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Abstract— Online Controlled Experiments (OCEs) are 

transforming the decision-making process of data-driven 

companies into an experimental laboratory. Despite their great 

power in identifying what customers actually value, 

experimentation is very sensitive to data loss, skipped checks, 

wrong designs, and many other ‘hiccups’ in the analysis process. 

For this purpose, experiment analysis has traditionally been done 

by experienced data analysts and scientists that closely monitored 

experiments throughout their lifecycle. Depending solely on scarce 

experts, however, is neither scalable nor bulletproof. To 

democratize experimentation, analysis should be streamlined and 

meticulously performed by engineers, managers, or others 

responsible for the development of a product. In this paper, based 

on synthesized experience of companies that run thousands of 

OCEs per year, we examined how experts inspect online 

experiments. We reveal that most of the experiment analysis 

happens before OCEs are even started, and we summarize the key 

analysis steps in three checklists. The value of the checklists is 

threefold. First, they can increase the accuracy of experiment set-

up and decision-making process. Second, checklists can enable 

novice data scientists and software engineers to become more 

autonomous in setting-up and analyzing experiments. Finally, they 

can serve as a base to develop trustworthy platforms and tools for 

OCE set-up and analysis.  

Keywords— ‘Online Controlled Experiments’, ‘A/B testing’, 

‘Experiment Checklists’ 

I. INTRODUCTION 

“The road to hell is paved with good intentions and littered with 

sloppy analysis.”    – ANONYMOUS 

Online Controlled Experiments (OCEs) are becoming a 

standard operating procedure in data-driven software 

companies[1]–[4]. When executed and analyzed correctly, 

OCEs deliver many benefits. For example, experiments 

increase the quality of the product, enable feature teams to learn 

what changes and features are bad for the users of the product, 

and align the organization around a unifying goal [4], [5].  

To learn about the impact of an experiment, OCEs need to 

be accurately analyzed. This may not seem difficult at first, 

however, analyzing experiments at large scale is challenging 

[6], [7]. To arrive at an informed decision whether to ship or 

not to ship a new feature, many steps need to be meticulously 

executed in the correct order by an experienced analyst. For 

example, before an experiment is started, analysts need to 

determine the design of the experiment (e.g. A/B or 

multivariate), the audience that will be exposed to the 

experiment (e.g. US market or Mobile users), the desired 

sample size, etc. During the experiment, analysts will examine 

specific metrics for business harm, and after the experiment is 

completed a stringent process of arriving to a ship/no-ship 

decision will be applied. The critical insights needed for an 

informed business decision may be buried and can only be 

discovered through a deep-dive analysis that spans through 

multiple heterogeneous segments of users [8]. One way to 

mitigate analysis challenges is to develop tools and procedures 

that support companies in the analysis process [8]–[10]. 

However, a fundamental understanding of what to examine and 

in what order is critical even for mature companies that apply 

automated analysis and examination tools [11], [12].  
The importance of accurate experiment analysis is even 

greater for companies and feature teams that are new to 
experimentation. As more and more companies adopt the 
scientific method in their product development [1]–[3], the 
likelihood of analytical ineptitude – the lack of skill to correctly 
apply stringent experiment analysis – is high. Data scientists 
[13] with skills and experience to execute and analyze 
experiments are scarce. Although data scientists are already one 
of the hardest profession to hire [14], many of them specialize 
in Machine Learning and A.I. where experimentation skills are 
secondary to their other tasks. And since some of the steps in 
experiment analysis can be automated through tooling, it may be 
tempting to do that instead. However, great care needs to be 
taken to transparently present experiment results to analysts 
using those tools [11]. For example, some experimentation 
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platforms reveal only the outcomes. Other information such as 
the underlying assumptions about the representativeness of the 
sample in an experiment are left implicit even though 
experiment analysts should have known to what extent they 
were satisfied. Failing to recognize a violated assumption can 
(confidently) steer the product team into making wrong 
conclusions and introducing harm to business [11]. Bad data can 
be actively worse than no data, making practitioners blinded 
with pseudoscience. 

"To call in the statistician after the experiment is done may be no 

more than asking him to perform a post-mortem examination: he may 

be able to say what the experiment died of.”      -- Ronald Fisher 

In this paper, we present the most critical steps of experiment 
analysis at Microsoft, and at a number of other large-scale 
companies that run OCEs. The research question that we aim to 
answer is “How can Online Controlled Experiments be reliably 
analyzed?”. Our solution to the aforementioned challenges is 
ingeniously simple, yet tremendously powerful. To guarantee 
high level of correctness in experiment analysis, we provide 
product development practitioners involved in the 
experimentation process with the same mechanism that pilots, 
doctors, and even market investors rely on a daily basis – a 
checklist. 

The answer to our research question and our main 
contribution is a set of inductively derived checklists that can be 
used to analyze experiments throughout their lifecycle. Our 
checklists are a synthesis of experiment analysis insights from 
several software companies. In particular,  we provide a 
checklist for experiment analysis in the design stage, for 
experiment analysis in the execution stage, and a checklist for 
experiment analysis when experiments are completed. In 
addition, we provide a list of common symptoms that make the 
experiment execution process unhealthy, contributing to invalid 
experiment analysis.  

The value of our contribution is threefold. First, checklists 
can increase the accuracy of experiment set-up and decision 
making process. Second, they can enable non-experienced data-
scientists, software engineers, and product managers to become 
more autonomous in analyzing experiments. Finally, checklist 
can be automated and our results can serve as a base for building 
more reliable tooling. Ultimately this should lead to a greater 
adoption of OCEs and increase the trustworthiness of OCEs. 

The remainder of this paper is organized as follows. In 
Section II, we present the relevant background and prior works. 
In section III, we briefly discuss our method which we used to 
derive our main contribution presented in section IV. We discuss 
our work in Section V and conclude the paper in Section VI. 

II. BACKGROUND 

A. Experimentation in Software Product Development 

In software development, the term “experimentation” can be 
used to describe different techniques for exploring the value of 
the changes introduced to a product [15]. For example, 
experimentation could refer to iterations with prototypes in the 
startup domain [16], [17], canary flying [18] of software features 
(exposing a small percentage of users to a new feature or a 
change), gradual rollout [18]  (deploying a change to one 
customer groups and expanding to the next one), dark launches 

[19] (releasing new features disabled and testing them in 
production), and controlled experimentation [20] - releasing 
multiple variants of the product and evaluate the differences 
between them through statistical tests. In this paper, and when 
we discuss OCEs, we refer to the latter – the scientifically 
proven technique of randomized clinical trials [21] in an online 
setting, which we briefly introduce next.  

B. Online Controlled Experiments 

The theory of controlled experiments dates back to Sir 

Ronald A. Fisher’s experiments at the Rothamsted Agricultural 

Experimental Station in England during the 1920s [20]. In the 

simplest controlled experiment, two comparable groups are 

created by randomly assigning experiment participants to either 

of them; the control and the treatment. The only difference 

between the two groups is a change X. For example, if the two 

variants are software products, they might have different design 

solutions or communicate with a different server. If the 

experiment were designed and executed correctly, the only 

thing consistently different between the two groups of 

participants is the change X. External factors such as 

seasonality, impact of other product changes, competitor 

moves, etc. are distributed evenly between control and 

treatment. Hence any difference in metrics between the two 

groups must be due to the change X (or random chance, that is 

rejected as being unlikely using statistical testing). This design 

establishes a causal relationship between the change X made to 

the product and changes in user behavior, measured through 

metrics.  

C. Experiment Lifecycle 

In our previous research [22], we introduced the Experiment 

Lifecycle – the  three main stages of every Online Controlled 

Experiment.  We visualize it on Figure 1 below. 

 
Figure 1. The Experiment Lifecycle [22]. 

Based on the experience of analyzing hundreds of online 

controlled experiments at Microsoft, we identified that every 

experiment first enters the A - Ideation phase. In this phase, 

practitioners propose changes to the product to evaluate their 

impact. The second phase is the B- Design & Execution phase 

where experiment ideas are transformed into experiments. 

Here, for example, the power that will be needed to detect the 

expect change is calculated, along with many other checks that 

are increasing the likelihood of a valid experiment. Finally, in 

the C - Analysis & Learning phase experimenters examine the 

outcome of an experiment after it is stopped.  
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In this paper, we focus on the latter two phases by inducing 

checklists that apply there. While the ideation process of 

selecting the idea to experiment with, out of many possible 

ideas, is an important aspect and that experimentation helps 

inform, the scope of this paper focuses more narrowly - on the 

process for analyzing a concrete experiment. 

D. Trustworthy Growth of Experimentation 

The analysis of an isolated experiment as described above 

is relatively simple. Correctly analyzing many experiments in a 

production environment, however, is challenging. Prior work 

both from us [10], [23] and from other researchers [24]–[26] 

and companies such as Booking.com [11], [27], LinkedIn [28], 

Google [29] and Facebook [19] stress that the growth of 

experimentation is conditional on the correct execution of the 

scientific method. For example, in the Experimentation Growth 

model (EG model) presented in [30], we highlighted that 

experimentation typically starts within an isolated feature team, 

and quickly grows to other teams, departments and products 

within an organization. The evolution is a journey that spans 

over several stages of experimentation maturity. One of the 

dimensions of the Experimentation Growth model that fuels 

this growth is the Feature team self-sufficiency – the extent to 

which individual feature teams manage experimentation set-up 

and analysis tasks. In the initial ‘Crawl’ stage of the EG model, 

this level is low as the teams rely on diligent experimentation 

scientist. In contrast, in the final ‘Fly’ stage, most of the 

experiments should be set-up and analyzed without experienced 

data-scientist involvement.  

The research question in this paper is related to the velocity 

of advancing along this dimension, thereby accelerating 

trustworthy growth of experimentation in software companies. 

And our answer is to employ checklists. 

E. Checklists 

Checklists are an essential tool to prevent humans from 

overlooking critical items. They are used by researchers and 

practitioners of various experience levels and on all types of 

positions and industries. For example, the effectiveness of 

checklists has been reported both in qualitative research [31], 

as well as in quantitative studies such as Randomized Clinical 

Trials [32]. Furthermore, checklists help pilots dozens of time 

a day to guarantee a safe flight, and doctors in an operating 

room to overcome common complications.  
The reason why checklists are so effective is that they solve 

the two major challenges of human beings. These are human 
fallibility and tendency to skip steps [33]. In online controlled 
experiment analysis, a forgotten step or a wrong interpretation 
of the data can have devastating consequences for the business. 
For example, a failed data quality check can make the results of 
an experiment invalid. Overlooking the failed test could lead the 
team into believing that the results can be trusted and pivoting 
the product into the wrong direction. Therefore, by inducing a 
set of checklists through case study research described in the 
next section, we hope to increase the reliability and 
comprehensiveness of experiment analysis.  

III. RESEARCH METHOD 

In this section, we describe our research approach, present 

the validity concerns, and state our mitigations for improving 

the generalizability of this research. 

A. Research Approach 

The research presented in this paper is a result of ongoing 

work with nine case companies that all run hundreds or 

thousands of online controlled experiments every year. We 

organized our work in three main phases, for which we present 

our data-collection and data-analysis approaches as suggested 

by Runeson and Höst [34] below. 
Phase1: Our first step was a case study at Microsoft 

Corporation, which we conducted between April 2016 and 
August 2018. Our main data collection in this phase were (1) 
experiment analyses observations and (2) documentation 
analysis. The experiment analyses observations were both 
opportunity-based, as well as structured studies. In particular, 
the first author of this paper observed and recorded (screen 
capture and audio recording) 22 practitioners that work at the 
Analysis & Experimentation team while they examined real 
online controlled experiments (on average 5 per participant). 
This was a study that lasted 30minutes on average with every 
participant, with a goal to identify how analysts examine 
experiments. Practitioners working at Analysis and 
Experimentation (A&E) team are domain experts and work with 
experiments on a daily basis. To record as many insights as 
possible, the participants were asked to speak out loud during 
the study. The first author of this paper took notes during 
experiment examinations and used them while examining the 
recordings to elicit the key steps and items that individuals 
examined in every experiment. In addition, the first two authors 
worked at the case company and participated in hundreds of 
experiment review meetings where practitioners from product 
teams were sharing their learnings, pitfalls, and OCE analyses.  

Phase2: To detail, increase the correctness, and improve the 
generalizability of the findings induced in phase 1, the first two 
authors of this paper (1) designed a questionnaire (available at 
[35]) that asks the survey participants to reveal the key steps in 
their experimental analysis, and (2) jointly reviewed related 
literature referenced in this paper for experiment analysis steps 
and explanations of them. In the questionnaire, we asked 8 open-
ended questions-see Appendix 1. We shared the questionnaire 
with contacts (experimentation experts / experimentation 
directors) that work at the following case companies: Airbnb, 
Snap, Skyscanner, Outreach.io, Microsoft, Intuit, Netflix, and 
Booking.com. We received a response from each of the 
aforementioned companies through email. Based on the 
information that our contacts provided in their responses, we 
improved the initial checklists from phase 1.  

Phase3: In the final phase of this research, we iterated our 
working checklists with contacts at the case companies that 
participated in the first two stages of this research. The data 
collection activity in this phase were emails and LinkedIn 
messages. The focus of this phase was on validating the 
completeness of checklists (that no steps are missing), and their 
order (that the steps appear in the right order). We updated our 
report accordingly based on the input that we received from the 
experimentation experts. 
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B. Threats to Validity 

In this section, we briefly  discuss our efforts in mitigating 

the validity concerns  that are applicable for this type of 

qualitative research [34].  In particular construct validity, 

external validity, and reliability.  
Construct validity. The authors of this paper as well as the 

participants of the study are all well-familiar with online 
controlled experimentation and each other. For example, 
practitioners that participated in this study frequently collaborate 
with each other. Despite this, and when reaching out to 
practitioners in phase 2, we used a template in which we 
explained the study objective and terms used in our 
questionnaire before revealing the questions. Also, several 
practitioners asked for clarifying questions during phase 2 (for 
example, regarding the granularity of the answers that we seek). 
In such scenarios, we replied with a predefined template that 
contained a few example answers from phase 1. This increased 
the mutual understanding of the phenomena under investigation 
and partially mitigates construct validity threats.  

External validity. The first two authors selected the case 
companies in an opportunity-based fashion. For example, the 
practitioners that responded to our questionnaire and later 
validated the findings are our acquaintances. Therefore, this 
research risks on being biased by this selection, as well as self-
reporting bias that the practitioners might have while answering 
our questionnaire. Despite this, the main contribution of this 
work has been derived based on the experience of several, 
experienced large-scale online companies, each running 
hundreds or thousands of experiments every year. Also, the 
domains of the participating case companies are broad (e.g. 
contain search-engine companies, accommodation providers, 
streaming services, etc.). Considering this, we believe that any 
company striving for a standardized and trustworthy experiment 
analysis process can benefit from our findings. 

Reliability. To mitigate reliability threats, we employed 
constant-comparison. In particular, each interpretation and 
finding was compared with existing findings from previous 
questionnaire response, and with the analysis findings that 
emerged in the preceding phase. We used all of the data that we 
had available (comprehensive data use) for the analysis, as well 
as used multiple and independent analysts throughout the 
analysis process (analyst triangulation).  

IV. EXPERIMENT ANALYSIS CHECKLISTS 

In this section, we present the key analysis steps of an 

experiment, and the checklists that we derived for each of them. 

In particular, we first provide two checklists for the Experiment 

Design & Execution phase of the Experiment Lifecycle 

illustrated on Figure 1. Second, we provide a checklist for 

analyzing experiments when they are completed – Experiment 

Debrief Analysis. Third, we provide a list of critical symptoms 

of unhealthy experiment execution and tips to mitigate them. 

Finally, we discuss how to implement the checklists in an 

organization. By stringently applying these checklists, 

companies can reduce Experiment Harm – the wasted time, 

wrong learnings, and possible wrong decisions. As discussed 

before, mistakes can result in very wrong decisions, not just 

delays but also in active harm to users and business.  

A. Experiment Design Analysis 

Based on our findings, there are ten items that need to be 

checked  before an experiment can be started. We summarize 

them in Checklist 1 and discuss each of the items next.

 

 
Checklist 1. Experiment Design Analysis. 

 Experiment hypothesis is defined and falsifiable. 

Experiment analysis begins with the transformation of an idea 

for testing into an experiment. The first step in this process is 

the impact analysis. Every change for testing should be 

introduced with a description of what the change that will be 

evaluated is (e.g. a change to ranking algorithm), who will see 

the change (e.g. users searching for accommodations in 

Europe), what the expected impact is (increase in booking 

rates), and how this impact is connected to the top-level 

business goals (increase in revenue). Most importantly, an 

impact analysis should contain a line of reasoning – belief - that 

explains why a change is expected to have an impact. Common 

questions that help in evaluating this item are “Why are we 

improving this?”, “Why is existing state not good enough?”, 

“Why will the change make a difference?”, “Will it help the 

users, the business, or both?” 

Every experiment requires a hypothesis that combines the 

change in an experiment with its impact and reasoning why the 

expectation is as it is. Although we have seen many different 

ways in which companies track hypothesis for experiments, the 

following template [36] is one of the most crisp ones: “Based 

on [qualitative/quantitative] insight, we predict that [change 

X] will cause [impact Y].” This template combines the expected 

impact Y, which should be defined as a change to a metric for 

a certain delta due to some change X, with the insight that drove 

the experimenter into designing an experiment. Combining all 

three into a single statement makes the hypothesis an educated 

guess about the expectations of the experiment. 

The hypothesis needs to be defined in such a way that it 

can be possible, with a single or multiple of experiments, to 

falsify it – show that it was wrong. In the contest of 

experimentation, to falsify a hypothesis typically means ability 

to express the hypothesis as a metric and having sufficient 

telemetry to compute that metric. For example, most web sites 

do not have profiles containing gender information for all their 

visitors. For such a site, an example of a non-falsifiable 

hypothesis is: “this redesign of the site will make it more 

EXPERIMENT DESIGN ANALYSIS 

 Experiment hypothesis is defined and falsifiable. 

 Experiment design to test the hypothesis is decided. 

 Metrics and their expected movement are defined. 

 Required telemetry data can be collected. 

 The risk associated with testing the idea is managed. 

 The minimum size effect and OCE duration are set. 

 Overlap with related experiments is handled. 

 Criteria for alerting and shutdown are configured. 

 Experiment owners for contact are known. 

 Randomization quality is sufficient. 
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appealing to female visitors”. There is no way to disprove such 

hypothesis in the absence of accurate gender information. In 

contrast, a good falsifiable hypothesis could be “this redesign 

of the site will increase visits to the site”. Visits can usually be 

accurately measured and, therefore, if the redesign shows a 

decrease in visits the hypothesis will be falsified. 

 Experiment design is decided. There are a number of 

different experiment designs. One of the most common 

approaches is the single factor OCE (SF-OCE). In an SF-OCE, 

one change to the product is being applied in the treatment 

group. This is different from a MultiVariate OCE (MV-OCE) 

where multiple changes are applied to the treatment group at 

the same time. While analysis and interpretation of MV-OCEs 

is more challenging compared to single change experiments, 

they allow for multiple changes to be tested on the same 

audience at the same time, and detection of interaction between 

them can be handled. SF-OCEs are on the other hand more 

convenient both from a product engineering perspective (e.g. 

after a single change is developed the experiment can be started 

without the need to wait for other factors to be developed) as 

well as from the analysis perspective. An extensive discussion 

on selecting the most appropriate design is described in [37].  

 Metrics and their expected movement are defined. 

It is typical for novice experimenters to care about only one 

metric when running the experiment – the specific user 

behavior the feature being tests is designed to induce. Prior 

research, however, discusses that to gain full understanding of 

experiment results, in addition to measuring the direct impact 

of the feature (feature metrics), three other important groups of 

metrics need to be computed [10], [30], [38]. Data quality 

metrics reveal issues with the data collection such as rate of data 

loss or cookie churn. Guardrail metrics reveal movements in 

measures that represent important business constraints and 

which should not be impacted by experiments outside a defined 

band.  Finally, success metrics reveal whether the feature being 

tested helps move the product closer to achieving long-term 

company goals – these metrics are key to evaluating the overall 

success of the experiment and are usually based on higher-level 

user behavior patterns not having to do with any single feature. 

An example of a success metric could be a number of days the 

user visited the site during the experiment. The following paper 

contains guidelines in designing the aforementioned metrics 

[39]. To aid in interpretation of results and to help avoid pitfalls, 

our advice is to present these metrics either as a balanced 

scorecard [9] or through intuitive visualizations such as the one 

proposed in [8].  

 Telemetry data can be collected. Data quality is of 

critical importance for OCE analysis. It all starts with the source 

of the data – product telemetry. In most software products 

telemetry logging was put in place for debugging or testing 

purposes [40]. The challenge with this type of logging, 

however, is that it does not necessarily reveal how the products 

are used. Hard to use data limits the number and types of 

metrics that experiment analysts can define, and the number of 

ad-hoc analyses they will do, all resulting in sub-optimal 

decisions and fewer learnings obtained from the experiments. 

Our recommendation is to create a centralized catalog of log 

events and implement those events in product as described in 

[41]. In particular, events such as clicks, swipes, durations, 

dwell times, feature usage, exceptions, or anything else that 

your product can measure [42] should be captured and reliably 

stored for later use in metric computation.  

Some experiments will also require triggered telemetry for 

successful analysis. Data collected from web traffic on a large 

site or a product used by many users typically has tremendous 

variability, thereby making it difficult to run an experiment with 

sufficient power to detect effects on smaller features. Consider 

for example a change that impacts only the check-out page – 

say a new payment option. Many users that visit web stores 

never arrive to the checkout page. From the analysis 

perspective, the data generated by these users can be considered 

noise. For that reason, triggered telemetry - log signals that 

indicate the visibility or potential visibility if in control of the 

new feature – needs to be implemented for features that are 

active or visible under special conditions.  
 Feature risk is managed. Experimentation exposes 

new features and ideas to thousands of users. There three 

concerns with this – technical debt, visibility, and user impact. 

First, while we recommend testing the new code changes for 

correctness, certain things such as scalability may not 

necessarily need to be optimal. For example, since only a 

limited number of users will be exposed to a new feature in an 

experiment, technical debt is acceptable. However, it should be 

acknowledged and taken care of in a later release. Second, since 

the experiment exposes real users, competitors may get an early 

insight into the direction of the product development. In such 

scenarios, longer experiments with smaller audiences may be 

necessary. Finally, even though the experiment will run on a 

limited number of users, a possible very bad experience may 

make them churn – making a big loss. 

 Effect size and experiment duration are set. 

Experiment analysis should contain a minimum effect size  - 

the minimum Δ% in the metrics of interest that we care about 

detecting due to the new feature or change in the code, as well 

as the duration of the experiment. This is a trickier problem than 

it seems. On the one hand, the running period needs to be long 

enough so that experimenters can collect the data they need. On 

the other hand, it cannot be too long since knowing the result 

early is of interest for product development. In addition, as 

mentioned above, multiple metrics of interest are usually 

involved. In general, detecting smaller changes will typically 

require longer experiments (as more users will use each of the 

experiment variants), and vice-versa. Also, note that minimum 

effect size Δ% differs from the expected effect size. The latter 

is difficult to predict as it may substantially differ from 

experiment to experiment. Minimum effect size on the other 

hand is typically more consistent across experiments, 

determined by business requirements and/or the number of 

active users of the product.  

Based on the minimum effect size, as well as the standard 

deviation which could be estimated based on historical data, 

experiment duration can be determined using a standard 

statistical formula [43]. Assuming the number of users is 

sufficient, a good practice is to always run experiments at least 
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for a week or two in order to cover weekdays, weekends, 

possible holidays, different traffic sources, and so on, as well as 

to consider the nature of the product. Other factors like apriori 

expectation of novelty or primacy effects in features, or warm 

up period needed for machine learning models may also be a 

factor for determining the duration of an experiment. 

 Overlap with related experiments is handled. As 

companies grow their experimentation capabilities, several 

feature teams experiment at the same time. An overlapping 

single-factor design will therefore grow in importance. This 

increases the possibility of an overlap – a situation in which two 

or more experiments will interact and cause issues. An overlap 

can be handled with stringent coordination upfront, or through 

overlapping infrastructure described in [10], [29]. However, 

due to unknown and often unexpected nature of interactions 

among overlapping experiments, this problem cannot be 

completely eliminated through pre-experiment coordination 

and testing. Analysis to detect interactions among experiments 

will also need to be performed during the execution stage.  

 Criteria for alerting and shutdown are configured. 

Some ideas may cause a significant impact on the business by 

e.g. unintentionally degrading the quality of the service.  

Therefore, it is important that experimenters or experimentation 

platform itself are aware of the criteria for alerting or shutting 

the experiments down. In contrast to experiment analysis that 

happens after an experiment is completed (which requires a 

certain amount of data-points for statistical significance), large 

degradations can be detected on much smaller samples. What is 

important, however, is that the alerting and shutdown criteria 

take into account the magnitude of the change in addition to its 

statistical significance. For example, an alert configured to shut 

down a web experiment when 1ms delay has been detected may 

be too aggressive and cause many false positives. In contrast, a 

large increase in timeouts may be an indicator of a serious issue 

which, depending on the severity, should be handled.  

 Experiment owners are known. Every experiment 

should have a group of experiment owners that are responsible 

for monitoring and operations, and that can be contacted in case 

of a need. For example, experiment owners may start and stop 

the experiment, as well as act on any alerts. We recommend to 

always have several owners for a single experiment in order to 

guarantee availability of at least one in situations that may 

require an urgent action by an operations engineer. Several 

owners also increase the likelihood of knowledge transfer and 

sharing of learnings that is critical for growing a culture of 

experimentation.  

 Randomization quality is sufficient. While 

randomization may sound simple, correctly randomizing the 

users into experiment variants in the presence of poor 

instrumentation, data loss, various corner cases like null user 

ids and user id churn, etc. is a challenging problem. 

Randomization needs to be validated and shown to be working 

correctly via a series of A/A tests. In particular, the distribution 

of p-values should be close to uniform. There are also advanced 

methods to deal with randomization imbalance which may 

happen by chance, discussed in [10]. 
 

B. Experiment Execution Analysis  

During experiment analysis, we identified three items that 

need to be checked for correct and effective experimentation. 

 

 
Checklist 2. Experiment Execution Analysis. 

 No serious data quality issues are present. Complete 

and sufficient data are critical for an accurate analysis of OCEs. 

That said, the first item that should be checked while 

experiment is being executed is that the instrumentation and 

data pipeline are performing as designed. Data loss is present 

whenever client-side telemetry is used to compute metrics.  

Excessive amount of loss as well as possibility of treatment 

impacting the rate of loss can both skew experiment results. 

Data quality metrics that measure the amount of loss need to be 

created as described in [44], and overall sensitivity of results to 

the amount of loss needs to be understood. In particular, the 

following questions should be answered to satisfy this check: 

are the defined telemetry being logged? Is there any bias in the 

assignment of a variation? What is the data-loss rate in the 

collection process? Are there any quality issues yielding 

untrustworthy results?  

To answer these questions, data quality tests can be 

executed on the collected data. One such test is the simple 

Sample Ratio Mismatch (SRM) which utilizes the Chi-Squared 

Test to compare the ratio of the observed user counts in the 

variants against the configured ratio.  
“If metrics are down dramatically, we need to pull back and debug. 

Anything around logging, assignment, and data collection that's going 

wrong? Or is it actually delivering a bad experience?” 

-- Data Scientist 

 Experiment is not causing excessive harm. Many 

experiments result in outcomes that are different from expected. 

Statistics from Microsoft Bing state that only about 1/3 of ideas 

that people experiment with do what they were aiming to do, 

one third has no significant impact whatsoever, and a third of 

ideas results in harmful outcomes [45]. For example, some 

OCEs may negatively impact product quality metrics and cause 

a degradation of service. This can result in harm for the user 

(e.g. by not being satisfied with the performance of the product 

while in use) and for the business (e.g. by users not returning to 

use the product as frequently as in the control variation without 

the change). For these reasons, key success metrics and 

guardrails for the product should be examined for large 

degradations while the experiment is in execution.  

If degradations are discovered, the experiment should be 

stopped before the predetermined end-time. A good practice for 

technically demanding experiments that may be hard to roll-

back instantly is to gradually increase the size of the treatment 

group and examine metrics for large degradations at different 

stages, for example, after a few hours, a day, a week, etc.  

EXPERIMENT EXECUTION ANALYSIS 

 No serious data quality issues are present. 

 Experiment is not causing excessive harm.  

 Possibility of early stopping is evaluated.  
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 Possibility of early stopping is evaluated. 

Understandably, despite having calculated the required 

experiment duration prior to the experiment start, 

experimenters are inclined to “peek” at the results and stop the 

experiment early, especially in situations where treatment 

seems to be doing much better than originally expected. Such 

early stopping can make product development leaner as 

decisions on the features can be made earlier. However, there 

are several pitfalls associated with early stopping [7], [46]. For 

instance, simply monitoring at p-values and stopping as soon as 

statistical significance is reached is wrong and should be 

discouraged. Therefore, a decision to stop early should be made 

with great care. To avoid complexities with determining when 

early stopping may be Ok, we recommend relying on 

experimentation platform recommendations rather than leaving 

the issues in the hands of experimenters. Advanced 

experimentation platforms may implement statistical tests 

which allow for early stopping, such as [47], and notify the user 

when it is fine to stop early.  

C. Experiment Debrief Analysis 

For experiment analysis after the OCE is completed, we 

identified nine critical items to check before experiment 

lifecycle is closed. We list them in Checklist 3 and discuss next.

 

 
Checklist 3. Experiment Debrief Analysis. 

 Experiment has sufficient power. The hypothesis 

defined before the experiment was started required a certain 

number of users to reach the required statistical power. At the 

end of the experiment, analysts should check if the number of 

units in the experiment variants is equal to or greater to the pre-

calculated number. An alternative is to calculate the minimum 

detectable effect with the actual number of users and notify the 

experiment analyst if it is larger than what was initially 

provided. Note that observed effect size should not be used in 

the power calculation [48].  

 Data quality metrics are not negative. The only way 

that experiment results can be trusted is by first examining 

whether there are any data quality issues that could make the 

analysis process invalid. For this step, the same data quality 

analysis is recommended as for the analysis of the experiment 

during the experiment execution phase.  

 Metrics are examined for choosing a winning 

variant. Following the metric structure setup during pre-

experiment analysis, the winning variant can be chosen as 

follows. First, data quality metrics are examined to ensure the 

experiment results can be trusted. Second, feature metrics are 

checked to ensure the feature is functioning as expected. Third, 

success metrics are evaluated to determine whether the feature 

results in long-term benefit for users and business. Finally, 

guardrail metrics are checked to ensure there is no large 

negative short-term impact on business metrics.  

 Novelty effects are excluded. Certain changes to 

experiments can cause changes in product usage that do not 

replicate over time. For example, a new feature in a product 

might increase the usage of the product at first, however, over 

time the usage regresses. Although the experiment results 

overall are in favor of the variant with the new feature, an 

analysis over time can help in determining whether the impact 

is sustained over time.   
 In-depth analysis has been performed. The decision 

on which variant won and should be shipped is only one benefit 

of experimentation. Experiments should also be analyzed in 

depth in order for interesting insights to be discovered, that 

could be used to iterate on the feature or provide ideas for new 

features. For example, although an experiment is neutral 

overall, one segment of users may have very positively reacted 

on the new feature, while another segment reacted negatively. 

These types of heterogeneous movements are common in 

experiments at scale and should be detected. Guidance on how 

to achieve this is described in [8].  

 Skewed data is treated. Another item that should be 

checked with in-depth analysis is whether there are any outliers 

skewing the data. Outliers may indicate data quality issues 

which should be understood, fixed or dealt with by, e.g., 

capping. They may also indicate presence of legitimate special 

users. Consider for example a scenario where one user 

purchases 100% of items more than the average user in the 

group (for example, a travel agent on an accommodation 

booking website). In this case we do not want to cap such users. 

Instead, we want to create several metrics that look separately 

at different sub-populations or behavior patterns of users. 

Guidance on this process is provided in [49].  

 Coordinated analysis of experiments is done. The 

results of our survey showed that often experiments are not 

executed in isolation but are a part of a coordinated initiative to 

answer a higher-level business question broader than a single 

feature. For example, a manager of a sales team may be 

interested in whether purchasing a video recording software and 

training the sales reps to record personalized videos will 

improve performance. To answer this question, a series of 

experiments needs to be run evaluating the impact of including 

videos in e-mails across different sales scenarios and at 

different stages of the sales process (initial e-mail, follow-up, 

closer to the deal, etc.) Such experiments need to be analyzed 

in coordinated fashion to arrive to an answer to the broader 

question being asked. A similar situation often occurs if the 

feature being experimented with is a follow-up from or is based 

on the result of an earlier experiment. In either case, it is 

important to view the results in context of other similar or 

related experiments. 

EXPERIMENT DEBRIEF ANALYSIS 

 Experiment has sufficient power.  

 Data quality metrics are not negative. 

 Metrics are examined for selecting the winner. 

 Novelty effects are excluded. 

 In-depth analysis has been performed. 

 Skewed data is treated. 

 Coordinated analysis of experiments is done.  

 Validation of experiment outcome is conducted. 

 Experiment learnings are institutionalized 
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 Validation of experiment outcome is conducted.  

Experimentation has the incredibly powerful property of 

reproducibility. Experiments that only marginally impact the 

metrics should be executed again, preferably with higher power 

(for example, allocating a larger number of users to the 

experiment variants) to validate the results and learnings.  

 Experiment learnings are institutionalized and 

shared. The most valuable outcome of every experiment 

should not be the status whether the change has an impact on 

the product or not. The highest value are the learnings that can 

be captured in a series of experiments. These can be used to 

design future experiments and steer Intrapreneurship [50]. We 

recommend that analysts capture experiment hypothesis and 

outcomes, final ship decisions, links to scorecards and clearly 

annotated information about the scorecard that was used to 

make the final decision. If the experiment has changed 

something visually (for example, it created a UI change), 

screenshot should be captured if they were not recorded before 

it was started. Based on our data analysis, we identified three 

approaches to institutionalizing experiment learnings. The first 

approach which is applicable in the early stages of 

experimentation growth [30] is to manually capture learnings 

in a reporting tool such as Word, Power Point or Excel 

template. The second approach which works well for tens to 

hundreds of experiments yearly is to use a ticketing tool where 

state management and searching across different experiments is 

effortless. At very large scale, experiment learning capturing 

should be as automated as possible and preferably well 

integrated in the experimentation platform [10]. 

D. Critical Symptoms and Remedies 

Throughout experiment analysis process, practitioners may 

experience a number of symptoms - issues that can block them 

from continuing to analyze the experiment. In this section, we 

provide three symptoms based on the experience from our case 

companies – one for each of the analysis checklists - and 

remedies to resolve them. This is not a comprehensive list, but 

rather a set of common issues and solutions.  

Symptom 1: Lack of experiment coordination. Deciding 

which experiments should start next, which should be stopped, 

etc. can be a challenging task. Is an experiment in the queue 

impacting the part of the product where other experiments are 

already ongoing? What will the union of two experiment 

treatments be? In a part of the product with many ideas, which 

one should be experimented with next? While in the early 

stages of experimentation growth coordinating such 

experiments may be simple, performing this in a state where 

multiple teams are running multiple experiments can be very 

challenging. We recommend that product development 

establishes a role of Experiment Coordinator (EC). One of 

the main responsibilities of EC should be the ownership of 

Experiment Review Meeting. 
We put the entire experimentation team into the room and confirm 

the Product Manager (owner), the program manager, the analyst, the 

developers/engineers, and the QA that worked on the experiment are 

present.   --Principal Product Manager of Experimentation 

 This meeting has several goals. First, new experiment ideas 

are reviewed, assigned to their respective categories, and 

prioritized within those categories. Second, progress of the 

currently running experiments is reviewed and they are checked 

to ensure none of them need to be shut down due to clearly bad 

results. Third, new experiments that are ready and can be started 

need to be scheduled to start in the upcoming week. Fourth, the 

results of the recently completed experiments are reviewed and 

discussed, and decisions are made about promoting some 

variants to default and turning off others.  

Symptom 2: Consistently failing A/A tests. A/A tests that 

consistently show non-uniform distribution of p-values are a 

symptom of a serious issue in the experimentation system. Our 

advice is not to proceed with an A/B test if a series of  A/A tests 

fails, but rather debug the experimentation system to discover 

the root cause. One cause of this symptom can be the technical 

differences in how control and treatment variants are applied, 

independent of the treatment. For example, experiments that 

redirect only the treatment group to another page will have a 

short delay and consequently degrade performance metrics for 

that variant. We recommend examining how the variations are 

set-up and provide a controlled environment for all of them by, 

if needed, causing a redirection to all of the variations. Another 

reason for this symptom can be a biased estimate of the 

variance. For example, if the randomization is performed per 

user and the metric is aggregated per another unit different than 

user (e.g. a page view), the computation of the variance should 

be done through a delta method or through bootstrapping. Next, 

A/A tests can fail due to unequal splits of variants using 

shared resources (e.g. cache). In such situations, the larger 

variant will have a greater impact on the shared resource, which 

can negatively impact the experience for users in the smaller 

group. We recommend running A/A tests with equal groups.  

Also, A/A tests can consistently fail also due to practitioner 

actions.  For example, when a certain variation is performing 

poorly, someone in the company might have restarted it in the 

effort to improve it. Our recommendation is to provide alerts to 

users when an action that will likely cause a failing A/A test is 

triggered. The alert should notify the experimenter about the 

consequences or advise them to stop the experiment first before 

updating an individual variation.  

Symptom 3: Consistently falling to decide. When at the 

end of an experiment that moved a success metric in a 

statistically significant way there is no consensus among the 

stakeholders that the change was actually good, practitioners 

will experience decision paralysis. This is the inability to decide 

whether the experiment was good or bad for the users: some 

people might argue that it was and others that it was not, there 

are plausible explanations for either way, there are counter-

examples in the data, and perhaps at the end the decision is 

made to go against the results of the test. One solution to this 

challenge is to invest into designing good success metrics. 

Practical guidance on how to resolve this and how to design 

sensitive success metrics is described in [51]. A single metric 

makes the exact definition of success clear, possibly through 

explicit weighted combination of metrics that describe the core 

components of the product. Of course, another solution is to be 

explicit about the ship criteria while designing the experiment.  
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“We always advise people to write their shipping criteria in such 

a way that a colleague could make the decision for them if they go on 

an unexpected vacation.” 

--Senior Product Owner, Experimentation 

E. Implementing the Checklists 

To implement the checklists in your organization, we 

suggest the following four steps:   

1. Identify which of the checks are automated. Typically, 

experimentation platforms and commercially available tooling 

will automate several steps described in our checklists. Identify 

the checks that your platform supports, and the checks that need 

to be done manually.   

2. Provide analysts with annotated checklists. Annotate 

each of the checklist items with [Auto-Checked] or [Manual-

Check] depending on your findings from step 1. Provide the 

checklists with these labels to the analysts along with the 

instructions on how to interpret the labels.  

3. Track and display checks’ status for every OCE. The 

items that are supported by the tooling should be visualized to 

the experimenters, informing that they have either passed or 

failed. Just like a regular unit test. For the manual checks, 

provide analysts an option to tick/enter information about the 

status of the check. 

4. Automate as many of the checks as possible. While 

relying on the checklists improves the effectiveness of the work 

[33], automating as many checks as possible should be one of 

the goals of experimentation growth.  

V. CONCLUSION 

The scale at which companies are striving to experiment is 

fundamentally changing. Not only is experimentation rapidly 

expanding within the large online software companies like 

Booking.com, and Microsoft [1], but also companies in other 

domains are catching up [2]. Without guidelines and checklists 

for trustworthy analysis of experiments, however, the scientific 

method of running OCEs will not scale in a trustworthy manner. 

If experiments are not analyzed correctly, the learnings from 

them may steer product development teams into making wrong 

decision, causing harm rather than adding value.  

In this paper, we presented the key checklists for 

trustworthy experiment analysis at large scale, and three 

symptoms of unhealthy experiment execution. For each of the 

symptoms, we provided a number of remedies.  

Based on our findings, we can conclude that most of the 

experiment analysis actually happens before the experiment is 

even started. This complements and contrasts the related 

literature (see e.g. [8], [24], [49], [52]) where experiment 

analysis is a discussion for the final stage of the experiment 

lifecycle (e.g. when an experiment is completed).  

Furthermore, the checklists in this paper should be seen as 

a starting point towards increasing the trustworthiness of 

experimentation in the software industry. However, similarly to 

checklists in other industries, they likely need to be adapted for 

the company that uses them [33].  Future research needs to be 

done in applying these checklists at companies that were not 

part of this study and examining to what extent they satisfy their 

purpose of increasing the trustworthiness of OCEs.  
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