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Abstract

The efficient fusion of depth maps is a key part of most

state-of-the-art 3D reconstruction methods. Besides requir-

ing high accuracy, these depth fusion methods need to be

scalable and real-time capable. To this end, we present

a novel real-time capable machine learning-based method

for depth map fusion. Similar to the seminal depth map

fusion approach by Curless and Levoy, we only update a lo-

cal group of voxels to ensure real-time capability. Instead

of a simple linear fusion of depth information, we propose

a neural network that predicts non-linear updates to better

account for typical fusion errors. Our network is composed

of a 2D depth routing network and a 3D depth fusion net-

work which efficiently handle sensor-specific noise and out-

liers. This is especially useful for surface edges and thin

objects for which the original approach suffers from thick-

ening artifacts. Our method outperforms the traditional

fusion approach and related learned approaches on both

synthetic and real data. We demonstrate the performance

of our method in reconstructing fine geometric details from

noise and outlier contaminated data on various scenes.

1. Introduction

Multi-view 3D reconstruction has been a central research

topic in computer vision for many decades. Fusing depth

maps from multiple camera viewpoints is an essential pro-

cessing step in the majority of recent 3D reconstruction

pipelines [59, 58, 27, 1, 44, 43, 12, 10], especially for real-

time applications [21, 37, 55, 11]. We revisit the problem

of 3D reconstruction via depth map fusion from a machine

learning perspective. The major difficulty of this task is

to deal with various amounts of noise, outliers, and miss-

ing data. The classical approach [9, 21] to fusing noisy

depth maps is to average truncated signed distance func-

tions (TSDF). This approach has many advantages: 1+) The

updates are local (truncated) and can be done in constant

time for a fixed number of depth values. The high mem-

ory usage of voxel grids can be easily reduced with voxel

hashing [37] or octrees [49]. 2+) Online updates are sim-

Standard TSDF Fusion [9] Ours

Figure 1: Standard TSDF fusion vs. our learned depth

map fusion approach (on Kinect data [48]). Due to a

more informed decision process, our approach better han-

dles noise and fine geometric details.

ple to implement and noisy measurements are fused into a

single surface with very few operations. 3+) Due to local in-

dependent updates, the approach is computationally cheap

and highly parallelizable.

However, the approach also has a number of shortcom-

ings: 1-) The average is only the optimal estimate for zero-

mean Gaussian noise, but the real error distribution is typi-

cally non-Gaussian, non-centered and depth-dependent. 2-)

The updates are linear and a minimal thickness assump-

tion of surfaces has to be made according to the expected

noise level. Therefore, thickening artifacts become appar-

ent along surface edges and for thin object structures. 3-)

This issue is even more severe when depth measurements of

a thin object are made from opposite directions. Then the

surface vanishes since the linear TSDF updates cancel each

other out. 4-) All measurements are treated equally - inde-

pendent of the direction they have been acquired. This as-

sumption is usually incorrect since the noise level along the

viewing direction is typically very different from the one in

orthogonal directions. 5-) The fusion approach is unable to
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handle gross outliers. The depth map has to be pre-filtered

or incorrect measurements will clutter the scene. 6-) The fu-

sion parameters must be tuned for specific scenes and sen-

sors and it is often difficult to find a good trade-off between

runtime and different aspects of reconstruction quality.

In this paper, we aim to tackle the above mentioned

disadvantages while maintaining all the advantages of tra-

ditional approach with a reasonable amount of additional

computation time to still meet real-time requirements. To

this end, we propose a learned approach that fuses noisy

and outlier contaminated measurements into a single sur-

face, performs non-linear updates to better deal with object

boundaries and thin structures, and is fast enough for real-

time applications. Figure 1 shows example outputs of our

approach. In sum, this paper’s contributions are as follows:

• We present a learning-based method for real-time depth

map fusion. Due to its compact architecture it requires

only little training data, and is not prone to over-fitting.

• We propose a scalable and real-time capable neural archi-

tecture that is independent of the scene size. Therefore,

it is applicable to a large set of real-world scenarios.

• We show significant improvement of standard TSDF fu-

sion’s shortcomings: 1) It better handles the fusion of

anisotropic noise distributions that naturally arise from

the multi-view setting, and 2) It mitigates the surface

thickening effect on thin objects and surface boundaries

by avoiding inconsistent updates.

2. Related Work

Volumetric Depth Map Fusion. With their seminal work,

Curless and Levoy [9] proposed an elegant way for fus-

ing noisy depth maps which later got adopted by numerous

works like KinectFusion [21], more scalable generalizations

like voxel hashing [37, 33], or hierarchical scene represen-

tations, such as voxel octrees [16, 49, 34] and hierarchical

hashing [24]. Especially for SLAM pipelines like Infini-

TAM [23], volumetric fusion became a standard approach

due to its real-time capability. In this context, it was also

extended to become more accurate and robust [8] as well as

improve SLAM with additional surface registration of scene

parts to account for pose drift as proposed in [55, 32, 11].

Approaches with additional median filtering [42, 34, 33]

improve the robustness and are still real-time capable but

with limited effectiveness. Global optimization approaches

[59, 27] even better deal with noise and outliers if they fur-

ther leverage semantic information [19, 6, 20, 44, 43], but

they are computationally expensive and not real-time capa-

ble. In [65, 31], the authors propose methods for refine-

ment of already fused SDF geometry based on shape-from-

shading. The vast majority of these approaches directly fuse

RGB-D images for which Zollhöfer et al. [66] provide a re-

cent survey. All these methods handle noisy measurements

by updating a wider band of voxels around the measured

depth leading to thickening artifacts on thin geometry.

Surfel-based Fusion Methods. Surfel-based methods ap-

proximate the surface with local point samples, which can

further encode additional local properties such as normal or

texture information. Multiple methods have been proposed,

e.g. MRSMap [50] uses an octree to store multi-resolution

surfel data. The point-based fusion methods [25, 29] com-

bine a surfel representation with probabilistic fusion dis-

cussed in the next paragraph. ElasticFusion [55] handles

real-time loop closures and corrects all surface estimates

online. Schöps et al. [47] proposed a depth fusion ap-

proach with real-time mesh construction. A disadvantage

of surfel-based methods is the missing connectivity infor-

mation among surfels. The unstructured neighborhood re-

lationships can only be established with a nearest neighbor

search or simplified with space partitioning data structures.

In our work, we decided to rely on volumetric representa-

tion, but extending our approach to unstructured settings is

an interesting avenue of future work.

Probabilistic Depth Map Fusion. To account for vary-

ing noise levels in the input depth maps and along differ-

ent line-of-sight directions, the fusion problem can also be

cast as probability density estimation [15] while typically

assuming a Gaussian noise model. Keller et al. [25] pro-

pose a point-based fusion approach which directly updates

a point cloud rather than a voxel grid. Lefloch et al. [29] ex-

tended this idea to anisotropic point-based fusion in order

to account for different noise levels when a surface is ob-

served from different incident angles. The mesh-based fu-

sion approach by Zienkiewicz et al. [64] allows for depth fu-

sion across various mesh resolutions for known fixed topol-

ogy. The probabilistic fusion method by Woodford and Vo-

giatzis [56] incorporates long range visibility constraints.

Similar ray-based visibility constraints were also used in

[52, 51], but these methods are not real-time capable due

to the complex optimization of ray potentials. Anisotropic

depth map fusion methods additionally keep track of fu-

sion covariances [57]. Similarly, PSDF Fusion [13] ex-

plicitly models directional dependent sensor noise. In con-

trast to our method, all these approaches assume particular

noise distributions, primarily Gaussians, which often do not

model the real sensor observations correctly.

Learning-based Reconstruction Approaches. Several

learning-based methods have been proposed to fuse, esti-

mate, or improve geometry. SurfaceNet [22] jointly es-

timates multi-view stereo depth maps and their volumet-

ric fusion, but is extremely memory demanding as each

camera view requires a full voxel grid. In [30], multi-

view consistency is learned upon classical TSDF fusion.

RayNet [39] models view dependencies along ray potentials

with a Markov random field which is jointly learned with

a view-invariant feature representation. 3DMV [10] com-
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t−1<latexit sha1_base64="aL7suyFvpgazcNHCS1B4QSQf8C8=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSKIYElE0GPRi8cK9kPaWDbbTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvmDjVjNdZLGPdCqjhUkS8jgIlbyWaUxVI3gyGNxO/+cS1EXF0j6OE+4r2IxEKRtFKD43H026GZ964Wyq7FXcKski8nJQhR61b+ur0YpYqHiGT1Ji25yboZ1SjYJKPi53U8ISyIe3ztqURVdz42fTgMTm2So+EsbYVIZmqvycyqowZqcB2KooDM+9NxP+8dorhlZ+JKEmRR2y2KEwlwZhMvic9oTlDObKEMi3srYQNqKYMbUZFG4I3//IiaZxXPLfi3V2Uq9d5HAU4hCM4AQ8uoQq3UIM6MFDwDK/w5mjnxXl3PmatS04+cwB/4Hz+APqEj9s=</latexit><latexit sha1_base64="aL7suyFvpgazcNHCS1B4QSQf8C8=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSKIYElE0GPRi8cK9kPaWDbbTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvmDjVjNdZLGPdCqjhUkS8jgIlbyWaUxVI3gyGNxO/+cS1EXF0j6OE+4r2IxEKRtFKD43H026GZ964Wyq7FXcKski8nJQhR61b+ur0YpYqHiGT1Ji25yboZ1SjYJKPi53U8ISyIe3ztqURVdz42fTgMTm2So+EsbYVIZmqvycyqowZqcB2KooDM+9NxP+8dorhlZ+JKEmRR2y2KEwlwZhMvic9oTlDObKEMi3srYQNqKYMbUZFG4I3//IiaZxXPLfi3V2Uq9d5HAU4hCM4AQ8uoQq3UIM6MFDwDK/w5mjnxXl3PmatS04+cwB/4Hz+APqEj9s=</latexit><latexit sha1_base64="aL7suyFvpgazcNHCS1B4QSQf8C8=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSKIYElE0GPRi8cK9kPaWDbbTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvmDjVjNdZLGPdCqjhUkS8jgIlbyWaUxVI3gyGNxO/+cS1EXF0j6OE+4r2IxEKRtFKD43H026GZ964Wyq7FXcKski8nJQhR61b+ur0YpYqHiGT1Ji25yboZ1SjYJKPi53U8ISyIe3ztqURVdz42fTgMTm2So+EsbYVIZmqvycyqowZqcB2KooDM+9NxP+8dorhlZ+JKEmRR2y2KEwlwZhMvic9oTlDObKEMi3srYQNqKYMbUZFG4I3//IiaZxXPLfi3V2Uq9d5HAU4hCM4AQ8uoQq3UIM6MFDwDK/w5mjnxXl3PmatS04+cwB/4Hz+APqEj9s=</latexit><latexit sha1_base64="aL7suyFvpgazcNHCS1B4QSQf8C8=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSKIYElE0GPRi8cK9kPaWDbbTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvmDjVjNdZLGPdCqjhUkS8jgIlbyWaUxVI3gyGNxO/+cS1EXF0j6OE+4r2IxEKRtFKD43H026GZ964Wyq7FXcKski8nJQhR61b+ur0YpYqHiGT1Ji25yboZ1SjYJKPi53U8ISyIe3ztqURVdz42fTgMTm2So+EsbYVIZmqvycyqowZqcB2KooDM+9NxP+8dorhlZ+JKEmRR2y2KEwlwZhMvic9oTlDObKEMi3srYQNqKYMbUZFG4I3//IiaZxXPLfi3V2Uq9d5HAU4hCM4AQ8uoQq3UIM6MFDwDK/w5mjnxXl3PmatS04+cwB/4Hz+APqEj9s=</latexit>

v∗t<latexit sha1_base64="g0ahDGW+0cj3TBcvAEVi+JBJThY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisYD+gjWWz3bRLN5uwOymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrtcZPF70Mp71yxa26c5BV4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/m507JmVX6JIy1LYVkrv6eyGhkzCQKbGdEcWiWvZn4n9dJMbzxM6GSFLlii0VhKgnGZPY76QvNGcqJJZRpYW8lbEg1ZWgTKtkQvOWXV0nzsuq5Ve/hqlK7zeMowgmcwjl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9Oh4+J</latexit><latexit sha1_base64="g0ahDGW+0cj3TBcvAEVi+JBJThY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisYD+gjWWz3bRLN5uwOymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrtcZPF70Mp71yxa26c5BV4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/m507JmVX6JIy1LYVkrv6eyGhkzCQKbGdEcWiWvZn4n9dJMbzxM6GSFLlii0VhKgnGZPY76QvNGcqJJZRpYW8lbEg1ZWgTKtkQvOWXV0nzsuq5Ve/hqlK7zeMowgmcwjl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9Oh4+J</latexit><latexit sha1_base64="g0ahDGW+0cj3TBcvAEVi+JBJThY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisYD+gjWWz3bRLN5uwOymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrtcZPF70Mp71yxa26c5BV4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/m507JmVX6JIy1LYVkrv6eyGhkzCQKbGdEcWiWvZn4n9dJMbzxM6GSFLlii0VhKgnGZPY76QvNGcqJJZRpYW8lbEg1ZWgTKtkQvOWXV0nzsuq5Ve/hqlK7zeMowgmcwjl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9Oh4+J</latexit><latexit sha1_base64="g0ahDGW+0cj3TBcvAEVi+JBJThY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisYD+gjWWz3bRLN5uwOymU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDfzW2OujYjVI04S7kd0oEQoGEUrtcZPF70Mp71yxa26c5BV4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/m507JmVX6JIy1LYVkrv6eyGhkzCQKbGdEcWiWvZn4n9dJMbzxM6GSFLlii0VhKgnGZPY76QvNGcqJJZRpYW8lbEg1ZWgTKtkQvOWXV0nzsuq5Ve/hqlK7zeMowgmcwjl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9Oh4+J</latexit>
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Figure 2: System overview for integrating depth maps into a global TSDF volume. A 2D Depth Routing Network

takes depth input and decides the update location for every ray within the TSDF volume. The network corrects for noise,

outliers and missing values and further estimates per-ray confidence values. Then, for each ray, we extract a depth and view-

dependent local voxel grid (light blue) which also includes neighboring rays. We sample S values along each ray, centered

around the surface. A Depth Fusion Network then takes the local grid of existing TSDF values, the depth and confidences to

predict adequate updates. The predicted TSDF values (red) are then written back into the global volume. Our method learns

a robust weighting of input depths and performs non-linear updates to better handle noise, outliers, and thin objects.

bines 2D view information with a pre-fused TSDF scene

to jointly optimize for shape and semantics. Riegler et

al. [40] fuse depth maps using standard TSDF and subse-

quently post-process the fused model with a neural network.

Moreover, hierarchical volumetric deep learning-based ap-

proaches [3, 7, 12] tackle the effects of noisy measurements,

outliers, and missing data. All these approaches operate on

a voxel grid with high memory demands and are not real-

time capable. Further, there are several works that learn to

predict 3D meshes based on input images [18, 17, 54].

Learned Scene Representations. Ladicky et al. [28] di-

rectly estimate an iso-surface from a point cloud via learned

local point features with a random forest. In addition, there

exist multiple proposals for methods that learn 3D recon-

struction in an implicit space [35, 38, 5, 36]. These meth-

ods show promising results, but they operate only on a unit

cube and are thus limited to single objects or small scenes

and they are neither suited for online reconstruction. Con-

trary to all these methods, our method is independent of the

scene’s size and can thus also operate on large-scale scenes.

Additionally, our method uses learning in an online process,

which allows to leverage already fused information for fus-

ing a new depth map. In [2, 60], the authors propose neural

models that learn a compact and optimizable 2.5D depth

representation for SLAM applications. DeepTAM [62] also

addresses SLAM, but the mapping part heavily relies on

hand-crafted photoconsistencies and corresponding weights

to form a traditional cost volume for depth estimation. None

of these methods address global model fusion.

3. Method

We first review the standard TSDF fusion approach to

provide context and to introduce notation before we present

our learned TSDF fusion method.

3.1. Review of Standard TSDF Fusion

Standard TSDF fusion integrates given depth maps

Dt=1,...,T ∈ RW×H from known viewpoints P t ∈ SE(3)

with camera intrinsics Kt into a discretized signed dis-

tance function V t ∈ R
X×Y×Z and weight function W t ∈

R
X×Y×Z defined over the entire scene. The fusion pro-

cess is incremental, i.e. each depth map is integrated after

one another for location x using the update equations intro-

duced by Curless and Levoy [9] as

V t(x) =
W t−1(x) · V t−1(x) + wt(x) · vt(x)

W t−1(x) + wt(x)
(1)

W t(x) = W t−1(x) + wt(x) , (2)

starting from zero-initialized volumes V 0 and W 0. The

signed distance update vt and its corresponding weight wt

integrate the depth measurements of the next depth map Dt

at time step t into the TSDF volume. These update functions

are traditionally truncated before and after the surface in

order to ensure efficient runtimes and robust reconstruction

of fine-structured surfaces given noisy depth measurements.

The choice of the truncation distance parameter typi-

cally requires cumbersome hand-tuning to adapt to a spe-

cific scene and depth sensor as well as accounting for run-

time. If the truncation distance is chosen too large, the re-

construction of thin structures becomes more difficult due to

larger thickening artifacts and the fusion process gets slower

since more voxels have to be updated for each ray. Contrary,

a small truncation distance results in time efficient updates

but cannot deal with larger noise in the depth measurements.

In this paper, we overcome this limitation by learning the

function vt automatically from data. Our system is based on

the same above mentioned update equations and our learned

functions have only little computational overhead compared

to traditional TSDF fusion. As such, our method facilitates

real-time depth map fusion and can be readily integrated

into existing reconstruction systems. In the following, we

describe our proposed method in more detail.

3.2. System Overview

Our method contains two network components: a depth

routing network and a depth fusion network. The pipeline



consists of the following four essential processing steps

which are also illustrated in Figure 2:

1. Depth Routing: The depth routing network takes a raw

depth map Dt and estimates a denoised and outlier-

corrected depth map D̂t, and further estimates a cor-

responding confidence map Ct. This network routes

the depth location for reading and writing TSDF values

along each viewing ray.

2. TSDF Extraction: Given the routed depth values D̂t,

we extract a local camera-aligned voxel grid with TSDF

data V
∗

t−1 and weight W ∗

t−1 via trilinear interpolation

from the corresponding global voxel grids V t−1, W t−1.

3. Depth Fusion: The depth fusion network takes

the results of the previous processing steps

(D̂t,Ct,W
∗

t−1,V
∗

t−1) and computes the local

TSDF update v∗t .

4. TSDF Update Integration: The predicted TSDF update

v∗t is transferred back into the global coordinate frame to

get vt which is then integrated into the global TSDF vol-

umes V t,W t using the TSDF updates in Eqs. (1), (2).

These processing steps are detailed in the next subsections.

3.3. Depth Routing

Using the depth routing network, we pre-process the

depth maps before passing them to the depth fusion net-

work with the main motivation of denoising and outlier

correction. Towards this end, the network predicts de-

noised depth maps and also per-pixel confidence maps

Ct=1,...,T ∈ RW×H . Figure 3 illustrates our network ar-

chitecture, which is using a fully-convolutional U-Net [41]

with a joint encoder and separate decoders for confidence

and depth prediction. Further, we do not use normaliza-

tion layers since it negatively influences the depth predic-

tion performance by adding a depth-dependent bias to the

result. The depth map and the confidence map are processed

by two separate decoders to which the output of the bottle-

neck layers serves as an input.

3.4. TSDF Extraction

Instead of processing each ray of a view t independently

as in standard TSDF fusion, we deliberately choose to com-

pute the TSDF updates based on the data of a larger neigh-

borhood in order to make a more informed decision about

the surface location. Further, the 2D input data also holds

valuable information about surface locations as often indi-

cated by depth discontinuities. We argue that the fusion net-

work can best benefit from both 2D and 3D data sources

when they are already in correspondence and therefore pro-

pose a view-aligned local neighborhood extraction. Then,

the 3D TSDF data and the 2D input data can be easily con-

catenated and fed into the network. Hence, for efficient real-

time updates of the global data V t−1, W t−1, we extract

a local, view-dependent TSDF volume and corresponding

weights V
∗

t−1,W
∗

t−1 ∈ RW×H×S . The first two volume

dimensions W,H correspond to the width and height of the

depth map whereas the third dimension S represents the lo-

cal depth-sampling dimension of the window sampled along

the ray. This number S closely relates to the truncation dis-

tance in standard TSDF fusion. For each ray independently,

the local windows are centered at their respective depth val-

ues D̂t and discretely sampled into a fixed number of S

values from the volume V t−1. We choose the step size of

the sampling according to the resolution of the scene and

use trilinear interpolation to mitigate sampling artifacts.

The input It to the subsequent depth fusion is then a

combination of all available local information, that is, cor-

rected depth map D̂t, confidence map Ct as well as the

extracted TSDF values V ∗

t−1 and TSDF weights W ∗

t−1

It =
[

D̂t Ct W
∗

t−1 V
∗

t−1

]

∈ RW×H×(2S+2) .

(3)

Before the subsequent update prediction step, we explicitly

filter gross outliers where Ct < Cthr and set their corre-

sponding feature values in It to zero.

3.5. Depth Fusion

Our depth fusion network takes the local 3D feature

volume It as input and predicts the local TSDF update

v∗t ∈ RW×H×S . The architecture is fully convolutional

in two dimensions and the channel dimension is along the

camera viewing direction. Our network is relatively com-

pact and thereby facilitates real-time computation.

Our depth fusion network operates in a two-stage ap-

proach, as shown in Figure 3. The first stage encodes lo-

cal and global information in the viewing frustum. We se-

quentially pass the input 3D feature volume through encod-

ing blocks of two consecutive convolutional layers with in-

terleaved batch normalization, non-linear activation using

leaky ReLUs, and a dropout layer. The output of every

block is concatenated with its input and passed through the

next block. With every block, the receptive field of the neu-

ral network increases. This sequential feature extraction re-

sults in a 100-dimensional feature vector for each ray in the

viewing frustum.

The second network part takes the feature volume and

predicts the TSDF updates along each ray. The number of

features is sequentially reduced by passing them through

convolutional blocks with two 1 × 1 convolutional layers

interleaved with leaky ReLUs, batch normalization, and

dropout layers. In the last block, we directly reduce from

40 features to 20 in the first layer and then to S TSDF val-

ues in the last convolutional layer, where we apply a tanh-

activation on the output mapping it to the range [−1, 1].
Note that predicted TSDF update values v∗

t can take any

value. The network can decide to not update the TSDF at

all, e.g., in case of an outlier. Conversely, it can reduce the

influence of existing TSDF values if they contained outliers.



Figure 3: Proposed network architecture. Our depth routing network consists of a U-Net (depth one) with two separate

decoders predicting a corrected depth map and a corresponding confidence map. The depth fusion network extracts in a series

of encoding blocks 100 features along each ray. These features are then used to predict the TSDF updates along the ray.

3.6. TSDF Update Integration

In order to compute the updated global TSDF volume

V t we transform the predicted local TSDF updates v∗t back

into the global coordinate frame vt. To this end, we apply

the inverse operation of the previous extraction step, that is,

we redistribute the values using the same trilinear interpo-

lation weights. In fact, we actually repurpose the update

weights wt for this task, where W t accumulates the splat-

ting weights for each voxel in the scene. Moreover, we also

use W t for post-filtering extreme outliers1.

3.7. Loss Function and Training Procedure

The two networks in our pipeline are trained in two steps.

First, we train the depth routing network and then use the

pre-trained routing output to train the fusion network.

Depth Routing Network. We train the depth prediction

head in a supervised manner by computing the L1 loss on

absolute depth values as well as on the depth map gradient,

as proposed in [14]. For training the confidence head, we

chose a self-supervised approach [26]. Therefore, the final

loss function has the form

L2D =
∑

i

ciL1(yi, ŷi) + ciL1(∇yi,∇ŷi)− λ log ci (4)

where yi, ŷi are the predicted and ground-truth depth val-

ues at pixel i respectively and ci ∈ Ct is the confidence

value. The hyperparameter λ is empirically set to 0.015.

Depth Fusion Network. Despite the pre-processing of

the routing network, the filtered depth map might still con-

tain noise and outliers which should be further handled by

the depth fusion network. Each global TSDF update step

should a) integrate new information about the true geom-

etry and b) not destroy valuable, previously fused surface

information. We train the fusion network in a supervised

manner by choosing random update steps at time t during

the fusion and penalize differences between the updated lo-

cal volume V
∗

t =
W

∗

t−1
·V

∗

t−1
+w∗

t
·v∗

t

W ∗

t−1
+w∗

t

∈RW×H×S and the

local ground-truth V̂
∗

∈ RW×H×S . Therefore, we define

1See supplementary material for further information.

the loss function over all rays i as

L3D =
∑

i

λ1L1(V
∗

ti, V̂
∗

i ) + λCDC(V
∗

ti, V̂
∗

i ) (5)

Here, L1 denotes the L1 loss over raw TSDF values and

DC denotes the cosine distance between the signs of the

TSDF values computed along each ray i. The goal of the

first term is to preserve fine surface detail (through means

of L1), while, the term DC ensures that the surface is lo-

cated at the zero-crossing of the signed distance field. The

weights λ1 = 1 and λC = 0.1 have been empirically found.

4. Experiments

In this section, we first present additional implementa-

tion details and our experimental setup. Next, we evalu-

ate and discuss the efficacy of our approach on both syn-

thetic and real-world data. We demonstrate that our ap-

proach outperforms traditional TSDF fusion and state-of-

the-art learning-based approaches in terms of reconstruction

accuracy with only little computational overhead.

4.1. Implementation Details

All networks were implemented in PyTorch and trained

on an NVIDIA TITAN Xp GPU. We trained both networks

using the RMSProp optimization algorithm with momen-

tum 0.9 and initial learning rate 1e−5 for the depth rout-

ing network and 1e−3 for the depth fusion network. The

dropout layers were set to a probability of 0.2. For all exper-

iments, we trained our neural networks in a sequential pro-

cess, where we first pre-trained the depth routing and then

the depth fusion network. A joint end-to-end refinement did

not lead to an improvement of the overall performance of

the system. To train the depth routing network, we use 10K

frames sampled from 100 ModelNet [61] or ShapeNet [4]

objects and perturb them with artificial speckle noise. The

data is packed into batches of size 4 and the gradient is

accumulated across 8 batches before updating the routing

network weights. Because of the incremental nature of the

TSDF update equation, we must train our depth fusion net-

work using a batch size of 1. However, each batch updates

a very large number of voxels in the volume over which the



loss is defined and, together with batch normalization, we

obtain robust convergence during training. Since our net-

work has only very few parameters, it is hard to overfit and

only little training data is required. In fact, we can train our

entire network (given a pre-trained depth routing network)

on only ten models from ModelNet [61] or ShapeNet [4]

with a total of 1000 depth maps and it already generalizes

robustly to other scenes. Furthermore, we can train the net-

work from scratch in only 20 epochs (each epoch passes

once over all 1000 frames). Unless otherwise specified, we

used S = 9 and Cthr = 0.9 across all experiments2. For all

experiments, we used a voxel size 0.008m, corresponding

to a grid resolution of 1283 for ShapeNet and ModelNet.

Runtime. A forward pass through the depth routing

network and the depth fusion network for one depth map

(W = 320, H = 240) takes 0.9 ms and 1.8 ms, respectively

while the full pipeline runs at 15 fps. These numbers can be

improved with a more efficient implementation, but already

meet real-time requirements.

4.2. Results

We evaluate our method on synthetic and real-world data

comparing to traditional TSDF fusion [9] as a baseline as

well as to the state-of-the-art PSDF fusion method pre-

sented by Dong et al. [13]. Moreover, we compare to state-

of-the-art learning-based 3D reconstruction methods Occu-

pancyNetworks [35] and DeepSDF [38].

Evaluation Metrics. For quantifying the performance of

our method, we compute the following four metrics by com-

paring the estimated TSDF against the ground-truth.

• MAD: The mean absolute distance is computed over all

TSDF voxels and measures the reconstruction perfor-

mance on fine surface details.

• MSE: The mean squared error loss is computed over

all TSDF voxels and measures the reconstruction perfor-

mance on large surface deviations.

• Accuracy: We compare the actual reconstruction accu-

racy on the occupancy grid. We extract the occupancy

grid in the ground-truth and the estimated TSDF by ex-

tracting all voxels with negative TSDF values.

• Intersection over Union (IoU): We compute the

intersection-over-union on the occupancy grid, which is

an alternative performance measure to the accuracy.

These metrics not only quantify how well our pipeline fuses

depth maps into a TSDF, but also how well it performs in

classifying the occupancy and reconstructing the geometry.

4.3. Synthetic Data

To evaluate our method’s performance in fusing noisy

synthetic data, we train and test it on the ModelNet [61] and

ShapeNet [4] datasets using rendered ground-truth depth

2See supplementary material for further evaluation.

Method
MSE MAD Acc. IoU

[e-05] [%] [0, 1]

DeepSDF [38] 464.0 0.0499 66.48 0.538

OccupancyNetworks [35] 56.8 0.0166 85.66 0.484

TSDF Fusion [9] 11.0 0.0078 88.06 0.659

TSDF Fusion + Routing 27.0 0.0084 87.48 0.650

Ours w/o Routing 5.9 0.0051 93.91 0.765

Ours 5.9 0.0050 94.77 0.785

Table 1: Quantitative Results on ShapeNet [4]. Our

method outperforms TSDF fusion and other learning-based

approaches in fusing noisy (σ = 0.005) depth-maps ren-

dered from ShapeNet objects. The benefit of the routing

network increases with higher noise levels (see Fig. 5).

DeepSDF [38] Occ.Net. [35] TSDF [9] Ours GT

Figure 4: Qualitative Results on ShapeNet [4]. Our

method is superior to all other methods in reconstruct-

ing fine details (see car wheels and spoiler) and produces

smoother surfaces (input noise level σ = 0.005).

maps that are perturbed with an artificial depth-dependent

multiplicative noise distribution. For both, ModelNet and

ShapeNet, we randomly sample our training and test data

from the official train-test split.

ShapeNet. The model trained on ShapeNet is then used to

evaluate the performance of our method in comparison with

other approaches. Therefore, we fuse noisy depth maps of

60 objects (10 per test class - plane, sofa, lamp, table, car,

chair) from the test set, which have not been seen during

training. For comparison, we use the provided pre-trained

model for point cloud completion in the case of Occupan-

cyNetworks. In the case of DeepSDF, we trained the model

from scratch using the code provided by the authors and

using ShapeNet as training data. The quantitative results

of this evaluation are shown in Table 1. Our method con-

sistently outperforms standard TSDF fusion as well as the

pure learning-based approaches OccupancyNetworks [35]

and DeepSDF [38] on all metrics. Our method significantly

improves the accuracy of the fused implicit mesh as well

as their IoU, MAD and MSE scores. The results also indi-

cate the potential of our routing network. However, the full

benefit of our routing network only becomes obvious when

looking at the real-world data experiments and Figure 5.
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Figure 5: Evaluation of different noise levels σ. The

left plot shows MAD for different noise levels σ ∈
{0.01, 0.03, 0.05}. Our routing network stabilizes both, our

method as well as standard TSDF fusion, for high noise lev-

els. On the right, we show corresponding qualitative results

on ModelNet test data for Standard TSDF and our method.

The figures show the denoising capability of our method,

where standard TSDF fusion completely fails.

Figure 4 illustrates the strengths of our method in deal-

ing with noise and in reconstructing thin structures. Flat

surfaces in the ground-truth appear smoother in our results

as compared to standard TSDF fusion. Furthermore, thin

structures are better reconstructed and contain less thicken-

ing artifacts. The thickening artifacts are also visible on

the car’s rims, where our method yields accurate results

and DeepSDF and OccupancyNetworks both fail. Both

DeepSDF and OccupancyNetworks tend to over-smooth

surface details less common in the training data, e.g., the

spoiler of the car or the details on the chair’s legs.

ModelNet. In order to test our method’s robustness against

noise we trained and evaluated on various noise levels σ ∈
{0.01, 0.03, 0.05} and compared it to standard TSDF fu-

sion. We also analyze the effect of the depth routing net-

work on the fusion result by omitting it in our pipeline and

by testing it in combination with standard TSDF fusion.

Figure 5 illustrates that our pipeline outperforms standard

TSDF fusion for all tested noise levels. It also shows that

our depth routing network stabilizes the fusion of data cor-

rupted with extreme noise levels. When used for data pre-

processing, our depth routing network also improves the re-

sults of standard TSDF fusion.

4.4. Real­World Data

We also evaluate on real-world datasets and compare

to other state-of-the-art fusion methods. Due to lack of

ground-truth data, we use the model trained on synthetic

ModelNet data using an artificial and empirically chosen

depth-dependent noise distribution with σ = 0.01. As

such, we also show that our method must not necessarily

be trained on real-world data but generalizes robustly to the

real domain from being trained on noisy synthetic data only.

3D Scene Data [63]. To quantify the improvement of

the reconstruction result, we evaluate our method compared

to standard TSDF fusion on scenes provided by Zhou et

al. [63]. Since there is no volumetric ground-truth avail-

Method Lounge Copyroom Stonewall Cactusgarden Burghers

TSDF 0.0095 0.0110 0.0117 0.0104 0.0126

Ours w/o routing 0.0055 0.0057 0.0047 0.0055 0.0071

Ours 0.0051 0.0051 0.0043 0.0052 0.0067

Table 2: Quantitative evaluation (MAD [mm]) of our

method on 3D Scene Data [63]. Our method is consis-

tently better than standard TSDF fusion on 3D Scene Data.

These experiment also shows the benefit of our routing net-

work when applied to real-world data.

able for these scenes, we fuse all frames of each scene using

standard TSDF fusion and denoised the meshes. Then, we

only fuse every 10th frame using standard TSDF fusion as

well as our method for evaluation.

Table 2 shows the quantitative reconstruction results

from fusing 5 scenes of the 3D scene dataset [63]. Our

method significantly outperforms standard TSDF fusion on

all scenes without being trained on real-world data.

We further show a qualitative comparison to standard

TSDF as well as PSDF fusion [13] on the Burghers of Calais

scene in Figure 8. The results illustrate that our method bet-

ter reconstructs fine geometric details (hands, fingers and

face) and produces smoother surfaces than standard TSDF

fusion and PSDF fusion [13]. For more qualitative exam-

ples on this dataset, we refer to the supplementary material.

Street Sign Dataset [53]. To evaluate the performance

of our method on thin structures, we also evaluate on

the street sign dataset, again without fine-tuning the net-

work. This dataset consists of 50 RGB frames and we

use the COLMAP SfM pipeline [45, 46] to compute cam-

era poses and depth maps. Qualitative results on this scene

for different state-of-the-art methods are shown in Figure 6.

Our method clearly outperforms TV-Flux [58] and standard

TSDF, while producing comparable results with ray poten-

tials [43]. The results also make the benefit of our routing

network apparent. With routing, our method reconstructs

with better completeness and less noise artifacts than with-

out. Note that both TV-Flux and ray potentials involve an

offline optimization with a smoothness prior to reduce noise

and complete missing data. This prevents real-time applica-

tion for these approaches, since ray potentials on this small

scene runs for many hours on a cluster.

RGB-D Dataset 7-Scenes [48]. For qualitatively evaluat-

ing our method on Kinect data, we fuse the 7-Scenes [48]

RGB-D dataset. For each scene, we have chosen the first

trajectory and fused it using our pipeline as well as stan-

dard TSDF fusion. In Figure 7, we show that our method

significantly reduces noise and mitigates the surface thick-

ening effect compared to standard TSDF fusion. Notably,

the chair leg and table edges are reconstructed with higher

fidelity than it is done by standard TSDF fusion. Moreover,

our method shows strong performance in denoising and re-

moving outliers from the scene.
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Figure 6: Qualitative results of our method on the Roadsign dataset [53]. Our method compares favorably to standard

TSDF fusion as well as TV-Flux [58] in reconstructing thin surfaces while showing comparable performance with ray po-

tentials [43]. Our method generalizes reasonably well since it was trained on ModelNet and never saw the noise and outlier

statistics of stereo depth maps nor the shape statistics of this scene and therefore has a less complete output. (Cthr = 0.5)

Standard TSDF [9] Ours w/o Routing Ours

Figure 7: Qualitative comparison on the heads scene of RGB-D Dataset 7-Scenes [48]. Our method significantly reduces

noise artifacts and thickening effects - especially on the thin geometry of the chair’s leg.

TSDF [9] PSDF [13] Ours

Figure 8: Qualitative comparison on the Burghers of

Calais scene [63]. Our method reconstructs hands and face

geometry with much higher degree of detail than standard

TSDF fusion and PSDF fusion.

5. Conclusion

We presented a novel real-time capable depth map fusion

method tackling the common limitations of standard TSDF

fusion [9]. Due to learned non-linear TSDF updates – rather

than hand-crafted linear updates – our method mitigates in-

consistent reconstruction results that occur at object edges

and thin structures. The proposed split of our network archi-

tecture into a 2D depth routing network and a 3D depth fu-

sion network allows to effectively handle noise and outliers

at different processing stages. Moreover, sensor-specific

noise distributions can be learned from small amounts of

training data. Our approach outperforms competing meth-

ods on both synthetic and real data experiments. Due to its

low computational requirements and compact architecture,

our method has the potential to replace standard TSDF fu-

sion in a variety of tasks and applications.
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