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Figure 1: A few RGB-based 3D face reconstruction results by our proposed ReDA framework.

Abstract

The key challenge for 3D face shape reconstruction is

to build the correct dense face correspondence between the

deformable mesh and the single input image. Given the ill-

posed nature, previous works heavily rely on prior knowl-

edge (such as 3DMM [2]) to reduce depth ambiguity. Al-

though impressive result has been made recently [42, 14, 8],

there is still a large room to improve the correspondence so

that projected face shape better aligns with the silhouette

of each face region (i.e, eye, mouth, nose, cheek, etc.) on

the image. To further reduce the ambiguities, we present

a novel framework called “Reinforced Differentiable At-

tributes” (“ReDA”) which is more general and effective

than previous Differentiable Rendering (“DR”). Specifi-

cally, we first extend from color to more broad attributes,

including the depth and the face parsing mask. Secondly,

unlike the previous Z-buffer rendering, we make the render-

ing to be more differentiable through a set of convolution

operations with multi-scale kernel sizes. In the meanwhile,

to make “ReDA” to be more successful for 3D face recon-

struction, we further introduce a new free-form deforma-

tion layer that sits on top of 3DMM to enjoy both the prior

knowledge and out-of-space modeling. Both techniques can

be easily integrated into existing 3D face reconstruction

pipeline. Extensive experiments on both RGB and RGB-D

datasets show that our approach outperforms prior arts.

1. Introduction

3D face shape reconstruction has been a hot research

topic in both computer vision and graphics literature. Huge

progress has been made in the past decade driven by a vast

variety of important applications, such as face recognition

[3, 24], face reenactment and visual dubbing [43, 33, 21],

avatar creation and animation [29, 17, 6] and etc. De-

spite the impressive progress, face reconstruction is still an

ill-posed problem for monocular images due to the depth

ambiguity [38] and the albedo illumination ambiguity[9].

Given the nature of insufficient constraint, methods in pre-

vious works heavily rely on prior knowledge, such as 3D

Morphable Model (3DMM) [2] or multi-linear tensor model

[48, 5] to get a reasonable shape. Nevertheless, the key re-

maining challenge is to build a better dense correspondence

between the input image and the deformable mesh.

The most popular way of reconstructing 3D face

shape from single image is to use “Analysis-by-Synthesis”

paradigm [2, 34, 43, 42, 41, 40, 46, 47] to minimize the vi-

sual difference between the input and the 2D synthesis of an

estimated 3D face through a simplified image formulation

model. A typical pixel-wise photo-metric loss is employed

for the optimization. After convergence, each pixel will be

assigned to a UV position of the template mesh. Hence,

“Analysis-by-Synthesis” can be considered as an implicit

way of building dense correspondence. Another typical

way is to learn explicit dense correspondence first by di-

rectly regressing the per-pixel UV position[15] (or equiva-

lent flow [51]), based upon which to fit the 3D face model

afterwards. To achieve this, however, one has to use 3DMM

fitting[52, 34] to get the ground-truth and then train the re-

gression model through supervised learning [51, 15]. In ei-

ther case, better correspondence means more accurate 3D

reconstruction.

However, there still exist three fundamental issues in all

the previous works. First, the capacity of the 3DMM sig-

nificantly limits the representation power to support diverse

geometry variations. Some works [15, 11] propose to di-

rectly learn dense correspondence through UV and claim
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they are model-free, but it’s arguable that their ground-truth

space is still limited by the capacity of 3DMM. Recently,

works like [4, 46, 40] attempt to represent the geometry

in a free-form manner, although inspiring results were ob-

tained, more discriminating constraint is still much desired

to build better correspondence. Second, the differentiable

rendering[42, 41, 46, 40] used in “Analysis-by-Synthesis”

paradigm is not truly “differentiable”. Most of the existing

works simply use Z-buffer rendering, which is not necessar-

ily differentiable especially when the triangles that encloses

each pixel are changing during the optimization. Lastly, the

expressiveness of a pre-trained texture model used to syn-

thesize the 2D image is another limiting factor. For exam-

ple, If the texture is over-smooth, it cannot provide any dis-

criminating constraint to drive the optimization and correct

the correspondence. In short, we are lacking of extra forces

(constraints) to drive the optimization out of the local mini-

mum and steer the gradient towards the right direction.

To circumvent these issues, we present a novel 3D face

reconstruction and fitting framework for monocular images.

Concretely, we generalize from color to more broad at-

tributes, including the depth and the face parsing mask, in

the context of differentiable rendering. We call them as

”differentiable attributes”, which are supposed to be more

effective for driving the correspondence learning thanks to

their discriminating constraints. Secondly, we borrow the

idea of the soft rasterization [26] and improve it to tailor for

more efficient differentiable attributes for 3D face recon-

struction. Specifically, we slice the mesh into a few pieces

along the Z direction, each of which is rasterized with tradi-

tional approach, we then use a few stacked 2D convolution

operations with various kernel sizes to aggregate along both

the spatial and across the slices to achieve a truly differ-

entiable render. At the end, we obtain a pyramid of ren-

dered image, and then per-pixel attribute discrepancy loss

can be employed between the rendered image and the cor-

responding ground-truth(color, mask label or depth) at each

scale of the pyramid. We therefore call the whole process

as “Reinforced Differentiable Attibutes (ReDA)”, which is

the key ingredient of our whole system. In addition, to re-

solve the limitation of 3DMM capacity and make “ReDA”

more successful, we further propose a new free-form defor-

mation layer that sits on top of 3DMM to ensure the mesh

geometry has enough space to fit any input image. Unlike

previous work [41], we optimize the residual per-vertex dis-

placement in parallel with the 3DMM base mesh (Fig. 2).

During training, we apply as-rigid-as-possible deformation

constraint between the base mesh and the mesh after adding

the residual. Both the free-form layer and ReDA can be eas-

ily used for fitting and learning-based 3D face reconstruc-

tion, and can be optimized jointly in an end-to-end manner.

Our contributions can be summarized as follows:

1. We introduce “ReDA”, a reinforced differentiable at-

tribute framework, for better face reconstruction and

accurate dense correspondence learning, which is

more general and effective than traditional differen-

tiable rendering.

2. We propose a free-form deformation layer with as-

rigid-as-possible constraint to further increase the ca-

pacity of 3DMM, which is encouraged to be used

jointly with ReDA.

3. Our end-to-end system supports both RGB and RGB-

D, single image based fitting and deep learning based

training. Extensive experiments indicate that our ap-

proach is both effective and efficient for 3D face re-

construction.

2. Related Works

2.1. 3D Face Reconstruction

There exist a large body of research in literature for 3D

face reconstruction [34, 12, 20, 45, 35, 8], which can be di-

vided into different groups depending on the input modality

(RGB or RGB-D), single view or multi-view, optimization-

based or learning based, different face models and different

constraints being used. Refer to the latest survey [53, 10] for

a full literature review. Recent years, there is a rich set of

deep learning based 3D reconstruction works that either tar-

get only for geometry [44, 19, 25, 18, 49, 37] or both geom-

etry and texture [42, 41, 14, 40, 46, 13] for monocular input.

Most of those existing works try to boost the reconstruc-

tion accuracy by adding more prior knowledge (i.e., through

a parametric face model) or adding more constraints, like

sparse landmark loss, perception loss and photo-metric loss

etc. Our work follows the line of adding more discriminat-

ing constraints to reduce the ambiguities. However, the key

difference is that we significantly improve the differentiable

rendering to leverage more attributes that beyond color. For

example, to our knowledge, we are the first to apply face

parsing for 3D reconstruction.

2.2. Differentiable Rendering

Inverse rendering is a long-standing research problem in

computer graphics recent works [30, 16, 31, 26] on generic

differentiable rendering have been receiving much attention

from the community. Specific to face reconstruction, dif-

ferentiable rendering is also now an indispensable compo-

nent in the-state-of-the-art deep learning systems, such as

[42, 41, 14, 46, 47, 13, 40]. However, the effectiveness

of differentiable rendering is largely constrained by the ex-

pressiveness of the underlying texture model. Motivated by

this, [13] proposes to learn a progressive GAN model to

learn the highly nonlinear texture representation as opposed

to use the traditional linear PCA model [2, 32]. However,

the training requires 10K high quality 3D face texture scans
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which are hard to acquire. Another limitation is, the previ-

ous differentiable render simply uses Z-buffer rasterization,

which is not truly differentiable. This is because, each pixel

will be only influenced by the three discrete vertices of its

enclosed triangle. The recent work “SoftRas” [26] is fully

differentiable and has shown impressive results on a few dif-

ferent 3D objects. However, it is not designed in particular

for face reconstruction. As a comparison, our “ReDA” im-

prove on top of “SoftRas” from three perspectives: (1) we

add more constraints into the rendering process. Instead of

just color, we also use face parsing masks [27, 23]. (2) We

use multi-scale convolution operations to perform the soft

aggregation across the mesh slices rather than triangles. (3)

Instead of interpolating pixel attributes through vertex at-

tributes, we interpolate through attributes on UV maps.

2.3. Semantic Face Segmentation

There exist a set of prior works [9, 36, 47, 11] that utilize

semantic face segmentation for robust 3D face reconstruc-

tions. However, the way they use the segmentation infor-

mation is different from ours. [36] proposed a real-time

facial segmentation method, based on which to mask out

the occluded facial regions before sending to the DDE [5]

tracking model. Likewise, [47] leverages a face segmenta-

tion model to exclude the occluded areas by glasses, hand

and hairs, so that they won’t contribute to the optimization

process. Similarly, [11] also uses segmentation informa-

tion to give heuristically defined weights to different facial

regions in their reconstruction loss function. However, no

work has ever directly leveraged the face parsing mask to

build the dense correspondence and to improve the recon-

struction especially considering the rapid progress made for

face parsing in recent works, such as [23].

2.4. Dense Face Correspondence

As discussed in introduction, a popular way of getting

explicit dense correspondence is by directly regressing the

per-pixel UV position [15] (or equivalent flow [51]). How-

ever, the per-pixel ground-truth UV was obtained through

3DMM fitting [52, 34], which certainly limits the expres-

siveness space due to the 3DMM capacity. Hence, any

dense correspondence regression model trained through

such supervised learning [51, 15] would be also limited,

which is a typical chicken-and-egg problem. We improve

the limit of capacity through adding a free-form deforma-

tion layer that can support out-of-space modeling, as well

as a ReDA module to achieve truly differentiable rendering.

3. Overview

Like the standard “Analysis-by-Synthesis” pipeline,

given an input image, our goal is to output the parameters

of 3D face model so that the 2D projection matches with

the input image. However, we optimize the pipeline by (1)

Δ௦
𝑆଴

+

FFD_ARAP

ReDARes
𝑆ᇱ

3DMM
𝛼𝛽 L1 Loss

𝒑௖௔௠𝒑௣௢௦
Opt

Attributes GT

ReDA

𝐴௚௧ெ (𝐼)

𝐴ூெ(𝐼)

Figure 2: Illustration of the 3D face fitting pipeline. Coef-

ficients are optimized by optimizer Opt. “FFD ARAP” de-

notes the free-form deformation loss described in Sec.5.2.

Other losses are omitted for simplicity.

replacing the differentiable rendering with our novel Re-

inforced Differnetiable Attribute (ReDA) (2) introducing a

free-form deformation layer to expand the modeling capac-

ity for better geometry representation. Fig.2 shows an ex-

ample of the optimization pipeline. Unless otherwise speci-

fied, when applicable, we also use the photo-metric loss and

2D landmark loss on the rendered color image. However,

our primary focus is to get better face shape through those

constraints, so optimizing a photo-realistic texture [13] is

out of the current scope.

4. ReDA:Reinforced Differentiable Attribute

To steer the mesh deformation towards the right shape

until the final correspondence is fully achieved, we need an

optimization framework. As introduced before (Sec.3), we

improve the “Analysis-by-Synthesis” through ReDA frame-

work. In the following, unless otherwise specified, we

use A to represent all the differentiable attribute, including

color, mask and depth, which are denoted as AC,AM,AD

respectively. Of-course, A could be augmented with more

attributes in the future.

4.1. Differentiable Attributes

We extend from color to more broad attributes when used

for differentiable rendering. In particular, we propose to

bring the face parsing mask into the differentiable proce-

dure and use it to drive the correspondence learning. For an

input image I , let us denote AM

I (I) as face parsing output

from “ReDA” and AM
gt (I) as its face parsing mask ground-

truth, which is obtained by either human annotation or a

well-trained face parsing model such as [23]. Let us also

denote MUV as the mask UV map for our mesh template,

defining the semantic label (i.e., eyebrow, upper lip etc see

3) of each geometry region. Similarly, when color is used as

the differentiable attribute, say AC, we need a correspond-

ing texture UV map CUV . Suppose we use cylindrical un-

warp function F to map a triangle vertex p into the corre-

sponding position in the UV map, namely UV(p) = F(p).

4960



…
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Figure 3: Illustration of our ReDA rasterizer and its comparison with “SoftRas”[26]

For any surface point Vs on the surface of shape S, its UV

coordinates can be computed through:

UV(Vs) = (u, v) =
∑

p∈t

λpF(p) (1)

where t = {pa, pb, pc} represents the three vertices of

the triangle that encloses point Vs and λp represents the

barycentric coordinates of vertex p. When AM is used, the

mask attribute value AM

S (p) for vertex Vs is computed via

bi-linear sampling:

A
M

S (Vs) =
∑

u
′

∈{⌊u⌋,⌈u⌉}

v
′

∈{⌊v⌋,⌈v⌉}

(1−|u−u′|)(1−|v−v′|)∗MUV(u′, v′)

(2)

Then to convert per-vertex attribute values on 3D shapes

to per-pixel attribute values on 2D images, we have to go

through rendering pipeline. Denote Pcam as the camera pro-

jection matrix and Ppos as the pose of the mesh in camera

coordinate system. Assume the closest surface point to the

image plane Vj(based on depth value) on the shape S maps

to pixel Ii on the 2D image I after rendering, then the cor-

responding mask value AM

I (Ii) can be computed through a

rendering function R:

A
M

I (Ii) = R(Ppos,Pcam, Vj ,A
M

S (Vj))) (3)

A similar process of equation 1, 2 and 3 can be applied

for other attributes such as AC for color if we replace MUV

with CUV in the UV space.

In all previous work, R is simply defined as the Z-buffer

rendering function, where each pixel Ii is only influenced

by the nearest triangle to the image plane that encloses Vj ,

which is however not truly differentiable.

4.2. Soft Rasterization via Convolution Kernel

To remedy the Z-buffer limitation, we need to differenti-

ate the discrete sampling (through an enclosed triangle) into

a continuous probabilistic procedure inspired by [26]. That

means, each pixel has to be influenced by all the vertices of

the mesh with a corresponding weighted probability. Intu-

itively, after projection, the closer the pixel to the projected

vertex, the higher probability the vertex is influenced. Be-

fore projection, the further the distance along the Z(depth)

direction, the less the weight it should be imposed to its

corresponding probability. To achieve this, one way is to

project each triangle t onto the image plane and rasterize all

the enclosed pixels to get an rendered image. In this way,

each triangle t can only be influenced by those enclosed pix-

els and their corresponding attribute (color, mask or depth)

values if the triangle is visible to the camera. To make it soft

we can then apply a convolution kernel to “blur” the ren-

dered image so that the attribute can be propagated outside

of the triangle. Let us denote A
j
t and Z

j
t as the attribute and

Z-value respectively for each enclosed pixel j within trian-

gle t, denote E(t) as the enclosed pixel set of t, so j ∈ E(t),
denote S as the whole triangle set. Then by following the

similar heuristic formulation in [26], we can aggregate soft

rendering results across all the triangles:

AI(I
i) =

∑

t∈S

∑

j∈E(t)

wi
jA

j
t (4)

where wi
j =

Di
j exp(Zj

t /γ)∑
k
Di

k
exp(Zk

t /γ)
and Di

k =

Sigmoid(‖i−k‖2)
σ )(k ∈

⋃
t=1 E(t)), both σ and γ are

set 1x10−4. Note that, each enclosed pixel attribute value

A
j
t of triangle t is first obtained via per triangle tradi-

tional rasterization. The soft rasterization is then simply
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implemented as the spatial Gaussian filtering operations

with varying kernel sizes to help propagate the attribute

values outside the triangle. In practice, it would be both

computational intensive and memory inefficient to perform

softening and aggregation on the per triangle basis, we

therefore approximate on the mesh slices, as show in Fig.3,

where we render all the triangle belong to the same depth

zone into the same image, then aggregate across different

slices. In our current experiments, we empirically slice the

mesh along the Z direction into 5 pieces. Mathematically,

Equation 4 can be easily implemented as a multi-channel

2D convolution operation, where the kernel size can be

varied for different scales of softening. The bigger the

kernel size, the broader impact each pixel would get from

all the vertices. In practice, we simply stack the same

convolution kernel a few times with stride 2 to get a

pyramid of rendered attribute image. Then a photo-metric

like loss can be applied at each scale of the pyramid be-

tween the rendered attribute image and the corresponding

ground-truth image (color, mask or depth).

LReDA =
∑

k

‖ Pyd(AI(I), k)−Pyd(Agt(I), k) ‖1 (5)

where Pyd is a function returning the k−th scale of the

softening version.

5. Free-form Deformation

5.1. Parametric Base Model

Even though parametric base model, like 3DMM [2,

10], has limited modeling capacity, it still provides decent

coarse-scale geometry. Compared with methods that learn

everything from videos [46, 41, 40, 14], such structure prior

would significantly reduce the burden of learning. Recently,

more complex technique such as [22] shows better mod-

eling capacity with more 3D scan data. Our method is

friendly to any of those previous proposed models. Without

loss of generality, assume we use the the following paramet-

ric face model to represent the basic face shape S0(α, β):

S0(α, β) = S̄ +
ms∑

ks=1

αks
Bs

ks
+

me∑

ke=1

βke
Be

ke
(6)

where, S̄ ∈ R3N is the average facial geometry. Matrix

[Bs
1, ..., B

s
ms ] and [Be

1, ..., B
e
me ] respectively represent the

shape and expression PCA basis learned from high quality

face scans [2]. The number of shape and expression basis

are represented by ms and me respectively. Given an face

image I , one has to figure out the coefficients [α1, ..., αms ]
and [β1, ..., βme ] to best explain the corresponding face

shape. Note that, the reflectance model is defined similarly.

5.2. Shape Correction via Free­form Deformation

Unlike previous work [41] that models the correction in

parameter space, we directly model the displacement in ver-

tex space. As indicated in Fig. 2, the network outputs a cor-

rective shape residual ∆S in parallel with the 3DMM pa-

rameters. We use S
′

to represent the final deformed mesh,

hence S
′

= S0 + ∆S . As we discussed before, we expect

S0 to model the coarse geometry which is roughly close to

the ground-truth shape, and expect ∆S to model whatever

deformation is needed to fill the gap between S0 and final

correct shape S
′

. As S0 and S
′

has natural per-vertex cor-

respondence, so we call the way going from S0 to S
′

as

free-form deformation.

As-rigid-as-possible Without proper regularization, it is

hard to prevent it from deforming to non-sensible shape.

Therefore, we impose as-rigid-as-possible (ARAP) con-

straint to further regularize the deformation. Let cell Cl

represent all the triangles centered at vertex pl, C
′

l repre-

sent its deformed version; if the deformation is rigid, then

there exist a rotation matrix Rl such that

p′l − p′m = Rl(pl − pm), ∀m ∈ N(l) (7)

for each edge emanating from vertex pl(p
′
l) to its neighbor

pm(p′m) in the cell, where N(l) denotes the set of vertex

indices connected to vertex pl. Therefore, in the context of

ARAP, we want to minimize to following loss function

L(Cl, C
′
l) =

∑

m∈N(l)

wlm ‖ (p′l−p′m)−Rl(pl−pm) ‖ (8)

when it comes to the whole mesh, the total rigidity can be

enhanced by summarizing over all the above loss for each

cell, namely

LARAP =

n∑

l

wl

∑

m∈N(l)

wlm ‖ (p′l−p′m)−Rl(pl−pm) ‖

(9)

where both wl and wlm are set according to prior work [39].

In addition to the above loss, we also add another smooth

term to penalize the rotation difference between two ad-

jacent cells. So our final free-form deformation layer has

to minimize following losses (purple rectangle denoted as

“FFD ARAP” in Fig. 2)

L(R,∆S) = LARAP + λ

n∑

l

∑

m∈N(l)

‖ Rl −Rm ‖2 (10)

Here, R is the set of all Rl, l ∈ [1, ..., n]. λ is set empirically

to 0.001 in all the current experiments. In our implementa-

tion, we initialize each Rl as identity matrix, then alternate
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between optimizing ∆S while fixing R and optimizing R
1 while fixing ∆S . At the end, our entire system can be

trained end-to-end by combining LDA and L(R,∆S) to-

gether with 2D landmark loss.

6. Experiments and Results

6.1. Datasets

MICC [1] dataset consists of 53 subjects. We use the

texture images from frontal pose scan for our fitting exper-

iments. Since the texture images have both left-side and

right-side views, we choose the left-side view images for all

our experiments. We also follow [13] to crop scans 95mm

radius around the tip of nose to better evaluate the recon-

struction of inner face.

BU-3DFE [50] dataset provides scans of 100 subjects

from diverse racial, age and gender groups. Each subject

has 25 scans with different expressions. For our experiment,

we use the scans and images from neutral faces. Similar to

our experiment setup in MICC dataset, the left-side view

texture images are used in our experiments.

6.2. Experiment Settings

To directly verify the effectiveness of our proposed

method, we conduct experiments with a fitting-based

method (Fig.2) Our proposed pipeline can also work for

learning-based methods and we would like to experiment

on learning in our future work.

Our fitting method adopts SGD optimization using

ADAM optimizer and is composed of four stages. In all our

experiments, similar to [13, 12], 2D landmark loss is used

by default. First, we run landmark detection which includes

the invisible line and face parsing on the input image to ex-

tract face landmarks and facial masks. Second, we apply

landmark loss to optimize rigid pose Ppose in Equation 4 so

that the pose of the template mesh is roughly aligned with

our input image. Then we apply our attribute loss (Equa-

tion 5) and landmark loss to jointly optimize rigid pose and

other model parameters. In the last stage, we exclude the

landmark loss if it falls within an empirical thresholds and

jointly optimize all the model parameters. In addition to the

optimization of model parameters, our free-form deforma-

tion is also in the last stage.

To measure the error between ground-truth and our pre-

dictions, we first perform iterative closest point (ICP) to au-

tomatically find the correspondence between meshes. We

then calculate point-to-plane errors which are measured in

millimeters. The results for MICC [1] are listed in Table 1

and the results for BU-3DFE [50] are listed in Table 2.

Figure 4: Two examples of showing the effectiveness of

free-form deformation. Left: Input images; Middle: Re-

sults with free-form; Right: Results without free-from.

Input color + mask + ReDA w/o mask w/o ReDA

Figure 5: Visual ablation study of our system. As we can

see, with the help of both mask and ReDA, the geometries

look closer to the input identities.

6.3. Effectiveness of Differentiable Attributes

Similar to works [40, 13, 46] that apply photometric loss

by enforcing the color consistency between images and the

projected color from 3D shapes. We approximate our 3D

shape color by utilizing a PCA texture model trained from

112 scans with lighting approximated by Spherical Har-

monics Illumination. For mask attribute image, we first run

face parsing model [23] on images to get the ground-truth

face parsing masks. To enable facial parsing from 3D shape,

we paint UV map as shown in Fig.3 in which each facial

region (e.g., eyes, nose, ears and etc.) is painted with dis-

crete color that corresponds to our ground-truth facial mask

labels. Since both color and mask attributes have exact cor-

respondence in UV space, we can directly render those at-

tributes as images.

For images with depth information, we by default in-

clude the depth attribute in our experiments. To add depth

attribute in our pipeline, we render the depth image for

both ground-truth mesh and predicted mesh. The rendered

depth image can be consumed in the same way as other at-

tribute images by our pipeline in which we compute the loss

between our predicted depth image with the ground-truth

depth image.

We observe consistent improvements as we combine

more attributes in our optimization pipeline. As the results

in Table 1 and Table 2 show, by jointly optimize color and

1Refer to [39] for detailed derivation of optimizing rotation matrix R
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mask attributes, we can achieve 5.1% and 16.1% relative

improvement on MICC dataset comparing to optimize color

attribute and mask attribute alone and 13.9% and 18.4% on

BU-3DFE dataset with the same setting. With additional

depth attribute, we can further improve our fitting error

by 52.6%, 47.4% and 52.5% comparing to color attribute

alone, mask attribute alone color+mask attributes settings

respectively. Fig.5 shows the effectiveness of our proposed

differentiable attributes in ReDA.

6.4. Effectiveness of ReDA Rasterization

As we have discussed in 4.2, our proposed ReDA Raster-

ization turns discrete sampling into a continuous probabilis-

tic procedure that a change of one pixel can influence every

vertex in a mesh. Our ablation study on MICC dataset Table

1 compares our ReDA Rasterization to traditional Z-buffer

Rasterization. Our results shows that such a procedure can

effectively reduce our numerical reconstruction error. We

observe consistent improvement in reconstruction error on

various of attributes constraints comparing to Z-buffer ras-

terization. ReDA Rasterization reduces our fitting error on

MICC by 14.3%, 26.6% and 23.3% with color, mask and

color + mask settings respectively relative to our Z-buffer

rasterization baseline. Fig.5 also shows the effectiveness by

a side-by-side comparison between the ReDA (second col-

umn) and the default Z-buffer rasterization (fourth column).

One factor that affects the effectiveness of our ReDA

Rasterization is the number of pyramid levels. Our ablation

study Table 3 shows that pyramid level of 6 gives the best

results. We choose pyramid level of 6 in all our experiments

with ReDA Rasterization.

Error(mm) Attributes
ReDA Rasterization

Mean SD Color Mask

1.321 0.364 X

1.494 0.362 X

1.253 0.284 X X

1.131 0.234 X X

1.097 0.160 X X

0.962 0.146 X X X

Table 1: Ablation Studies on MICC Dataset. Z-buffer ras-

terization is used if ReDA Rasterization is not specified.

6.5. Effectiveness of Free­form Deformation

To better leverage our image attributes, we propose using

ARAP free-form deformation 5.2 to ensure that our fitting

results are not limited by the capacity of face model. On the

top of color, mask and depth attributes we add free-form de-

formation in the last stage of our fitting and obtained 11.7%
relative improvement on BU-3DFE dataset. Fig.4 shows

two examples of fitting results between with and without

Error(mm) Attributes
Free-form

Mean SD Color Mask Depth

1.546 0.384 X

1.632 0.396 X

1.331 0.346 X X

0.793 0.324 X X

0.858 0.331 X X

0.731 0.291 X X X

0.645 0.162 X X X X

Table 2: Ablation Studies on BU-3DFE Dataset. We

by default use ReDA Rasterization. We assume depth

groundtruth is given when we use depth attribute

Errors(mm)
Pyramid Level(s)

1 2 3 4 6

Mean 2.059 1.940 1.669 1.357 1.331

SD 0.461 0.388 0.374 0.360 0.346

Table 3: We experiment the affect of pyramid level in our

ReDA Rasterization on BU-3DFE dataset with both color

and mask attributes. Our result shows that more levels of

pyramid can help with our fitting results.

free-form deformation. As we can see, adding the free-form

help add more geometry details on the important face re-

gions to better convey the input identity, such as the details

around the cheek and mouth.

6.6. Compare with other Methods

Quantitatively, due to the slight difference in experi-

mental setup, it is hard to do fair comparisons with other

state-of-the-arts. Nevertheless, we still compare their fit-

ting errors as a reference. On MICC dataset, GANFit [13]

reports historically low fitting error (with mean: 0.94mm,

SD:0.106mm) by using a high quality texture (GAN) model

trained on a large scale 3D scans. Although the input im-

ages are different, our method achieves comparable mean

point-to-plane error of 0.962mm with a SD of 0.146mm.

On BU-3DFE dataset, we compare with FML [40] which

is a learning based method taking multiple RGB images as

input. We achieves better result of 1.331mm mean point-to-

plane error with SD of 0.346mm comparing to their error of

1.78mm with SD of 0.45mm.

Qualitatively, we compare with FML [40] on Vox-

Celeb2 [7] and RingNet [37] on CelebA [28]. We show

side-by-side comparisons in Fig. 6 and Fig. 7, as can be

seen, in many cases, our results fits much closer to their in-

put identities.
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Figure 6: Results comparing with RingNet [37]. We use 0.7 alpha blending to show the alignment quality.

Figure 7: Results comparing with FML [40]. We use 0.7 alpha blending to show the alignment quality.

7. Conclusion and Future works

We present a novel framework that integrates multiple

differentiable attributes including color, mask and depth

into the rasterization and demonstrate their effectiveness for

3D face reconstruction. To fully utilize different image at-

tributes, we propose ReDA rasterization which improves

over the traditional Z-buffer render significantly. Lastly, to

extend the fitting beyond the capacity of 3D face model, we

show that applying free-form deformation could further im-

prove the fitting results. Although our current framework is

fitting-based, it can be easily adopt in a learning-based 3D

face reconstruction pipeline. Lastly, finding other more dif-

ferentiable attributes to be used in ReDA is also desirable.

We leave all those as our future work.
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Theobalt. Self-supervised multi-level face model learning

for monocular reconstruction at over 250 hz. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 1, 2, 5

[42] Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo
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