e. Because each query is a sample between two
edges e, e′, the number of query between e, e′ is roughly
1/(∆C

e,e′)
2, this is so as when we correctly classify an edge,

we will not need to query any pair that contains this edge.
Summing over all comparable pairs of edges, we get our
upper bound when omitting all logarithm terms.

When there is only one position, our problem reduces
to the original dueling bandit problem. In special cases
when the Condorcet winner beat every arm with the
largest margin (formally, for all arm i ∈ [m], iC =
arg maxj∈[m] Pr{j wins i}), our sample complexity bound
is at the same order as the state-of-the-art (Karnin, 2016)
when omitting the logarithmic terms.

4.2. Implementation of Oracle

In this part, we present the high level idea of our method to
solve the optimization problem (Eq. (6)). If we define

g(x) = min
y∈P(M,A2,R2)

1

`
xTQy,

then g is concave in x, since xTQy is linear in x and the
minimum of linear functions is a concave function. Also

Algorithm 3 CAR-Parallel

1: Input: confidence δ < 0.01, algorithm CAR-Verify
2: Define CAR-Verifyk, k ∈ N as the CAR-Verify algo-

rithm with confidence δ
2k+1

3: Simulate {CAR-Verifyk}k∈N in parallel
4: for t = 1, 2, . . . do
5: for each k ∈ N s.t. t mod 2k = 0 do
6: Start or resume CAR-Verifyk, allowing only one

sample, and then suspend CAR-Verifyk
7: if CAR-Verifyk returns an answer Outk then
8: Out← Outk
9: return Out

10: end if
11: end for
12: end for

note that the constraint set P(M, A2, R2) is a convex set
since it is defined as the convex hull of the vector representa-
tions. Thus, using the projected sub-gradient ascent method,
we can solve the optimization problem by an error of ε in
O( 1

ε ) number of iterations. To do so, we need to address
two problems: how to compute the gradient at a given point,
and how to compute the projection efficiently.

The first problem is rather easy to solve, because if we want
to compute the sub-gradient at a given point x0, it suffices to
compute the parameter y0 = arg miny∈P(M,A2,R2) x

T
0 Qy,

and the sub-gradient will be 1
`Qy0 ∈ ∂xg(x0). Computing

the parameter y0 can be done in polynomial time, since
the minimum cost maximum matching can be solved in
polynomial time.

The second problem is the main challenge. Note that there
may be an exponentially large number of vertices in the
polytope P(M, A2, R2) because the number of feasible
matchings may be exponential, and we cannot solve the
projection step in general. However, if we can tolerate some
error in the projection step, we may solve the approximate
projection in polynomial time by the Frank-Wolfe algo-
rithm. Then, we can set the approximate projection error
to be relatively small, so the cumulative error due to the
projection can also be bounded. In this way, we can solve
the optimization problem Eq. (6) with poly(1/ε,m,K, `)
time complexity.

Please see Appendix A.2 for more backgrounds on projected
sub-gradient ascent, Frank-Wolfe, and Appendix C.2 for the
detailed implementation of the oracle.

4.3. Further Improvements through Verification

Based on the CAR-Cond algorithm, we further design an
algorithm CAR-Parallel for identifying Condorcet winner,
which uses the parallel simulation technique (Chen & Li,
2015; Chen et al., 2017) and achieves a tighter expected



Combinatorial Pure Exploration of Dueling Bandit

Algorithm 4 CAR-Verify

1: Input: confidence δ < 0.01, algorithm CAR-Cond
2: δ0 ← 0.01
3: M̂ = CAR-Cond(δ0)
4: for t = 1, 2, . . . do
5: Compute P̄t, P t
6: if maxM∈M\{M̂} f(M,M̂, P t) ≥ 1

2 then
7: return error
8: end if
9: Mt = argmaxM∈M\{M̂} f(M,M̂, P̄t)

10: if f(Mt, M̂ , P̄t) ≤ 1
2 then

11: Out← M̂
12: return Out
13: else
14: (et, ft)← argmaxet∈Mt\M̂,ft∈M̂\Mt

s(et)=s(ft)

ct(et, ft)

15: Pull the duel (et, ft) and update empirical means
16: end if
17: end for

sample complexity for small confidence. CAR-Parallel calls
a variant of CAR-Cond, named CAR-Verify, which applies
the verification technique (Karnin, 2016) to improve the
sample complexity of the original CAR-Cond. Specifically,
CAR-Verify calls CAR-Cond(δ0) to obtain a hypothesized
Condorcet winner M̂ using a constant confidence δ0 > δ.
Then, CAR-Verify verifies the correctness of M̂ using confi-
dence δ. While CAR-Verify loses a part of confidence in or-
der to obtain better sample complexity for small confidence,
CAR-Parallel boosts the confidence to δ by simulating a
sequence of CAR-Verify in parallel and keeps the obtained
better sample complexity in expectation.

Algorithm 3 illustrates the detailed algorithm CAR-Parallel
that applies the parallel simulation technique (Chen & Li,
2015; Chen et al., 2017) and achieves a tighter expected
sample complexity for small confidence. Algorithm 4 illus-
trates the sub-procedure CAR-Verify called in CAR-Parallel.
CAR-Verify is based on the original algorithm CAR-Cond
and employs the verification technique to improve the sam-
ple complexity for small confidence.

In order to formally state our result for the CAR-Parallel
algorithm, we first introduce the following definitions.

For any e /∈MC
∗ , we define the verification gap ∆̃C

e as

min
M∈M\{MC

∗ }:e∈M

{
`

dMC
∗ ,M

·
(

1

2
− 1

`
χTMPχMC

∗

)}
,

where dMx,My
denotes the number of positions with dif-

ferent edges between Mx and My, i.e., dMx,My
:=∑`

j=1 I{e(Mx, j) 6= e(My, j)}.

For ease of notation, we define the following quantity

HC
ver :=

∑
e/∈MC

∗

1

(∆̃C
e )2

.

Then, we have the main theorem of the sample complexity
of algorithm CAR-Parallel.

Theorem 5 (CAR-Parallel). Assume the existence of Con-
dorcet winner. Then, given δ < 0.01, with probability at
least 1− δ, the CAR-Parallel algorithm (Algorithm 3) will
return the Condorcet winner with an expected sample com-
plexity

O

∑̀
j=1

∑
e6=e′

e,e′∈Ej

ln
(
K/(∆C

e,e′)
2
)

(∆C
e,e′)

2
+HC

ver ln

(
HC

ver

δ

) .

To the best of our knowledge, the best sample complex-
ity for pure exploration of Condorcet dueling bandit is
O(n2/∆2 + n/∆2 log(1/δ)) by (Karnin, 2016) using the
verification technique. When reducing our setting to the sim-
ple Condorcet dueling bandit (` = 1), Theorem 5 recovers
this result.

We defer the detailed results and proofs to Appendix C.3.

5. Conclusion and Future Work
In this paper, we formulate the combinatorial pure explo-
ration for dueling bandit (CPE-DB) problem. We consider
two optimality metrics, Borda winner and Condorcet win-
ner. For Borda winner, we first reduce the problem to CPE-
MAB, and then propose efficient PAC and exact algorithms.
We provide sample complexity upper and lower bounds
for these algorithms. For a subclass of problems the upper
bound of the exact algorithm matches the lower bound when
ignoring the logarithmic factor. For Condorcet winner, we
first design an FPTAS for a properly extended offline prob-
lem, and then employ this FPTAS to design a novel online
algorithm CAR-Cond. To our best knowledge, CAR-Cond
is the first algorithm with polynomial running time per round
for identifying the Condorcet winner in CPE-DB.

There are several promising directions worth further investi-
gation for CPE-DB. One direction is to improve the sample
complexity of the CAR-Cond algorithm without compro-
mising its computational efficiency, and try to find a lower
bound in this case that matches the upper bound. Other di-
rections of interest include studying a more general CPE-DB
model than the current candidate-position matching version,
or a family of practical preference functions f(M1,M2, P )
other than linear functions.
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Appendix

A. Preliminaries
A.1. Maximum-Weighted Maximum-Cardinality Matching Algorithm

The maximum-weighted maximum-cardinality (MWMC) matching algorithm (Saip & Lucchesi, 1993; Deveci et al., 2013)
is a variation of the known maximum-weighted matching algorithm. Given any bipartite graph G with weighted edges,
the MWMC algorithm finds the maximum-weighted matching among all maximum-cardinality matchings and operates in
fully-polynomial time.

Note the the variant of MWMC, the minimum-weighted maximum-cardinality matching can also be solve efficiently. We
first take the negative value of each edge and shift all of them to the positive direction, to make sure every “new” weight
is positive. Then we call the MWMC algorithm and find the maximum-weighted maximum-cardinality matching for the
new graph. Since the maximum-cardinality are the same for the 2 graphs, the MWMC solution for the new graph is the
minimum-weighted maximum-cardinality matching in the original graph.

A.2. Basic concepts and algorithms for convex optimization

In this part, we review some basic definitions, properties, and algorithms in convex optimization. First, we give the definition
of convex sets and convex functions. All of the definitions, algorithms, and properties are adapted from (Bubeck et al.,
2015).
Definition 6 (Convex Sets and Convex functions). A set X ⊂ Rn is said to be convex if it contains all of its segments, i.e.

∀(x, y, γ) ∈ X × X × [0, 1], (1− γ)x+ γy ∈ X .

A function f : X → R is said to be convex if X is a convex set and

∀(x, y, γ) ∈ X × X × [0, 1], f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y).

The gradient of a function f is a basic definition. However, there are cases when f does not have gradient at every point, and
we have the following definition of subgradient for convex function f .
Definition 7 (Subgradients). Let X ∈ Rn, and f : X → R. Then g ∈ Rn is a subgradient of f at x ∈ X if for any y ∈ X
one has

f(x)− f(y) ≤ gT (x− y).

The set of subgradients of f at x is denoted ∂f(x).

Then, we have the definition of Lipschitz and Smoothness.
Definition 8 (Lipschitz and Smoothness). A continuous function f(·) is `-Lipschitz if:

∀x1, x2, |f(x1)− f(x2)| ≤ `||x1 − x2||2
A differentiable function f(·) is β-smooth if:

∀x1, x2, ||∇f(x1)−∇f(x2)||2 ≤ β||x1 − x2||2.

Next, we recall the definition of projection. The projection Π(x,X ) from a point x ∈ Rn to a convex set X ⊂ Rn is defined
to be

Π(x,X ) = arg min
y∈X
||x− y||2.

The projection of x to X is the point in X that is the closest to x. Then, we have the following property of projection.
Proposition 1 (Property of projection). Let X ⊂ Rn be a convex set. For any x ∈ X , y ∈ Rn, we have

||y − x||2 ≥ ||Π(x,X )− x||2 + ||Π(x,X )− y||22.

The property of projection is a key lemma in the analysis of many convex optimization algorithms, including the one we use
in the following sections.

Then, we briefly introduce 2 algorithms for convex optimization: Projected subgradient descent and Frank-Wolfe. We will
use these 2 algorithms in our analysis.
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Projected subgradient descent The projected subgradient descent acts almost the same as the projected gradient descent
algorithm, except that in this case, the gradient may not exist and we use the subgradient. The projected subgradient descent
algorithm iterates the following equations for t ≥ 1:

y(t+1) =x(t) − ηg(t),where g(t) ∈ ∂f(x(t)),

x(t+1) =Π(y(t+1),X )

We will not directly apply the performance guarantee of the PGD algorithm, so we omit the theoretical guarantee here.

Frank-Wolfe Algorithm For a convex function f defined on a convex set X , given a fixed sequence {γt}t≥1, the
Frank-Wolfe Algorithm iterate as the following for t ≥ 1:

y(t) ∈ arg min
y∈X
∇f(x(t))T y

x(t+1) =(1− γt)x(t) + γty
(t)

We have the following theoretical guarantee for Frank-Wolfe.

Proposition 2. Let f be convex and β-smooth function with respect to norm || · ||2, and define D = supx,y∈X ||x− y||2,
and γs = 2

s+1 for s ≥ 1. Then for any t ≥ 2, one has

f(x(t))− f(x∗) ≤ 2βD2

t+ 1
.

B. Omitted Proofs in Section 3
B.1. Reduction to Conventional Combinatorial Pure Exploration

In the following, we give the omitted proof of the equality (a) in Eq. (4).

Recall that the preference probability between two matchings M1,M2 ∈M are defined as

f(M1,M2, P ) :=
1

`

∑̀
j=1

pe(M1,j),e(M2,j).

The Borda score of any matching Mx ∈M and the Borda winner are defined as

B(Mx) =
1

|M|
∑

My∈M
f(Mx,My, P )

MB
∗ = argmax

Mx∈M
B(Mx).

The rewards of any edge e = (ce, sj) ∈ E and any matching M ∈M are defined as

w(e) =
1

|M|
∑
M∈M

pe,e(M,j)

w(M) =
∑
e∈M

w(e)
(a)
= ` ·B(M)

Therefore, we have

B(Mx) =
1

|M|
∑

My∈M
f(Mx,My, P )
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=
1

|M|
∑

My∈M

1

`

∑̀
j=1

pe(Mx,j),e(My,j)

=
1

`

∑̀
j=1

1

|M|
∑

My∈M
pe(Mx,j),e(My,j)

=
1

`

∑̀
j=1

w(e(Mx, j))

=
1

`

∑
e∈Mx

w(e)

=
1

`
w(Mx),

which completes the proof of the equality (a) in Eq. (4).

With the shown linear relationship between the Borda score of any matching and rewards of its contained edges, we can
reduce combinatorial pure exploration for Borda dueling bandits to conventional combinatorial pure exploration.

B.2. Details for applying the almost uniform sampler

c1

c2

c3

c4

s1

s2

e1

e2

e3

e4

e5

Figure 5. Original bipartite graph G
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s′3

s1
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s′4

Figure 6. Constructed bipartite graph G′
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s′3

s1

s2

s′4

Figure 7. Constructed bipartite graph G′

In this section, we show that how to apply the fully-polynomial almost uniform sampler for perfect matchings (Jerrum et al.,
2004) S(η) to obtian an almost uniformly sampled matching M ′ fromM in bipartite graph G.

Recall that in bipartite graph G, n = |C|, ` = |S|. If n = `, each maximum matching is a perfect matching. Then, we can
directly use S(η) to sample a matching almost uniformly.

If n > ` (note that n < ` cannot occur due to the assumption ofM 6= ∅), we add n− ` ficticious vertices {s`+1, ..., sn} in
S. In addition, for each ficticious vertex sj (`+ 1 ≤ j ≤ n), we add n ficticious edges (c1, sj), ..., (cn, sj) that connected to
each vertex in C. Let G′(C, S′, E′) denote this new bipartite graph. There is a one-to-n relationship between the maximum
matchings in G and the perfect matchings in G′. See Figures 5 to 7 for an example. Figure 5 illustrates the original bipartite
graph G and a valid maximum matching M = {e1, e5}. Figures 6,7 illustrate the constructed bipartite graph G′ and two
perfect matchings corresponding to M . The gray vertices s′3, s

′
4 and dashed edges respectively denote the ficticious vertices

and edges, and the red edges denote the perfect matchings.

We first use S(η) to almost uniformly sample a perfect matching M ′perf in G′. Then, we eliminate the ficticious edges in
M ′perf and obtain its corresponding maximum matching M ′ in original G. Because each maximum matching in original
G has the same number of corresponding perfect matchings in G′, the property of the uniform distribution still holds.
Therefore, with S(η), we can obtian an almost uniformly sampled matching M ′ fromM in bipartite graph G.

B.3. Width of Bipartite Graph

Definition 2 (Width). For a bipartite graph G, letM(G) denote the set of all its maximum matchings. For any M1,M2 ∈
M(G) such that M1 6= M2, we define width(M1,M2) as the number of edges of the maximum connected component in
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Figure 8. Maximum matching M1
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Figure 9. Maximum matching M2
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Figure 10. Union graph G(M1,M2)

their union graph. Then, we define the width of bipartite graph G as

width(G) = max
M1,M2∈M(G)

M1 6=M2

width(M1,M2).

Below we show that our width definition (Definition 2) for bipartite graph is equivalent to that in (Chen et al., 2014).

First, we recall the definitions of exchange set, exchange class and width in (Chen et al., 2014) for the problem instance of
bipartite graph and maximum matching.

Exchange set b is defined as an ordered pair of disjoint sets b = (b+, b−) where b+ ∩ b− = ∅ and b+, b− ⊆ E. Then, we
define operator ⊕ such that, for any matching M and any exchange set b = (b+, b−), we have M ⊕ b := M \ b− ∪ b+.
Similarly, we also define operator such that M 	 b := M \ b+ ∪ b−.

Exchange class B for M is defined as a collection of exchange sets that satisfies the following property. For any
M1,M2 ∈ M such that M1 6= M2 and for any e ∈ M1 \M2, there exists an exchange set (b+, b−) ∈ B which satisfies
five constraints: (a) e ∈ b−, (b) b+ ⊆ M2 \M1, (c) b− ⊆ M1 \M2, (d) M1 ⊕ b ∈ M and (e) M2 	 b ∈ M. We use
Exchange(M) to denote the family of all possible exchange classes forM.

Then, the widths of exchange class B and decision classM are defined as follows:

width(B) = max
(b+,b−)∈B

|b+|+ |b−|,

width(M) = min
B∈Exchange(M)

width(B).

We can see that in bipartite graph G, for any M1,M2 ∈M such that M1 6= M2, their union graph G(M1,M2) represents
M1 ∪M2, which can be divided to (M1 \M2) ∪ (M2 \M1) and M1 ∩M2 (common edges). Let G denote the connected
components of G(M1,M2). Then, G consists of the connected components in (M1 \M2) ∪ (M2 \M1), denoted by
Gdif = {G1(M1,M2), G2(M1,M2), · · · }, and those in M1 ∩ M2, denoted by Gcom = {e1, e2, · · · }. Note that each
connected component in M1 ∩M2 is a single edge. See Figures 8 to 10 for an example. Figures 8,9 illustrate two maximum
matchings M1,M2 in bipartite graph G respectively and Figure 10 illustrates their union graph G(M1,M2). Then,
G(M1,M2) has two connected components, which respectively fall in Gdif and Gcom. Specifically, Gdif = {G1(M1,M2)}
where G1(M1,M2) = {e1, e2, e3, e4}, and Gcom = {e6}.

Then, for any e ∈ M1 \M2, there exists some Gi(M1,M2) ∈ Gdif containing e. Let b = Gi(M1,M2), b− = M1 ∩
Gi(M1,M2) and b+ = M2 ∩ Gi(M1,M2). We can see that M1 ⊕ b ∈ M, M2 	 b ∈ M, because the other connected
components in G(M1,M2) do not change and M1 ⊕ b, M2 	 b are also valid maximum matchings. Thus, Gi(M1,M2)
is an exchange set for M1,M2 and e that satisfies the five constraints (a)-(e). Similarly, any union of multiple connected
components in Gdif containing Gi(M1,M2) is an exchange set for M1,M2, e that satisfies the five constraints (a)-(e),
and among these exchange sets, Gi(M1,M2) has the smallest size. For the example illustrated in Figures 8 to 10,
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G1(M1,M2) = {e1, e2, e3, e4} is the exchange set for M1,M2, e, s.t. e ∈ {e1, e2, e3, e4}, and width(M1,M2) = 4. In
a similar manner, we can see that for any M1,M2 ∈ M(G),M1 6= M2, width(M1,M2) ≤ 4. Therefore, width(G) =
maxM1,M2∈M(G),M1 6=M2

width(M1,M2) = 4.

From the above analysis, we can obtain that the exchange class B ∈ Exchange(M) with minimum width(B) satisfies that
for anyM1,M2 ∈M,M1 6= M2 and for any e ∈M1 \M2, B only contains the connected componentGi(M1,M2) s.t. e ∈
Gi(M1,M2), not the union of multiple connected components. Thus, the minimum width(B) over B ∈ Exchange(M) is
exactly the maximum width(M1,M2) over any M1,M2 ∈M,M1 6= M2. Therefore, for the problem instance of bipartite
graph and maximum matching, our definition width(G) = maxM1,M2∈M(G),M1 6=M2

width(M1,M2) is equivalent to that
in (Chen et al., 2014).

B.4. Proof of Theorem 1

In order to prove Theorem 1, we first give a brief introduction of the combinatorial pure exploration setting and the CLUCB
algorithm in (Chen et al., 2014) and extend the original result to that with biased estimates.

In the setting of combinatorial pure exploration, there are m arms and each arm e ∈ [m] is associated with a reward
distribution with mean w(e). The CLUCB algorithm maintains empirical mean w̄t(e) and confidence radius radt(e) for
each arm e ∈ [m] and each timestep t. The construction of confidence radius ensures that |w̄t(e)− w(e)]| < radt(e) holds
with high probability for each arm e ∈ [m] and each timestep t.

In order to prove Theorem 1, we first introduce the following lemma as an extended result of the CLUCB algorithm (Chen
et al., 2014) with biased estimates.

Lemma 1 (CLUCB-bias). In the CLUCB algorithm (Chen et al., 2014), if w̄(e) is a biased estimator of w(e) and
|E[w̄(e)]− w(e)| ≤ ε < ∆e

3width(M) . Given any timestep t > 0 and suppose that ∀e ∈ [m], |w̄(e)− E[w̄(e)]| < ct(e). For

any e ∈ [m], if ct(e) < ∆e

3width(M) − ε, then arm e will not be pulled on round t.

Proof. We first bound the difference between the estimator w̄t(e) and the reward mean w(e) as follows:

|w̄t(e)− w(e)| ≤|w̄t(e)− E[w̄t(e)]|+ |E[w̄t(e)]− w(e)|
<ct(e) + ε.

Then, the confidence radius radt(e) in the Lemma 10 of (Chen et al., 2014) can be written as radt(e) = ct(e) + ε and we
obtain that given any timestep t > 0, for any e ∈ [m], if ct(e) < ∆e

3width(M) − ε , then arm e will not be pulled on round
t.

Theorem 1 (CLUCB-Borda-PAC). With probability at least 1− δ, the CLUCB-Borda-PAC algorithm (Algorithm 1) returns
an approximate Borda winner Out such that B(Out) ≥ B(MB

∗ )− ε with sample complexity

O

(
HB
ε ln

(
HB
ε

δ

))
,

where HB
ε :=

∑
e∈E min

{
width(G)2

(∆B
e )2

, 1
ε2

}
.

Proof. First, we prove the correctness of the CLUCB-Borda-PAC algorithm (Algorithm 1).

Recall that the empirical mean

w̄t(e) =

Tt(e)∑
s=1

Xs(e)

Tt(e)
,

where Xs(e) denotes the s-th observation of the duel between e and e′ that is selected via the almost uniform sam-
pler S(η). Specifically, Xs(e) takes value 1 if e wins in the s-th observation and takes value 0 otherwise. Note that
X1(e), X2(e), . . . , Xt(e) are i.i.d. random variables.
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According to the definition of S(η) (Definition 1), in the s-th observation of the duel between e and another edge e′, S(η)
returns a matching M ′ from distribution π′s that satisfies

dtv(π
′
s, π) =

1

2

∑
M∈M

|π′s(x)− π(x)| ≤ η,

where π is the uniform distribution onM.

Since e′ is the edge at the same position as e in M ′, we have

E[Xs(e)] =
∑
M∈M

π′s(M) · pe,e(M,j),

where j is the position index of e.

Since ct(e) =

√
ln( 4Kt3

δ )

2Tt(e)
, according to the Hoeffding’s inequality, we have

Pr [|w̄t(e)− E[X1(e)]| ≥ ct(e)]

= Pr

∣∣∣∣∣∣
Tt(e)∑
s=1

Xs(e)/Tt(e)− E[X1(e)]

∣∣∣∣∣∣ ≥
√

ln( 4Kt3

δ )

2Tt(e)


=

t∑
j=1

Pr

∣∣∣∣∣
j∑
s=1

Xs(e)/j − E[X1(e)]

∣∣∣∣∣ ≥
√

ln( 4Kt3

δ )

2j
, Tt(e) = j


≤

t∑
j=1

Pr

∣∣∣∣∣
j∑
s=1

Xs(e)/j − E[X1(e)]

∣∣∣∣∣ ≥
√

ln( 4Kt3

δ )

2j


≤

t∑
j=1

δ

2Kt3
=

δ

2Kt2
.

In other words, with probability at least 1− δ
2Kt2 , we have

|w̄t(e)− E[X1(e)]| < ct(e).

Recall that w(e) = 1
|M|

∑
M∈M pe,e(M,j) and η = 1

8ε. Next, we bound the bias between w(e) and E[X1(e)].

|E[X1(e)]− w(e)| =

∣∣∣∣∣ ∑
M∈M

π′1(M) · pe,e(M,j) −
1

|M|
∑
M∈M

pe,e(M,j)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
M∈M

π′1(M) · pe,e(M,j) −
∑
M∈M

π(M) · pe,e(M,j)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
M∈M

pe,e(M,j) · (π′1(M)− π(M))

∣∣∣∣∣
≤
∑
M∈M

pe,e(M,j) · |π′1(M)− π(M)|

≤
∑
M∈M

|π′1(M)− π(M)|

≤1

4
ε.

Combining the above reseults, we have that with probability at least 1− δ
2Kt2 ,



Combinatorial Pure Exploration of Dueling Bandit

|w̄t(e)− w(e)| ≤|w̄t(e)− E[X1(e)]|+ |E[X1(e)]− w(e)|

<ct(e) +
1

4
ε.

By a union bound over timestep t and edge e, we have that with probability at least 1− δ, for any timestep t > 0, for any
edge e ∈ E, |w̄t(e)− w(e)| < ct(e) + 1

4ε.

Thus, with probability at least 1− δ, when the CLUCB-Borda-PAC algorithm terminates, we have

w(MB
∗ )− w(Out) ≤ w̃t(MB

∗ )− w̃t(Out) ≤ w̃t(M̃t)− w̃t(Out) ≤ `ε.

Thus, according to Eq. (4),

B(MB
∗ )−B(Out) =

1

`
(w(MB

∗ )− w(Out)) ≤ ε,

which completes the proof of the correctness for the CLUCB-Borda-PAC algorithm.

Next, we prove the sample complexity of the CLUCB-Borda-PAC algorithm (Algorithm 1).

In the following case (i) and case (ii), we respectively prove that if ct(e) <
∆B
e

3width(M) −
1
4ε or if ct(e) < 1

4ε, edge e will not
be pulled as the left arm of duel (zt, e

′) in the CLUCB-Borda-PAC algorithm, i.e., zt 6= e.

Case (i) If ct(e) <
∆B
e

3width(M) −
1
4ε, where 1

4ε <
∆B
e

3width(M) , according to Lemma 1, we obtain zt 6= e.

Case (ii) If ct(e) < 1
4ε, suppose that edge e is pulled at timestep t. Then,

w̃t(M̃t)− w̃t(Mt) =w̄t(M̃t)− w̄t(Mt) +
∑

e∈(M̃t\Mt)∪(Mt\M̃t)

(
ct(e) +

1

4
ε

)

<w̄t(M̃t)− w̄t(Mt) +
∑

e∈(M̃t\Mt)∪(Mt\M̃t)

(
1

4
ε+

1

4
ε

)

≤w̄t(M̃t)− w̄t(Mt) + 2` ·
(

1

4
ε+

1

4
ε

)
≤`ε,

which contradicts the stop condition.

Therefore, we have that if ct(e) < max{ ∆B
e

3width(M) −
1
4ε,

1
4ε}, then zt 6= e.

Since 1
8 ·max{ ∆B

e

width(G) , ε} < max{ ∆B
e

3width(M) −
1
4ε,

1
4ε}, we have that if ct(e) < 1

8 ·max{ ∆B
e

width(G) , ε}, edge e will not be
pulled as the left arm of duel (zt, e

′) in the CLUCB-Borda-PAC algorithm, i.e., zt 6= e.

Fix any edge e ∈ E. Let T (e) denote the number of times edge e being pulled as the left arm of duel (zt, e
′), i.e., zt = e.

Let te denote the last timestep when zt = e. It is easy to see that Tte(e) = T (e)− 1. According to the above analysis, we
see that cte(e) ≥ 1

8 ·max{ ∆B
e

width(G) , ε}. Thus, we have

cte(e) =

√
ln( 4Kt3

δ )

2(T (e)− 1)
≥ 1

8
·max

{
∆B
e

width(G)
, ε

}
T (e) ≤ 32 ·min

{
width(G)2

(∆B
e )2

,
1

ε2

}
· ln
(

4KT 3

δ

)
+ 1
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Recall that HB
ε :=

∑
e∈E min{width(G)2

(∆B
e )2

, 1
ε2 }. Taking summation over e ∈ E, we have

T ≤ 32HB
ε ln

(
4Kt3

δ

)
+m. (9)

Below we prove that

T ≤ 985HB
ε ln

(
4HB

ε

δ

)
+ 2m. (10)

If m ≥ 1
2T , then Eq. (10) holds immediately. Next, we consider the case when m < 1

2T . Since T > m, we can write

T = CHB
ε ln

(
4HB

ε

δ

)
+m,

where C is some positive constant.

If C ≤ 985, then we see that Eq. (10) holds. On the contrary, if C > 985, from Eq. (9), we have

T ≤m+ 32HB
ε ln

(
4KT 3

δ

)
=m+ 32HB

ε ln

(
4K

δ

)
+ 96HB

ε ln

(
CHB

ε ln

(
4HB

ε

δ

)
+m

)
≤m+ 32HB

ε ln

(
4K

δ

)
+ 96HB

ε ln

(
2CHB

ε ln

(
4HB

ε

δ

))
=m+ 64HB

ε ln

(
4K

δ

)
+ 96HB

ε ln(2C) + 96HB
ε ln(HB

ε ) + 96HB
ε ln

(
ln

(
4HB

ε

δ

))
≤m+ 64HB

ε ln

(
4HB

ε

δ

)
+ 96 ln(2C)HB

ε ln

(
4HB

ε

δ

)
+ 96HB

ε ln

(
4HB

ε

δ

)
+ 96HB

ε ln

(
4HB

ε

δ

)
=m+ (256 + 96 ln(2C))HB

ε ln

(
4HB

ε

δ

)
<m+ CHB

ε ln

(
4HB

ε

δ

)
=T,

which makes a contradiction. Therefore, we have C ≤ 985 and complete the proof of Eq. (10). Theorem 1 follows
immediately from Eq. (10).

B.5. Exact Algorithm for Identifying Borda Winner

In Algorithm 5, we present the detailed algorithm CLUCB-Borda-Exact for identifying the exact Borda winner. Then, in the
following we give the detailed proof of its sample complexity upper bound (Theorem 2).
Theorem 2 (CLUCB-Borda-Exact). With probability at least 1 − δ, the CLUCB-Borda-Exact algorithm (Algorithm 5)
returns the Borda winner with sample complexity

O

(
width(G)2HB · ln

(
`

∆B
min

)
·(

ln

(
width(G)HB

δ

)
+ ln ln

(
`

∆B
min

)))
,

where ∆B
min := min

e∈E
∆B
e .
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Algorithm 5 CLUCB-Borda-Exact

1: Input: confidence δ, bipartite graph G, decision classM, maximization oracle O(·): Rm →M and almost uniform
sampler for perfect matchings S(η)

2: for q = 1, 2, . . . do
3: εq ← 1

2q

4: δq ← δ
2q2

5: Set bias parameter ηq ← 1
8εq

6: Initialize T1(e)← 0 and w̄1(e)← 0 for all e ∈ E
7: for t = 1, 2, ... do
8: Mt ← O(w̄t)

9: Compute confidence radius ct(e)←
√

ln( 4Kt3

δq
)

2Tt(e)
for all e ∈ E // x0 := 1 for any x

10: for all e ∈ E do
11: if e ∈Mt then
12: w̃t(e)← w̄t(e)− ct(e)− 1

4εq
13: else
14: w̃t(e)← w̄t(e) + ct(e) + 1

4εq
15: end if // w̄t(e) := 0 if Tt(e) = 0

16: end for
17: M̃t ← O(w̃t)

18: if w̃t(M̃t) = w̃t(Mt) then
19: Out←Mt

20: return Out

21: end if
22: if w̃t(M̃t)− w̃t(Mt) ≤ `εq then
23: break
24: end if
25: zt ← arg maxe∈(M̃t\Mt)∪(Mt\M̃t)

ct(e)

26: Sample a matching M ′ fromM using S(ηq)

27: Pull the duel (zt, e
′), where e′ = e(M ′, s(zt))

28: Update empirical means w̄t(zt) according to the winning or lossing of zt and set Tt+1(zt)← Tt(zt) + 1

29: end for
30: end for

Proof. First, we prove the correctness of the CLUCB-Borda-Exact algorithm (Algorithm 5).

Note that in epoch q, the CLUCB-Borda-Exact algorithm performs a subroutine of the CLUCB-Borda-PAC algorithm
(Algorithm 1) with confidence δq and accuracy εq . Then, using similar analysis in the proof of the correctness (Theorem 1)
of the CLUCB-Borda-PAC algorithm, we have that for any epoch q, with probability at least 1− δq, for any edge e ∈ E,
|w̄t(e)− w(e)| < ct(e) + 1

4εq .

Since
∑∞
q=1 δq =

∑∞
q=1

δ
2q2 ≤ δ, by a union bound over q, we have that with probability at least 1− δ, for any epoch q, for

any edge e ∈ E, |w̄t(e)− w(e)| < ct(e) + 1
4εq .

Thus, with probability at least 1 − δ, when the CLUCB-Borda-Exact algorithm terminates, i.e., w̃t(M̃t) = w̃t(Mt), we
have that for any M 6= Mt,

w̃t(Mt) ≥ w̃t(M)

∑
e∈Mt\M

(
w̄t(e)− ct(e)−

1

4
εq

)
≥

∑
e∈M\Mt

(
w̄t(e) + ct(e) +

1

4
εq

)
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e∈Mt\M

w(e) >
∑

e∈M\Mt

w(e)

w(Mt) > w(M)

Therefore, we obtain Out = Mt = MB
∗ and complete the proof of the correctness for the CLUCB-Borda-Exact algorithm.

Next, we prove the sample complexity of the CLUCB-Borda-Exact algorithm (Algorithm 5). Using similar analysis in the
proof of the sample complexity (Theorem 1) of the CLUCB-Borda-PAC algorithm, we have that with probability at least
1− δq , the number of samples in epoch q is bounded by

Tq ≤ O

(∑
e∈E

min

{
width(G)2

(∆B
e )2

,
1

ε2

}
ln

(
1

δq
·
∑
e∈E

min

{
width(G)2

(∆B
e )2

,
1

ε2

}))
.

Let q∗ =
⌊
log2( `

∆B
min

)
⌋

+ 1 denote the first epoch that satisfies ε∗q <
∆B

min
` . In the following, we show that in epoch q∗, the

CLUCB-Borda-Exact algorithm terminates i.e., w̃t(M̃t) = w̃t(Mt) holds before w̃t(M̃t)− w̃t(Mt) ≤ `εq .

Suppose that, in epoch q∗, w̃t(M̃t) − w̃t(Mt) ≤ `ε∗q holds before w̃t(M̃t) = w̃t(Mt), which implies that the
CLUCB-Borda-Exact algorithm enters epoch q∗+1. Then, at the last timestep of epoch q∗, w̃t(M̃t)−w̃t(Mt) ≤ `ε∗q < ∆B

min

and w̃t(M̃t) 6= w̃t(Mt).

Since w̃t(M̃t) 6= w̃t(Mt), M̃t 6= Mt. Thus, with probability at least 1− δ, we have∑
e∈M̃t\Mt

(
w̄t(e) + ct(e) +

1

4
εq

)
−

∑
e∈Mt\M̃t

(
w̄t(e)− ct(e)−

1

4
εq

)
< ∆B

min

∑
e∈M̃t\Mt

w(e)−
∑

e∈Mt\M̃t

w(e) < ∆B
min

w(M̃t)− w(Mt) < ∆B
min,

which contradicts the definition of ∆B
min.

Therefore, in epoch q∗, the CLUCB-Borda-Exact algorithm terminates. Note that if the CLUCB-Borda-Exact algorithm
terminates before epoch q∗, our proof of sample complexity still holds.

Now we bound the total number of samples from epoch 1 to q∗ as

T ≤
q∗∑
q=1

Tq

=O

 q∗∑
q=1

∑
e∈E

min

{
width(G)2

(∆B
e )2

,
1

ε2

}
ln

(
1

δq
·
∑
e∈E

min

{
width(G)2

(∆B
e )2

,
1

ε2

})
=O

 q∗∑
q=1

∑
e∈E

width(G)2

(∆B
e )2

ln

(
1

δq
·
∑
e∈E

width(G)2

(∆B
e )2

)
=O

 q∗∑
q=1

width(G)2HB ln

(
2q2

δ
· width(G)2HB

)
=O

 q∗∑
q=1

width(G)2HB

(
ln

(
width(G)HB

δ

)
+ ln q

)
=O

(
q∗width(G)2HB

(
ln

(
width(G)HB

δ

)
+ ln q∗

))
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=O

(
ln

(
`

∆B
min

)
width(G)2HB

(
ln

(
width(G)HB

δ

)
+ ln ln

(
`

∆B
min

)))
,

which completes the proof of Theorem 2.

B.6. Proof of Theorem 3

Theorem 3 (Borda lower bound). Consider the problem of combinatorial pure exploration for identifying the Borda winner.
Suppose that, for some constant γ ∈ (0, 1

4 ), 1
2 − γ ≤ pei,ej ≤

1
2 + γ, ∀ei, ej ∈ E and |M|

|M|−|Me| ≤
1−4γ
4γ` , ∀e ∈ E. Then,

for any δ ∈ (0, 0.1), any δ-correct algorithm has sample complexity Ω
(
HB ln

(
1
δ

))
, whereMe := {M ∈M : e ∈M}.

Proof. For ease of notation, we first introduce the following definition.

Definition 9 (Next-to-optimal). For any edge e ∈ E, we define the next-to-optimal set associated with e as follows:

MB
e =


argmax
M∈M:e∈M

w(M) if e /∈MB
∗ ,

argmax
M∈M:e/∈M

w(M) if e ∈MB
∗ .

Note that, according to the definition of ∆B
e (Definition 3), we have w(MB

∗ )− w(MB
e ) = ∆B

e .

Fix an instance I of combinatorial pure exploration for Borda dueling bandits and a δ-correct algorithm A. In instance I,
MB
∗ is the Borda winner and Mx is a suboptimal super arm. Let Tez,ek be the expected number of samples drawn from the

duel (ez, ek) when A runs on instance I.

We consider the following alternative instance I ′. For an edge e = (ci, sj), we change all the distributions of duels (e, ẽ)
s.t. ẽ ∈ Ej \ {e} as follows:

p′e,ẽ =


pe,ẽ +

|M|
|M| − |Me|

·∆B
e if e /∈MB

∗ ,

pe,ẽ −
|M|

|M| − |Me|
·∆B

e if e ∈MB
∗ .

Then, for the next-to-optimal matching MB
e ,

w′(MB
e )− w′(MB

∗ ) ≥w(MB
e )− w(MB

∗ ) +
1

|M|
∑

M∈M\Me

∣∣∣p′e,e(M,j) − pe,e(M,j)

∣∣∣
=w(MB

e )− w(MB
∗ ) +

1

|M|
∑

M∈M\Me

|M|
|M| − |Me|

·∆B
e

=w(MB
e )− w(MB

∗ ) + ∆B
e

=0.

Thus, we can see that in instance I ′, MB
e is the Borda winner instead.

Using Lemma 1 in (Kaufmann et al., 2016), fixing e = (ci, sj), we can obtain∑
ẽ∈Ej\{e}

Te,ẽ · d(pe,ẽ, p
′
e,ẽ) ≥ d(1− δ, δ).

For δ ∈ (0, 0.1), we have d(1 − δ, δ) ≥ 0.4 ln( 1
δ ). Suppose that, for some constant γ ∈ (0, 1

4 ), 1
2 − γ ≤ pei,ej ≤

1
2 + γ, ∀ei, ej ∈ E and |M|

|M|−|Me| ≤
1−4γ
4γl , ∀e ∈ E. Then, for any e ∈ E, ∆B

e ≤ 2γ`. For any ei, ej ∈ E (ei 6= ej),

γ ≤ p′ei,ej ≤ 1− γ and d(pei,ej , p
′
ei,ej ) ≤

(pei,ej−p
′
ei,ej

)2

p′ei,ej
(1−p′ei,ej ) ≤

1
γ(1−γ) (pei,ej − p′ei,ej )

2.
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Therefore, fixing e = (ci, sj), we have

1

γ(1− γ)

∑
ẽ∈Ej\{e}

Te,ẽ · (pe,ẽ − p′e,ẽ)2 ≥ 0.4 ln
(1

δ

)

1

γ(1− γ)

(
|M|

|M| − |Me|
·∆B

e

)2 ∑
ẽ∈Ej\{e}

Te,ẽ ≥ 0.4 ln
(1

δ

)
∑

ẽ∈Ej\{e}

Te,ẽ ≥ 0.4γ(1− γ)

(
4γ`

1− 4γ

)2
1

(∆B
e )2

ln
(1

δ

)
We can perform the similar distribution changes on any edge e ∈ E. Therefore, we can obtain

∑
ez<ek

Tez,ek =
∑̀
j=1

∑
ez,ek∈Ej
ez<ek

Tez,ek

=
1

2

∑̀
j=1

∑
ez∈Ej

∑
ek∈Ej\{ez}

Tez,ek

=
1

2

∑
e∈E

∑
ẽ∈Es(e)\{e}

Te,ẽ

≥0.2γ(1− γ)

(
4γ`

1− 4γ

)2

ln
(1

δ

)∑
e∈E

1

(∆B
e )2

=Ω

(
HB ln

(1

δ

))
,

which completes the proof of Theorem 3.

C. Omitted Proofs in Section 4
In this section, we will introduce the efficient pure exploration algorithm CAR-Cond to find a Condorcet winner. We will
first introduce the efficient pure exploration part assuming there exist “an oracle” that performs like a black-box, and we will
show the correctness and the sample complexity of CAR-Cond given the oracle. Next, we will present the details of the
oracle, and show that the time complexity of the oracle is polynomial. Then, we will apply the verification framework to
further improve our sample complexity. Finally, we will give the sample complexity lower bound for finding the Condorcet
winner.

C.1. Accept-reject algorithm for combinatorial pure exploration

In this section, we prove Theorem 4. The proof is divided into 2 parts: the first part shows the correctness of CAR-Cond,
and the second part bounds the sample complexity. We begin with the first part.

Correctness of CAR-Cond

Definition 10 (Sampling is nice). Define event Nt := {p
t
(e1, e2) ≤ pe1,e2 ≤ p̄t(e1, e2),∀e1 6= e2, e1, e2 ∈ Ej}.

Furthermore, we use N = ∩t≥1Nt to denote the case when Nt happens for at every round t.

We have the following lemma to show that N is a high probability event.

Lemma 2. N is a high probability event. Formally, we have

Pr{¬N} ≤ δ.



Combinatorial Pure Exploration of Dueling Bandit

Proof. The proof is an application of the Hoeffding Inequality and the union bound. We first bound ¬Nt, and we have

Pr{¬Nt} = Pr{∃e1, ej , |p̂t(ei, ej)− pei,ej | > ct(ei, ej)}

≤
∑

Comparable ei,ej

Pr{|p̂t(ei, ej)− pe,ej | > ct(ei, ej)}

≤
∑

Comparable ei,ej

Pr

{∣∣p̂t(ei, ej)− pei,ej ∣∣ >
√

ln(4Kt3/δ)

2Tt(ei, ej)

}

≤
∑

Comparable ei,ej

t∑
k=1

Pr

{∣∣p̂t(ei, ej)− pei,ej ∣∣ >
√

ln(4Kt3/δ)

2Tt(ei, ej)
, Tt(ei, ej) = k

}

≤
∑

Comparable ei,ej

t∑
k=1

exp

−2k

(√
ln(4Kt3/δ)

2Tt(ei, ej)

)2


≤
∑

Comparable ei,ej

t∑
k=1

δ

4Kt3

≤ δ

2t2
.

Then we have

Pr{¬N} = Pr{∃t ≥ 1,¬Nt}

≤
∑
t≥1

Pr{¬Nt}

≤
∑
t≥1

δ

2t2

≤δ.

Then we have the key lemma for the correctness of CAR-Cond. The lemma says that, whenN happens, CAR-Cond will not
wrongly classify the edges.

Lemma 3. Suppose the optimal super arm is denoted by MC
∗ . If N happens, then at the end of every round t, we have

At ⊆MC
∗ , Rt ⊆ (MC

∗ )c.

Proof. We use induction to prove that At ⊆MC
∗ , Rt ⊆ (MC

∗ )c at the end of every round t if N happens.

Note that the optimal matching can be solved by the following minimax optimization problem

max
x∈χM

min
y∈χM

1

`
xTPy.

It is known that when x = χMC
∗

, the minimax optimization problem will reach its optimal value 1
2 . Because our assumption,

we have for any y ∈ χM, y 6= χMC
∗

,

1

`
χTMC

∗
Py ≥ 1

2
+ ∆Cond,

1

`
yTPχMC

∗
≤ 1

2
−∆Cond.

Suppose that at time t− 1, the induction is correct, i.e. At−1 ⊆MC
∗ , Rt−1 ⊆ (MC

∗ )c. We use P(M, A,R) to denote the
arm distributions that is a linear combination of the matchings inM such that A must appear in the super arm and R must
not appear in the super arm. Then for any set P,Q such that |x|1 = |y|1 = 1,∀x ∈ P, y ∈ Q, we have

max
x∈P

min
y∈Q

1

`
xTPy ≤ max

x∈P
min
y∈Q

1

`
xTPy ≤ max

x∈P
min
y∈Q

1

`
xT P̄ y.
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Suppose that time t belongs to epoch q. If e ∈MC
∗ , then we have

ExL ≤ max
x∈P(M,At−1,Rt−1∪{e})

min
y∈P(M,At−1,Rt−1)

1

`
xTPy

≤ max
x∈P(M,At−1,Rt−1∪{e})

1

`
xTPχMC

∗

≤ max
x∈P(M,At−1,Rt−1∪{e})

1

`
xTPχMC

∗

≤1

2
.

We also have

InU + εq ≥ max
x∈P(M,At−1∪{e},Rt−1)

min
y∈P(M,At−1,Rt−1)

1

`
xT P̄ y

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
P̄ y

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py

≥1

2
.

Then we know that InU + ε ≥ ExL and the algorithm will not put e into the set Rt. On the other hand, if e /∈MC
∗ , then

InL ≤ max
x∈P(M,At−1∪{e},Rt−1)

min
y∈P(M,At−1,Rt−1)

1

`
xTPy

≤ max
x∈P(M,At−1∪{e},Rt−1)

1

`
xTPχMC

∗

≤ max
x∈P(M,At−1∪{e},Rt−1)

1

`
xTPχMC

∗

≤1

2
,

and

ExU + εq ≥ max
x∈P(M,At−1,Rt−1∪{e})

min
y∈P(M,At−1,Rt−1)

1

`
xT P̄ y

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
P̄ y

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py

≥1

2
.

Thus, we know that ExU + ε ≥ InL and the algorithm will not put e into the set At.

With the help of Lemma 3, we have the following lemma summarize the correctness of CAR-Cond.

Lemma 4 (Correctness of CAR-Cond). When N happens, if CAR-Cond stops, then CAR-Cond will return the Condorcet
winner MC

∗ .

Proof. When CAR-Cond stops at round t, it means that |At| = `. Then from the previous lemma (Lemma 3), we know that
when N happens, At ⊆MC

∗ . However, MC
∗ = ` and thus At = MC

∗ . In this way, CAR-Cond returns the correct (unique)
Condorcet winner.
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Sample complexity of CAR-Cond In the previous part, we show that if the algorithm stops, then with high probability,
the output is correct. Now in this part, we show that with high probability, the algorithm with stop, and formally, we bound
the sample complexity of CAR-Cond. First, we recall the definition of Gap in the Condorcet winner case.

Definition 5 (Condorcet gap). We define the Condorcet gap ∆C
e of an edge e as the following quantity.

∆C
e =


1/2− max

χM ,e∈M

1

`
χTMPχMC

∗
, if e /∈MC

∗

1/2− max
χM ,e/∈M

1

`
χTMPχMC

∗
, if e ∈MC

∗

Then we define the gap ∆C
e,e′ for a pair of arms e 6= e′ and e, e′ ∈ Ej as the following quantity ∆C

e,e′ = max{∆C
e ,∆

C
e′}.

Lemma 5 (Sample Complexity of CAR-Cond). If N happens, the sample complexity of CAR-Cond is bounded by

O

∑̀
j=1

∑
e1 6=e2,e1,e2∈Ej

1

(∆C
e1,e2)2

ln

(
K

δ(∆C
e1,e2)2

) .

Proof. We first prove that, at round t in epoch q such that e ∈ Ut and ct < ∆e

6 for ∆e > 6εq , the algorithm CAR-Cond will

classify arm e into either At+1 or Rt+1. For simplicity, we denote ct :=
√

ln(4Kt3/δ)
2t , and it is the confidence radius for

those arms in set Ut after the exploration in round t.

Case 1. If arm e ∈MC
∗ ,∆e > 6εq, ct <

∆e

6 , and e /∈ At−1, we show that e ∈ At. Note that if N happens, we have

InL + εq ≥ max
x∈P(M,At−1∪{e},Rt−1)

min
y∈P(M,At−1,Rt−1)

1

`
xTPy

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py − 1

`
`2ct

≥1

2
− 2ct,

and

ExU ≤ max
x∈P(M,At−1,Rt−1∪{e})

min
y∈P(M,At−1,Rt−1)

1

`
xT P̄ y

≤ max
x∈P(M,At−1,Rt−1∪{e})

1

`
xT P̄χMC

∗

≤ max
x∈P(M,At−1,Rt−1∪{e})

1

`
xT P̄χMC

∗
+

1

`
`2ct

≤1

2
−∆e + 2ct.

The reasons between the inequality between line 2 and line 3 are: 1. The matrix Pt, P t−1 are all diagonal block matrices
and they can be partitioned into ` small nonzero matrices; 2. Although for the edge e′ ∈ At−1 ∪Rt−1, the confidence radius
is larger than ct, however, in the computation we will never use that larger confidence radius. If e′ ∈ At−1, then at the same
position in the matching, y also chooses e′ and we know the exact value Pe′,e′ = 1

2 . If e′ ∈ Rt−1, both x and y will have 0
weight on the entry corresponding to e′, and the confidence radius related to e′ does not matter.

Then we have

InL− ExL− εq ≥
1

2
− 2ct −

(
1

2
−∆e + 2ct

)
− 2εq

=∆e − 2εq − 4ct
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>∆e −
2∆e

6
− 4∆e

6
=0,

where we use the assumption that ∆e > 6εq, ct <
∆e

6 .

Case 2. If arm e /∈MC
∗ ,∆e > 6εq, ct <

∆e

6 , and e /∈ Rt−1, we show that e ∈ Rt.

ExL + εq ≥ max
x∈P(M,At−1,Rt−1∪{e})

min
y∈P(M,At−1,Rt−1)

1

`
xTPy

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py

≥ min
y∈P(M,At−1,Rt−1)

1

`
χTMC

∗
Py − 1

`
`2ct

≥1

2
− 2ct,

and

InU ≤ max
x∈P(M,At−1∪{e},Rt−1)

min
y∈P(M,At−1,Rt−1)

1

`
xT P̄ y

≤ max
x∈P(M,At−1∪{e},Rt−1)

1

`
xT P̄χMC

∗

≤ max
x∈P(M,At−1∪{e},Rt−1)

1

`
xT P̄χMC

∗
+

1

`
`2ct

≤1

2
−∆e + 2ct.

Then we have

ExL− InL− εq ≥
1

2
− 2 · ct −

(
1

2
−∆e + 2ct

)
− 2εq

=∆e − 2εq − 4ct

>∆e −
2∆e

6
− 4∆e

6
=0,

where we use the assumption that ∆e > 6εq, ct <
∆e

6 .

Now we bound the round te such that an edge e is added to Ate+1 or Rte+1. Note that previously, we prove that when N at
round t in epoch q such that e ∈ Ut and ct < ∆e

6 for ∆e > 6εq, the algorithm CAR-Cond will classify arm e into either

At+1 or Rt+1. Note that when we select t′e = 162
(∆C

e )2
ln
(

162K
δ(∆C

e )2

)
, we know that t′e is in epoch q′e such that εq′e ≤

∆C
e

6 since

1(
(∆C

e )2

6

)2 <
162

(∆C
e )2

ln

(
162K

δ(∆C
e )2

)
.

Recall that the confidence radius is defined as follow ct =
√

ln(4Kt3/δ)
2t , and we have the following

ct′e =

√
ln(4K(t′e)

3/δ)

2t′e

=

√
ln(4K/δ)

2t′e
+

3 ln(t′e)

2t′e
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≤

√√√√√ ln(4K/δ)

2 162
(∆C

e )2
ln
(

162K
δ(∆C

e )2

) +
3 ln(162/(∆C

e )2) + 3 ln ln
(

162K
(δ∆C

e )2

)
2 162

(∆C
e )2

ln
(

162K
δ(∆C

e )2

)
<

√
(∆C

e )2

2× 162
+

3(∆C
e )2

2× 162
+

3(∆C
e )2

2× 162

<

√
(∆C

e )2 × 3

108

=
∆C
e

6
.

Also note that ct is monotonically decreasing when t increases and t ≥ 3, and εq (as a function of t) is also monotonically
decreasing when t increases, so we know that te ≤ t′e when t′e ≥ 3.

Now from the definition of our algorithm, we will sample edges e1 6= e2 if and only if they are connected to the same
position and t ≤ min{te1 , te2}. Combining the previous bound on te1 , te2 , we know that when N happens, the sample
complexity of CAR-Cond is bounded by

O

∑̀
j=1

∑
e1 6=e2,e1,e2∈Ej

1

(∆C
e1,e2)2

ln

(
K

δ(∆C
e1,e2)2

) .

Combining the Correctness lemma (Lemma 4), the Sample Complexity lemma (Lemma 5), and the fact that N is a high
probability event (Lemma 2), we have the following theorem.

Theorem 4 (CAR-Cond). With probability at least 1− δ, algorithm CAR-Cond returns the correct Condorcet winner with
a sample complexity bounded by

O

∑̀
j=1

∑
e 6=e′,e,e′∈Ej

1

(∆C
e,e′)

2
ln

(
K

δ(∆C
e,e′)

2

) .

C.2. Details for the oracle implementation

In this section, we introduce the implementation of the oracle used in CAR-Cond. Recall that we use the following oracle:
The oracle can approximately solve the following optimization

max
x∈P(M,A1,R1)

min
y∈P(M,A2,R2)

1

`
xTQy,

where P(M, A,R) = {
∑
i λiχMi

: Mi ∈ M, A ⊂ Mi, R ⊂ (Mi)
c,
∑
i λi = 1} is the convex hull of the vector

representations of the matchings, such that all the edge A are included in the matching and all of R are not included in the
matching.

First, we give the full detailed algorithm for the implementation of the oracle. Algorithm 6 is the main algorithm and
Algorithm 7 is the approximation algorithm.

Recall that the general idea for the implementation of our oracle is to apply the projected sub-gradient descent, and while in
the projection step, we use the Frank-Wolfe algorithm to perform the approximate projection step. The proof is organized
as follow: 1. We first prove that the function we optimize miny∈P(M,A2,R2)

1
`x
TQy is a concave function and has the

properties that we need to use in the proof (Bounded (Lemma 6) and Lipschitz (Lemma 7)). After the basic properties, we
show the main lemma of the approximation projection (Lemma 8). Finally, we combine the projected sub-gradient descent
with the approximation oracle (Lemma 9).

Lemma 6. For any Accepted/Rejected sets A,R, the diameter of the set P(M, A,R) is bounded by 2K. Formally, we have

sup
x,y∈P(M,A,R)

||x− y||2 ≤ 2`.
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Algorithm 6 Condorcet Oracle (Detailed)
1: Input: Bipartite graph G, weight matrix W where wi,j denote an estimation of the probability that i wins j, Ac-

cepted/Rejected Set for x, y: Ax, Rx, Ay, Ry
2: Goal: Find the approximate optimal solution of maxx∈P(M,Ax,Rx) fAy,Ry (x)

3: Initialize x(1) = χM for any possible M such that Ax ⊂M and Rx ⊂M c

4: Time hozizon T = d (4`K)2

ε2 e, Step size η = 2`
K
√
M

, Accuracy ε′ = ε
2K
√
M

for the approximate projection oracle.
5: for t = 1, 2, . . . , T do
6: Compute the subgradient∇fAy,Ry (x) at the point x(t)

7: y(t+1) ← x(t) + η∇fAy,Ry (x(t))

8: x(t+1) ← Πε′(y
(t+1),P(M, Ax, Rx))

9: end for
10: return

(
fAy,Ry (x(t+1)), x(t+1)

)
Algorithm 7 Approximate projection by Frank-Wolfe

1: Input: Point x ∈ RK , Bipartite graph G with maximum matching `, Accepted set A and Rejected set R, Accuracy
Parameter ε

2: Output: Approximate projection y such that ||y −Π(x,P(M, A,R)||2 ≤ ε
3: x(1) ← χM , where M is any maximum cardinal matching for graph G.
4: for t = 1, 2, . . . , d16`2/ε2e do
5: c← x(t) − x
6: Solve the minimum cost maximum matching for graph G with cost vector c
7: Denote the solution as χt
8: x(t+1) ←

(
1− 2

t+1

)
x(t) + 2

t+1χt

9: end for
10: return x(d8`2/ε2e+1)

Proof. First note that, for any x ∈ P(M, A,R), we have ||x||1 = `, because x is a linear combination of matching with
cardinal `. Then we have

sup
x,y∈P(M,A,R)

||x− y||2 ≤ sup
x,y∈P(M,A,R)

||x− y||1

≤ sup
x,y∈P(M,A,R)

(||x||1 + ||y||1)

≤`+ `

=2`.

Lemma 7. Fixing the matrix W , the accepted/rejected sets Ay, Ry , the function

fAy,Ry (x) = min
y∈P(M,Ay,Ry)

1

`
xTWy

is concave and K-Lipschitz.

Proof. First, we know that fAy,Ry (x) is concave, because

fAy,Ry (x) = min
y∈P(M,Ay,Ry)

1

`
xTWy,

is the minimum of linear functions, and thus is concave. Furthermore, we show that fAy,Ry (x) is K-Lipschitz. For any
x1, x2, let y2 = argminy∈P(M,Ay,Ry)

1
`x
T
2 Wy, and we have

fAy,Ry (x1)− fAy,Ry (x2) = min
y∈P(M,Ay,Ry)

1

`
xT1 Wy − min

y∈P(M,Ay,Ry)

1

`
xT2 Wy
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≤1

`
xT1 Wy2 −

1

`
xT2 Wy2

=(x1 − x2)T
1

`
Wy2

≤||x1 − x2||2 · ||
1

`
Wy2||2

≤K||x1 − x2||2,

where the last inequality comes from the fact that each entry in W belongs to [0, 1] and the 1-norm of y2 is ||y2||1 = `.
Similarly, we can also prove that

fAy,Ry (x2)− fAy,Ry (x2) ≤ K||x1 − x2||2,
and we can conclude that fAy,Ry (x) is K-Lipschitz.

Then, we come to the proof of the approximation oracle. First we recall the procedure of the Frank-Wolfe Algorithm and
recall the performance guarantee. Then we recall the projection lemma that we use in the analysis. We refer to Section A for
more background on Frank-Wolfe Algorithm and other basic properties of convex optimization.

For a convex function f defined on a convex set X , given a fixed sequence {γt}t≥1, the Frank-Wolfe Algorithm iterate as
the following for t ≥ 1:

y(t) ∈ arg min
y∈X
∇f(x(t))T y

x(t+1) =(1− γt)x(t) + γty
(t)

The following is the performance guarantee of the Frank-Wolfe algorithm.
Proposition 2. Let f be convex and β-smooth function with respect to norm || · ||2, and define D = supx,y∈X ||x− y||2,
and γs = 2

s+1 for s ≥ 1. Then for any t ≥ 2, one has

f(x(t))− f(x∗) ≤ 2βD2

t+ 1
.

Also recall that we have the following property for projecting to a convex set.
Proposition 1 (Property of projection). Let X ⊂ Rn be a convex set. For any x ∈ X , y ∈ Rn, we have

||y − x||2 ≥ ||Π(x,X )− x||2 + ||Π(x,X )− y||22.

Now we give the lemma of the approximation projection. The lemma is nearly a direct application of the proposition of the
Frank-Wolfe performance guarantee and the projection proposition, but we need to carefully choose the parameters.
Lemma 8 (Approximate Projection). Let Π(x,P(M, A,R)) denote the projection of x onto the distribution polytope
P(M, A,R). Algorithm 7 will return a solution xr such that ||xr − Π(x,P(M, A,R))||2 ≤ ε. Moreover, xr can be
represented by

∑
e λeχMe such that M ∈M, A ⊆Me, R ⊆M∗e and λ is sparse.

Proof. Denote xr = x(d16`2/ε2e+1). First we know that xr is a linear combination of the vertices, and it is easy to see that
the coefficient vector λ can have at most d16`2/ε2e non-zero entries. Thus, we know that xr ∈ P(M, A,R). From the
property of Frank-Wolfe algorithm (Proposition 2), we know that

1

2
||x− xr||22 ≤

1

2
||x−Π(x,P(M, A,R))||22 +

1

2
ε2,

since D = supx,y∈P(M,A,R) ||x− y||2 ≤ 2` and the function f(y) = 1
2 ||x− y||

2
2 is 1-smooth. Then, from the property of

projection (Proposition 1), we know that

||xr − x||22 ≥ ||x−Π(x,P(M, A,R))||22 + ||xr −Π(x,P(M, A,R))||22.

Then we know that
||xr −Π(x,P(M, A,R))||22 ≤ ε2,

and complete the proof of this lemma.
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By the help of the previous lemmas, we have the following main lemma for our minimax oracle. The main lemma follows
the proof strategy of the projected sub-gradient descent, but we need to substitute the original accurate projection oracle to
our approximate projection oracle.

Lemma 9 (Minimax Oracle). Using the Minimax Oracle (Algorithm 6) with the approximate projection oracle (Algorithm
7), the output (fAy,Ry (xr), xr) satiesfies

fAy,Ry (xr) ≥ max
x∈P(M,Ax,Rx)

fAy,Ry (x)− ε.

Proof. Let T = (2`K)2

ε2 denote the total steps, η = denote the step size, and ε′ = denote the accuracy of the approximate
projection oracle. We show that

fAy,Ry (x∗)−max
t≤T

fAy,Ry (x(t)) ≤ ε.

We have

f(x∗)− f(x(t)) ≤∇f(x(t))T (x∗ − x(t))

=
1

η
(y(t+1) − x(t))T (x∗ − x(t))

=
1

2η

(
||x(t) − x∗||22 + ||x(t) − y(t+1)||22 − ||y(t+1) − x∗||22

)
=

1

2η

(
||x(t) − x∗||22 − ||y(t+1) − x∗||22

)
+
η

2
||f(x(t))||22.

Note that from Proposition 1, we have

||y(t+1) − x∗||22 ≥ ||Π(y(t+1),P(M, Ax, Rx))− x∗||22.

Furthermore, since
||x(t+1) −Π((y(t+1),P(M, Ax, Rx))||2 ≤ ε′,

we have ∣∣||x(t+1) − x∗||22 − ||Π(y(t+1),P(M, Ax, Rx))− x∗||22
∣∣

=
∣∣(x(t+1) −Π(y(t+1),P(M, Ax, Rx)))T (x(t+1) + Π(y(t+1),P(M, Ax, Rx))− 2x∗)

∣∣
≤||x(t+1) −Π(y(t+1),P(M, Ax, Rx))||2 · ||x(t+1) + Π(y(t+1),P(M, Ax, Rx))− 2x∗||2

≤||x(t+1) −Π(y(t+1),P(M, Ax, Rx))||2 ·
(
||x(t+1) − x∗||2 + ||Π(y(t+1),P(M, Ax, Rx))− x∗||2

)
≤4`ε′,

where in the last step, we use the fact that

sup
x,y∈P(M,Ax,Rx)

||x− y||2 ≤ 2`.

Sum up all t ≤ T , apply the fact that ||∇fAy,Ry (x)||2 ≤ K (because the function fAy,Ry (x) is K-Lipschitz), we have

T∑
i=1

(
f(x∗)− f(x(t))

)
≤

T∑
i=1

(
1

2η

(
||x(t) − x∗||22 − ||y(t+1) − x∗||22

)
+
η

2
||f(x(t))||22

)

≤
T∑
i=1

(
1

2η

(
||x(t) − x∗||22 − ||x(t+1) − x∗||22 + 4`ε′

)
+
η

2
||f(x(t))||22

)
≤4`2

2η
+
M

2η
4`ε′ +

Tη

2
K2,
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and we can get

fAy,Ry (x∗)−max
t≤T

fAy,Ry (x(t)) ≤ 1

M

T∑
i=1

(
f(x∗)− f(x(t))

)
≤ 4`2

2Tη
+

1

2η
4`ε′ +

η

2
K2.

Plug in T = d (4`K)2

ε2 e, η = 2`
K
√
M
, ε′ = ε

2K
√
M

, we can get

fAy,Ry (x∗)−max
t≤T

fAy,Ry (x(t)) ≤ 4`2

2Tη
+

1

2η
4`ε′ +

η

2
K2

=
4`2

2T 2`
K
√
M

+
2`ε′

2`
K
√
M

+

2`
K
√
M

2
K2

=
2`K√
M

+K
√
Mε′

≤2`K
ε

4`K
+
ε

2
=ε.

C.3. Details of the verification algorithm

Recall that we introduce the following definitions.

For any e /∈MC
∗ , we define the verification gap ∆̃C

e as

∆̃C
e = min

M∈M\{MC
∗ }:e∈M

{
`

dMC
∗ ,M

·
(

1

2
− 1

`
χTMPχMC

∗

)}
,

where dMx,My
denotes the number of positions with different edges between Mx and My, i.e., dMx,My

:=∑`
j=1 I{e(Mx, j) 6= e(My, j)}.

For ease of notation, we define the following quantity

HC
ver :=

∑
e/∈MC

∗

1

(∆̃C
e )2

.

Next, we present two lemmas for CAR-Verify on the sample complexity and correctness with high probability.
Lemma 10 (CAR-Verify). Assume the existence of Condorcet winner. Then, with probability at least 1 − δ0 − δ, the
CAR-Verify algorithm (Algorithm 4) will return the Condorcet winner with sample complexity

O

∑̀
j=1

∑
e 6=e′

e,e′∈Ej

1

(∆C
e,e′)

2
ln

(
K

(∆C
e,e′)

2

)
+HC

ver ln

(
HC

ver

δ

) .

Proof. First, we define event E := {M̂ = MC
∗ }. From Theorem 4, we have Pr[E ] ≥ 1 − δ0. We also define the event

Ft := {|p̂ei,ej − pei,ej | < cei,ej (t),∀ei 6= ej , s(ei) = s(ej)} for any timestep t. Since ct(ei, ej) =
√

ln(4Kt3/δ)
2Tt(ei,ej)

, from the
Chernoff-Hoeffding bound, we can obtain that for any t, for any ei, ej , s.t. ei 6= ej , s(ei) = s(ej),

Pr[|p̂ei,ej − pei,ej | ≥ cei,ej (t)] =

t∑
s=1

Pr

|p̂ei,ej − pei,ej | ≥
√

log( 4Kt3

δ )

2s
, Tt(ei, ej) = s





Combinatorial Pure Exploration of Dueling Bandit

≤
t∑

s=1

δ

2Kt3

≤ δ

2Kt2
.

By a union bound over ei, ej , we have Pr[Ft] ≤ δ
2t2 .

Define event F :=
∞⋂
t=1
Ft. Then, we have Pr[F ] ≥ 1−

∞∑
t=1

Pr[Ft] ≥ 1−
∞∑
t=1

δ
2t2 ≥ 1− δ.

Below we prove that for any ei /∈MC
∗ , let ej be the edge in MC

∗ at the same position as ei, i.e., ej ∈MC
∗ , s(ei) = s(ej),

and then conditioning on E ∩ F , when ct(ei, ej) < 1
2∆̃C

ei , the duel (ei, ej) will not be pulled.

Suppose that, E ∩ F occur, and at some timestep t, ct(ei, ej) < 1
2∆̃C

ei and CAR-Verify pulls the duel (ei, ej), i.e.,
(et, ft) = (ei, ej). Then, from the occurences of E ∩ F and the definition of ∆̃C

ei , we have

ct(ei, ej) <
1

2
· min
M∈M\{MC

∗ }:ei∈M

{
`

dMC
∗ ,M

·
(

1

2
− 1

`
χTMPχMC

∗

)}

≤ `

2dMC
∗ ,Mt

·
(

1

2
− 1

`
χTMt

PχMC
∗

)
.

According to the selection of (et, ft) in CAR-Verify, we have that for any e, e′ s.t. e ∈Mt \MC
∗ , e

′ ∈MC
∗ \Mt, s(e) =

s(e′),

ct(e, e
′) ≤ct(ei, ej)

<
`

2dMC
∗ ,Mt

·
(

1

2
− 1

`
χTMt

PχMC
∗

)
.

Thus, we have

f(Mt,M
C
∗ , P̄t) <f(Mt,M

C
∗ , Pt) +

2

`

∑
e∈Mt\MC

∗ ,e
′∈MC

∗ \Mt

s(e)=s(e′)

ct(e
′, e)

<
1

`
χTMt

PχMC
∗

+
2

`
· dMC

∗ ,Mt
· `

2dMC
∗ ,Mt

·
(

1

2
− 1

`
χTMt

PχMC
∗

)
=

1

2
,

which contradicts the return condition of CAR-Cond.

Thus, conditioning on E ∩ F , when ct(ei, ej) < 1
2∆̃C

ei , the duel (ei, ej) will not be pulled. Let Tcond and Tver denote the
number of samples incurred by the sub-procedure CAR-Cond(δ0) and the verification part (from Line 4 to end), respectively.
Then, using the similar analysis as the proof of Theorem 1, we have that for any e, e′ s.t. e /∈MC

∗ , e
′ ∈MC

∗ , s(e) = s(e′)

T (e, e′) ≤ 1

(∆̃C
e )2

ln

(
4KT 3

δ

)
+ 1

Note that fixing e /∈ MC
∗ , e′ is the edge in MC

∗ at the same position as e, i.e., e′ ∈ MC
∗ , s(e) = s(e′). Thus, taking

summation over e /∈MC
∗ , we have

Tver ≤ HC
ver ln

(
4KT 3

δ

)
+ 1

Thus, we can obtain Tver = O(HC
ver ln(

HCver
δ )). Then, from Theorem 4, we have that conditioning on E ∩ F ,

T =Tcond + Tver
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=O

∑̀
j=1

∑
e6=e′

e,e′∈Ej

1

(∆C
e,e′)

2
ln

(
K

δ0(∆C
e,e′)

2

)+O

(
HC

ver ln

(
HC

ver

δ

))

=O

∑̀
j=1

∑
e 6=e′

e,e′∈Ej

1

(∆C
e,e′)

2
ln

(
K

(∆C
e,e′)

2

)
+HC

ver ln

(
HC

ver

δ

) ,

which completes the proof of Lemma 10.

Lemma 11 (CAR-Verify-correctness). Assume the existence of Condorcet winner. Then, with probability at least 1− δ, the
CAR-Verify algorithm (Algorithm 4) will return the Condorcet winner or an error.

Proof. Recall that Pr[F ] ≥ 1− δ.

Then, conditioning on F , if CAR-Verify terminates with an error, Lemma 11 holds. If CAR-Verify terminates with an
answer Out = Mt, we have f(M,M̂, Pt) < f(M,M̂, P̄t) ≤ maxM∈M\{M̂} f(M,M̂, P̄t) ≤ 1

2 for any M ∈ M \ {M̂},
and thus the answer Out = Mt = MC

∗ .

Note that conditioning on F , CAR-Verify must terminate. This is because if F ∩ E occur, according to Lemma 10,
CAR-Verify will terminate and return the Condorcet winner with a bounded samples. Otherwise, if F ∩ Ē occur, we have
that MC

∗ ∈ M \ {M̂} and f(MC
∗ , M̂ , Pt) >

1
2 . Then, the condition of returning an answer cannot be satisfied and the

condition of returning an error will be satisfied with limit timesteps because the confidence radius shrinks as the timestep
increases.

Therefore, we complete the proof of Lemma 11.

Now, we present the expected sample complexity for the CAR-Parallel algorithm.

Theorem 5 (CAR-Parallel). Assume the existence of Condorcet winner. Then, given δ < 0.01, with probability at least
1− δ, the CAR-Parallel algorithm (Algorithm 3) will return the Condorcet winner with an expected sample complexity

O

∑̀
j=1

∑
e 6=e′

e,e′∈Ej

ln
(
K/(∆C

e,e′)
2
)

(∆C
e,e′)

2
+HC

ver ln

(
HC

ver

δ

) .

Proof. Since CAR-Parallel directly applies the “parallel simulation” technique (Chen & Li, 2015; Chen et al., 2017) on
CAR-Verify to boost the confidence, Theorem 5 follows from Lemma 10, 11 and Lemma 4.8 (result for parallel simulation)
in (Chen et al., 2017).

C.4. Lower Bound

To formally state our result for lower bound, we first introduce the following notions. For any δ ∈ (0, 1), we call an
algorithm A a δ-correct algorithm if, for any problem instance of CPE-DB with Condorcet winner, algorithm A identifies
the Condorcet winner with probability at least 1− δ. In addition, for any M ∈M \ {MC

∗ }, we use O(M) to denote the
set of matchings that can beat M , i.e., O(M) = {Mx ∈ M \ {M} : f(Mx,M, P )} ≥ 1

2 . According to the definition of
Condorcet winner, MC

∗ ∈ O(M) for any M ∈M \ {MC
∗ }.

In the following, we present a lower bound for the problem of combinatorial pure exploration for identifying the Condorcet
winner in a special case.

Theorem 6 (Condorcet lower bound). Consider the problem of combinatorial pure exploration for identifying the Condorcet
winner. Suppose that, for any M ∈ M \ {MC

∗ }, for any Mx ∈ O(M), f(M,MC
∗ , P ) ≤ f(M,Mx, P ) and MC

∗ \M ⊆
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Mx \M . For some constant 0 < γ < 1
2(2+`) , for any ei, ej ∈ E, s(ei) = s(ej), 1

2 − γ ≤ pei,ej ≤ 1
2 + γ. Then, for any

δ ∈ (0, 0.1), any δ-correct algorithm has sample complexity

Ω

( ∑
e/∈MC

∗

1

`2 · (∆C
e )2

ln
(1

δ

))
.

Proof. Fix an instance I of the Condorcet CPE-DB problem under the supposition and a δ-correct algorithm A. In instance
I , MC

∗ is the Condorcet winner and M is a suboptimal matching. Let Tei,ej be the expected number of samples drawn from
the duel (ei, ej) when A runs on instance I.

We consider the following alternative instance I ′. For the duel (ei, ej) such that ei ∈M \MC
∗ , ej ∈MC

∗ \M, s(ei) = s(ej),
we change the Bernoulli distribution of duel (ei, ej) as follows:

p′ei,ej = pei,ej + ` ·
(

1

2
− f(M,MC

∗ , P ) + λ

)
Then, f ′(M,MC

∗ , P ) > 1
2 . For any Mx ∈ O(M), since f(M,MC

∗ , P ) < f(M,Mx, P ) and ej ∈ Mx \M , we have
f ′(M,Mx, P ) > f(M,Mx, P ) + ( 1

2 − f(M,MC
∗ , P )) ≥ 1

2 . Thus, we can see that in instance I ′, M is the Condorcet
winner instead.

Using Lemma 1 in (Kaufmann et al., 2016), we can obtain

Tei,ej · d(pei,ej , p
′
ei,ej ) ≥ d(1− δ, δ).

For δ ∈ (0, 0.1), we have d(1− δ, δ) ≥ 0.4 ln( 1
δ ). From the supposition, for some constant 0 < γ < 1

2(2+`) , for any ei, ej ∈
E, s(ei) = s(ej), 1

2 − γ ≤ pei,ej ≤
1
2 + γ. Then, for any M1,M2 ∈M s.t. M1 6= M2, 1

2 − γ ≤ f(M1,M2, P ) ≤ 1
2 + γ.

Thus, for the changed duel (ei, ej), γ ≤ p′ei,ej ≤ 1− γ and d(pei,ej , p
′
ei,ej ) ≤

(pei,ej−p
′
ei,ej

)2

p′ei,ej
(1−p′ei,ej ) ≤

1
γ(1−γ) (pei,ej − p′ei,ej )

2.

Therefore,
1

γ(1− γ)
· Tei,ej · (pei,ej − p′ei,ej )

2 ≥ 0.4 ln
(1

δ

)
1

γ(1− γ)
· Tei,ej · `2 ·

(
1

2
− f(M,MC

∗ , P ) + λ

)2

≥ 0.4 ln
(1

δ

)
Tei,ej ≥

0.4γ(1− γ)

`2 ·
(

1
2 − f(M,MC

∗ , P ) + λ
)2 ln

(1

δ

)

We can perform the similar distribution changes on any duel (ei, ej) such that ei ∈M \MC
∗ , ej ∈MC

∗ \M, s(ei) = s(ej)
and any M ∈ M \ {MC

∗ }. In addition, the inequality holds for any λ > 0. Therefore, from the above analysis and the
definition of ∆C

ei (Definition 5), we can obtain that for any ei, ej ∈ E such that ej ∈MC
∗ , ei /∈MC

∗ , s(ei) = s(ej),

Tei,ej ≥ max
M∈M\{MC

∗ }:ei∈M

{
0.4γ(1− γ)

`2 ·
(

1
2 − f(M,MC

∗ , P )
)2 ln

(1

δ

)}

≥0.4γ(1− γ)

`2 · (∆C
ei)

2
ln
(1

δ

)

Thus, we can see that for any edge e /∈MC
∗ , the number of samples for the duel between e and the edge in MC

∗ at the same
position as e, which we denote by Te, satisfies

Te ≥
0.4γ(1− γ)

`2 · (∆C
e )2

ln(
1

δ
).
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Summing over e /∈MC
∗ , we have

T ≥
∑
e/∈MC

∗

0.4γ(1− γ)

`2 · (∆C
e )2

ln
(1

δ

)

=Ω

( ∑
e/∈MC

∗

1

`2 · (∆C
e )2

ln
(1

δ

))
,

which completes the proof of Theorem 6.

Note that in the sample complexity upper bound of CAR-Parallel (Theorem 5), for any e /∈ MC
∗ , the verification gap

∆̃C
e ≥ ∆̄C

e , and thus the verification hardness satisfies

HC
ver ≤

∑
e/∈MC

∗

1

(∆C
e )2

Thus, given confidence δ < 0.01, the term HC
ver ln

(
HCver
δ

)
in the sample complexity upper bound of Algorithm 3 matches

the lower bound within a factor of `2.


