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Abstract

Prior work on Sign Language Translation has shown
that having a mid-level sign gloss representation (effectively
recognizing the individual signs) improves the translation
performance drastically. In fact, the current state-of-the-
art in translation requires gloss level tokenization in order
to work. We introduce a novel transformer based architec-
ture that jointly learns Continuous Sign Language Recogni-
tion and Translation while being trainable in an end-to-end
manner. This is achieved by using a Connectionist Temporal
Classification (CTC) loss to bind the recognition and trans-
lation problems into a single unified architecture. This joint
approach does not require any ground-truth timing informa-
tion, simultaneously solving two co-dependant sequence-to-
sequence learning problems and leads to significant perfor-
mance gains.

We evaluate the recognition and translation perfor-
mances of our approaches on the challenging RWTH-
PHOENIX-Weather-2014T (PHOENIX14T) dataset. We re-
port state-of-the-art sign language recognition and trans-
lation results achieved by our Sign Language Transform-
ers. Our translation networks outperform both sign video to
spoken language and gloss to spoken language translation
models, in some cases more than doubling the performance
(9.58 vs. 21.80 BLEU-4 Score). We also share new baseline
translation results using transformer networks for several
other text-to-text sign language translation tasks.

1. Introduction
Sign Languages are the native languages of the Deaf and

their main medium of communication. As visual languages,
they utilize multiple complementary channels1 to convey in-
formation [62]. This includes manual features, such as hand
shape, movement and pose as well as non-manuals features,
such as facial expression, mouth and movement of the head,
shoulders and torso [5].

The goal of sign language translation is to either convert
written language into a video of sign (production) [59, 60]
or to extract an equivalent spoken language sentence from
a video of someone performing continuous sign [9]. How-
ever, in the field of computer vision, much of this latter work

1Linguists refer to these channels as articulators.
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Figure 1: An overview of our end-to-end Sign Language
Recognition and Translation approach using transformers.

has focused on recognising the sequence of sign glosses2

(Continuous Sign Language Recognition (CSLR)) rather
than the full translation to a spoken language equivalent
(Sign Language Translation (SLT)). This distinction is im-
portant as the grammar of sign and spoken languages are
very different. These differences include (to name a few):
different word ordering, multiple channels used to convey
concurrent information and the use of direction and space
to convey the relationships between objects. Put simply, the
mapping between speech and sign is complex and there is
no simple word-to-sign mapping.

Generating spoken language sentences given sign lan-
guage videos is therefore a spatio-temporal machine trans-
lation task [9]. Such a translation system requires us to ac-
complish several sub-tasks, which are currently unsolved:

Sign Segmentation: Firstly, the system needs to detect
sign sentences, which are commonly formed using topic-
comment structures [62], from continuous sign language
videos. This is trivial to achieve for text based machine
translation tasks [48], where the models can use punctua-
tion marks to separate sentences. Speech-based recogni-
tion and translation systems, on the other hand, look for
pauses, e.g. silent regions, between phonemes to segment
spoken language utterances [69, 76]. There have been stud-
ies in the literature addressing automatic sign segmentation
[36, 52, 55, 4, 13]. However to the best of the authors’
knowledge, there is no study which utilizes sign segmenta-
tion for realizing continuous sign language translation.

2Sign glosses are spoken language words that match the meaning of
signs and, linguistically, manifest as minimal lexical items.
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Sign Language Recognition and Understanding: Fol-
lowing successful segmentation, the system needs to under-
stand what information is being conveyed within a sign sen-
tence. Current approaches tackle this by recognizing sign
glosses and other linguistic components. Such methods can
be grouped under the banner of CSLR [40, 8]. From a com-
puter vision perspective, this is the most challenging task.
Considering the input of the system is high dimensional
spatio-temporal data, i.e. sign videos, models are required
that understand what a signer looks like and how they in-
teract and move within their 3D signing space. Moreover,
the model needs to comprehend what these aspects mean in
combination. This complex modelling problem is exacer-
bated by the asynchronous multi-articulatory nature of sign
languages [51, 58]. Although there have been promising re-
sults towards CSLR, the state-of-the-art [39] can only rec-
ognize sign glosses and operate within a limited domain of
discourse, namely weather forecasts [26].

Sign Language Translation: Once the information em-
bedded in the sign sentences is understood by the system,
the final step is to generate spoken language sentences. As
with any other natural language, sign languages have their
own unique linguistic and grammatical structures, which
often do not have a one-to-one mapping to their spoken
language counterparts. As such, this problem truly repre-
sents a machine translation task. Initial studies conducted
by computational linguists have used text-to-text statistical
machine translation models to learn the mapping between
sign glosses and their spoken language translations [45].
However, glosses are simplified representations of sign lan-
guages and linguists are yet to come to a consensus on how
sign languages should be annotated.

There have been few contributions towards video based
continuous SLT, mainly due to the lack of suitable
datasets to train such models. More recently, Camgoz
et al. [9] released the first publicly available sign lan-
guage video to spoken language translation dataset, namely
PHOENIX14T. In their work, the authors proposed ap-
proaching SLT as a Neural Machine Translation (NMT)
problem. Using attention-based NMT models [44, 3], they
define several SLT tasks and realized the first end-to-end
sign language video to spoken language sentence transla-
tion model, namely Sign2Text.

One of the main findings of [9] was that using gloss
based mid-level representations improved the SLT per-
formance drastically when compared to an end-to-end
Sign2Text approach. The resulting Sign2Gloss2Text model
first recognized glosses from continuous sign videos using
a state-of-the-art CSLR method [41], which worked as a
tokenization layer. The recognized sign glosses were then
passed to a text-to-text attention-based NMT network [44]
to generate spoken language sentences.

We hypothesize that there are two main reasons why
Sign2Gloss2Text performs better than Sign2Text (18.13 vs
9.58 BLEU-4 scores). Firstly, the number of sign glosses
is much lower than the number of frames in the videos

they represent. By using gloss representations instead of
the spatial embeddings extracted from the video frames,
Sign2Gloss2Text avoids the long-term dependency issues,
which Sign2Text suffers from.

We think the second and more critical reason is the
lack of direct guidance for understanding sign sentences
in Sign2Text training. Given the aforementioned complex-
ity of the task, it might be too difficult for current Neu-
ral Sign Language Translation architectures to comprehend
sign without any explicit intermediate supervision. In this
paper we propose a novel Sign Language Transformer ap-
proach, which addresses this issue while avoiding the need
for a two-step pipeline, where translation is solely depen-
dent on recognition accuracy. This is achieved by jointly
learning sign language recognition and translation from
spatial-representations of sign language videos in an end-to-
end manner. Exploiting the encoder-decoder based archi-
tecture of transformer networks [70], we propose a multi-
task formalization of the joint continuous sign language
recognition and translation problem.

To help our translation networks with sign language un-
derstanding and to achieve CSLR, we introduce a Sign Lan-
guage Recognition Transformer (SLRT), an encoder trans-
former model trained using a CTC loss [2], to predict sign
gloss sequences. SLRT takes spatial embeddings extracted
from sign videos and learns spatio-temporal representa-
tions. These representations are then fed to the Sign Lan-
guage Translation Transformer (SLTT), an autoregressive
transformer decoder model, which is trained to predict one
word at a time to generate the corresponding spoken lan-
guage sentence. An overview of the approach can be seen
in Figure 1.

The contributions of this paper can be summarized as:
• A novel multi-task formalization of CSLR and SLT

which exploits the supervision power of glosses, with-
out limiting the translation to spoken language.
• The first successful application of transformers for

CSLR and SLT which achieves state-of-the-art results
in both recognition and translation accuracy, vastly
outperforming all comparable previous approaches.
• A broad range of new baseline results to guide future

research in this field.
The rest of this paper is organized as follows: In Sec-

tion 2, we survey the previous studies on SLT and the state-
of-the-art in the field of NMT. In Section 3, we introduce
Sign Language Transformers, a novel joint sign language
recognition and translation approach which can be trained
in an end-to-end manner. We share our experimental setup
in Section 4. We then report quantitative results of the Sign
Language Transformers in Section 5 and present new base-
line results for the previously defined text-to-text translation
tasks [9]. In Section 6, we share translation examples gen-
erated by our network to give the reader further qualitative
insight of how our approach performs. We conclude the
paper in Section 7 by discussing our findings and possible
future work.



2. Related Work
Sign languages have been studied by the computer

vision community for the last three decades [65, 56]. The
end goal of computational sign language research is to
build translation and production systems [16], that are
capable of translating sign language videos to spoken
language sentences and vice versa, to ease the daily lives
of the Deaf [15, 6]. However, most of the research to date
has mainly focused on Isolated Sign Language Recognition
[35, 75, 72, 10, 63, 67], working on application specific
datasets [11, 71, 23], thus limiting the applicability of such
technologies. More recent work has tackled continuous
data [42, 32, 17, 18], but the move from recognition to
translation is still in its infancy [9].

There have been earlier attempts to realize SLT by com-
putational linguists. However, existing work has solely fo-
cused on the text-to-text translation problem and has been
very limited in size, averaging around 3000 total words
[46, 57, 54]. Using statistical machine translation meth-
ods, Stein et al. [57] proposed a weather broadcast trans-
lation system from spoken German into German Sign Lan-
guage - Deutsche Gebrdensprache (DGS) and vice versa,
using the RWTH-PHOENIX-Weather-2012 (PHOENIX12)
[25] dataset. Another method translated air travel infor-
mation from spoken English to Irish Sign Language (ISL),
spoken German to ISL, spoken English to DGS, and spo-
ken German to DGS [45]. Ebling [22] developed an ap-
proach to translate written German train announcements
into Swiss German Sign Language - Deutschschweizer
Gebärdensprache (DSGS). While non-manual information
has not been included in most previous systems, Ebling &
Huenerfauth [24] proposed a sequence classification based
model to schedule the automatic generation of non-manual
features after the core machine translation step.

Conceptual video based SLT systems were introduced in
the early 2000s [7]. There have been studies, such as [12],
which propose recognizing signs in isolation and then con-
structing sentences using a language model. However, end-
to-end SLT from video has not been realized until recently.

The most important obstacle to vision based SLT re-
search has been the availability of suitable datasets. Cu-
rating and annotating continuous sign language videos with
spoken language translations is a laborious task. There
are datasets available from linguistic sources [53, 31] and
sign language interpretations from broadcasts [14]. How-
ever, the available annotations are either weak (subtitles) or
too few to build models which would work on a large do-
main of discourse. In addition, such datasets lack the hu-
man pose information which legacy Sign Language Recog-
nition (SLR) methods heavily relied on.

The relationship between sign sentences and their spo-
ken language translations are non-monotonic, as they have
different ordering. Also, sign glosses and linguistic con-
structs do not necessarily have a one-to-one mapping with
their spoken language counterparts. This made the use of
available CSLR methods [42, 41] (that were designed to

learn from weakly annotated data) infeasible, as they are
build on the assumption that sign language videos and cor-
responding annotations share the same temporal order.

To address these issues, Camgoz et al. [9] released
the first publicly available SLT dataset, PHOENIX14T,
which is an extension of the popular RWTH-PHOENIX-
Weather-2014 (PHOENIX14) CSLR dataset. The authors
approached the task as a spatio-temporal neural machine
translation problem, which they term ‘Neural Sign Lan-
guage Translation’. They proposed a system using Con-
volutional Neural Networks (CNNs) in combination with
attention-based NMT methods [44, 3] to realize the first
end-to-end SLT models. Following this, Ko et al. pro-
posed a similar approach but used body key-point coordi-
nates as input for their translation networks, and evaluated
their method on a Korean Sign Language dataset [38].

Concurrently, there have been several advancements in
the field of NMT, one of the most important being the intro-
duction of transformer networks [70]. Transformers dras-
tically improved the translation performance over legacy
attention based encoder-decoder approaches. Also due to
the fully-connected nature of the architecture, transformers
are fast and easy to parallelize, which has enabled them
to become the new go to architecture for many machine
translation tasks. In addition to NMT, transformers have
achieved success in various other challenging tasks, such as
language modelling [19, 77], learning sentence representa-
tions [21], multi-modal language understanding [68], activ-
ity [73] and speech recognition [34]. Inspired by their re-
cent wide-spread success, in this work we propose a novel
architecture where multiple co-dependent transformer net-
works are simultaneously trained to jointly solve related
tasks. We then apply this architecture to the problem of si-
multaneous recognition and translation where joint training
provides significant benefits.

3. Sign Language Transformers
In this section we introduce Sign Language Transform-

ers which jointly learn to recognize and translate sign video
sequences into sign glosses and spoken language sentences
in an end-to-end manner. Our objective is to learn the con-
ditional probabilities p(G|V) and p(S|V) of generating a
sign gloss sequence G = (g1, ..., gN ) with N glosses and a
spoken language sentence S = (w1, ..., wU ) with U words
given a sign video V = (I1, ..., IT ) with T frames.

Modelling these conditional probabilities is a sequence-
to-sequence task, and poses several challenges. In both
cases, the number of tokens in the source domain is much
larger than the corresponding target sequence lengths (i.e.
T � N and T � U ). Furthermore, the mapping between
sign language videos, V , and spoken language sentences, S,
is non-monotonic, as both languages have different vocabu-
laries, grammatical rules and orderings.

Previous sequence-to-sequence based literature on SLT
can be categorized into two groups: The first group break
down the problem in two stages. They consider CSLR as an
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Figure 2: A detailed overview of a single layered Sign Language Transformer.
(SE: Spatial Embedding, WE: Word Embedding , PE: Positional Encoding, FF: Feed Forward)

initial process and then try to solve the problem as a text-to-
text translation task [12, 9]. Camgoz et al. utilized a state-
of-the-art CSLR method [41] to obtain sign glosses, and
then used an attention-based text-to-text NMT model [44] to
learn the sign gloss to spoken language sentence translation,
p(S|G) [9]. However, in doing so, this approach introduces
an information bottleneck in the mid-level gloss represen-
tation. This limits the network’s ability to understand sign
language as the translation model can only be as good as the
sign gloss annotations it was trained from. There is also an
inherent loss of information as a sign gloss is an incomplete
annotation intended only for linguistic study and it therefore
neglects many crucial details and information present in the
original sign language video.

The second group of methods focus on translation from
the sign video representations to spoken language with no
intermediate representation [9, 38]. These approaches at-
tempt to learn p(S|V) directly. Given enough data and a
sufficiently sophisticated network architecture, such mod-
els could theoretically realize end-to-end SLT with no need
for a human-interpretable information that act as a bottle-
neck. However, due to the lack of direct supervision guid-
ing sign language understanding, such methods have signif-
icantly lower performance than their counterparts on cur-
rently available datasets [9].

To address this, we propose to jointly learn p(G|V) and
p(S|V), in an end-to-end manner. We build upon trans-
former networks [70] to create a unified model, which
we call Sign Language Transformers (See Figure 2). We
train our networks to generate spoken language sentences
from sign language video representations. During training,
we inject intermediate gloss supervision in the form of a
CTC loss into the Sign Language Recognition Transformer
(SLRT) encoder. This helps our networks learn more mean-

ingful spatio-temporal representations of the sign without
limiting the information passed to the decoder. We em-
ploy an autoregressive Sign Language Translation Trans-
former (SLTT) decoder which predicts one word at a time
to generate the spoken language sentence translation.

3.1. Spatial and Word Embeddings
Following the classic NMT pipeline, we start by embed-

ding our source and target tokens, namely sign language
video frames and spoken language words. As word embed-
ding we use a linear layer, which is initialized from scratch
during training, to project a one-hot-vector representation of
the words into a denser space. To embed video frames, we
use the SpatialEmbedding approach [9], and propagate each
image through CNNs. We formulate these operations as:

mu = WordEmbedding(wu)

ft = SpatialEmbedding(It)
(1)

where mu is the embedded representation of the spoken
language word wu and ft corresponds to the non-linear
frame level spatial representation obtained from a CNN.

Unlike other sequence-to-sequence models [61, 27],
transformer networks do not employ recurrence or convo-
lutions, thus lacking the positional information within se-
quences. To address this issue we follow the positional en-
coding method proposed in [70] and add temporal ordering
information to our embedded representations as:

f̂t = ft + PositionalEncoding(t)

m̂u = mu + PositionalEncoding(u)

where PositionalEncoding is a predefined function which
produces a unique vector in the form of a phase shifted sine
wave for each time step.



3.2. Sign Language Recognition Transformers
The aim of SLRT is to recognize glosses from continu-

ous sign language videos while learning meaningful spatio-
temporal representations for the end goal of sign language
translation. Using the positionally encoded spatial embed-
dings, f̂1:T , we train a transformer encoder model [70].

The inputs to SLRT are first modelled by a Self-
Attention layer which learns the contextual relationship be-
tween the frame representations of a video. Outputs of the
self-attention are then passed through a non-linear point-
wise feed forward layer. All the operations are followed by
residual connections and normalization to help training. We
formulate this encoding process as:

zt = SLRT(f̂t|f̂1:T ) (2)
where zt denotes the spatio-temporal representation of the
frame It, which is generated by SLRT at time step t, given
the spatial representations of all of the video frames, f̂1:T .

We inject intermediate supervision to help our networks
understand sign and to guide them to learn a meaningful
sign representation which helps with the main task of trans-
lation. We train the SLRT to model p(G|V) and predict sign
glosses. Due to the spatio-temporal nature of the signs,
glosses have a one-to-many mapping to video frames but
share the same ordering.

One way to train the SLRT would be using cross-entropy
loss [29] with frame level annotations. However, sign
gloss annotations with such precision are rare. An alter-
native form of weaker supervision is to use a sequence-to-
sequence learning loss functions, such as CTC [30].

Given spatio-temporal representations, z1:T , we obtain
frame level gloss probabilities, p(gt|V), using a linear pro-
jection layer followed by a softmax activation. We then use
CTC to compute p(G|V) by marginalizing over all possible
V to G alignments as:

p(G|V) =
∑
π∈B

p(π|V) (3)

where π is a path and B are the set of all viable paths that
correspond to G. We then use the p(G|V) to calculate the
CSLR loss as:

LR = 1− p(G∗|V) (4)

where G∗ is the ground truth gloss sequence.

3.3. Sign Language Translation Transformers
The end goal of our approach is to generate spoken lan-

guage sentences from sign video representations. We pro-
pose training an autoregressive transformer decoder model,
named SLTT, which exploits the spatio-temporal represen-
tations learned by the SLRT. We start by prefixing the target
spoken language sentence S with the special beginning of
sentence token, < bos >. We then extract the positionally
encoded word embeddings. These embeddings are passed
to a masked self-attention layer. Although the main idea be-
hind self-attention is the same as in SLRT, the SLTT utilizes
a mask over the self-attention layer inputs. This ensures that

each token may only use its predecessors while extracting
contextual information. This masking operation is neces-
sary, as at inference time the SLTT won’t have access to the
output tokens which would follow the token currently being
decoded.

Representations extracted from both SLRT and SLTT
self-attention layers are combined and given to an encoder-
decoder attention module which learns the mapping
between source and target sequences. Outputs of the
encoder-decoder attention are then passed through a
non-linear point-wise feed forward layer. Similar to SLRT,
all the operations are followed by residual connections and
normalization. We formulate this decoding process as:

hu+1 = SLTT(m̂u|m̂1:u−1, z1:T ). (5)

SLTT learns to generate one word at a time until it produces
the special end of sentence token, < eos >. It is trained
by decomposing the sequence level conditional probability
p(S|V) into ordered conditional probabilities

p(S|V) =
U∏
u=1

p(wu|hu) (6)

which are used to calculate the cross-entropy loss for each
word as:

LT = 1−
U∏
u=1

D∑
d=1

p(ŵdu)p(w
d
u|hu) (7)

where p(ŵdu) represents the ground truth probability of
word wd at decoding step u and D is the target language
vocabulary size.

We train our networks by minimizing the joint loss term
L, which is a weighted sum of the recognition loss LR and
the translation loss LT as:

L = λRLR + λTLT (8)

where λR and λT are hyper parameters which decides the
importance of each loss function during training and are
evaluated in Section 5.

4. Dataset and Translation Protocols
We evaluate our approach on the recently released

PHOENIX14T dataset [9], which is a large vocabulary, con-
tinuous SLT corpus. PHOENIX14T is a translation focused
extension of the PHOENIX14 corpus, which has become
the primary benchmark for CSLR in recent years.

PHOENIX14T contains parallel sign language videos,
gloss annotations and their translations, which makes it the
only available dataset suitable for training and evaluating
joint SLR and SLT techniques. The corpus includes uncon-
strained continuous sign language from 9 different signers
with a vocabulary of 1066 different signs. Translations for
these videos are provided in German spoken language with
a vocabulary of 2887 different words.



The evaluation protocols on the PHOENIX14T dataset,
as laid down by [9], are as follows:

Sign2Text is the end goal of SLT, where the objective
is to translate directly from continuous sign videos to spo-
ken language sentences without going via any intermediary
representation, such as glosses.

Gloss2Text is a text-to-text translation problem, where
the objective is to translate ground truth sign gloss se-
quences to German spoken language sentences. The re-
sults of these experiments act as a virtual upper bound for
the available NMT translation technology. This assump-
tion is based on the fact that perfect sign language recog-
nition/understanding is simulated by using the ground truth
gloss annotation. However, as mentioned earlier, one needs
to bear in mind that gloss representations are imprecise.
As glosses are textual representations of multi-channel tem-
poral signals, they represent an information bottleneck for
any translation system. This means that under ideal con-
ditions, a Sign2Text system could and should outperform
Gloss2Text. However, more sophisticated network architec-
tures and data are needed to achieve this and hence such a
goal remains a longer term objective beyond the scope of
this manuscript.

Sign2Gloss2Text is the current state-of-the-art in SLT.
This approach utilizes CSLR models to extract gloss se-
quences from sign language videos which are then used to
solve the translation task as a text-to-text problem by train-
ing a Gloss2Text network using the CSLR predictions.

Sign2Gloss→Gloss2Text is similar to Sign2Gloss2Text
and also uses CSLR models to extract gloss sequences.
However, instead of training text-to-text translation net-
works from scratch, Sign2Gloss→Gloss2Text models use
the best performing Gloss2Text network, which has been
trained with ground truth gloss annotations, to generate spo-
ken language sentences from intermediate sign gloss se-
quences from the output of the CSLR models.

In addition to evaluating our networks in the context
of the above protocols, we additionally introduce two
new protocols which follow the same naming convention.
Sign2Gloss is a protocol which essentially performs CSLR,
while Sign2(Gloss+Text) requires joint learning of contin-
uous sign language recognition and translation.

5. Quantitative Results
In this section we share our sign language recognition

and translation experimental setups and report quantitative
results. We first go over the implementation details and
introduce the evaluation metrics we will be using to mea-
sure the performance of our models. We start our exper-
iments by applying transformer networks to the text-to-
text based SLT tasks, namely Gloss2Text, Sign2Gloss2Text,
Sign2Gloss→Gloss2Text and report improved performance
over using Recurrent Neural Network (RNN) based models.
We share our Sign2Gloss experiments, in which we explore
the effects of different types of spatial embeddings and net-
work structures on the performance of CSLR. We then train

Sign2Text and Sign2(Gloss+Text) models using the best per-
forming Sign2Gloss configuration and investigate the effect
of different recognition loss weights on the joint recogni-
tion and translation performance. Finally, we compare our
best performing models against other approaches and report
state-of-the-art results.

5.1. Implementation and Evaluation Details
Framework: We used a modified version of JoeyNMT

[43] to implement our Sign Language Transformers3. All
components of our network were built using the PyTorch
framework [50], except the CTC beam search decoding, for
which we utilized the TensorFlow implementation [1].

Network Details: Our transformers are built using 512
hidden units and 8 heads in each layer. We use Xavier ini-
tialization [28] and train all of our networks from scratch.
We also utilize dropout with 0.1 drop rate on transformer
layers and word embeddings to mitigate over-fitting.

Performance Metrics: We use Word Error Rate (WER)
for assessing our recognition models, as it is the prevalent
metric for evaluating CSLR performance [40]. To measure
the translation performance of our networks, we utilized
BLEU [49] score (n-grams ranging from 1 to 4), which is
the most common metric for machine translation.

Training: We used the Adam [37] optimizer to train our
networks using a batch size of 32 with a learning rate of
10−3 (β1=0.9, β2=0.998) and a weight decay of 10−3. We
utilize plateau learning rate scheduling which tracks the de-
velopment set performance. We evaluate our network every
100 iterations. If the development score does not decrease
for 8 evaluation steps, we decrease the learning rate by a
factor of 0.7. This continues until the learning rate drops
below 10−6.

Decoding: During the training and validation steps we
employ a greedy search to decode both gloss sequences and
spoken language sentences. At inference time, we utilize
beam search decoding with widths ranging from 0 to 10. We
also implement a length penalty [74] with α values ranging
from 0 to 2. We find the best performing combination of
beam width and α on the development set and use these
values for the test set evaluation.

5.2. Text-to-Text Sign Language Translation
In our first set of experiments, we adapt the trans-

former backbone of our technique, for text-to-text sign lan-
guage translation. We then evaluate the performance gain
achieved over the RNN-based attention architectures.

As can be seen in Table 1, utilizing transformers for
text-to-text sign language translation improved the perfor-
mance across all tasks, reaching an impressive 25.35/24.54
BLEU-4 score on the development and test sets. We believe
this performance gain is due to the more sophisticated at-
tention architectures, namely self-attention modules, which
learn the contextual information within both source and tar-
get sequences.

3https://github.com/neccam/slt

https://github.com/neccam/slt


DEV TEST
Text-to-Text Tasks (RNNs vs Transformers) WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 WER BLEU-1 BLEU-2 BLEU-3 BLEU-4

Gloss2Text [9] - 44.40 31.83 24.61 20.16 - 44.13 31.47 23.89 19.26
Our Gloss2Text - 50.69 38.16 30.53 25.35 - 48.90 36.88 29.45 24.54

Sign2Gloss2Text [9] - 42.88 30.30 23.02 18.40 - 43.29 30.39 22.82 18.13
Our Sign2Gloss2Text - 47.73 34.82 27.11 22.11 - 48.47 35.35 27.57 22.45

Sign2Gloss→Gloss2Text [9] - 41.08 29.10 22.16 17.86 - 41.54 29.52 22.24 17.79
Our Sign2Gloss→Gloss2Text - 47.84 34.65 26.88 21.84 - 47.74 34.37 26.55 21.59

Video-to-Text Tasks WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 WER BLEU-1 BLEU-2 BLEU-3 BLEU-4
CNN+LSTM+HMM [39] 24.50 - - - - 26.50 - - - -

Our Sign2Gloss 24.88 - - - - 24.59 - - - -
Sign2Text [9] - 31.87 19.11 13.16 9.94 - 32.24 19.03 12.83 9.58

Our Sign2Text - 45.54 32.60 25.30 20.69 - 45.34 32.31 24.83 20.17
Our Best Recog. Sign2(Gloss+Text) 24.61 46.56 34.03 26.83 22.12 24.49 47.20 34.46 26.75 21.80
Our Best Trans. Sign2(Gloss+Text) 24.98 47.26 34.40 27.05 22.38 26.16 46.61 33.73 26.19 21.32

Table 1: (Top) New baseline results for text-to-text tasks on Phoenix2014T [9] using transformer networks and
(Bottom) Our best performing Sign Language Transformers compared against the state-of-the-art.

5.3. Sign2Gloss

To tackle the Sign2Gloss task, we utilize our SLRT net-
works. Any CNN architecture can be used as spatial em-
bedding layers to learn the sign language video frame rep-
resentation while training SLRT in an end-to-end manner.
However, due to hardware limitations (graphics card mem-
ory) we utilize pretrained CNNs as our spatial embeddings.
We extract frame level representations from sign videos and
train our sign language transformers to learn CSLR and SLT
jointly in an end-to-end manner.

In our first set of experiments, we investigate which CNN
we should be using to represent our sign videos. We utilize
state-of-the-art EfficientNets [66], namely B0, B4 and B7,
which were trained on ImageNet [20]. We also use an In-
ception [64] network which was pretrained for learning sign
language recognition in a CNN+LSTM+HMM setup [39].
In this set of experiments we employed a two layered trans-
former encoder model.

Table 2 shows that as the spatial embedding layer be-
comes more advanced, i.e. B0 vs B7, the recognition per-
formance increases. However, our networks benefited more
when we used pretrained features, as these networks had
seen sign videos before and learned kernels which can em-
bed more meaningful representations in the latent space.
We then tried utilizing Batch Normalization [33] followed
by a ReLU [47] to normalize our inputs and allow our
networks to learn more abstract non-linear representations.
This improved our results drastically, giving us a boost of
nearly 7% and 6% of absolute WER reduction on the devel-
opment and test sets, respectively. Considering these find-

DEV TEST
Spatial Embedding del / ins WER del / ins WER

EfficientNet-B0 47.22 / 1.59 57.06 46.09 / 1.75 56.29
EfficientNet-B4 40.73 / 2.45 51.26 38.34 / 2.80 50.09
EfficientNet-B7 39.29 / 2.84 50.18 37.05 / 2.76 47.96
Pretrained CNN 21.51 / 6.10 33.90 20.29 / 5.35 33.39
+ BN & ReLU 13.54 / 5.74 26.70 13.85 / 6.43 27.62

Table 2: Impact of the Spatial Embedding Layer variants.

ings, the rest of our experiments used the batch normalized
pretrained CNN features of [39] followed by ReLU.

Next, we investigated the effects of having different
numbers of transformer layers. Although having a larger
number of layers would allow our networks to learn more
abstract representations, it also makes them prone to over-
fitting. To this end, we built our SLRT networks using one
to six layers and evaluate their CSLR performance.

Our recognition performance initially improves with ad-
ditional layers (See Table 3). However, as we continue
adding more layers, our networks started to over-fit on the
training data, causing performance degradation. In the light
of this, for the rest of our experiments, we constructed our
sign language transformers using three layers.

5.4. Sign2Text and Sign2(Gloss+Text)

In our next set of experiments we examine the per-
formance gain achieved by unifying the recognition and
translation tasks into a single model. As a baseline, we
trained a Sign2Text network by setting our recognition loss
weight λR to zero. We then jointly train our sign language
transformers, for recognition and translation, with various
weightings between the losses.

As can be seen in Table 4, jointly learning recogni-
tion and translation with equal weighting (λR=λT=1.0) im-
proves the translation performance, while degrading the
recognition performance compared to task specific net-
works. We believe this is due to scale differences of the
CTC and word-level cross entropy losses. Increasing the
recognition loss weight improved both the recognition and

DEV TEST
# Layers del/ins WER del/ins WER

1 11.72 / 9.02 28.08 11.20 / 10.57 29.90
2 13.54 / 5.74 26.70 13.85 / 6.43 27.62
3 11.68 / 6.48 24.88 11.16 / 6.09 24.59
4 12.55 / 5.87 24.97 13.48 / 6.02 26.87
5 11.94 / 6.12 25.23 11.81 / 6.12 25.51
6 15.01 / 6.11 27.46 14.30 / 6.28 27.78

Table 3: Impact of different numbers of layers



Loss Weights DEV TEST
λR λT WER BLEU-4 WER BLEU-4
1.0 0.0 24.88 - 24.59 -
0.0 1.0 - 20.69 - 20.17
1.0 1.0 35.13 21.73 33.75 21.22
2.5 1.0 26.99 22.11 27.55 21.37
5.0 1.0 24.61 22.12 24.49 21.80
10.0 1.0 24.98 22.38 26.16 21.32
20.0 1.0 25.87 20.90 25.73 20.93

Table 4: Training Sign Language Transformers to jointly
learn recognition and translation with different weight on

recognition loss.

the translation performance, demonstrating the value of
sharing training between these related tasks.

Compared to previously published methods, our Sign
Language Transformers surpass both their recognition and
translation performance (See Table 1). We report a decrease
of 2% WER over [39] on the test set in both Sign2Gloss
and Sign2(Gloss+Text) setups. More impressively, both our
Sign2Text and Sign2(Gloss+Text) networks doubled the pre-
vious state-of-the-art translation results (9.58 vs. 20.17 and
21.32 BLEU-4, respectively). Furthermore, our best per-
forming translation Sign2(Gloss+Text) outperforms Cam-
goz et al.’s text-to-text based Gloss2Text translation per-
formance (19.26 vs 21.32 BLEU-4), which was previously
proposed as a pseudo upper bound on performance in [9].
This supports our claim that given more sophisticated net-
work architectures, one would and should achieve better
performance translating directly from video representations
rather than doing text-to-text translation through a limited
gloss representation.

6. Qualitative Results
In this section we report our qualitative results. We

share the spoken language translations generated by our
best performing Sign2(Gloss+Text) model given sign video
representations (See Table 5)4. As the annotations in the
PHOENIX14T dataset are in German, we share both the
produced sentences and their translations in English.

Overall, the quality of the translations is good, and even
where the exact wording differs, it conveys the same infor-
mation. The most difficult translations seem to be named
entities like locations which occur in limited contexts in the
training data. Specific numbers are also challenging as there
is no grammatical context to distinguish one from another.
Despite this, the sentences produced follow standard gram-
mar with surprisingly few exceptions.

7. Conclusion and Future Work
Sign language recognition and understanding is an es-

sential part of the sign language translation task. Previous
translation approaches relied heavily on recognition as the
initial step of their system. In this paper we proposed Sign
Language Transformers, a novel transformer based archi-
tecture to jointly learn sign language recognition and trans-

4Visit our code repository for further qualitative examples.

Reference: im sden schwacher wind .
( in the south gentle wind . )

Ours: der wind weht im sden schwach .
( the wind blows gentle in the south . )

Reference: hnliches wetter dann auch am donnerstag .
( similar weather then also on thursday . )

Ours: hnliches wetter auch am donnerstag .
( similar weather also on thursday . )

Reference: ganz hnliche temperaturen wie heute zwischen sechs und elf grad .
( quite similar temperatures as today between six and eleven degrees . )

Ours: hnlich wie heute nacht das sechs bis elf grad .
( similar as today at night that six to eleven degrees . )

Reference: heute nacht neunzehn bis fnfzehn grad im sdosten bis zwlf grad .
( tonight nineteen till fifteen degrees in the southeast till twelve degrees . )

Ours: heute nacht werte zwischen neun und fnfzehn grad im sdosten bis zwlf grad .
( tonight values between nine and fifteen degrees in the southeast till twelve degrees . )

Reference: am sonntag im norden und in der mitte schauer dabei ist es im norden strmisch .
( on sunday in the north and center shower while it is stormy in the north . )

Ours: am sonntag im norden und in der mitte niederschlge im norden ist es weiter strmisch .
( on sunday in the north and center rainfall in the north it is continuously stormy . )

Reference: im sden und sdwesten gebietsweise regen sonst recht freundlich .
( in the south and southwest partly rain otherwise quite friendly . )

Ours: im sdwesten regnet es zum teil krftig .
( in the southwest partly heavy rain . )

Reference: in der nacht sinken die temperaturen auf vierzehn bis sieben grad .
( at night the temperatures lower till fourteen to seven degrees . )

Ours: heute nacht werte zwischen sieben und sieben grad .
( tonight values between seven and seven degrees . )

Reference: heute nacht ist es meist stark bewlkt rtlich regnet oder nieselt es etwas .
( tonight it is mostly cloudy locally rain or drizzle . )

Ours: heute nacht ist es verbreitet wolkenverhangen gebietsweise regnet es krftig .
(tonight it is widespread covered with clouds partly strong rain . )

Reference: an der saar heute nacht milde sechzehn an der elbe teilweise nur acht grad .
( at the saar river tonight mild sixteen at the elbe river partly only eight degrees . )

Ours: im rhein und sdwesten macht sich morgen nur knapp ber null grad .
( in the rhine river and south west becomes just above zero degrees . )

Table 5: Generated spoken language translations by our
Sign Language Transformers.

lation in an end-to-end manner. We utilized CTC loss to
inject gloss level supervision into the transformer encoder,
training it to do sign language recognition while learning
meaningful representations for the end goal of sign lan-
guage translation, without having an explicit gloss repre-
sentation as an information bottleneck.

We evaluated our approach on the challenging
PHOENIX14T dataset and report state-of-the-art sign
language recognition and translation results, in some
cases doubling the performance of previous translation
approaches. Our first set of experiments have shown
that using features which were pretrained on sign data
outperformed using generic ImageNet based spatial rep-
resentations. Furthermore, we have shown that jointly
learning recognition and translation improved the per-
formance across both tasks. More importantly, we have
surpassed the text-to-text translation results, which was set
as a virtual upper-bound, by directly translating spoken
language sentences from video representations.

As future work, we would like to expand our approach to
model multiple sign articulators, namely faces, hands and
body, individually to encourage our networks to learn the
linguistic relationship between them.
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