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Abstract

We present a novel method for generating panoramic

street-view images which are geometrically consistent with

a given satellite image. Different from existing approaches

that completely rely on a deep learning architecture to gen-

eralize cross-view image distributions, our approach explic-

itly loops in the geometric configuration of the ground ob-

jects based on the satellite views, such that the produced

ground view synthesis preserves the geometric shape and

the semantics of the scene. In particular, we propose a

neural network with a geo-transformation layer that turns

predicted ground-height values from the satellite view to a

ground view while retaining the physical satellite-to-ground

relation. Our results show that the synthesized image re-

tains well-articulated and authentic geometric shapes, as

well as texture richness of the street-view in various scenar-

ios. Both qualitative and quantitative results demonstrate

that our method compares favorably to other state-of-the-

art approaches that lack geometric consistency.

1. Introduction

Due to the increasing availability of satellite images (e.g.

Google Earth) it is nowadays possible to cover almost ev-

ery single corner of the world, yet such a capacity for

ground-view images does not exist. Being able to gener-

ate a consistent ground view from a given satellite image

is extremely useful for applications such as wide-area vir-

tual model generation, media content enrichment, 3D real-

istic gaming, simulations and cross-view matching. This

problem is known as a satellite-to-ground cross-view syn-

thesis. In this work, we address this problem by proposing

a geometry-aware framework that preserves the geometric

and the relative geographical locations of the ground ob-

jects by fully utilizing information extracted from a satellite

image. Our goal is to represent the ground-view as geomet-

rically realistic as possible.

This raises several unique and difficult challenges: first
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Figure 1: Two examples of our satellite-to-ground imag-

ing synthesis. Given a single satellite image patch, we learn

to predict a corresponding street-view RGB panorama in an

end-to-end fashion by leveraging geometric information.

of all, the view differences are drastic such that the informa-

tion extracted from one view usable for inferring the other

is highly limited. For instance, we may only observe the

rooftop of a building in the satellite view with very little

or no information about the facades. Secondly, the reso-

lution of the inferable information from the satellite view

is too coarse as compared to the ground images (normally

the common regions might just be the ground), thus di-

rectly using partial information from the satellite view to

generate ground views are difficult. Thirdly, the ground-

view images generally exhibit much more local details than

satellite views. As for example in an urban scenario, there

exist many dynamic objects such as pedestrians and vehi-

cles. Also, places with visibly similar street patterns in the

satellite view might look completely different in the ground

view, which can present a one-to-many mapping leading to

the lack of diversity when the synthesized ground-view im-

age is conditioned to the satellite views. Finally, due to the

limited accuracy and availability of the GPS (Global Posi-

tioning System) information of images, the alignment be-

tween the satellite and ground-view is often insufficient to

serve as training data for learning-based methods.

Recently there are several works trying to solve simi-



lar problems. Zhai et al. [23] proposed a deep learning

method to generate plausible ground-level panoramas from

aerial images. Features are learned and extracted from the

aerial image and the transformation to the ground level was

formed through learning a per-pixel transformation, which

is further used to generate RGB images through a genera-

tive model. Regmi et al. [15] proposed to learn the semantic

segmentation together with RGB images within a uniform

conditional generative adversarial network (GAN) architec-

ture. Because there is no geometric transformation encoded

in the network, the synthesized image may be quite different

from the real one in geometry although it may look reason-

able. So they further improved their method in [16] and use

geometric constraints to add some details of roads in the

generated image. However, only a simple homography for

the overlapping road transformation was considered in this

approach and the generation of other objects completely re-

lied on learned transformations which leads to scenes with

a large amount of hallucinated content.

In virtue of the widely available satellite images, we pro-

pose to address this problem by using the learned height and

semantic representations from such a dataset to form a pro-

jective transformation between satellite and ground. This

allows to fully utilize the geometric information represented

in the satellite view for reality-based cross-view synthesis.

We utilize this as a novel cross-view image transformation

module to transform both semantic and color information

from a satellite image to the street view. This is followed

by a per-pixel generative model for generating plausible

ground-view RGB images using information from the trans-

formation module. As the transformation represents the ac-

tual projective relationship cross the two different views,

our generated ground-view image is more geometrically

meaningful, thus yielding more realistic panoramic image

textures. Our experiments show that our method outper-

forms state-of-the-art methods.

Our contributions are as follows. Firstly, we propose

an end-to-end network structure ensemble that exploits the

geometric constraints of the street-view image generation

from a satellite image. Secondly, we present a novel cross-

view image transformation module that carries geometric

information inferred from the satellite view as constraints

for ground-view generation. Thirdly, we utilize a novel

weighted mask to alleviate small misalignment between the

satellite-derived depth image and the geo-tagged google

panoramic image. Lastly, to the authors’ best knowledge,

our work is the first cross-view synthesis work that pre-

serves the authentic geometric shape of the ground objects.

2. Related Work

Aerial-Ground Co-location. Aerial-ground co-location is

a relevant topic that considers image-level matching cross

different views. It is natural that under the cross-view con-

dition, the most reasonable features to be utilized would

be semantic information. Castaldo et al. [2] proposed to

take advantage of available semantic information from GIS

maps for matching ground-view images based on the ex-

tracted semantic information, and feature descriptors ex-

tracted in their common regions (e.g. road intersections)

are then matched. Considering that the manually crafted

descriptors might not be robust enough, Lin et al. [9] pro-

posed to use the deep convolution neural networks to learn

feature descriptors from both views, where separate net-

works respectively for ground and aerial views are trained

and simple KNN (k-nearest neighborhood) were applied

for potential matches, which was shown to be effective to

match local ground-view images over a large aerial image

database. Similar ideas were proposed by Hu et al. [5] us-

ing a learning-based method for localizing panoramic im-

ages on larges-scale satellite images, where a two-section

Siamese network, namely local feature and global descrip-

tor network were proposed to yield reliable features for

matching. Other similar works can be found in [21, 22, 20].

Essentially, these works invariably learn the geometric pat-

terns in the overlapping region, for example, road patterns

and junctions. More recently, other approaches such as con-

ditional GANs have been utilized to synthesize views for

cross-view matching. For example, in the work of [17], an

aerial view was synthesized given a ground-view panorama.

This synthesized aerial view was then combined with a

ground-view panorama in order to learn feature represen-

tations for matching aerial images.

View Transformations. One of the core components in

cross-view synthesis and matching is the transformation be-

tween different views. Often geometric information is not

available and thus learned transformation was presented as

an alternative. A few works directly learn such association

by taking input of aerial images and outputting both ground-

view RGB and semantic images [16, 5], while such methods

might only be able to handle scenes with a fixed or similar

layout. Instead of embedding the transformation in the fea-

ture extraction network, Zhai et al. [23] explicitly proposed

a module that learned independent transformation between

semantic layout between aerial and ground images, thus the

transformation between scene labels can be performed in a

non-linear fashion. This method works well with landscape

scene layout and while is incapable of handling geometric

transformation in complex urban scenes, where occlusions

and non-planar projective transformation exist.

Cross-view Synthesis. To synthesize views from a com-

pletely different scene, although an intuitive idea is to per-

form image composition through paired image databases,

the most recent works are primarily based on generative

networks, and more specifically, generative adversarial net-

works [3] (GANs) are among the most popular. Regmi et

al. [15] generated aerial or ground view images conditioned
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Figure 2: Overview of our network architecture. Our network operates in three different stages accounting for different

image domains. A differentiable geo-transformation stage transforms between the satellite image domain and the street-

view image domain. Satellite Stage: A U-Net [18] computes for a given satellite image a depth image and corresponding

semantic image. Geo-transformation Stage: The geo-transformation layer takes the depth and semantic satellite images

and transforms them into corresponding depth and semantic panoramic images. Street-view Stage: A second U-Net refines

the semantic panorama. Finally, a BicycleGAN [28] is used to generate photo-realistic images from the semantic panorama.

Rather than using a random seed for the texture generation, we added a separate texture encoder that computes a latent vector

from the input satellite image. Symbols in this figure are different types of losses explained in Sec. 3.4.2.

to the other views. This can be performed as image-to-

image translation [6] once information from the cross-view

such as the scene layout can be estimated [23]. GANs learn

a data distribution and when given a perturbed input, they

generate data samples following that distribution. Since the

ground scene layout predicted from a satellite view through

a learning-based transformation can be quite similar, the di-

versity of generated images can be a challenge.

3. Method

In this section, we introduce our framework for realistic

street-view image synthesis from a satellite image which is

shown in Fig. 2. Our key idea is to transform the satellite

information to the street-view in a geometrically meaning-

ful way for better street-view synthesis. To this end, we use

a cascaded architecture with three stages: a satellite stage, a

geo-transformation stage, and a street-view stage. The first

stage estimates both depth and semantic images from an in-

put satellite image. The second stage transforms the satel-

lite depth and semantic images to street-view via a novel

geo-transformation layer. In the last stage, the transformed

images are utilized to generate the final street-view images.

All three stages are detailed in the following subsections.

3.1. Satellite Stage

This stage follow the assumption that a rough depth im-

age can be obtained from a single image via a convolutional

neural network, which has been well investigated in the field

of single image depth estimation [8]. We can further ex-

ploit the approximately orthogonal projection type of satel-

lite images and that many faces in urban areas are perpen-

dicular to the ground [12]. In addition, semantic labels are

also easily obtained [18]. Motivated by previous work [12],

we take a U-Net architecture [18] as shown in Fig. 2. In
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Figure 3: Illustration of the proposed differential geo-

transformation T . The satellite depth and semantic labels

are transformed into a semantic height map, which is then

projected into the panoramic image to obtain depth and se-

mantic labels in the street-view domain.

contrast to the network in [12], we utilize a weight-shared

decoder to learn both the depth and semantic for the satellite

image. In our network, both the encoder and decoder have

eight layers, while there are two branches for the last two

layers of the decoder, which output the predicted satellite

depth image and semantic image, respectively.

3.2. Geo­transformation Stage

To synthesize a cross-view image, we transform the

depth and semantic information from the satellite view to

the street-view in a differentiable way such that the whole

pipeline can be trained end-to-end. To achieve this goal,

we propose the following differentiable geo-transformation

workflow as shown in Fig. 3. Given an n×n square satellite

depth image patch D and a corresponding color image patch

C, we perform three steps to obtain a street-view panorama.

Height map generation. First, we transform the satellite

depth image into a ground-based height map using ortho-

graphic projection.



Occupancy grid generation. Second, this height map is

discretized into an n×n×n occupancy grid G by checking for

each voxel if it is above or below the corresponding height

value. The grid is centered around the street-view location

and besides the height value, we also store corresponding

RGB values from C in the voxel grid G (see Fig. 3).

Panoramic projection. Third, a street view panorama is

generated by considering panoramic rays starting from the

central voxel of G and directed to different viewing angles

(θ, φ) which are transformed into a 3D directional vector:

(vx, vy, vz) = (cos θ sinφ,− cos θ cosφ, sin θ). (1)

Then, to generate a k×2k-sized street-view panorama, we

evenly sample 2k longitude angles ranging in θ ∈ [0, 2π]
and k latitude angles ranging in φ ∈ [0, π], which results in

k×2k panoramic rays shooting into 3D space. We use the

panoramic rays to generate a street-view depth panorama.

The depth for each pixel in the panorama is determined by

the distance between the ray origin and the first encounter-

ing voxel (FEV) in the occupancy grid G along the ray. We

sample n 3D points along each ray in equal distances ac-

cording to the voxel size and then compute the depth by

searching the first non-zero voxel value in the occupancy

grid G along the ray.

The street-view color panorama can be generated in the

same way. Fig. 3 illustrates the processing pipeline of our

geo-transformation procedure. We used n = 256 and k =
256 in our experiments. Both the 2D to 3D as well as the

3D to 2D transformation procedure is differentiable.

3.3. Street­view Stage

In the street-view stage, we first adopt a U-Net [18]

to generate refined semantic labels from the transformed

panoramas, and then use a BicycleGAN [28] to translate the

semantic labels into an RGB image. As depicted in Fig. 2,

the input of the refinement network consists of transformed

depth, semantics, and a resized satellite image, which are

concatenated together. Then, we concatenate the refined

street-view semantics and transformed depth together and

feed them into BicycleGAN as the input. The reason why

we use BicycleGAN instead of the conventional cGAN [11]

is that the translation between semantics and RGB images in

our setting is kind of a multi-modal image-to-image trans-

lation, as two street views which look very different may

have similar semantics as long as their structures (e.g. the

shape of skyline, the location of sidewalk, etc.) are similar.

The generative modeling setting of cGAN cannot address

this kind of ambiguity during training. In BicycleGAN, a

low-dimensional latent vector is introduced in order to dis-

till the ambiguity. Its generator learns to map the given

input, combined with this latent code, to the output. The

encoded latent vector is injected by spatial replication and

concatenated into every intermediate layer in the encoder.

With the latent code, the network is able to produce more

diverse results. Nevertheless, the latent vector in the Bi-

cycleGAN is originally randomly sampled from a learned

distribution during the inference phase. Rather than gener-

ating multiple street views our goal is to generate one that

is as realistic as possible. Thus, as shown in Fig. 2, we in-

troduce an external encoder which generates such a latent

vector from the original satellite image. More details of the

sub-networks can be found in the supplementary material.

3.4. Implementation Details

3.4.1 Dataset

For the satellite image, we select a 5km×5km area centered

in the city of London as the region of interest. The ground

truth depth and semantic satellite images are generated

from stereo matching [4, 14, 13] and supervised classifica-

tion [24] with post corrections, respectively. For the street-

view images, we download all available google street-view

images in this region via the Google API1, which results in

almost 30K street-view panoramas in total. Each of these

panoramas includes location information (longitude, lati-

tude, orientation). However, this GPS information contain

certain positional errors, meaning that directly aligning the

satellite image using the GPS information of the street-view

images typically results in misalignment. In order to miti-

gate misalignments, we propose a pre-processing strategy

to pick out those well-aligned image pairs by calculating

their overlap ratios as follows. Firstly, the semantic seg-

mentation result of a real street-view image is obtained by

applying SegNet [1]. Subsequently, the sky pixels in this

semantic image are compared with those in the street-view

semantic image transformed from the corresponding satel-

lite depth image to calculate their overlapping ratio. The

image pairs with an overlapping ratio greater than 90% are

kept as a well-aligned training dataset. In this way, we ob-

tained approximately 2K well-aligned satellite-street-view

image pairs. Fig. 4 shows examples of our training dataset.

3.4.2 Loss Function

The overall loss function of our full pipeline is defined as

L = Lsat + Lstr, representing the losses of satellite stage

and street-view stages respectively. The satellite loss con-

sists of two terms, Lsat = Ld
sat + Ls

sat, representing the

L1 losses for the satellite depth image and semantics re-

spectively. The street-view loss is composed of four terms

Lstr = Ls
str+LGAN+Lenc+Lr

sat, representing a weighted

L1 loss for the street-view semantics, the BicycleGAN loss

(consisting of the L1 losses for the generator and the la-

tent vector encoder, and log-losses for the 2 discrimina-

tors), an L1 loss for the external encoder and an L1 loss for

1https://developers.google.com/maps/documentation/streetview/intro



(a) aligned satellite-streetview image pairs

(b) samples of training dataset

(c) samples of misaligned training samples

Figure 4: Examples of our training datasets. For (a), from

left to right are the satellite image and the corresponding

street-view image. For (b), from left to right are the satellite

image, satellite depth, satellite semantic, transformed street-

view depth, transformed street-view semantic, true street-

view semantic, and true street-view RGB, respectively. For

(c), from left to right are the transformed street-view seman-

tic, true street-view semantic, and the misaligned mask.

the predicted satellite RGB produced by the inverted geo-

transformation, respectively.

The reason why we adopt a weighted L1 loss for the

street-view semantics is to deal with the misalignment be-

tween the satellite image and street-view image (as intro-

duced in Sec. 3.4.1). The weighted L1 loss is defined as

LW
1

= L1(W ∗ ||I − IGT||), where W is a weight matrix

which controls the weight for each pixel and the sign ∗ rep-

resents the element-wise multiplication. The weight matrix

is designed to give less weight to misaligned pixels. As

Fig. 4 (c) shows, misaligned pixels usually occur along the

boundaries between sky and buildings, where the sky pixels

may be incorrectly labeled as building and vice versa. We

reduce the loss for these mislabeled pixels to 10% of the

loss of the remaining pixels.

The loss of the inverted geo-transformation Lr
sat is de-

signed to make the road pixels in the predicted street-view

image as similar as possible to the road pixels in the in-

put satellite image. Given the transformed street-view depth

panorama Idprj , the transformed street-view RGB panorama

Irpred, and the corresponding satellite RGB image Irsat, the

loss Lr
sat is computed in the following four steps. Firstly,

the panoramic ray for each pixel on Idprj is calculated as in

Eq. (1). Then, a 3D point (x, y, z) for each pixel (i, j) in

Idprj can be calculated as:

x = vx(i, j) · I
d
prj(i, j) + xc,

y = vy(i, j) · I
d
prj(i, j) + yc,

z = vz(i, j) · I
d
prj(i, j),

(2)

where
(

vx(i, j), vy(i, j), vz(i, j)
)

is the normalized

Panorama RGB & Depth

3D Point Cloud

Predicted Satellite RGB

GT Satellite RGB

𝐿"#$
%

Figure 5: Visualization of the inverse geo-transformation

T−1. We consider only the pixels within a 5m radius around

the location (marked by the red circle) for the Lr
sat loss.

panoramic ray for pixel (i, j), (xc, yc) = (wg

2
, hg

2
) is the

(x, y) coordinate of the central pixel in the satellite image

image, which is (64,64) for constant since the size (w, h)
for the satellite image is (256,256) and the ground sampling

distance g is 0.5. After that, the RGB values of the 3D

points are picked from the predicted street-view image and

saved into an RGB image with the same size as Irsat, which

forms the inverted transformed satellite image. Finally,

considering that only the road pixels can be observed

in both satellite and street-view images, the L1 loss is

calculated just for pixels within a 5m (10 pixels) range to

the center of the inverted transformed satellite image with

Irsat. Fig. 5 gives a brief demonstration on the workflow of

the inverted geo-transformation loss.

3.4.3 Training Scheme

Due to the cascaded architecture and the location misalign-

ment problem, we first pre-train each stage of our pipeline

independently, and then fine-tune our network in an end-to-

end manner. We train our model on a computer with In-

tel CPU i7, 16GB RAM and an Nvidia GeForce GTX1080

GPU. The full pipeline is implemented with PyTorch. For

all network trainings, we used Adam [7] as the optimizer

with an initial learning rate of 2×10−3, β1 = 0.5. The

learning rate is decreased by half every 100 epochs.

For the network of the satellite stage, we crop a 256×
256 patch for each of the 30K panoramas by converting the

longitude and latitude of the panorama on to the satellite

images and choose 10K among them to train the satellite

image to depth and semantic label network. Some training

samples for this stage can be found in the first three columns

of Fig. 4 (b). This network was trained for 200 epochs.

For the transformed semantics refinement network in

the street-view stage, we utilize the 2K aligned satellite-

streetview image pairs for training. The ground truth se-

mantic label of the street-view image is obtained by apply-

ing SegNet [1] directly on our street-view images, which re-

sults in a semantic image with dozens of labels. We further

merged some of these labels to form a clean semantic image

with only 4 classes: sky, building, sidewalk, and ground.

Some training samples for this network can be found in the

4th to 6th columns in Fig. 4 (b). We trained this network



for 50 epochs because the mapping from the input to the

output is relatively simple, also more epochs can lead to

over-fitting in practice.

For the final street-view image generation network, we

use the same 2K image pairs. Also, the default training set-

tings of BicycleGAN are employed except for the dimen-

sion of the latent vector, which we set to 32, and the ba-

sic feature dimension was set to 96. The external texture

encoder has the same architecture as the encoder in Bicy-

cleGAN. We first train the network on randomly cropped

training pairs for 400 epochs and then train on full image

pairs for 50 epochs.

4. Experiments

4.1. Baselines and Evaluation Metrics

Regmi et al. [15] proposes two cGAN-based architec-

tures to generate the street-view semantic and RGB image

given an aerial image patch as input. The “fork architec-

ture” which uses a weight-shared decoder for the simulta-

neous generation of both the semantic image and the RGB

image has been shown to be better than the other “sequence

architecture” which uses a sequential network generating

semantic image first and then the RGB image. We utilized

the original code and compared it with the “fork architec-

ture”.

Pix2Pix [27, 6] is a well known cGAN-based network

which can also be utilized to synthesize street-view images

from the satellite images. Therefore, we also compared to

this method using the original source code.

For quantitative assessment we utilize various evalua-

tion metrics ranging from low-level to high-level. For the

low-level metrics, we follow [15] and use PSNR, SSIM, and

Sharpness Difference metrics, which evaluate the per-pixel

difference between the predicted image and the ground truth

image. However, such pixel-wise metrics might not prop-

erly assess the visual quality of the images. Therefore, we

use the perceptual similarity [25] to compare the images

on a higher semantic level. PAlex and PSqueeze denote the

evaluation results based on the backbone of AlexNet and

SqueezeNet, respectively. We directly employ their code

and the provided pre-trained model. For the semantic-level

metrics we use the pixel-level accuracy and mIoU from

[10], which is calculated by comparing the semantic labels

of the predicted street-view image and the ground truth im-

age generated using SegNet [26]. For the geometric-level

metric we utilize the boundary F-score [19] which is de-

signed to calculate the overlap between the object bound-

aries in the predicted and the ground truth images. We also

compute the median error edepth of the generated panorama

depth by taking the depth computed from satellite multi-

view stereo reconstruction as the ground truth.

In the following we present a state-of-the-art comparison

and an ablation study in Sec. 4.2 and 4.3. For more experi-

mental results, please refer to our supplementary material.

4.2. Comparison to State of the Art

Tab. 1 provides quantitative evaluation results for

Pix2Pix [6], Regmi et al. [15], and our method in a test-

ing dataset with 100 samples. Due to the fact that we use

more problem-specific knowledge, our method outperforms

all competing approaches on all measures. As other ap-

proaches cannot generate depth images, we only evaluate

the median depth error of our method, which is 2.62m. We

use the same quantitative evaluation measures as in [15] and

we can see in Tab. 1 that there is little difference between

the PSNR, SSIM, and Sharpness Difference (larger is bet-

ter) of the three methods, which is reasonable since we have

analyzed that the low-level metrics can hardly be utilized to

judge whether an image is realistic or not.

Fig. 6 shows the qualitative results of these three meth-

ods. From the figure, we can observe that the quality of the

generated semantic and RGB images of our method is bet-

ter than the other two methods. Firstly, for the street-view

semantic image, it is obvious that the semantic image of the

work of Regmi et al. is a relatively coarse prediction of the

street-view layout, which may contain significant artifacts

in some cases (e.g. row 2,3 and 5 in Fig. 6). While for

our proposed method, the street-view layout is very close

to the ground truth because our geo-transformation layer

can transform the true geometric information from the satel-

lite to the street-view. Also, the estimated position of the

sidewalk in the result of Regmi et al.’s method appears to

be randomly generated as it does not show many patterns

on which building of the scene the sidewalk might appear,

and the sidewalks in our cases are fairly consistent and can

be detected as long as there are buildings. Secondly, for

the quality of the generated RGB image, our method also

demonstrates its advantages over the other two methods:

Regmi et al. and Pix2Pix, and this should be largely cred-

ited to the high quality of the generated semantic images in

our pipeline. The result of Regmi et al.’s work is slightly

better than that of Pix2Pix in terms of that Regmi et al.’s

work can generate more complete images. However, the

images generated by both of the two methods are blurred in

terms of their texture details and only part of the geometric

configuration can reflect the actual scene the satellite image

captures. Fig. 8 further compares the detailed geometry in-

formation of images generated by our method and the state-

of-the-art approaches. We can find that our method can bet-

ter recover the building skyline shape. We also noticed that

the fine-detailed objects like trees and buses cannot be re-

constructed, which is mainly because moving objects (e.g.

buses) and fine-detailed static objects (e.g. trees) cannot be

reconstructed well in the satellite depth and are also incon-

sistent in the cross-view images.



Table 1: Quantitative evaluation of image/semantic quality. Our method consistently outperforms competing approaches.

Method PSNR (↑) SSIM (↑) Sharp Diff (↑) PAlex (↓) PSqueeze (↓) mIoU (↑) Acc. (↑) Fsem (↑) edepth (↓)

Pix2Pix [6] 19.765 0.410 20.514 0.6062 0.4778 0.371 0.434 0.445 N/A

Regmi et al. [15] 19.839 0.419 20.559 0.5867 0.4430 0.484 0.649 0.486 N/A

Ours 19.943 0.440 20.864 0.5816 0.4339 0.548 0.729 0.515 2.62

Sat. RGB Street RGB Our RGB Our Semantics [15] RGB [15] Semantics [6] RGB

Figure 6: Qualitative comparison. We present a variety of test results of our method, in comparison to Regmi et al. [15],

and Pix2Pix [6]. Our method generates significantly more accurate semantic maps, especially with respect to the skyline, but

also our RGB output looks more realistic and contains fewer artifacts.

4.3. Ablation Study

We further investigate the influence of multiple key com-

ponents on the performance of our approach and the de-

tailed quantitative result can be seen in Tab. 2. In the fol-

lowing, we study the impact of three network components.

Importance of input with depth. In theory, depth can pro-

vide “scale” information in the generation of local texture.

Comparing street-view images generated by our method

(Fig. 7 (d)) and our method w/o depth (Fig. 7 (e)), we can

find that the textures of the objects close to the camera cen-

ter in the real scene on those images are well generated.

While for those objects far away from the camera center,

the method w/o depth can only generate rough and blurred

textures. That explains why the semantic mIoU and accu-

racy do not drop too much while the perception distance in-

creases significantly since the semantic label of the blurred

texture will still be correct but the perception distance of

it will increase. As a result, we can conclude that without

depth one may not generate detailed texture in the distant

areas but still able to get quite good semantics.

Importance of weighted L1 loss. As mentioned in

Sec. 3.4.2, the weighted L1 loss for Ls
sat is designed to

reduce the influence of the misalignment problem and im-

prove the quality of the generated street-view semantic im-

ages. To evaluate the importance of the weighted L1 loss,

we trained our pipeline w/o the weighted L1 loss and out-

put the generated street-view semantic image (Fig. 7 (b))

and RGB image (Fig. 7 (f)) for comparison. As can be

observed, there are some misclassified pixels between the

building class and the road class on the semantic image w/o

weighted L1 loss, also the boundary between the building

roof the sky is mixed in the second row. The misclassifica-



Table 2: Quantitative Ablation Study. We demonstrate the impact of various network components quantitatively.

Method PSNR (↑) SSIM (↑) Sharp Diff (↑) PAlex (↓) PSqueeze (↓) mIoU (↑) Acc. (↑) Fsem (↑)

Ours 19.943 0.440 20.864 0.5816 0.4339 0.548 0.729 0.515

w/o depth 19.991 0.419 20.783 0.6523 0.4539 0.537 0.728 0.534

w/o weighted L1 loss 20.170 0.433 20.711 0.5818 0.4364 0.535 0.727 0.505

w/o geo-transformation layer 20.002 0.401 20.459 0.6518 0.4548 0.509 0.711 0.504

(a) Predicted semantics (b) w/o weighted L1 loss (c) Ground truth (d) Ours (e) w/o depth (f) w/o weighted L1 loss (g) w/o geo-transf.

Figure 7: Qualitative Ablation Study. In correspondence to the quantitative ablation study in Tab. 2 we show example result

images for each configuration. Omitting one of the components typically results in worse results.

Ground truth panorama Ours

Pix2Pix [6] Regmi et al. [15]

Figure 8: Comparison of results on skylines. Due to the

explicit use of geometry information, our method estimates

more accurate skyline profiles. Although the competing

methods show results for the same location, the appearance

is different mostly due to the incorrect skyline estimation.

tion on the semantic image further impairs the quality of the

generated RGB image as shown in the second row. How-

ever, the misclassification on the semantic image caused by

the misalignment problem can somehow be relieved in the

following network for street-view RGB image generation

due to the power of CNN, which the CNN network can tol-

erate some misclassification. This is a reason why the quan-

titative scores in Tab. 2 are not too different.

Importance of the geo-transformation layer. We remove

the geo-transformation layer in our pipeline and feed the

outputs of the satellite stage directly into the street-view

stage to see the influence of the geo-transformation layer.

From Tab. 2, we can see that the semantic mIoU and ac-

curacy drop significantly, while the perceptual score PAlex

increases from 0.5816 to 0.6518. This means that both the

semantic and the perceptual quality of the RGB image gen-

erated w/o the geo-transformation layer decrease largely.

This observation is further supported by Fig. 7 (g), where

the buildings generated in the first and third rows are largely

distorted from the ground truth images as shown in Fig. 7

(c). Therefore, the generation of street-view semantics di-

rectly from the predicted satellite depth and semantic im-

ages is more likely to yield geometrically incorrect results

than applying the proposed geo-transformation approach.

5. Conclusion

We presented a novel approach for satellite-to-ground

cross-view synthesis. In particular, we proposed an end-

to-end trainable pipeline that takes a single satellite image

and generates a geometrically consistent panoramic RGB

image. We thus proposed a neural network with a differ-

entiable geo-transformation layer that links a semantically

labeled satellite depth image with a corresponding seman-

tic panoramic street-view depth image which is finally

used for photo-realistic street-view images generation.

The geometric consistency across images significantly

improves the accuracy of the skyline in the panoramic

ground view which is especially important for urban areas.

Our experiments demonstrate that our method outperforms

existing approaches and is able to synthesize more realistic

street-view panoramic images and in larger variability.
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