
This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

Three Key Checklists and Remedies for Trustworthy

Analysis of Online Controlled Experiments at Scale

Aleksander Fabijan

Malmö University

Malmö, Sweden

aleksander.fabijan

@mau.se

Pavel Dmitriev

Outreach.io

Seattle WA, USA

pavel.dmitriev

@outreach.io

Helena Holmström Olsson

Malmö University

Malmö, Sweden

helena.holmstrom.olsson

@mau.se

Jan Bosch

Chalmers University of Tech.

Göteborg, Sweden

jan.bosch

@chalmers.se

Lukas Vermeer

Booking.com

Amsterdam, Netherlands

lukas.vermeer

@booking.com

Dylan Lewis

Intuit

San Diego, USA

dylan_lewis

@intuit.com

Abstract— Online Controlled Experiments (OCEs) are

transforming the decision-making process of data-driven

companies into an experimental laboratory. Despite their great

power in identifying what customers actually value,

experimentation is very sensitive to data loss, skipped checks,

wrong designs, and many other ‘hiccups’ in the analysis process.

For this purpose, experiment analysis has traditionally been done

by experienced data analysts and scientists that closely monitored

experiments throughout their lifecycle. Depending solely on scarce

experts, however, is neither scalable nor bulletproof. To

democratize experimentation, analysis should be streamlined and

meticulously performed by engineers, managers, or others

responsible for the development of a product. In this paper, based

on synthesized experience of companies that run thousands of

OCEs per year, we examined how experts inspect online

experiments. We reveal that most of the experiment analysis

happens before OCEs are even started, and we summarize the key

analysis steps in three checklists. The value of the checklists is

threefold. First, they can increase the accuracy of experiment set-

up and decision-making process. Second, checklists can enable

novice data scientists and software engineers to become more

autonomous in setting-up and analyzing experiments. Finally, they

can serve as a base to develop trustworthy platforms and tools for

OCE set-up and analysis.

Keywords— ‘Online Controlled Experiments’, ‘A/B testing’,

‘Experiment Checklists’

I. INTRODUCTION

“The road to hell is paved with good intentions and littered with

sloppy analysis.” – ANONYMOUS

Online Controlled Experiments (OCEs) are becoming a

standard operating procedure in data-driven software

companies[1]–[4]. When executed and analyzed correctly,

OCEs deliver many benefits. For example, experiments

increase the quality of the product, enable feature teams to learn

what changes and features are bad for the users of the product,

and align the organization around a unifying goal [4], [5].

To learn about the impact of an experiment, OCEs need to

be accurately analyzed. This may not seem difficult at first,

however, analyzing experiments at large scale is challenging

[6], [7]. To arrive at an informed decision whether to ship or

not to ship a new feature, many steps need to be meticulously

executed in the correct order by an experienced analyst. For

example, before an experiment is started, analysts need to

determine the design of the experiment (e.g. A/B or

multivariate), the audience that will be exposed to the

experiment (e.g. US market or Mobile users), the desired

sample size, etc. During the experiment, analysts will examine

specific metrics for business harm, and after the experiment is

completed a stringent process of arriving to a ship/no-ship

decision will be applied. The critical insights needed for an

informed business decision may be buried and can only be

discovered through a deep-dive analysis that spans through

multiple heterogeneous segments of users [8]. One way to

mitigate analysis challenges is to develop tools and procedures

that support companies in the analysis process [8]–[10].

However, a fundamental understanding of what to examine and

in what order is critical even for mature companies that apply

automated analysis and examination tools [11], [12].
The importance of accurate experiment analysis is even

greater for companies and feature teams that are new to
experimentation. As more and more companies adopt the
scientific method in their product development [1]–[3], the
likelihood of analytical ineptitude – the lack of skill to correctly
apply stringent experiment analysis – is high. Data scientists
[13] with skills and experience to execute and analyze
experiments are scarce. Although data scientists are already one
of the hardest profession to hire [14], many of them specialize
in Machine Learning and A.I. where experimentation skills are
secondary to their other tasks. And since some of the steps in
experiment analysis can be automated through tooling, it may be
tempting to do that instead. However, great care needs to be
taken to transparently present experiment results to analysts
using those tools [11]. For example, some experimentation

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

platforms reveal only the outcomes. Other information such as
the underlying assumptions about the representativeness of the
sample in an experiment are left implicit even though
experiment analysts should have known to what extent they
were satisfied. Failing to recognize a violated assumption can
(confidently) steer the product team into making wrong
conclusions and introducing harm to business [11]. Bad data can
be actively worse than no data, making practitioners blinded
with pseudoscience.

"To call in the statistician after the experiment is done may be no

more than asking him to perform a post-mortem examination: he may

be able to say what the experiment died of.” -- Ronald Fisher

In this paper, we present the most critical steps of experiment
analysis at Microsoft, and at a number of other large-scale
companies that run OCEs. The research question that we aim to
answer is “How can Online Controlled Experiments be reliably
analyzed?”. Our solution to the aforementioned challenges is
ingeniously simple, yet tremendously powerful. To guarantee
high level of correctness in experiment analysis, we provide
product development practitioners involved in the
experimentation process with the same mechanism that pilots,
doctors, and even market investors rely on a daily basis – a
checklist.

The answer to our research question and our main
contribution is a set of inductively derived checklists that can be
used to analyze experiments throughout their lifecycle. Our
checklists are a synthesis of experiment analysis insights from
several software companies. In particular, we provide a
checklist for experiment analysis in the design stage, for
experiment analysis in the execution stage, and a checklist for
experiment analysis when experiments are completed. In
addition, we provide a list of common symptoms that make the
experiment execution process unhealthy, contributing to invalid
experiment analysis.

The value of our contribution is threefold. First, checklists
can increase the accuracy of experiment set-up and decision
making process. Second, they can enable non-experienced data-
scientists, software engineers, and product managers to become
more autonomous in analyzing experiments. Finally, checklist
can be automated and our results can serve as a base for building
more reliable tooling. Ultimately this should lead to a greater
adoption of OCEs and increase the trustworthiness of OCEs.

The remainder of this paper is organized as follows. In
Section II, we present the relevant background and prior works.
In section III, we briefly discuss our method which we used to
derive our main contribution presented in section IV. We discuss
our work in Section V and conclude the paper in Section VI.

II. BACKGROUND

A. Experimentation in Software Product Development

In software development, the term “experimentation” can be
used to describe different techniques for exploring the value of
the changes introduced to a product [15]. For example,
experimentation could refer to iterations with prototypes in the
startup domain [16], [17], canary flying [18] of software features
(exposing a small percentage of users to a new feature or a
change), gradual rollout [18] (deploying a change to one
customer groups and expanding to the next one), dark launches

[19] (releasing new features disabled and testing them in
production), and controlled experimentation [20] - releasing
multiple variants of the product and evaluate the differences
between them through statistical tests. In this paper, and when
we discuss OCEs, we refer to the latter – the scientifically
proven technique of randomized clinical trials [21] in an online
setting, which we briefly introduce next.

B. Online Controlled Experiments

The theory of controlled experiments dates back to Sir

Ronald A. Fisher’s experiments at the Rothamsted Agricultural

Experimental Station in England during the 1920s [20]. In the

simplest controlled experiment, two comparable groups are

created by randomly assigning experiment participants to either

of them; the control and the treatment. The only difference

between the two groups is a change X. For example, if the two

variants are software products, they might have different design

solutions or communicate with a different server. If the

experiment were designed and executed correctly, the only

thing consistently different between the two groups of

participants is the change X. External factors such as

seasonality, impact of other product changes, competitor

moves, etc. are distributed evenly between control and

treatment. Hence any difference in metrics between the two

groups must be due to the change X (or random chance, that is

rejected as being unlikely using statistical testing). This design

establishes a causal relationship between the change X made to

the product and changes in user behavior, measured through

metrics.

C. Experiment Lifecycle

In our previous research [22], we introduced the Experiment

Lifecycle – the three main stages of every Online Controlled

Experiment. We visualize it on Figure 1 below.

Figure 1. The Experiment Lifecycle [22].

Based on the experience of analyzing hundreds of online

controlled experiments at Microsoft, we identified that every

experiment first enters the A - Ideation phase. In this phase,

practitioners propose changes to the product to evaluate their

impact. The second phase is the B- Design & Execution phase

where experiment ideas are transformed into experiments.

Here, for example, the power that will be needed to detect the

expect change is calculated, along with many other checks that

are increasing the likelihood of a valid experiment. Finally, in

the C - Analysis & Learning phase experimenters examine the

outcome of an experiment after it is stopped.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

In this paper, we focus on the latter two phases by inducing

checklists that apply there. While the ideation process of

selecting the idea to experiment with, out of many possible

ideas, is an important aspect and that experimentation helps

inform, the scope of this paper focuses more narrowly - on the

process for analyzing a concrete experiment.

D. Trustworthy Growth of Experimentation

The analysis of an isolated experiment as described above

is relatively simple. Correctly analyzing many experiments in a

production environment, however, is challenging. Prior work

both from us [10], [23] and from other researchers [24]–[26]

and companies such as Booking.com [11], [27], LinkedIn [28],

Google [29] and Facebook [19] stress that the growth of

experimentation is conditional on the correct execution of the

scientific method. For example, in the Experimentation Growth

model (EG model) presented in [30], we highlighted that

experimentation typically starts within an isolated feature team,

and quickly grows to other teams, departments and products

within an organization. The evolution is a journey that spans

over several stages of experimentation maturity. One of the

dimensions of the Experimentation Growth model that fuels

this growth is the Feature team self-sufficiency – the extent to

which individual feature teams manage experimentation set-up

and analysis tasks. In the initial ‘Crawl’ stage of the EG model,

this level is low as the teams rely on diligent experimentation

scientist. In contrast, in the final ‘Fly’ stage, most of the

experiments should be set-up and analyzed without experienced

data-scientist involvement.

The research question in this paper is related to the velocity

of advancing along this dimension, thereby accelerating

trustworthy growth of experimentation in software companies.

And our answer is to employ checklists.

E. Checklists

Checklists are an essential tool to prevent humans from

overlooking critical items. They are used by researchers and

practitioners of various experience levels and on all types of

positions and industries. For example, the effectiveness of

checklists has been reported both in qualitative research [31],

as well as in quantitative studies such as Randomized Clinical

Trials [32]. Furthermore, checklists help pilots dozens of time

a day to guarantee a safe flight, and doctors in an operating

room to overcome common complications.
The reason why checklists are so effective is that they solve

the two major challenges of human beings. These are human
fallibility and tendency to skip steps [33]. In online controlled
experiment analysis, a forgotten step or a wrong interpretation
of the data can have devastating consequences for the business.
For example, a failed data quality check can make the results of
an experiment invalid. Overlooking the failed test could lead the
team into believing that the results can be trusted and pivoting
the product into the wrong direction. Therefore, by inducing a
set of checklists through case study research described in the
next section, we hope to increase the reliability and
comprehensiveness of experiment analysis.

III. RESEARCH METHOD

In this section, we describe our research approach, present

the validity concerns, and state our mitigations for improving

the generalizability of this research.

A. Research Approach

The research presented in this paper is a result of ongoing

work with nine case companies that all run hundreds or

thousands of online controlled experiments every year. We

organized our work in three main phases, for which we present

our data-collection and data-analysis approaches as suggested

by Runeson and Höst [34] below.
Phase1: Our first step was a case study at Microsoft

Corporation, which we conducted between April 2016 and
August 2018. Our main data collection in this phase were (1)
experiment analyses observations and (2) documentation
analysis. The experiment analyses observations were both
opportunity-based, as well as structured studies. In particular,
the first author of this paper observed and recorded (screen
capture and audio recording) 22 practitioners that work at the
Analysis & Experimentation team while they examined real
online controlled experiments (on average 5 per participant).
This was a study that lasted 30minutes on average with every
participant, with a goal to identify how analysts examine
experiments. Practitioners working at Analysis and
Experimentation (A&E) team are domain experts and work with
experiments on a daily basis. To record as many insights as
possible, the participants were asked to speak out loud during
the study. The first author of this paper took notes during
experiment examinations and used them while examining the
recordings to elicit the key steps and items that individuals
examined in every experiment. In addition, the first two authors
worked at the case company and participated in hundreds of
experiment review meetings where practitioners from product
teams were sharing their learnings, pitfalls, and OCE analyses.

Phase2: To detail, increase the correctness, and improve the
generalizability of the findings induced in phase 1, the first two
authors of this paper (1) designed a questionnaire (available at
[35]) that asks the survey participants to reveal the key steps in
their experimental analysis, and (2) jointly reviewed related
literature referenced in this paper for experiment analysis steps
and explanations of them. In the questionnaire, we asked 8 open-
ended questions-see Appendix 1. We shared the questionnaire
with contacts (experimentation experts / experimentation
directors) that work at the following case companies: Airbnb,
Snap, Skyscanner, Outreach.io, Microsoft, Intuit, Netflix, and
Booking.com. We received a response from each of the
aforementioned companies through email. Based on the
information that our contacts provided in their responses, we
improved the initial checklists from phase 1.

Phase3: In the final phase of this research, we iterated our
working checklists with contacts at the case companies that
participated in the first two stages of this research. The data
collection activity in this phase were emails and LinkedIn
messages. The focus of this phase was on validating the
completeness of checklists (that no steps are missing), and their
order (that the steps appear in the right order). We updated our
report accordingly based on the input that we received from the
experimentation experts.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

B. Threats to Validity

In this section, we briefly discuss our efforts in mitigating

the validity concerns that are applicable for this type of

qualitative research [34]. In particular construct validity,

external validity, and reliability.
Construct validity. The authors of this paper as well as the

participants of the study are all well-familiar with online
controlled experimentation and each other. For example,
practitioners that participated in this study frequently collaborate
with each other. Despite this, and when reaching out to
practitioners in phase 2, we used a template in which we
explained the study objective and terms used in our
questionnaire before revealing the questions. Also, several
practitioners asked for clarifying questions during phase 2 (for
example, regarding the granularity of the answers that we seek).
In such scenarios, we replied with a predefined template that
contained a few example answers from phase 1. This increased
the mutual understanding of the phenomena under investigation
and partially mitigates construct validity threats.

External validity. The first two authors selected the case
companies in an opportunity-based fashion. For example, the
practitioners that responded to our questionnaire and later
validated the findings are our acquaintances. Therefore, this
research risks on being biased by this selection, as well as self-
reporting bias that the practitioners might have while answering
our questionnaire. Despite this, the main contribution of this
work has been derived based on the experience of several,
experienced large-scale online companies, each running
hundreds or thousands of experiments every year. Also, the
domains of the participating case companies are broad (e.g.
contain search-engine companies, accommodation providers,
streaming services, etc.). Considering this, we believe that any
company striving for a standardized and trustworthy experiment
analysis process can benefit from our findings.

Reliability. To mitigate reliability threats, we employed
constant-comparison. In particular, each interpretation and
finding was compared with existing findings from previous
questionnaire response, and with the analysis findings that
emerged in the preceding phase. We used all of the data that we
had available (comprehensive data use) for the analysis, as well
as used multiple and independent analysts throughout the
analysis process (analyst triangulation).

IV. EXPERIMENT ANALYSIS CHECKLISTS

In this section, we present the key analysis steps of an

experiment, and the checklists that we derived for each of them.

In particular, we first provide two checklists for the Experiment

Design & Execution phase of the Experiment Lifecycle

illustrated on Figure 1. Second, we provide a checklist for

analyzing experiments when they are completed – Experiment

Debrief Analysis. Third, we provide a list of critical symptoms

of unhealthy experiment execution and tips to mitigate them.

Finally, we discuss how to implement the checklists in an

organization. By stringently applying these checklists,

companies can reduce Experiment Harm – the wasted time,

wrong learnings, and possible wrong decisions. As discussed

before, mistakes can result in very wrong decisions, not just

delays but also in active harm to users and business.

A. Experiment Design Analysis

Based on our findings, there are ten items that need to be

checked before an experiment can be started. We summarize

them in Checklist 1 and discuss each of the items next.

Checklist 1. Experiment Design Analysis.

 Experiment hypothesis is defined and falsifiable.

Experiment analysis begins with the transformation of an idea

for testing into an experiment. The first step in this process is

the impact analysis. Every change for testing should be

introduced with a description of what the change that will be

evaluated is (e.g. a change to ranking algorithm), who will see

the change (e.g. users searching for accommodations in

Europe), what the expected impact is (increase in booking

rates), and how this impact is connected to the top-level

business goals (increase in revenue). Most importantly, an

impact analysis should contain a line of reasoning – belief - that

explains why a change is expected to have an impact. Common

questions that help in evaluating this item are “Why are we

improving this?”, “Why is existing state not good enough?”,

“Why will the change make a difference?”, “Will it help the

users, the business, or both?”

Every experiment requires a hypothesis that combines the

change in an experiment with its impact and reasoning why the

expectation is as it is. Although we have seen many different

ways in which companies track hypothesis for experiments, the

following template [36] is one of the most crisp ones: “Based

on [qualitative/quantitative] insight, we predict that [change

X] will cause [impact Y].” This template combines the expected

impact Y, which should be defined as a change to a metric for

a certain delta due to some change X, with the insight that drove

the experimenter into designing an experiment. Combining all

three into a single statement makes the hypothesis an educated

guess about the expectations of the experiment.

The hypothesis needs to be defined in such a way that it

can be possible, with a single or multiple of experiments, to

falsify it – show that it was wrong. In the contest of

experimentation, to falsify a hypothesis typically means ability

to express the hypothesis as a metric and having sufficient

telemetry to compute that metric. For example, most web sites

do not have profiles containing gender information for all their

visitors. For such a site, an example of a non-falsifiable

hypothesis is: “this redesign of the site will make it more

EXPERIMENT DESIGN ANALYSIS

 Experiment hypothesis is defined and falsifiable.

 Experiment design to test the hypothesis is decided.

 Metrics and their expected movement are defined.

 Required telemetry data can be collected.

 The risk associated with testing the idea is managed.

 The minimum size effect and OCE duration are set.

 Overlap with related experiments is handled.

 Criteria for alerting and shutdown are configured.

 Experiment owners for contact are known.

 Randomization quality is sufficient.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

appealing to female visitors”. There is no way to disprove such

hypothesis in the absence of accurate gender information. In

contrast, a good falsifiable hypothesis could be “this redesign

of the site will increase visits to the site”. Visits can usually be

accurately measured and, therefore, if the redesign shows a

decrease in visits the hypothesis will be falsified.

 Experiment design is decided. There are a number of

different experiment designs. One of the most common

approaches is the single factor OCE (SF-OCE). In an SF-OCE,

one change to the product is being applied in the treatment

group. This is different from a MultiVariate OCE (MV-OCE)

where multiple changes are applied to the treatment group at

the same time. While analysis and interpretation of MV-OCEs

is more challenging compared to single change experiments,

they allow for multiple changes to be tested on the same

audience at the same time, and detection of interaction between

them can be handled. SF-OCEs are on the other hand more

convenient both from a product engineering perspective (e.g.

after a single change is developed the experiment can be started

without the need to wait for other factors to be developed) as

well as from the analysis perspective. An extensive discussion

on selecting the most appropriate design is described in [37].

 Metrics and their expected movement are defined.

It is typical for novice experimenters to care about only one

metric when running the experiment – the specific user

behavior the feature being tests is designed to induce. Prior

research, however, discusses that to gain full understanding of

experiment results, in addition to measuring the direct impact

of the feature (feature metrics), three other important groups of

metrics need to be computed [10], [30], [38]. Data quality

metrics reveal issues with the data collection such as rate of data

loss or cookie churn. Guardrail metrics reveal movements in

measures that represent important business constraints and

which should not be impacted by experiments outside a defined

band. Finally, success metrics reveal whether the feature being

tested helps move the product closer to achieving long-term

company goals – these metrics are key to evaluating the overall

success of the experiment and are usually based on higher-level

user behavior patterns not having to do with any single feature.

An example of a success metric could be a number of days the

user visited the site during the experiment. The following paper

contains guidelines in designing the aforementioned metrics

[39]. To aid in interpretation of results and to help avoid pitfalls,

our advice is to present these metrics either as a balanced

scorecard [9] or through intuitive visualizations such as the one

proposed in [8].

 Telemetry data can be collected. Data quality is of

critical importance for OCE analysis. It all starts with the source

of the data – product telemetry. In most software products

telemetry logging was put in place for debugging or testing

purposes [40]. The challenge with this type of logging,

however, is that it does not necessarily reveal how the products

are used. Hard to use data limits the number and types of

metrics that experiment analysts can define, and the number of

ad-hoc analyses they will do, all resulting in sub-optimal

decisions and fewer learnings obtained from the experiments.

Our recommendation is to create a centralized catalog of log

events and implement those events in product as described in

[41]. In particular, events such as clicks, swipes, durations,

dwell times, feature usage, exceptions, or anything else that

your product can measure [42] should be captured and reliably

stored for later use in metric computation.

Some experiments will also require triggered telemetry for

successful analysis. Data collected from web traffic on a large

site or a product used by many users typically has tremendous

variability, thereby making it difficult to run an experiment with

sufficient power to detect effects on smaller features. Consider

for example a change that impacts only the check-out page –

say a new payment option. Many users that visit web stores

never arrive to the checkout page. From the analysis

perspective, the data generated by these users can be considered

noise. For that reason, triggered telemetry - log signals that

indicate the visibility or potential visibility if in control of the

new feature – needs to be implemented for features that are

active or visible under special conditions.
 Feature risk is managed. Experimentation exposes

new features and ideas to thousands of users. There three

concerns with this – technical debt, visibility, and user impact.

First, while we recommend testing the new code changes for

correctness, certain things such as scalability may not

necessarily need to be optimal. For example, since only a

limited number of users will be exposed to a new feature in an

experiment, technical debt is acceptable. However, it should be

acknowledged and taken care of in a later release. Second, since

the experiment exposes real users, competitors may get an early

insight into the direction of the product development. In such

scenarios, longer experiments with smaller audiences may be

necessary. Finally, even though the experiment will run on a

limited number of users, a possible very bad experience may

make them churn – making a big loss.

 Effect size and experiment duration are set.

Experiment analysis should contain a minimum effect size -

the minimum Δ% in the metrics of interest that we care about

detecting due to the new feature or change in the code, as well

as the duration of the experiment. This is a trickier problem than

it seems. On the one hand, the running period needs to be long

enough so that experimenters can collect the data they need. On

the other hand, it cannot be too long since knowing the result

early is of interest for product development. In addition, as

mentioned above, multiple metrics of interest are usually

involved. In general, detecting smaller changes will typically

require longer experiments (as more users will use each of the

experiment variants), and vice-versa. Also, note that minimum

effect size Δ% differs from the expected effect size. The latter

is difficult to predict as it may substantially differ from

experiment to experiment. Minimum effect size on the other

hand is typically more consistent across experiments,

determined by business requirements and/or the number of

active users of the product.

Based on the minimum effect size, as well as the standard

deviation which could be estimated based on historical data,

experiment duration can be determined using a standard

statistical formula [43]. Assuming the number of users is

sufficient, a good practice is to always run experiments at least

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

for a week or two in order to cover weekdays, weekends,

possible holidays, different traffic sources, and so on, as well as

to consider the nature of the product. Other factors like apriori

expectation of novelty or primacy effects in features, or warm

up period needed for machine learning models may also be a

factor for determining the duration of an experiment.

 Overlap with related experiments is handled. As

companies grow their experimentation capabilities, several

feature teams experiment at the same time. An overlapping

single-factor design will therefore grow in importance. This

increases the possibility of an overlap – a situation in which two

or more experiments will interact and cause issues. An overlap

can be handled with stringent coordination upfront, or through

overlapping infrastructure described in [10], [29]. However,

due to unknown and often unexpected nature of interactions

among overlapping experiments, this problem cannot be

completely eliminated through pre-experiment coordination

and testing. Analysis to detect interactions among experiments

will also need to be performed during the execution stage.

 Criteria for alerting and shutdown are configured.

Some ideas may cause a significant impact on the business by

e.g. unintentionally degrading the quality of the service.

Therefore, it is important that experimenters or experimentation

platform itself are aware of the criteria for alerting or shutting

the experiments down. In contrast to experiment analysis that

happens after an experiment is completed (which requires a

certain amount of data-points for statistical significance), large

degradations can be detected on much smaller samples. What is

important, however, is that the alerting and shutdown criteria

take into account the magnitude of the change in addition to its

statistical significance. For example, an alert configured to shut

down a web experiment when 1ms delay has been detected may

be too aggressive and cause many false positives. In contrast, a

large increase in timeouts may be an indicator of a serious issue

which, depending on the severity, should be handled.

 Experiment owners are known. Every experiment

should have a group of experiment owners that are responsible

for monitoring and operations, and that can be contacted in case

of a need. For example, experiment owners may start and stop

the experiment, as well as act on any alerts. We recommend to

always have several owners for a single experiment in order to

guarantee availability of at least one in situations that may

require an urgent action by an operations engineer. Several

owners also increase the likelihood of knowledge transfer and

sharing of learnings that is critical for growing a culture of

experimentation.

 Randomization quality is sufficient. While

randomization may sound simple, correctly randomizing the

users into experiment variants in the presence of poor

instrumentation, data loss, various corner cases like null user

ids and user id churn, etc. is a challenging problem.

Randomization needs to be validated and shown to be working

correctly via a series of A/A tests. In particular, the distribution

of p-values should be close to uniform. There are also advanced

methods to deal with randomization imbalance which may

happen by chance, discussed in [10].

B. Experiment Execution Analysis

During experiment analysis, we identified three items that

need to be checked for correct and effective experimentation.

Checklist 2. Experiment Execution Analysis.

 No serious data quality issues are present. Complete

and sufficient data are critical for an accurate analysis of OCEs.

That said, the first item that should be checked while

experiment is being executed is that the instrumentation and

data pipeline are performing as designed. Data loss is present

whenever client-side telemetry is used to compute metrics.

Excessive amount of loss as well as possibility of treatment

impacting the rate of loss can both skew experiment results.

Data quality metrics that measure the amount of loss need to be

created as described in [44], and overall sensitivity of results to

the amount of loss needs to be understood. In particular, the

following questions should be answered to satisfy this check:

are the defined telemetry being logged? Is there any bias in the

assignment of a variation? What is the data-loss rate in the

collection process? Are there any quality issues yielding

untrustworthy results?

To answer these questions, data quality tests can be

executed on the collected data. One such test is the simple

Sample Ratio Mismatch (SRM) which utilizes the Chi-Squared

Test to compare the ratio of the observed user counts in the

variants against the configured ratio.
“If metrics are down dramatically, we need to pull back and debug.

Anything around logging, assignment, and data collection that's going

wrong? Or is it actually delivering a bad experience?”

-- Data Scientist

 Experiment is not causing excessive harm. Many

experiments result in outcomes that are different from expected.

Statistics from Microsoft Bing state that only about 1/3 of ideas

that people experiment with do what they were aiming to do,

one third has no significant impact whatsoever, and a third of

ideas results in harmful outcomes [45]. For example, some

OCEs may negatively impact product quality metrics and cause

a degradation of service. This can result in harm for the user

(e.g. by not being satisfied with the performance of the product

while in use) and for the business (e.g. by users not returning to

use the product as frequently as in the control variation without

the change). For these reasons, key success metrics and

guardrails for the product should be examined for large

degradations while the experiment is in execution.

If degradations are discovered, the experiment should be

stopped before the predetermined end-time. A good practice for

technically demanding experiments that may be hard to roll-

back instantly is to gradually increase the size of the treatment

group and examine metrics for large degradations at different

stages, for example, after a few hours, a day, a week, etc.

EXPERIMENT EXECUTION ANALYSIS

 No serious data quality issues are present.

 Experiment is not causing excessive harm.

 Possibility of early stopping is evaluated.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

 Possibility of early stopping is evaluated.

Understandably, despite having calculated the required

experiment duration prior to the experiment start,

experimenters are inclined to “peek” at the results and stop the

experiment early, especially in situations where treatment

seems to be doing much better than originally expected. Such

early stopping can make product development leaner as

decisions on the features can be made earlier. However, there

are several pitfalls associated with early stopping [7], [46]. For

instance, simply monitoring at p-values and stopping as soon as

statistical significance is reached is wrong and should be

discouraged. Therefore, a decision to stop early should be made

with great care. To avoid complexities with determining when

early stopping may be Ok, we recommend relying on

experimentation platform recommendations rather than leaving

the issues in the hands of experimenters. Advanced

experimentation platforms may implement statistical tests

which allow for early stopping, such as [47], and notify the user

when it is fine to stop early.

C. Experiment Debrief Analysis

For experiment analysis after the OCE is completed, we

identified nine critical items to check before experiment

lifecycle is closed. We list them in Checklist 3 and discuss next.

Checklist 3. Experiment Debrief Analysis.

 Experiment has sufficient power. The hypothesis

defined before the experiment was started required a certain

number of users to reach the required statistical power. At the

end of the experiment, analysts should check if the number of

units in the experiment variants is equal to or greater to the pre-

calculated number. An alternative is to calculate the minimum

detectable effect with the actual number of users and notify the

experiment analyst if it is larger than what was initially

provided. Note that observed effect size should not be used in

the power calculation [48].

 Data quality metrics are not negative. The only way

that experiment results can be trusted is by first examining

whether there are any data quality issues that could make the

analysis process invalid. For this step, the same data quality

analysis is recommended as for the analysis of the experiment

during the experiment execution phase.

 Metrics are examined for choosing a winning

variant. Following the metric structure setup during pre-

experiment analysis, the winning variant can be chosen as

follows. First, data quality metrics are examined to ensure the

experiment results can be trusted. Second, feature metrics are

checked to ensure the feature is functioning as expected. Third,

success metrics are evaluated to determine whether the feature

results in long-term benefit for users and business. Finally,

guardrail metrics are checked to ensure there is no large

negative short-term impact on business metrics.

 Novelty effects are excluded. Certain changes to

experiments can cause changes in product usage that do not

replicate over time. For example, a new feature in a product

might increase the usage of the product at first, however, over

time the usage regresses. Although the experiment results

overall are in favor of the variant with the new feature, an

analysis over time can help in determining whether the impact

is sustained over time.
 In-depth analysis has been performed. The decision

on which variant won and should be shipped is only one benefit

of experimentation. Experiments should also be analyzed in

depth in order for interesting insights to be discovered, that

could be used to iterate on the feature or provide ideas for new

features. For example, although an experiment is neutral

overall, one segment of users may have very positively reacted

on the new feature, while another segment reacted negatively.

These types of heterogeneous movements are common in

experiments at scale and should be detected. Guidance on how

to achieve this is described in [8].

 Skewed data is treated. Another item that should be

checked with in-depth analysis is whether there are any outliers

skewing the data. Outliers may indicate data quality issues

which should be understood, fixed or dealt with by, e.g.,

capping. They may also indicate presence of legitimate special

users. Consider for example a scenario where one user

purchases 100% of items more than the average user in the

group (for example, a travel agent on an accommodation

booking website). In this case we do not want to cap such users.

Instead, we want to create several metrics that look separately

at different sub-populations or behavior patterns of users.

Guidance on this process is provided in [49].

 Coordinated analysis of experiments is done. The

results of our survey showed that often experiments are not

executed in isolation but are a part of a coordinated initiative to

answer a higher-level business question broader than a single

feature. For example, a manager of a sales team may be

interested in whether purchasing a video recording software and

training the sales reps to record personalized videos will

improve performance. To answer this question, a series of

experiments needs to be run evaluating the impact of including

videos in e-mails across different sales scenarios and at

different stages of the sales process (initial e-mail, follow-up,

closer to the deal, etc.) Such experiments need to be analyzed

in coordinated fashion to arrive to an answer to the broader

question being asked. A similar situation often occurs if the

feature being experimented with is a follow-up from or is based

on the result of an earlier experiment. In either case, it is

important to view the results in context of other similar or

related experiments.

EXPERIMENT DEBRIEF ANALYSIS

 Experiment has sufficient power.

 Data quality metrics are not negative.

 Metrics are examined for selecting the winner.

 Novelty effects are excluded.

 In-depth analysis has been performed.

 Skewed data is treated.

 Coordinated analysis of experiments is done.

 Validation of experiment outcome is conducted.

 Experiment learnings are institutionalized

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

 Validation of experiment outcome is conducted.

Experimentation has the incredibly powerful property of

reproducibility. Experiments that only marginally impact the

metrics should be executed again, preferably with higher power

(for example, allocating a larger number of users to the

experiment variants) to validate the results and learnings.

 Experiment learnings are institutionalized and

shared. The most valuable outcome of every experiment

should not be the status whether the change has an impact on

the product or not. The highest value are the learnings that can

be captured in a series of experiments. These can be used to

design future experiments and steer Intrapreneurship [50]. We

recommend that analysts capture experiment hypothesis and

outcomes, final ship decisions, links to scorecards and clearly

annotated information about the scorecard that was used to

make the final decision. If the experiment has changed

something visually (for example, it created a UI change),

screenshot should be captured if they were not recorded before

it was started. Based on our data analysis, we identified three

approaches to institutionalizing experiment learnings. The first

approach which is applicable in the early stages of

experimentation growth [30] is to manually capture learnings

in a reporting tool such as Word, Power Point or Excel

template. The second approach which works well for tens to

hundreds of experiments yearly is to use a ticketing tool where

state management and searching across different experiments is

effortless. At very large scale, experiment learning capturing

should be as automated as possible and preferably well

integrated in the experimentation platform [10].

D. Critical Symptoms and Remedies

Throughout experiment analysis process, practitioners may

experience a number of symptoms - issues that can block them

from continuing to analyze the experiment. In this section, we

provide three symptoms based on the experience from our case

companies – one for each of the analysis checklists - and

remedies to resolve them. This is not a comprehensive list, but

rather a set of common issues and solutions.

Symptom 1: Lack of experiment coordination. Deciding

which experiments should start next, which should be stopped,

etc. can be a challenging task. Is an experiment in the queue

impacting the part of the product where other experiments are

already ongoing? What will the union of two experiment

treatments be? In a part of the product with many ideas, which

one should be experimented with next? While in the early

stages of experimentation growth coordinating such

experiments may be simple, performing this in a state where

multiple teams are running multiple experiments can be very

challenging. We recommend that product development

establishes a role of Experiment Coordinator (EC). One of

the main responsibilities of EC should be the ownership of

Experiment Review Meeting.
We put the entire experimentation team into the room and confirm

the Product Manager (owner), the program manager, the analyst, the

developers/engineers, and the QA that worked on the experiment are

present. --Principal Product Manager of Experimentation

 This meeting has several goals. First, new experiment ideas

are reviewed, assigned to their respective categories, and

prioritized within those categories. Second, progress of the

currently running experiments is reviewed and they are checked

to ensure none of them need to be shut down due to clearly bad

results. Third, new experiments that are ready and can be started

need to be scheduled to start in the upcoming week. Fourth, the

results of the recently completed experiments are reviewed and

discussed, and decisions are made about promoting some

variants to default and turning off others.

Symptom 2: Consistently failing A/A tests. A/A tests that

consistently show non-uniform distribution of p-values are a

symptom of a serious issue in the experimentation system. Our

advice is not to proceed with an A/B test if a series of A/A tests

fails, but rather debug the experimentation system to discover

the root cause. One cause of this symptom can be the technical

differences in how control and treatment variants are applied,

independent of the treatment. For example, experiments that

redirect only the treatment group to another page will have a

short delay and consequently degrade performance metrics for

that variant. We recommend examining how the variations are

set-up and provide a controlled environment for all of them by,

if needed, causing a redirection to all of the variations. Another

reason for this symptom can be a biased estimate of the

variance. For example, if the randomization is performed per

user and the metric is aggregated per another unit different than

user (e.g. a page view), the computation of the variance should

be done through a delta method or through bootstrapping. Next,

A/A tests can fail due to unequal splits of variants using

shared resources (e.g. cache). In such situations, the larger

variant will have a greater impact on the shared resource, which

can negatively impact the experience for users in the smaller

group. We recommend running A/A tests with equal groups.

Also, A/A tests can consistently fail also due to practitioner

actions. For example, when a certain variation is performing

poorly, someone in the company might have restarted it in the

effort to improve it. Our recommendation is to provide alerts to

users when an action that will likely cause a failing A/A test is

triggered. The alert should notify the experimenter about the

consequences or advise them to stop the experiment first before

updating an individual variation.

Symptom 3: Consistently falling to decide. When at the

end of an experiment that moved a success metric in a

statistically significant way there is no consensus among the

stakeholders that the change was actually good, practitioners

will experience decision paralysis. This is the inability to decide

whether the experiment was good or bad for the users: some

people might argue that it was and others that it was not, there

are plausible explanations for either way, there are counter-

examples in the data, and perhaps at the end the decision is

made to go against the results of the test. One solution to this

challenge is to invest into designing good success metrics.

Practical guidance on how to resolve this and how to design

sensitive success metrics is described in [51]. A single metric

makes the exact definition of success clear, possibly through

explicit weighted combination of metrics that describe the core

components of the product. Of course, another solution is to be

explicit about the ship criteria while designing the experiment.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

“We always advise people to write their shipping criteria in such

a way that a colleague could make the decision for them if they go on

an unexpected vacation.”

--Senior Product Owner, Experimentation

E. Implementing the Checklists

To implement the checklists in your organization, we

suggest the following four steps:

1. Identify which of the checks are automated. Typically,

experimentation platforms and commercially available tooling

will automate several steps described in our checklists. Identify

the checks that your platform supports, and the checks that need

to be done manually.

2. Provide analysts with annotated checklists. Annotate

each of the checklist items with [Auto-Checked] or [Manual-

Check] depending on your findings from step 1. Provide the

checklists with these labels to the analysts along with the

instructions on how to interpret the labels.

3. Track and display checks’ status for every OCE. The

items that are supported by the tooling should be visualized to

the experimenters, informing that they have either passed or

failed. Just like a regular unit test. For the manual checks,

provide analysts an option to tick/enter information about the

status of the check.

4. Automate as many of the checks as possible. While

relying on the checklists improves the effectiveness of the work

[33], automating as many checks as possible should be one of

the goals of experimentation growth.

V. CONCLUSION

The scale at which companies are striving to experiment is

fundamentally changing. Not only is experimentation rapidly

expanding within the large online software companies like

Booking.com, and Microsoft [1], but also companies in other

domains are catching up [2]. Without guidelines and checklists

for trustworthy analysis of experiments, however, the scientific

method of running OCEs will not scale in a trustworthy manner.

If experiments are not analyzed correctly, the learnings from

them may steer product development teams into making wrong

decision, causing harm rather than adding value.

In this paper, we presented the key checklists for

trustworthy experiment analysis at large scale, and three

symptoms of unhealthy experiment execution. For each of the

symptoms, we provided a number of remedies.

Based on our findings, we can conclude that most of the

experiment analysis actually happens before the experiment is

even started. This complements and contrasts the related

literature (see e.g. [8], [24], [49], [52]) where experiment

analysis is a discussion for the final stage of the experiment

lifecycle (e.g. when an experiment is completed).

Furthermore, the checklists in this paper should be seen as

a starting point towards increasing the trustworthiness of

experimentation in the software industry. However, similarly to

checklists in other industries, they likely need to be adapted for

the company that uses them [33]. Future research needs to be

done in applying these checklists at companies that were not

part of this study and examining to what extent they satisfy their

purpose of increasing the trustworthiness of OCEs.

ACKNOWLEDGMENT

We would like to acknowledge all case companies and thank all

participants for contributing to the work presented in this paper

and improving this research.

REFERENCES

[1] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Online

Controlled Experimentation at Scale: An Empirical Survey on the

Current State of A/B Testing,” in Proceedings of the 2018 44rd

Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), 2018.

[2] E. Lindgren and J. Münch, “Software development as an

experiment system: A qualitative survey on the state of the

practice,” in Lecture Notes in Business Information Processing,

2015, vol. 212, pp. 117–128.

[3] F. Auer and M. Felderer, “Current State of Continuous

Experimentation: A Systematic Mapping Study,” in Proceedings

of the 2018 44rd Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), 2018.

[4] R. Kohavi and S. Thomke, “The Surprising Power of Online

Experiments,” Harvard Business Review, no. October, 2017.

[5] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The

Benefits of Controlled Experimentation at Scale,” in Proceedings

of the 2017 43rd Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), 2017, pp. 18–26.

[6] A. Deng, P. Zhang, S. Chen, D. W. Kim, and J. Lu, “Concise

Summarization of Heterogeneous Treatment Effect Using Total

Variation Regularized Regression,” Submiss., Oct. 2016.

[7] P. Dmitriev, S. Gupta, K. Dong Woo, and G. Vaz, “A Dirty

Dozen: Twelve Common Metric Interpretation Pitfalls in Online

Controlled Experiments,” in Proceedings of the 23rd ACM

SIGKDD international conference on Knowledge discovery and

data mining - KDD ’17, 2017.

[8] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Effective

Online Experiment Analysis at Large Scale,” in Proceedings of

the 2018 44rd Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), 2018.

[9] R. S. Kaplan and D. P. Norton, “The Balanced Scorecard:

Translating Strategy Into Action,” Harvard Business School

Press. pp. 1–311, 1996.

[10] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A.

Fabijan, “The Anatomy of a Large-Scale Experimentation

Platform,” in 2018 IEEE International Conference on Software

Architecture (ICSA), 2018, no. May, pp. 1–109.

[11] T. Kluck and L. Vermeer, “Leaky Abstraction In Online

Experimentation Platforms: A Conceptual Framework To

Categorize Common Challenges,” Oct. 2017.

[12] D. I. Mattos, J. Bosch, and H. H. Olsson, “Challenges and

Strategies for Undertaking Continuous Experimentation to

Embedded Systems: Industry and Research Perspectives,” in 19th

International Conference on Agile Software Development,

XP’18, 2018, no. March, pp. 1–15.

[13] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The

emerging role of data scientists on software development teams,”

in Proceedings of the 38th International Conference on Software

Engineering - ICSE ’16, 2016, no. MSR-TR-2015-30, pp. 96–

107.

[14] S. Miller and D. Hughes, “The Quant Crunch: How the Demand

For Data Science Skills is Disrupting the Job Market,” Burning

Glass Technologies, 2017.

[15] G. Schermann, J. J. Cito, and P. Leitner, “Continuous

Experimentation: Challenges, Implementation Techniques, and

Current Research,” IEEE Softw., vol. 35, no. 2, pp. 26–31, Mar.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

2018.

[16] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use

Continuous Innovation to Create Radically Successful

Businesses. 2011.

[17] S. Blank, “Why the lean start-up changes everything,” Harvard

Business Review, vol. 91, no. 5. John Wiley & Sons, p. 288, 2013.

[18] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. 2010.

[19] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development

and deployment at facebook,” IEEE Internet Comput., vol. 17,

no. 4, pp. 8–17, 2013.

[20] J. F. Box, “R.A. Fisher and the Design of Experiments, 1922–

1926,” Am. Stat., vol. 34, no. 1, pp. 1–7, Feb. 1980.

[21] S. D. Simon, “Is the randomized clinical trial the gold standard of

research?,” J. Androl., vol. 22, no. 6, pp. 938–943, Nov. 2001.

[22] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The

Experiment Lifecycle,” Accept. to Appear IEEE Softw., 2018.

[23] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The

Evolution of Continuous Experimentation in Software Product

Development,” in Proceedings of the 39th International

Conference on Software Engineering ICSE’17, 2017.

[24] K. Kevic, B. Murphy, L. Williams, and J. Beckmann,

“Characterizing Experimentation in Continuous Deployment: A

Case Study on Bing,” in 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering in

Practice Track (ICSE-SEIP), 2017, pp. 123–132.

[25] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch, “The

RIGHT model for Continuous Experimentation,” J. Syst. Softw.,

vol. 0, pp. 1–14, 2015.

[26] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and

Y. Xu, “Trustworthy online controlled experiments,” in

Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD ’12, 2012, p.

786.

[27] R. L. Kaufman, J. Pitchforth, and L. Vermeer, “Democratizing

online controlled experiments at Booking. com,” arXiv Prepr.

arXiv1710.08217, pp. 1–7, 2017.

[28] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From

Infrastructure to Culture,” in Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining - KDD ’15, 2015, pp. 2227–2236.

[29] D. Tang, A. Agarwal, D. O. Brien, M. Meyer, D. O’Brien, and M.

Meyer, “Overlapping experiment infrastructure,” in Proceedings

of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD ’10, 2010, p. 17.

[30] A. Fabijan, P. Dmitriev, C. McFarland, L. Vermeer, H.

Holmström Olsson, and J. Bosch, “Experimentation growth:

Evolving trustworthy A/B testing capabilities in online software

companies,” J. Softw. Evol. Process, p. e2113, Nov. 2018.

[31] R. Power and B. Williams, “Checklists for improving rigour in

qualitative research,” BMJ, vol. 323, no. 7311, pp. 514–514, Sep.

2001.

[32] D. Moher, A. R. Jadad, G. Nichol, M. Penman, P. Tugwell, and

S. Walsh, “Assessing the quality of randomized controlled trials:

An annotated bibliography of scales and checklists,” Control.

Clin. Trials, vol. 16, no. 1, pp. 62–73, 1995.

[33] A. Gawande, Checklist manifesto, the (HB). Penguin Books

India, 2010.

[34] P. Runeson and M. Höst, “Guidelines for conducting and

reporting case study research in software engineering,” Empir.

Softw. Eng., vol. 14, no. 2, pp. 131–164, 2008.

[35] A. Fabijan and P. Dmitriev, “Experiment Analysis Questionaire,”

2018. [Online]. Available:

http://www.fabijan.info/papers/ICSE_ExP_Analysis_Questionn

aire.pdf.

[36] “Hypothesis Kit for A/B testing.” [Online]. Available:

http://www.experimentationhub.com/hypothesis-kit.html.

[37] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,

“Controlled experiments on the web: survey and practical guide,”

Data Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, Feb. 2009.

[38] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The

Evolution of Continuous Experimentation in Software Product

Development: From Data to a Data-Driven Organization at

Scale,” in 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE), 2017, pp. 770–780.

[39] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the User

Experience on a Large Scale : User-Centered Metrics for Web

Applications,” Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,

pp. 2395–2398, 2010.

[40] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices

in open-source software,” in Proceedings - International

Conference on Software Engineering, 2012, pp. 102–112.

[41] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the

system,” in Proceedings of the 38th International Conference on

Software Engineering Companion - ICSE ’16, 2016, pp. 92–101.

[42] D. W. Hubbard, How to measure anything: Finding the value of

intangibles in business. John Wiley & Sons, 2014.

[43] R. B. Bausell and Y.-F. Li, Power analysis for experimental

research: a practical guide for the biological, medical and social

sciences. Cambridge University Press, 2002.

[44] J. Gupchup et al., “Trustworthy Experimentation Under

Telemetry Loss,” in to appear in: Proceedings of the 27th ACM

International on Conference on Information and Knowledge

Management - CIKM ’18, 2018.

[45] R. Kohavi, B. Frasca, T. Crook, R. Henne, and R. Longbotham,

“Online experimentation at Microsoft,” in Workshop on Data

Mining Case Studies and Practice, 2009.

[46] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham, “Seven

pitfalls to avoid when running controlled experiments on the

web,” in Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’09,

2009, p. 1105.

[47] A. Deng, J. Lu, and S. Chen, “Continuous Monitoring of A/B

Tests without Pain: Optional Stopping in Bayesian Testing,” in

2016 IEEE International Conference on Data Science and

Advanced Analytics (DSAA), 2016, pp. 243–252.

[48] J. M. Hoenig and D. M. Heisey, “The abuse of power: The

pervasive fallacy of power calculations for data analysis,” Am.

Stat., vol. 55, no. 1, pp. 19–24, 2001.

[49] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu, “Seven rules of

thumb for web site experimenters,” in Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery

and data mining - KDD ’14, 2014, pp. 1857–1866.

[50] K. V. Desouza, “Intrapreneurship - Managing ideas within your

organization,” Technol. Forecast. Soc. Change, vol. 91, pp. 352–

353, 2014.

[51] P. Dmitriev and X. Wu, “Measuring Metrics,” in Proceedings of

the 25th ACM International on Conference on Information and

Knowledge Management - CIKM ’16, 2016, pp. 429–437.

[52] A. Deng, J. Lu, and J. Litz, “Trustworthy Analysis of Online A/B

Tests,” Proc. Tenth ACM Int. Conf. Web Search Data Min. -

WSDM ’17, pp. 641–649, 2017.

