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ABSTRACT

In many applications of machine learning (ML), updates are per-
formed with the goal of enhancing model performance. However,
current practices for updating models rely solely on isolated, aggre-
gate performance analyses, overlooking important dependencies,
expectations, and needs in real-world deployments. We consider
how updates, intended to improve ML models, can introduce new
errors that can significantly affect downstream systems and users.
For example, updates in models used in cloud-based classification
services, such as image recognition, can cause unexpected erro-
neous behavior in systems that make calls to the services. Prior
work has shown the importance of "backward compatibility” for
maintaining human trust. We study challenges with backward com-
patibility across different ML architectures and datasets, focusing
on common settings including data shifts with structured noise and
ML employed in inferential pipelines. Our results show that (i) com-
patibility issues arise even without data shift due to optimization
stochasticity, (ii) training on large-scale noisy datasets often re-
sults in significant decreases in backward compatibility even when
model accuracy increases, and (iii) distributions of incompatible
points align with noise bias, motivating the need for compatibility
aware de-noising and robustness methods.
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1 INTRODUCTION

Enthusiasm around applying machine learning (ML) methods in
high-stakes domains such as healthcare and transportation is bal-
anced by concerns about their reliability. Prior works on ML re-
liability and robustness have sought to develop techniques that
enable models to perform successfully under the presence of data
shifts or adversarial perturbations [6, 22, 27, 40]. However, these
studies investigate the reliability of models in isolation, quantified
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only by aggregate performance metrics. In this work, we focus
on challenges that arise when models are employed within larger
systems, including (i) pipelines composed of multiple components,
and in (ii) human-machine interaction. In both cases, dependen-
cies and expectations about model behavior—and the influences of
changes on the performance of the larger systems they compose—
must be considered during model updates. For example, when we
“improve” the overall performance of an existing model, are there any
hidden costs to the gain in accuracy? What new errors and failures are
introduced that did not exist previously, thus decreasing reliability?

We show how practitioners can leverage the notion of backward
compatibility to answer these questions. Backward compatibility in
ML systems was first introduced by Bansal et. al [3] to describe the
phenomenon of partial model regress in the context of human-AI
collaboration. They observe that updated models that are more
accurate may still break human expectations and trust when intro-
ducing errors that were not present in earlier versions of the model.
However, considerations about backward compatibility are not lim-
ited to human-AlI collaboration settings; new, unexpected errors
induced by updates aimed at refining models pose problems with
reliability when the models are used in larger, integrative Al sys-
tems composed of multiple models or other computing components
that work in coordination.

Furthermore, the phenomenon of how and when costly back-
ward incompatibility occurs in a learning context is not very well
understood. To the best of our knowledge, no work to date has em-
pirically investigated the causes of compatibility failures in machine
learning, and the extent of this issue across datasets and models.
We seek to investigate backward compatibility through empirical
studies and demonstrate how designers of ML systems can take
backward compatibility into consideration to build and maintain
more reliable systems.

As a motivating example (Figure 1), consider the financial de-
partment of a company that processes expense reports to detect
receipt fraud. The department may rely on an off-the-shelf optical
character recognition (OCR) model to process receipts [21]. Over
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time, the team may develop and encode a blacklist of common
spoofed company names found to be fraudulent, such as “G00gle
llc” or “Nlke”. In this case, the financial services team builds the
heuristic blacklist component with expectations on the OCR’s abil-
ity to detect these names. Moreover, the heuristic rules have been
optimized to perform well in accordance with the original OCR
model used in development.

Meanwhile, in pursuing improvement in the OCR’s overall per-
formance, engineers may update the training data with a larger and
perhaps noisier dataset from a variety of handwritten text sources.
Engineers may celebrate increases in model accuracy and general-
izability. However, if the update decreases the OCR performance on
specific characters present in the blacklisted words, the financial de-
partment may experience costly failures when fraudulent receipts
now go undetected, despite believing that they are using a better
model. For example, if the newly added dataset contains biased
noise and frequently mislabels "0" digits as "o" characters, the word
“G00gle llc” may be wrongly recognized as “Google llc”, which is
not in the blacklist. Similar scenarios in high-stakes settings such
as healthcare can lead to even more serious consequences.

Motivated by potential downstream errors such as the one above,
we emphasize that machine learning practitioners should consider
potential backward compatibility issues before they decide to up-
date models. Such practice is similar to common practices that
software engineers follow when modifying traditional software [4].
More specifically, we make the following contributions:

(1) We expand the empirical understanding of when and how back-
ward compatibility issues arise in machine learning and the
relationship to example forgetting during retraining.

(2) We characterize backward compatibility under different noise
settings using a variety of datasets (tabular, vision, language)
and model architectures (linear, CNN, ResNet, BERT).

(3) We illustrate and discuss backward compatibility from the per-
spective of maintaining and monitoring the performance of
modularized ML pipelines.

(4) We highlight how ML practitioners can use the presented results
and methodology to create best practices and tools for updating
and diagnosing learning models.

The rest of the paper is organized as follows: Section 2 positions
the paper in the context of related work. Section 3 defines the setting
of model updates and the backward compatibility metrics we use
to characterize the phenomenon. Section 4 details the experimental
setup. Section 5 studies the effect of optimization stochasticity on
backward compatibility as a baseline, before studying backward
compatibility in the presence of noisy model updates in Section 6.
Finally, Section 7 shows how backward compatibility analyses can
help to identify failures in ML pipelines.

2 BACKGROUND AND RELATED WORK

Backward compatibility in Machine Learning. Bansal et. al [3]
introduced backward compatibility in the context of preserving
human expectations and trust, and proposed a loss function to
penalize newly introduced errors, which we further study in Section
6.3. Our work expands the understanding of backward compatibility
in ML, and we add a new perspective by highlighting backward
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compatibility challenges that arise when inferences from a retrained
model are used by other components of a larger system.

The challenge of understanding how changes in one compo-
nent propagate through an entire system has attracted recent inter-
est. [2, 32, 36] discuss how hidden data and feature dependencies
can cause component entanglement, unexpected system behav-
ior, and downstream performance regression [2, 32]. Such issues
have also been highlighted in surveys on software engineering
challenges in ML [1, 42]. New performance evaluation [7, 31, 41]
approaches suggest reporting performance on data slices rather
than aggregate measures that overlook partial model regression.
Our work advises that measures of backward compatibility should
be included when monitoring model performance during updates.
Catastrophic forgetting and transfer learning. Backward com-
patibility is relevant to the phenomenon of catastrophic forget-
ting [12, 28], which refers to situations where a learning model
forgets old tasks while being trained in a sequential fashion to solve
new tasks. Literature on catastrophic forgetting [13, 18] highlights
"learning interference” as a cause for forgetting in models with a
fixed capacity. In contrast, we investigate fluctuations that do not
involve changes in the task or concept definition. Despite this sim-
plification, we find retrained models are still subject to forgetting
individual or similar examples. [38] present settings where the task
definition has not changed, and focus on understanding cases of
example forgetting. In these events, individual examples may be
forgotten (multiple times) by the model during gradient-based opti-
mization. The authors find that the most "forgotten” examples are
often the most difficult, such as atypical inputs and noisy labels. We
connect these results with our findings in Section 5, where we show
how example forgetting events relate to model incompatibility.
Data cleaning and distributional shifts. Data cleaning is a topic
of long-term interest in the data management and mining commu-
nity [8, 33, 35]. Techniques addressing problems like outlier de-
tection and data denoising are often agnostic to machine learning
models, as the cleaning process is not guided by the influence on a
particular model. Although model-agnostic data cleaning is impor-
tant for cleaning generic data repositories consumed by multiple
and sometimes unknown models, it is important to map changes in
data characteristics to model performance to fully understand the
impact of data quality when updating an already deployed model.
While we do not propose a new technique for data cleaning, our
findings can pave the way for future techniques that preserve the
performance of systems in the presence of data shifts and noise.

Other studies have outlined the influence of class label noise [11,
19] and feature noise [14] on model behavior, informing a parallel
line of work on increasing model robustness to noise [16, 25, 30,
37]. While these works show that modern neural networks can be
somewhat robust to both label and feature noise (in non-adversarial
settings), their evaluation heavily relies on aggregate performance
metrics and does not investigate the impact of biased noise that
affects only certain data clusters, as often occurs in the real world.

3 PROBLEM SET-UP

In both traditional software and machine learning systems, back-
ward compatibility is a reliability concern emerging from model
updates. There are many possible incentives for updating a model,
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including re-training on a larger, more diverse, and perhaps noisier
dataset to increase the model’s generalizability and overall accuracy.
In this section, we describe this specific setting of "noisy model
updates,’ and then define two measures of backward compatibility.

3.1 Noisy Model Updates

Consider a machine learning team that has deployed the first ver-
sion of a model, which was carefully trained on a small and clean
dataset. While the small data quantity enabled the team to verify
all labels and ensure good data quality, the team may now wish to
improve model performance on a greater variety of inputs by using
a larger and more diverse dataset. Due to high financial cost and
time, the team may resort to noisier approaches to create this large
dataset, such as crowdsourcing labels [23] or using weak supervi-
sion [34], a popular alternative due to its automation opportunities.
Some examples include scraping web data [29], leveraging social
media tags as labels, or collecting data via image search.

We refer to this practice as a Noisy Model Update, which has been
performed across a variety of tasks, including language and vision
domains, and has been shown to improve overall accuracy [5, 34].
However, the additional data may also contain biased noise, con-
centrated in particular regions or classes of the dataset. Imagine
a team is collecting data from social media to enrich the dataset.
In social media, some keywords may be ambiguous and contain
examples from two or more classes at the same time. For example,
the keyword "book" on Instagram shows results for books, inspi-
rational quotes, and travel destinations. Model updates with data
including these biased concentrations of noise may harm backward
compatibility, necessitating analysis of the ways the newer model
may be unreliable despite its increased accuracy. In Section 6, we an-
alyze backward compatibility with respect to three different types
of noise: label noise, feature noise, and outlier noise.

We are mainly interested in cases when noise does not affect

the whole dataset uniformly because uniform noise distribution is
more likely to impact the overall accuracy, reducing the incentive
for a model update. Nevertheless, as we show in Section 7, even for
uniform noise, some classes are more affected than others as they
may be less distinguishable.
Problem Definition. More formally, let h; = Model 1, D1 = Train-
ing Dataset 1, hy = Model 2, and Dy = Training Dataset 2, where h;
is trained on D1, and hs is trained on D2. Each model h is a function
h : x — y, where x is an input instance and y is the ground truth
label for the input. Backward compatibility of hy with regards to
hy is evaluated on a separate held-out test set Dyegt. One can view
Diest as a clean dataset that the team uses for performance eval-
uation in general. It is typically chosen such that its distribution
resembles the expected real-world distribution, but in practice the
resemblance varies by a large margin. Further, our problem defini-
tion makes the following assumptions to control for other factors
that may affect backward compatibility: (1) k1 and hy have the same
model architecture; (2) the set of possible labels in D; and D; are
the same; (3) the classification accuracy of hy on Diest is higher
than the accuracy of hy on Diest, motivating the model update.

In our experiments, we first simplify the problem to set an upper-
bound baseline on backward compatibility by keeping D; = Dy
(Section 5). In this case, any discrepancies between hy and h; are
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due to optimization stochasticity. Afterwards, we proceed with
results for the noisy update problem in Section 6, where D1 C Ds.

3.2 Measuring Backward Compatibility

We define two measures of backward compatibility, which we use
in our experiments (See Figure 2). The first is the Backward Trust
Compatibility (BTC) score, which is the ratio of points in a held-
out test set (e.g., Diest) that hy predicted correctly among all points
h1 had already predicted correctly.

P 1R (i) = yis ha(xi) = yil
P 1k ) = wil

BTC matches the backward compatibility score in [3] and se-
mantically describes the percentage of trust that is preserved after
the update. However, a challenge with measuring only BTC is that
if the updated model hy achieves almost-perfect accuracy, such
as when applying deep neural networks to extremely low sample-
complexity problems (Section 6), BTC may be high even if most
errors caused by hy are new and unexpected. We thus consider a
second metric, the Backward Error Compatibility (BEC) score,
which is the proportion of points in a held-out test set that hy pre-
dicted incorrectly, out of which hq also predicted incorrectly, thus
capturing the probability that a mistake made by hz is not new.

BTC = 1)

S LRy (xi) # i, ha (i) # i)
P 1 kg (i) # wil

These unexpected errors may negatively impact downstream com-
ponents in a pipeline that may have learned to suppress the initial
errors of hy or are mitigating them via traditional error handling
and heuristics. We propose that developers of ML models should
measure both BTC and BEC when considering a model update,
rather than solely improvement in accuracy.

BEC =

@)

4 EXPERIMENTAL METHODS

Our empirical evaluations cover several tasks in increasing order
of dataset and model complexity. As an upper-bound baseline on
backward compatibility, we first focus on settings without a model
update (where data sets are identical through retraining, D; = Dy).
To show that backward compatibility issues exist even in simple
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models, we apply a logistic regression model on a FICO binary-
classification task (Section 5). We then investigate the effect of
different types of noise on (1) the MNIST digit classification task
with a 3-layer CNN, (2) the more complex CIFAR-10 image recog-
nition task using a ResNet-18 model, and then (3) fine tuning the
state-of-the-art BERT language model for an IMDB sentiment anal-
ysis task (Section 6). Finally, we analyze downstream errors in a
ML pipeline where one component applies a 3-layer CNN on the
Chars74K Character Recognition task (Section 7).

Experiment Design. For all experiments, we train two models h;
and hy on datasets D1 and Dy respectively, where D1 = D, for the
optimization stochasticity baselines and D; C D3 for experiments
involving model updates. We evaluate the accuracy of h; and hy
on the same held-out test set, on which we also calculate the BTC
and BEC scores as hy’s backward compatibility with respect to hj.
For experiments investigating the effect of noise, such as those in
Figure 4, we calculate the gain in test accuracy from hy, and the
BTC and BEC scores over varying noise amounts, noting that in
practice a developer likely uses a dataset with an unknown fixed
amount of noise. Finally, we analyze the set of incompatible points -
points that h; predicted correctly yet hy missed - to gain insight on
the types of points the new model h; is unreliable on.

Model and Dataset Details. For all datasets, we aimed to use a
close to state-of-the-art models that has the most accessible imple-
mentation, as our target audience is ML practitioners. Below, we
list all model and dataset details, in order of their appearance:

(1) FICO Credit Score Risk Classification [10]: # Classes: 2, Dataset

Sizes: |D1| = |D2| = 6000, |D¢est| = 1973, Model: Logisitic Re-
gression, Learning Rate: 1e — 4, Train Epochs: 100

(2) MNIST Digit Classification [24]: # Classes: 10, Dataset Sizes:
|D1| = 4800, |Dy| = 48000, |Dsest| = 12,000, Model: 3-Layer
CNN, Learning Rate: 1e — 2, Train Epochs: 50

(3) CIFAR-10 Object Recognition [20]: # Classes: 10, Dataset
Sizes: |D1| = 10000, |Ds| = 50000, |Dsess| = 10000, Model:
ResNet-18, Learning Rate: 0.1, Train Epochs: 35

(4) IMDB Movie Review Sentiment Analysis [26]: # Classes: 2,
Dataset Sizes: |D1| = 400, |D3| = 1600, |Dest| = 400, Model:
Finetuned BERT-Base Language Model, Learning Rate: 4e — 5,
Train Epochs: 2

(5) Chars74K Char. Recognition (OCR Pipeline) [9]: # Classes:
62, Dataset Size: |D1| = 4960, |Dz| = 24800, |Dyest| = 6200,
Model: 3-Layer CNN, Learning Rate: 1e — 4, Train Epochs: 20

We train all models using stochastic gradient descent (SGD) and
ensure all classes are equally represented in the training dataset.

5 BACKWARD COMPATIBILITY AND
OPTIMIZATION STOCHASTICITY

As an upper-bound baseline on backward compatibility, we first
seek to understand backward compatibility empirically when the
training data has not been updated. This means that the two training
datasets, D1 and Dy, are identical, and any discrepancies between
hq and hy are purely due to optimization stochasticity. Possible
sources of optimization stochasticity include random model weight
initialization or random data shuffling across training epochs. In
this section specifically, model retraining entails simply training a
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Figure 3: (a) Distribution of incompatible examples over the
output softmax score for two individual models. (b) Number
of unique incompatible examples across pairs of models.

new model with a different random seed for random initialization
and data shuffling.

To better understand backward compatibility in this simple base-
line condition, we ask the following questions:

(1) Do the incompatible points correspond to datapoints for which
h1 and hy have low confidence in their predictions?

(2) Is there a correlation between incompatible points and example
forgetting, as studied by [38]?

(3) Are the incompatible points between any two models the same
across different trials?

Since deep networks trained with high-dimensional datasets are
more subject to optimization stochasticity due to the non-convex
nature of the optimization function in such settings, we first study
this question on a Logistic Regression model on the FICO credit
score binary classification task [26]. In Section 6 and 7 we repeat
the same experiments for larger models and data dimensionality
and use these results as a baseline.

Across 25 trials (i.e., two logistic regression models), the average
accuracy of both h; and hy (as there is no change in the training
data) is 70.5 + 0.86 (%), with BTC 94.5 + 1.31 (%) and BEC 78.3
+ 2.15 (%) backward compatibility scores. These results show that
backward compatibility concerns may arise even when the training
data remains identical and the model architecture is simple.

5.1 Confidence in predictions

We initially hypothesized that, when the training data does not
change, backward incompatibility arises from examples with low
confidence that are close to the decision boundary, which might
be subject to slight changes in the boundary. Figure 3a shows a
histogram of all points in Diegt grouped by the softmax output of
two individual models k1 and hs, and demonstrates a trend towards
low confidence (softmax output = 0.5). However, there still exist
points for which either hy or hy had high confidence, which is
worrisome; a high prediction confidence by k1 on certain points may
cause a user or system to be especially reliant on that prediction.

5.2 Relationship with example forgetting

Next, we measure the relationship between incompatible points
and example forgetting, as studied by Toneva et. al [38]. Because
example forgetting measures the number of "forgotten events" by a
model across epochs during training, we use a separate validation
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Table 1: Relationship between incompatible examples and
forgetting events on the validation set.

Data Type # Forgetting # Forgetting

Events (hy vs. hy) Events (hy vs. hy)

hy and hy both correct .51 + .12 .56 + .16
hy and h; both incorrect .83 + .05 .91+ .08
hy correct, hy incorrect  1.52 + .42 1.77 + .2

set for this particular experiment to avoid touching the test set dur-
ing training. More precisely, for each example in the validation set,
we count the number of epochs when the model made an incorrect
prediction (one "forgetting event") for a point it had previously
predicted correctly. We then aggregate the average number of for-
getting events per example by three different regions of interest as
shown in Table 1. This procedure is repeated for both models.
The observations suggest a strong correlation between the for-
gotten examples over the course of training and the incompatible
examples between two models. Further experiments using deep
neural networks demonstrate the same phenomena. However, while
measuring example forgetting is costly and involves calculations at
each training step, as noted in [38], detecting similar points using
backward compatibility only requires one pass at the end of train-
ing. Moreover, since using forgettable data points helps improve
model learning (also noted in [38]), our results suggest that simply
considering backward compatibility when designing models can
help identify points that would lead to similar performance boosts.
Finally, there may also exist opportunities for combining both mea-
surements to devise training algorithms that can ensure backward
compatibility on-the-fly during training by guiding the model to
remain compatible with earlier versions (i.e., checkpoints) of itself.

5.3 Consistency across multiple trials

Finally, we ask whether incompatible points are a property of the
data itself, or unique to different pairs of models h; and hy. Figure
3b shows how the size of the union of all sets of incompatible test
examples grows as the number of random trials (i.e., different pairs
of hy and hy), increases. We observe a sharp increase between 0-5
pairs before a plateau, suggesting that, for this particular task, it is
indeed possible that there exists a set of 800 datapoints (40.5% of
the test set) in which all incompatible points belong. However, as
indicated by the sharp increase between 0 and 5 trials, the incom-
patible points between two models may be completely disjoint and
even ensembling techniques, increasing model capacity with less
than five models, may not alleviate the problem.

Results summary: Significant incompatibilities arise even when
the training data remains identical and within a simple underlying
model architecture. Importantly, our results show that backward
compatibility captures a notion of "example difficulty”, and, per the
simplicity of identifying incompatible points, can be a useful tool
for understanding the types of data that a model will be unreliable
for when it comes to working with other components or end users.

6 BACKWARD COMPATIBILITY UNDER
NOISY MODEL UPDATES

We now study backward compatibility when additional data is
added to training. We focus on noisy model updates where D5 is a
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larger, noisier dataset than D;. In all of the following experiments,
hy is retrained on D; and initialized by using h1’s weights, as we
found that doing so consistently improved both model accuracy
and backward compatibility. Yet, our results still show that, de-
spite strong overall accuracy gains, backward incompatibility still
persists and is further exacerbated as dataset noise increases.

In the following experiments, we consider noise biased by class
(MNIST digit and CIFAR10 image category) as well as noise on class-
independent groups (IMDB movie review genre). We specifically
consider three types of noise:

(1) Label noise - Instances from one class are labeled in error as
another similar class (e.g., digit "0" as letter "o" in OCR).

(2) Feature noise - Features of the input instances themselves are
noisy (e.g., occlusion for images, noisy sensors etc.).

(3) Outlier noise - Instances from a class not part of the task defi-
nition are wrongly labeled with a class that is part of the task
definition (e.g., lion images may be added to the CIFAR dataset
and be classified as cats).

6.1 Class-level incompatibility

We first analyze backward compatibility in model updates where
the noise is biased towards a particular set of target classes.

6.1.1 Label Noise. We simulate label noise, where instances from
one class are labeled erroneously as a similar class, using the digit
pair (0,6) and CIFAR-10 category pair ("car", "truck") as the target
label pairs that are switched. Such label noise can occur through
annotation noise, for example, where a human annotator via crowd-
sourcing may accidentally label an image of a truck with "car,’ or a
painted digit 6 on a street address as "0" due to the similar shape.
The degree of noise affects the likelihood of switching the labels
of datapoints belonging to the target label pairs. In the no-noise
condition on a heald-out test set, the three-layer CNN achieves
99.4% accuracy after 50 epochs for MNIST, while for CIFAR-10 the
ResNet-18 model achieves 90.3% overall accuracy after 35 epochs.

Figures 4a and 4c demonstrate the effect of varying label noise
on BTC (solid red), BEC (solid blue), gain in overall accuracy by hy
over hyp (solid gray), and gain in class-level accuracies by hy over hq
(dashed green and orange). The dashed red and blue lines show BTC
and BEC baselines when there is no model update, and D1 = D;. For
both datasets, we observe a decrease in backward compatibility even
when the accuracy gain is positive. For example, for 30% label noise,
despite hy improving overall accuracy and class-level accuracies
for the target labels, there is a notable decrease in BEC, as well
as a minor decrease in BTC. Interestingly, we notice that the BTC
measure decreases more for CIFAR-10 than MNIST, likely due to
the extremely high accuracy of hy on MNIST. Most importantly, for
higher noise values (> 0.4), the target class accuracy starts to drop
even though the overall accuracy gain stays positive.

Further analysis of incompatible points (see histograms in Fig-
ures 4b and 4d) shows that, as label noise increases to 50%, the
proportion of incompatible points within noise susceptible classes
increases. These results demonstrate that backward compatibility
analyses can help identify the types of data points that were subject
to biased noise at the time of data collection.
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Figure 4: Backward compatibility with varying noise for MNIST and CIFAR-10.

6.1.2  Data Feature Noise. We next simulate feature noise, focusing
on occlusion, where images are blocked by artifacts such as smudges
and out-of-domain objects. We randomly distribute occlusions that
occupy ~20% of target images (Digit 0 in MNIST, "Car" in CIFAR-10).
Real-world examples of occlusion include artifacts from the camera
or current context (such as rainy weather) blocking a subject.

Interestingly, Figure 4e shows that, while for MNIST the accuracy
gain on the target noise class (Digit 0) is stable up until high amounts
of noise, BEC decreases early on. This may be due to the simplicity
of the MNIST task and retraining with h;’s weights, which may
have already learned the digit 0 well (explaining the minimal gains
on Digit 0 by h2). Adding noise may first decrease performance on
specific points before hurting the entire class representation itself.
However, for CIFAR-10, because hy strongly improves the "Car"
class accuracy, small amounts of noise may harm performance only
on parts of the data that h; anyways performed poorly on, resulting
in a small backward compatibility decrease. Finally, Figures 4f and
4h show that at 80% noise, analysing the incompatible points can
identify the target groups of the biased noise.

We note that adding feature noise sometimes improves perfor-
mance by reducing overfitting [15], and is thus used for data aug-
mentation. This may explain why backward compatibility signifi-
cantly decreases only with a high degree of occlusion noise (> 80%).

6.1.3 Outlier Noise. To simulate outlier noise, we include instances
in the training data that are not part of the initial task, but were
labeled as one of the in-task classes. We convert both the MNIST
and CIFAR-10 tasks to predictions over nine classes, treat Digit 0
and "Truck" as outliers, and Digit 6 and "Cat" as targets for the
outlier noise. Semantically, this means that the training data will
contain images of trucks (i.e., Cat® trucks by the Caterpillar series)
that are labeled as "cat" because of language ambiguity.

While the main backward compatibility trends persist here as
well, Figures 4j and 4l highlight that it is possible that noise in
the targeted class may decrease compatibility in other classes as
well. For instance, the number of incompatible points on MNIST
increases on digits "2", "5", "6", "9" even though only digit "6" was di-
rectly affected by noise. Such behavior can be extenuated when the
classification task contains more classes and the outlier examples
look similar to many of the classes represented in the task.
Results summary: Adding noise biased towards a class is aligned
with lack of backward compatibility for that class. However, the
effects can propagate to increased incompatibility of other classes,
especially if these classes become less distinguishable after the in-
clusion of outliers. Measuring backward compatibility helps detect
this unreliability even when the overall accuracy gain by hy is high.
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Figure 5: Backward compatibility analysis on an IMDB
movie reviews sentiment classification task.

6.2 Beyond class groups: Sentiment Analysis

A natural question following the previous results is: Can back-
ward incompatibility be identified by only monitoring the accuracy
of individual classes? Here we argue that this approach, although
complementary, is unsatisfying because:

(1) In the previous experiments, there still existed a range where
hy increased accuracy for a class yet backward compatibility
decreased, likely due to performance decrease for a sub-class.

(2) A possible grouping of datapoints that do not share the same
class label may suffer from backward compatibility which a
per-class analysis would hide.

In essence, measuring backward compatibility accounts for all types
of points for which hy performance decreases, without needing to
define and analyze a priori which points to examine.

To demonstrate this, we analyze backward compatibility in a
movie review sentiment analysis task considering data noise biased
on groups beyond labels - specifically, all movies belonging to a
specific genre. Consider a large dataset of movie reviews created by
scraping reviews from different web pages, including genre-specific
web pages such as a comedy review site or sub forum. The labels
may be scraped from star ratings accompanying the reviews. If the
comedy site changes its html structure (which happens frequently
in websites), the scraper may fail to map the review to the right
rating and therefore induce biased noise for the comedy genre.

We simulate this setting using the IMDB Movie Reviews dataset
[26]. We filter all reviews in the training data with the keyword
"comedy,’ and then flip the label with varying noise. Figure 5 sum-
marizes the results, including the comedy group accuracy gain
(solid pink). The test performance drop for comedy reviews is far
more severe than the performance drop for either negative or pos-
itive classes. Furthermore, for noise between 0.4 and 0.47, there
exists a region where class-based accuracy improves on both classes
but sub-class comedy group accuracy decreases. An analysis of the
incompatible points at 0.47 noise, of which 59.5% are comedy (vs.
20% at 0 noise), would help detect this failure while class-based
accuracy metrics would not.

Results summary: When backward incompatibility affects groups
of data but not a whole class, monitoring class accuracy is insuffi-
cient. Moreover, since there may exist many possible groups, and it
is not possible to know a priori which groups suffer from noise, the

KDD ’20, August 23-27, 2020, Virtual Event, CA, USA

100

h2 Group Acc.(no noise)
h2 Overall Acc.(no noise)

h1 Overall Acc.(no noise)

h2 Group Acc.(w/ noise)
—— h2 Overall Acc.(w/ noise)

4 50 0 70
BEC Compatibility

Figure 6: Regularization improves compatibility, but it may
not fully prevent discrepancies from biased noise.

decrease in BEC and BTC scores and analyzing the incompatible
points may be the only way to detect partial model regress.

6.3 Effect of Regularization

We now highlight the benefits and limitations of regularization,
introduced by prior work in the context of backward compatibility,
under the presence of noisy model updates [3]. The work proposes a
new loss function to penalize newly introduced errors, enabling en-
gineers to adjust the accuracy versus compatibility tradeoff during
retraining. The loss penalizes the new model h; by its classification
loss L whenever the initial model hy is correct.

Le=L+Ac- (1(hi(x) =y)-L) (3)

Increasing the penalty A, increases the compatibility of hy with

respect to h1. Using the same settings on the CIFAR-10 dataset under
label noise as in Section 6.1.1, we vary A, and measure compatibility,
overall accuracy, and subgroup accuracy on the categories subject
to noise (cars and trucks). Figure 6 shows that while regularization
improves both accuracy and compatibility of hz, the subgroup ac-
curacy is often worse than the overall accuracy, and also unable to
reach the optimal accuracy of hy without any noise. Given the high
initial performance of h; on the subgroup, this observed limitation
suggests that future techniques especially designed for backward
compatibility under noise can be more effective in obtaining the
biggest gains from model updates.
Results summary: Prior methods to address backward compati-
bility help to improve performance under noisy updates to some
extent, but there exists a need for stronger techniques that are
aware of the source of incompatibility (e.g., biased noise).

7 BACKWARD COMPATIBILITY IN MACHINE
LEARNING PIPELINES

Finally, we position the analysis from the previous experiments in
the context of the ML pipeline described in Section 1, and demon-
strate how not controlling for backward compatibility during up-
dates can lead to downstream degradation for specific input spaces.

Recall our example of an off-the-shelf OCR model being used for
downstream tasks by non-experts, such as receipt fraud detection.
Consider the case where, in an effort to improve the OCR model’s
performance on a variety of fonts, the model is updated with a
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large, noisy dataset created from scraping the internet for images
of different characters and asking people to label them through
CAPTCHA tasks [39]. Common mistakes by human annotators,
such as mixing up "i" and "1", or "0" and "0" because of occlusion
or rushing through the task, may occur often leading to decreased
performance on these inputs. A fraud detection system that relies on
the classifier’s ability to discriminate between "i" and "l" or "o" and
"0", will suddenly experience unexpected failures by misrecognizing
spoofed terms such as "N1ke" for legitimate companies (i.e., "Nike").

We simulate this setting by assuming a text localization model
using bounding boxes to detect characters followed by a character
recognition model trained on the Char74k dataset [9]. As in the
previous experiments, we train h; on a clean, smaller subset of this
data (20%), and then re-train hy using the entire training data with
varying degrees of label noise (swapping "i" w/ "1" and "o" w/ "0").
Figure 7 shows the backward compatibility analyses for this update.

Now, let us assume that the large dataset collection resulted in
25% label noise, but gives hy a strong 14% improvement over hy. The
89% BTC and 71% BEC scores suggest that there has been a de-
crease in backward compatibility when compared to the baselines.
A quick glance through the incompatible points reveals examples
such as those in Table 2, the most common classes, with digit "0"
and lower case letter "" consisting of 19% and 16% of all incom-
patible points, respectively. Interestingly, the upper case "Z" often
appears in the set of incompatible points despite noise not directly
influencing this character. This emphasizes that, even though the
noise impact from a data quality perspective may be isolated to
particular characters, its impact on the classification output may
be broader. Therefore, it is not sufficient to only monitor examples
that were explicitly impacted by noise, but instead to have a holistic
view of where performance drops to best understand ramifications.

Next, we try to understand the effects on fraud detection. For
simplicity, if we assume that the error rate of each character is
constant for all fonts and requires at least one misrecognition for
the blacklist expression to fail, we can calculate an error likelihood
for specific word inputs based on character-based accuracy:

n
Error(word) = Error(cy, 2, ...,cn) =1 — rl Accuracy(c;)  (4)
i=1
where Accuracy(c) is the model accuracy on character c. Thus, if
the financial services team formed a blacklist of particular words to
catch, then we can estimate the increase in error for each blacklisted

Srivastava et al.

Table 2: Incompatible OCR examples (25% noise).

0 I /4

True Label: Digit 0 True Label: lower L True Label: upper Z
19% of incompatible points 16% of incompatible points 13% of incompatible points

Model 1 Accuracy: 89% Model 1 Accuracy: 77% Model 1 Accuracy: 79%
Model 2 Accuracy: 10% Model 2 Accuracy: 17% Model 2 Accuracy: 21%

Table 3: Downstream failures in receipt fraud detection.

Fraud Attack Error Score (hy) Error Score (h2)

"Nlke" 55% 86.4%
"G00gle" 85.3% 99.01%
"ZUP" 49% 84.6%

word when the OCR model updates to hz (Table 3) by knowing
the model accuracy for each character. Additionally, because of
the nature of label noise, other characters beyond the manipulated
targets shift in performance, such as the letter "Z", causing an
increase in error for all words in the blacklist that account for
misrecognitions of "Z" (e.g., "Zup" instead of "7up" drink). Thus,
while the overall accuracy of word recognition might improve after
the update, the performance of the system on the specific words that
are included in the blacklist heuristics may degrade significantly.

Without considering backward compatibility as captured by the
BTC and BEC scores, the accuracy gain of the OCR system may
be enough of an incentive for its designers to update the model
and unintentionally cause significant losses for the fraud detection
team. Note that, since the error score definition is conservative (i.e.,
only one character needs to be wrong for fraud detection to fail)
and the average accuracy rates of hy and h; classifiers (currently
64% and 77%) could be improved with more advanced architectures,
the issue would still occur even for more accurate classifiers.

Notably, there may be updates of an OCR system that do not
involve noise, yet harm backward compatibility. For example, the
OCR system could leverage natural language estimates on word
likelihoods before a prediction—thus, assuming "G00gle" would
more likely be "Google". The assumption that this will improve the
model will cause serious issues for downstream tasks that rely on
exactly detecting the unlikely words.

8 DISCUSSION & CONCLUSION

We showed that measuring backward compatibility can identify
unreliability issues during an update and help ML practitioners
avoid unexpected downstream failures. As ML pipelines designed
for interaction with human users become larger and more perva-
sive, we expect backward compatibility to become an important
property for assuring performance and reusability of models over
time, and for maintaining trust with end users. While significant
efforts continue with building end-to-end differentiable systems,
we expect composable, modular systems to remain relevant per
interpretability needs, ease of error detection, and worst-case per-
formance analysis in safety-critical systems [17]. Examples of such
complex systems include: (1) search engines relying on sensitive
metrics for different demographics and markets during page rank-
ing; (2) motion sensing in video game hardware that rely on hybrid
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data and physics-based models for detection and tracking; and, (3)
productivity applications that combine deterministic software with
statistical models for delivering consistent interaction with users.

We note that lack of backward compatibility may not translate to
a drop in performance in the real-world. Benchmark datasets used
for evaluation may contain examples that are rarely encountered
during future uses of the system, and if not related to a high-stakes
situation, it might be desirable to sacrifice backward compatibil-
ity for accuracy gains. Additionally, user expectations or task def-
initions in the evolving world may change, which might make
evaluation benchmarks obsolete.

As a future direction, the monitoring of backward compatibility
would benefit from stronger explanation and visualization tech-
niques. Although error analysis approaches [31, 41] provide reports
for single-model performance by identifying explainable regions
of data more likely to fail, such visualizations comparing multiple
models should be developed. Furthermore, current approaches to
addressing issues such as data noise are often model agnostic, and
assume that the model is always learned from scratch. Real-world
deployment requirements can be better met if data denoising and
repair is informed by the previous model that was trained on an
initial, cleaner dataset. Finally, we investigate simple noise settings
to reflect practices with benign intentions where the practitioner
decides to integrate larger and richer data that might contain noise.
An interesting future direction would be to study the effect of ad-
versarial training attacks on backward compatibility.

We hope that our work highlights the value of moving beyond
evaluations that center on the aggregate performance of models
in isolation and traditional assumptions of uniform monotonic
improvements. Engineering of ML systems will often require careful
approaches to model and data versioning that include methods for
identifying and addressing challenges of backward compatibility.
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