
Harmonia: Near­Linear Scalability for Replicated Storage
with In­Network Conflict Detection

Hang Zhu
Johns Hopkins University

hzhu@jhu.edu

Zhihao Bai
Johns Hopkins University

zbai1@jhu.edu

Jialin Li
University of Washington

lijl@cs.washington.edu

Ellis Michael
University of Washington

emichael@cs.washington.edu

Dan R. K. Ports
Microsoft Research

dan@drkp.net

Ion Stoica
UC Berkeley

istoica@cs.berkeley.edu

Xin Jin
Johns Hopkins University

xinjin@cs.jhu.edu

ABSTRACT

Distributed storage employs replication to mask failures and im-

prove availability. However, these systems typically exhibit a hard

tradeoff between consistency and performance. Ensuring consis-

tency introduces coordination overhead, and as a result the sys-

tem throughput does not scale with the number of replicas. We

present Harmonia, a replicated storage architecture that exploits

the capability of new-generation programmable switches to obviate

this tradeoff by providing near-linear scalability without sacrificing

consistency. To achieve this goal, Harmonia detects read-write con-

flicts in the network, which enables any replica to serve reads for

objects with no pending writes. Harmonia implements this func-

tionality at line rate, thus imposing no performance overhead. We

have implemented a prototype of Harmonia on a cluster of com-

modity servers connected by a Barefoot Tofino switch, and have

integrated it with Redis. We demonstrate the generality of our ap-

proach by supporting a variety of replication protocols, including

primary-backup, chain replication, Viewstamped Replication, and

NOPaxos. Experimental results show that Harmonia improves the

throughput of these protocols by up to 10× for a replication factor

of 10, providing near-linear scalability up to the limit of our testbed.

PVLDB Reference Format:

Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica,
and Xin Jin. Harmonia: Near-Linear Scalability for Replicated Storage with
In-Network Conflict Detection. PVLDB, 13(3): 375-388, 2019.
DOI: https://doi.org/10.14778/3368289.3368301

1. Introduction
Replication is one of the fundamental tools in the modern dis-

tributed storage developer’s arsenal. Failures are a regular appear-

ance in large-scale distributed systems, and strongly consistent

replication can transparently mask these faults to achieve high sys-

tem availability. However, it comes with a high performance cost.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3368289.3368301

One might hope that adding more servers to a replicated sys-

tem would increase not just its reliability but also its system

performance—ideally, providing linear scalability with the number

of replicas. The reality is quite the opposite: performance decreases

with more replicas, as an expensive replication protocol needs to be

run to ensure that all replicas are consistent. Despite much effort to

reduce the cost of these protocols, the best case is a system that

approaches the performance of a single node [70, 42].

Can we build a strongly consistent replicated system that ap-

proaches linear scalability? Write operations inherently need to

be applied to all replicas, so more replicas cannot increase the

write throughput. However, many real-world workloads are highly

skewed towards reads [30, 53]—with read:write ratios as high as

30:1 [9]. A scalable but naive approach is to allow any individual

replica to serve a read, permitting the system to achieve near-linear

scalability for such workloads. Yet this runs afoul of a fundamen-

tal limitation. Individual replicas may lag behind, or run ahead of,

the consensus state of the group. Thus, serving reads from any stor-

age replica has the potential to return stale or even uncommitted

data, compromising the consistency guarantee of the replicated sys-

tem. Addressing this at the protocol level requires protocol-specific

modifications that invariably involve extra coordination – e.g., an

extra phase for each write in CRAQ [69] – leading to substantial

performance overhead.

We show that it is possible to circumvent this limitation and

simultaneously achieve near-linear scalability and consistency for

replicated storage. We do so with Harmonia,1 a new replicated stor-

age architecture that exploits the capability of new-generation pro-

grammable switches. Our key observation is that while individual

replicas may constantly diverge from the consensus state, the set of

inconsistent data at any given time is small. A storage system may

store millions or billions of objects or files. Of these, only the ones

that have writes in progress—i.e., the set of objects actively be-

ing updated—may be inconsistent. For the others, any replica can

safely serve a read. Two features of many storage systems make this

an especially powerful observation: (i) read-intensive workloads in

real-world deployments [53, 9] mean that fewer objects are written

over time, and (ii) emerging in-memory storage systems [56, 5, 4,

71] complete writes faster, reducing the interval of inconsistency.

The challenge in leveraging this insight lies in efficiently detect-

ing which objects are dirty, i.e., have pending updates. Implement-

1Harmonia draws its name from the ancient Greek goddess of con-
cord, i.e., lack of conflict.

376



ing this functionality in a server would make the system be bottle-

necked by the server, instead of scaling out with the number of stor-

age replicas. Harmonia demonstrates that this idea can be realized

on-path in the network with programmable switches at line rate,

with no performance penalties. The core component of Harmonia

is a read-write conflict detection module in the switch data plane

that monitors all requests to the system and tracks the dirty set.

The switch detects whether a read conflicts with pending writes,

and if not, the switch sends it directly to one of the replicas. Other

requests are executed according to the normal protocol. This de-

sign exploits two principal benefits of in-network processing: (i)
the central location of the switch on the data path that allows it to

monitor traffic to the cluster, and (ii) its capability for line-rate,

near-zero overhead processing.

Harmonia is a general approach. It augments existing replica-

tion protocols with the ability to serve reads from any replica, and

does not sacrifice fault tolerance or strong consistency (i.e., lin-

earizability). As a result, it can be applied to both major classes

of replication protocols—primary-backup and quorum-based. We

have applied Harmonia to a range of representative protocols, in-

cluding primary-backup [17], chain replication [70], Viewstamped

Replication [54, 45], and NOPaxos [42].

In summary, this paper demonstrates that:

• The Harmonia architecture can achieve near-linear scalability

with near-zero overhead by moving conflict detection to an in-

network component. (§5, §6)

• The Harmonia conflict detection mechanism can be imple-

mented in the data plane of new-generation programmable

switches and run at line rate. (§7)

• Many replication protocols can be integrated with Harmonia

while maintaining linearizability. (§8)

We implement a Harmonia prototype using a cluster of servers

connected by a Barefoot Tofino switch and integrate it with Redis.

Our experiments show that Harmonia improves the throughput of

the replication protocols by up to 10× for a replication factor of 10,

providing near-linear scalability up to the limit of our testbed. We

provide a proof of correctness and a model-checked TLA+ spec-

ification in a technical report [74]. Of course, the highest possi-

ble write throughput is that of one replica, since writes have to be

processed by all replicas. This can be achieved by chain replica-

tion [70] and NOPaxos [42]. Harmonia fills in the missing piece

for reads: it demonstrates how to make reads scalable without sac-

rificing either write performance or consistency.

2. The Case for Programmable Switches in

Database Clusters
Cluster database systems are built using clusters of commodity

servers connected via an Ethernet network. They rely on distributed

protocols to locate data and ensure its availability—notably, repli-

cation protocols like chain replication [70] or Paxos [37] to tol-

erate failures. As the performance of single-node databases sys-

tems increases—a result of faster storage technologies and domain-

specific accelerators—the relative cost of coordination becomes an

increasingly substantial part of the workload.

Traditionally, these systems treat the network merely as a

“dumb” transport that conveys packets without regard for their

meaning. A recent hardware trend allows rethinking this assump-

tion. Programmable switches expose the high-speed processing

power of switch ASICs to new, application-specific protocols.

These devices, now commercially available from vendors like

Barefoot, Cavium, Mellanox, and Broadcom, can achieve simi-

lar performance and cost to their non-programmable counterparts.

These offer the capability to (1) parse user-defined headers; (2) re-

configure the packet processing pipeline with custom logic; and (3)

maintain state between packets; while still maintaining full line-

rate (e.g., 64×100Gbit) throughput.

Harmonia uses a programmable switch to track the state of a

replicated database and route requests differently based on whether

conflicting operations are present. It can be viewed as a new take

on network anycast [57], a network primitive that routes packets to

the closest suitable host; Harmonia extends this to operate based on

application semantics, namely read/write conflicts, rather than sim-

ple proximity. As we demonstrate, the resource requirements im-

posed on the network device are modest. In this respect, it differs

from recent proposals to move storage [36, 35, 26, 25] or query op-

erators [40, 50, 65] themselves to programmable switches. These

applications require repurposing nearly all the computational and

storage resources on a switch (potentially interfering with existing

networking functionality [62]), and yet still face major restrictions

caused by resource limits (e.g., limiting storage to 128-byte ob-

jects [36, 35]). Harmonia’s lighter-weight approach allows it either

to complement such systems or to be deployed in more general

cluster scenarios.

3. The Quest for Scalable Replication
Harmonia improves the scalability of replication protocols that

provide linearizability [32]. These make it appear as though opera-

tions are being executed, one at a time, on a single replica. As we

will see, existing protocols impose a performance cost for provid-

ing this guarantee.

3.1 Replication Protocols
Many replication protocols can be used to ensure this property.

They fall primarily into two classes—primary-backup protocols

and quorum-based protocols.

Primary-backup protocols. The primary-backup protocol [17] or-

ganizes a system into a primary replica, which is responsible for

determining the order and results of operations, and a set of backup

replicas that execute operations as directed by the primary. This is

typically achieved by having the primary transfer state updates to

the replicas after operation execution. At any time, only one pri-

mary is in operation. Should it fail, one of the backup replicas is

promoted to be the new primary—a task often mediated by an ex-

ternal configuration service [34, 18] or manual intervention. The

primary-backup protocol is able to tolerate f node failures with

f+1 nodes.

The primary-backup protocol has many variants. Chain replica-

tion [70] is a high-throughput variant used in many storage sys-

tems [6, 59, 29]. It organizes the replicas into a chain. Writes are

sent to the head and propagated to the tail; reads are directly pro-

cessed by the tail. The system throughput is bounded by a single

server—the tail.

Quorum-based protocols. Quorum-based protocols such as

Paxos [37, 38] operate by ensuring that each operation is executed

at a quorum—typically a majority—of replicas before it is con-

sidered successful. While they seem quite different from primary-

backup protocols, the conceptual gap is not as wide as it appears

in practice. Many Paxos deployments use the Multi-Paxos opti-

mization [38] (or, equivalently, Viewstamped Replication [54] and

Raft [55]). One of the replicas runs the first phase of the protocol

to elect itself as a stable leader until it fails. It can then run the sec-

ond phase repeatedly to execute multiple operations and commit

to other replicas. System throughput is largely determined by the

number of messages that need to be processed by the bottleneck

377



node, i.e., the leader. A common optimization allows the leader to

execute reads without coordinating with the others, by giving the

leader a lease. Ultimately, however, the system throughput is lim-

ited to that of one server.

3.2 Towards Linear Scalability
The replication protocols above can achieve, at best, the through-

put of a single server. They allow reads to be processed by one des-

ignated replica—the tail in chain replication or the leader in Multi-

Paxos. That single replica then becomes the bottleneck. Read scal-

ability, i.e., making system throughput scale with the number of

replicas, requires going further.

Could we achieve read scalability by allowing reads to be pro-

cessed by any replica, not just a single designated one, without co-

ordination? Unfortunately, naively doing so could violate consis-

tency. Updates cannot be applied instantly across all the replicas,

so at any given moment some of the replicas may not be consistent.

We categorize the resulting anomalies into two kinds.

Read-ahead anomalies. A read-ahead anomaly occurs when a

replica returns a result that has not yet been committed. This might

reflect a future state of the system, or show updates that will never

complete. Neither is correct. Reading uncommitted data is possible

if reads are sent to any replica and a replica answers a read with

its latest known state, which may contain data that is not commit-

ted. We use chain replication as an example. Specifically, suppose

there are three nodes, and the latest update to an object has been

propagated to nodes 1 and 2. A read on this object sent to either

of these nodes would return the new value, but a request to node 3

would still return the old value—which could cause a client to see

an update appearing and disappearing depending on which replica

it contacts. Simultaneously ensuring read scalability and lineariz-

ability thus requires ensuring that clients only read committed data,

regardless of which replica they contact.

Read-behind anomalies. One might hope that these anomalies

could be avoided by requiring replicas to return the latest known

committed value. Unfortunately, this introduces a second class of

anomalies, where some replicas may return a stale result that does

not reflect the latest updates. This too is a violation of lineariz-

ability. Consider a Multi-Paxos deployment, in which replicas only

execute an operation once they have been notified by the leader

that consensus has been reached for that operation. Suppose that

a client submits a write to an object, and consider the instant just

after the leader receives the last response in a quorum. It can then

execute the operation and respond to the client. However, the other

replicas do not know that the operation is successful. If the client

then executes a read to one of the other replicas, and it responds—

unilaterally—with its latest committed value, the client will not see

the effect of its latest write.

Protocols. We classify replication protocols based on the anoma-

lies. We refer to protocols that have each type of anomalies as read-

ahead protocols and read-behind protocols, respectively. In this

paper, primary-backup and chain replication are read-ahead proto-

cols, and Viewstamped Replication/Multi-Paxos and NOPaxos are

read-behind protocols. Note that although the primary-backup sys-

tems are read-ahead and the quorum systems are read-behind, this

is not necessarily true in general; read-ahead quorum protocols are

also possible, for example.

4. Harmonia Approach
How, then, can we safely and efficiently achieve read scalability,

without sacrificing linearizability? The key is to view the system at

the individual object level. At any given time, the majority of ob-

jects are quiescent, i.e., have no modifications in progress. These

objects will be consistent across all the replicas. In that case, any

replica can unilaterally answer a read for the object. While modifi-

cations to an object are in progress, reads on the object must follow

the full protocol.

Conceptually, Harmonia achieves read scalability by introduc-

ing a new component to the system, a request scheduler. The re-

quest scheduler monitors requests to the system to detect conflicts

between read and write operations. Abstractly, it maintains a ta-

ble of objects in the system and tracks whether they are contended

or uncontended, i.e., the dirty set. When there is no conflict, it di-

rects reads to any replica. The request is flagged so that the replica

can respond directly. When conflicts are detected, i.e., a concurrent

write is in progress, reads follow the normal protocol.

To allow the request scheduler to detect conflicts, it needs to be

able to interpose on all read and write traffic to the system. This

means that the request scheduler must be able to achieve very high

throughput—implementing the conflict detection in a server would

still make the entire system be bottlenecked by the server. Instead,

we implement the request scheduler in the network itself, lever-

aging the capability of programmable switches to run at line rate,

imposing no performance penalties.

Conflict detection has been used before to achieve read scala-

bility for certain replicated systems. Specifically, CRAQ [69] pro-

vides read scalability for chain replication by tracking contended

and uncontended objects at the protocol level. This requires in-

troducing an extra phase to notify replicas when an object is

clean vs. dirty. Harmonia’s in-switch conflict detection provides

two main benefits. First, it generalizes the approach to support

different protocols—as examples, we have used Harmonia with

primary-backup, chain replication, Viewstamped Replication, and

NOPaxos. Supporting the diverse range of protocols in use today

is important because they occupy different points in the design

space: latency-optimized vs. throughput-optimized, read-optimized

vs. write-optimized, storage overhead vs. performance under fail-

ure, etc. CRAQ is specific to chain replication, and it is not clear

that it is possible to extend its protocol-level approach to other pro-

tocols. Second, Harmonia’s in-switch implementation avoids ad-

ditional overhead of tracking the dirty set. As we show in Sec-

tion 10.5, CRAQ is able to achieve read scalability only at the ex-

pense of a decrease in write throughput. Harmonia has no such cost.

4.1 Challenges
Translating the basic model of the request scheduler above to

a working system implementation presents several technical chal-

lenges as follows.

1. How can we expose system state to the request scheduler so that

it can implement conflict detection?

2. How do we ensure the switch’s view of which objects are

contended matches the system’s reality, even as messages are

dropped or reordered by the network? Errors here may cause

clients to see invalid results.

3. How do we implement this functionality fully within a switch

data plane with limited computational and storage capacity?

4. What modifications are needed to replication protocols to ensure

they provide linearizability when integrated with Harmonia?

5. Harmonia Architecture
Harmonia is a new replicated storage architecture that achieves

near-linear scalability without sacrificing consistency using in-

network conflict detection. This is implemented using an in-switch

request scheduler, which is located on the path between the clients

378



Clients

Read-Write

Conflict Detection

Storage Servers

Replicated Storage Rack

L2/L3 Routing

ToR Switch Data plane

Figure 1: Harmonia architecture.

and server nodes. In many enterprise and cloud scenarios where

storage servers are located in a dedicated storage rack, this can be

conveniently achieved by using the top-of-rack (ToR) switch, as

shown in Figure 1. We discuss other options in §7.3.

Switch. The switch implements the Harmonia request scheduler.

It is responsible for detecting read-write conflicts. It behaves as a

standard L2/L3 switch, but provides additional conflict detection

functionality for packets with a reserved L4 port. This makes Har-

monia fully compatible with normal network functionality.

The read-write conflict detection module identifies whether a

read has a conflict with a pending write. It does this by maintaining

a sequence number, a dirty set and the last-committed point (§6).

We show how to handle requests with this module while guaran-

teeing consistency (§6), and how to use the register arrays to design

a hash table supporting the necessary operations at line rate (§7).

Given the switch on-chip memory is limited, the key insight is that

the dirty set of writes is small and only the object IDs, instead of

the object content, need to be stored.

While the Harmonia switch can be rebooted or replaced and is

not a single point of failure of the storage system, there is only a sin-

gle active Harmonia switch for conflict detection at any time. The

replication protocol enforces this invariant by periodically agreeing

on which switch to use for each time slice (§6.3).

Storage servers. The storage servers store objects and serve re-

quests, using a replication protocol for consistency and fault toler-

ance. Harmonia requires minimal modifications to the replication

protocol (§8). It incorporates a shim layer in each server to trans-

late Harmonia request packets to API calls to the storage system.

Clients. Harmonia provides a client library for applications to ac-

cess the storage system, which provides a similar interface as exist-

ing storage systems. e.g., GET and SET for Redis [5]. The library

translates between API calls and Harmonia packets. It exposes two

important fields in the packet header to Harmonia switch: the oper-

ation type (read or write), and the affected object ID.

6. In­Network Conflict Detection
Key idea. Harmonia employs a switch as a conflict detector, which

tracks the dirty set, i.e., the set of contended objects. While the

available switch memory is limited, the set of objects with out-

standing writes is small compared to the overall storage size of the

system, making this set readily implementable on the switch.

Algorithm 1 ProcessRequestSwitch(pkt)

– seq: sequence number at switch

– dirty set: map containing largest sequence number for each

object with pending writes

– last committed: largest known committed sequence num-

ber

1: if pkt.op == WRITE then

2: seq← seq + 1
3: pkt.seq ← seq
4: dirty set.put(pkt.obj id, seq)
5: else if pkt.op == WRITE-COMPLETION then

6: if pkt.seq ≥ dirty set.get(pkt.obj id) then

7: dirty set.delete(obj id)

8: last committed← max(last committed, pkt.seq)
9: else if pkt.op == READ then

10: if ¬dirty set.contains(pkt.obj id) then

11: pkt.last committed← last committed
12: pkt.dst← random replica

13: Update packet header and forward

To implement conflict detection, a Harmonia switch tracks three

pieces of state: (i) a monotonically-increasing sequence number,2

which is incremented and inserted into each write, (ii) a dirty set,

which additionally tracks the largest sequence number of the out-

standing writes to each object, and (iii) the last-committed point,

which tracks the sequence number of the latest write committed by

the system known to the switch.

The dirty set allows the switch to detect when a read contends

with ongoing writes. When they do not, Harmonia can send the read

to a single random replica for better performance. Otherwise, these

reads are passed unmodified to the underlying replication protocol.

The sequence number disambiguates concurrent writes to the same

object, permitting the switch to store only one entry per contended

object in the dirty set. The last-committed sequence number is used

to ensure linearizability in the face of reordered messages, as will

be described in §6.2.

We now describe in detail the interface and how it is used. Im-

plementing it in the switch data plane is described in §7. We use

the primary-backup protocol as an example in this section, and de-

scribe adapting other protocols in §8.

6.1 Basic Request Processing
The Harmonia in-switch request scheduler processes three types

of operations: READ, WRITE, and WRITE-COMPLETION. For each

replicated system, the switch is initialized with the addresses of the

replicas and tracks the three pieces of state described above: the

dirty set, the monotonically-increasing sequence number, and the

sequence number of the latest committed write. The handling of a

single request is outlined in pseudo code in Algorithm 1.

Writes. All writes are assigned a sequence number by Harmonia.

The objects being written and the assigned sequence numbers are

added to the dirty set in the switch (lines 1–4).

Write completions. Write completions are sent by the replication

protocol once a write is fully committed. If a write is the last out-

standing write to the object, the object is removed from the dirty

set in the switch. The last-committed sequence number maintained

by the switch is then updated (lines 5–8).

2We use the term sequence number here for simplicity. Sequential-
ity is not necessary; a strictly increasing timestamp would suffice.

379



1

obj_id seq

E 1

B 2

A 3

Client Storage Servers

Primary

Backup 1

Backup 2

2
Write

(obj_id=A)

Switch Data Plane

commit=0

(a) Write.

4

Client Storage Servers

Primary

Backup 1

Backup 2

3

Switch Data Plane

Write
(obj_id=A) obj_id seq

X 4

C 5

commit=3

(b) Write completion is piggybacked in write reply.

1

Client Storage Servers

Primary

Backup 1

Backup 2

2

Switch Data Plane

3

4

Read
(obj_id=E)

obj_id seq

E 1

B 2

commit=0

(c) Read and reply on object with pending writes.

1

Client Storage Servers

Primary

Backup 1

Backup 2

2

Switch Data Plane

3

4

Read
(obj_id=C)

obj_id seq

E 1

B 2

commit=0

(d) Read and reply on object without pending writes.

Figure 2: Handling different types of storage requests.

Reads. Reads are routed by the switch, either through the nor-

mal replication protocol or to a randomly selected replica, based

on whether the object being read is contended or not. The switch

checks whether the object ID is in the dirty set. If so, the switch

sends the request unmodified, causing it to be processed accord-

ing to the normal replication protocol; otherwise, the read is sent to

a random replica for better performance (lines 9–12). The request

is also stamped with the last-committed sequence number on the

switch for linearizability, as will be discussed in §6.2.

Example. Figure 2 shows an example workflow. Figure 2(a) and

2(b) show a write operation. The switch adds obj ID=A to the

dirty set when it observes the write. It removes the object ID upon

the write completion, which can be piggybacked in the write reply,

and updates the last-committed sequence number. What is in the

dirty set determines how reads are handled. In Figure 2(c), the read

is for object E, which has pending writes, so the request is sent

to the primary for guaranteeing consistency. On the other hand, in

Figure 2(d), object C is not in the dirty set, so it is sent to the second

backup for better performance.

6.2 Handling Network Asynchrony
In an ideal network, where messages are processed in order, only

using the dirty set would be sufficient to guarantee consistency. In

a real, asynchronous network, just because a read to an object was

uncontended when the request passed through the switch does not

mean it will still be so when the request arrives at a replica: the mes-

sage might have been delayed so long that a new write to the same

object has been partially processed. Harmonia avoids this using the

sequence number and last-committed point.

Write order requirement. The key invariant of the dirty set re-

quires that an object not be removed until all concurrent writes to

that object have been completed. Since the Harmonia switch only

keeps track of the largest sequence number for each object, Har-

monia requires that the replication protocol processes writes only

in sequence number order. This is straightforward to implement in

a replication protocol, e.g., via tracking the last received sequence

number and discarding any out-of-order writes.

Dropped messages. If a WRITE-COMPLETION or forwarded

WRITE message is dropped, an object may remain in the dirty set

indefinitely. While in principle harmless—it is always safe to con-

sider an uncontended object dirty—it may cause a performance

degradation. However, because writes are processed in order, any

stray entries in the dirty set can be removed as soon as a WRITE-

COMPLETION message with a higher sequence number arrives.

These stray objects can be removed by the switch as it processes

reads (i.e., by removing the object ID if its sequence number in

the dirty set is less than or equal to the last committed sequence

number). This removal can also be done periodically.

Last-committed point for linearizability. Harmonia can maintain

linearizability, even when the network arbitrarily delays or reorders

packets. The switch uses its dirty set to ensure that a single-replica

read does not contend with ongoing writes at the time it is pro-

cessed by the switch. This is not sufficient to entirely eliminate

inconsistent reads. However, the last-committed sequence number

stamped into the read will provide enough information for the re-

cipient to compute whether or not processing the read locally is

safe. In the primary-backup, a write after a read on the same ob-

ject would have a higher sequence number than the last-committed

point carried in the read. As such, a backup can detect the conflict

even if the write happens to be executed at the backup before the

read arrives, and then send the read to the primary for linearizabil-

ity. Detailed discussion on adapting protocols is presented in §8.

6.3 Failure Handling
Failure handling is critical to replicated systems. Harmonia

would be of limited utility if the switch were a single point of fail-

ure. However, because the switch only keeps soft state (i.e., the

dirty set, the sequence number and the last-committed point), it can

be rebooted or replaced. The Harmonia failure handling protocol

restores the ability for the new switch to send requests through the

normal case first, and then restores the single-replica read capa-

bility, limiting the system downtime to a minimum. As such, the

switch is not a single point of failure, and can be safely replaced

without sacrificing consistency.

Handling switch failures. When the switch fails, the operator ei-

ther reboots it or replaces it with a backup switch. While the switch

only maintains soft state, care must be taken to preserve consistency

during the transition. As in prior systems [42, 41], the sequence

numbers in Harmonia are augmented with the switch’s unique ID,

which is monotonically increasing when assigned to switches, and

ordered lexicographically considering the switch’s ID first. This en-

sures that no two writes have the same sequence number. Next, be-

380



Custom
Table

Match Action

dst_ip=10.0.0.1 egress_port=1

dst_port=2000, op=read meta=RA[hash(ID)]

dst_port=2000, op=write RA[hash(ID)]=ID

default drop()

(b) Example custom table.

Stage 1

(a) Switch multi-stage packet processing pipeline.

Stage 2 Stage 3 Register Array (RA)

E

B

A

X

Q

R

Match-Action Table

0
1

2
3

4

5

Header & Metadata

hash(ID)

IPv4
Table

IPv6
Table

ETH
Table

Figure 3: Switch data plane structure.

fore a newly initialized switch can process writes, Harmonia must

guarantee that single-replica reads issued by the previous switch

will not be processed. Otherwise, in read-behind protocols, the

previous switch and a lagging replica could bilaterally process a

read without seeing the results of the latest writes, resulting in

read-behind anomalies. To prevent these anomalies, the replication

protocol periodically agrees to allow single-replica reads from the

current switch for a time period. Before allowing the new switch

to send writes, the replication must agree to refuse single-replica

reads with smaller switch IDs, and either the previous switch’s time

should expire or all replicas should agree to cut it short. This tech-

nique is similar in spirit to the leases used as an optimization to

allow leader-only reads in many protocols. Finally, once the switch

receives its first WRITE-COMPLETION with the new switch ID, both

its last-committed point and dirty set will be up to date, and it can

safely send single-replica reads.

In a multi-rack deployment (§7.3) when the switch is not a ToR

switch, traffic can be directly rerouted to another switch without

waiting for rebooting or replacing the failed switch. In this scenario,

the switch that handles the rerouted traffic becomes the Harmonia

switch for the corresponding replica group. It uses a bigger switch

ID and the aforementioned process to ensure consistency.

Handling server failures. The storage system handles a server fail-

ure based on the replication protocol, and notifies the switch con-

trol plane at the beginning and end of the process. The switch first

removes the failed replica from the replica addresses in the data

plane, so that following requests would not be scheduled to it. Af-

ter the failed replica is recovered or a replacement server is added,

the switch adds the corresponding address to the replica addresses,

enabling requests to be scheduled to the server.

7. Data Plane Design and Implementation
Can the Harmonia approach be supported by a real switch? We

answer this in the affirmative by showing how to implement it for

a programmable switch [15, 14] (e.g., Barefoot’s Tofino [11]), and

evaluate its resource usage.

7.1 Data Plane Design
The in-network conflict detection module is implemented in the

data plane of a modern programmable switch. The sequence num-

ber and last-committed point can be stored in two registers, and the

dirty set can be stored in a hash table implemented with register

arrays. While previous work has shown how to use the register ar-

rays to store key-value data in a switch [36, 35], our work has two

major differences: (i) the hash table only needs to store object IDs,

instead of both IDs and values; (ii) the hash table needs to support

insertion, search and deletion operations at line rate, instead of only

search. We provide some background on programmable switches,

and then describe the hash table design.

Switch data plane structure. Figure 3 illustrates the basic data

plane structure of a modern programmable switching ASIC. The

packet processing pipeline contains multiple stages, as shown in

Figure 3(a). Packets are processed by the stages one after one.

Match-action tables are the basic element used to process packets.

If two tables have no dependencies, they can be placed in the same

stage, e.g., IPv4 and IPv6 tables in Figure 3(a).

A match-action table contains a list of rules that specifies how

packets are processed, as shown in Figure 3(b). A match in a rule

specifies a header pattern, and the action specifies how the matched

packets should be processed. For example, the first rule in Fig-

ure 3(b) forwards packets to egress port 1 for packets with desti-

nation IP 10.0.0.1. Each stage also contains register arrays that can

be accessed at line rate. Programmable switches allow developers

to define custom packet formats and match-action tables to realize

their own protocols. The example in Figure 3(b) assumes two cus-

tom fields in the packet header, which are op for operation and ID

for object ID. The second and third rules perform read and write

on the register array based on op type, and the index of the register

array is computed by the hash of ID.

Developers use a domain-specific language such as P4 [14] to

write a program for a custom data plane, and then use a complier to

compile the program to a binary that can be loaded to the switch.

Each stage has resource constraints on the size of match-action ta-

bles (depending on the complexity of matches and actions) and reg-

ister arrays (depending on the length and width).

Multi-stage hash table with register arrays. The switch data

plane provides basic constructs for the conflict detection module.

A register array can be naturally used to store the object IDs. We

can use the hash of an object ID as the index of the register array,

and store the object ID as the value in the register slot. One chal-

lenge is to handle hash collisions, as the switch can only perform

a limited, fixed number of operations per stage. Collision resolu-

tion for hash tables is a well-studied problem, and the multi-stage

structure of the switch data plane makes it natural to implement

open addressing techniques to handle collisions. Specifically, we

allocate a register array in each stage and use different hash func-

tions for different stages. In this way, if several objects collide in

one stage, they are less likely to collide in another stage. Figure 4

shows the design.

• Insertion. For a write, the object ID is inserted to the first stage

with an empty slot for the object (Figure 4(a)). The write is

dropped if no slot is available.

• Search. For a read, the switch iterates over all stages to see if

any slot contains the same object ID (Figure 4(b)).

• Deletion. For a write completion, the switch iterates over all

stages and removes the object ID (Figure 4(c)).

Variable-length object IDs. Many systems use variable-length

IDs, e.g., variable-length keys in key-value stores and file paths in

file systems. Due to switch limitations, Harmonia must use fixed-

length object IDs for conflict detection. However, variable-length

381



obj seq

E 1

B 2

obj seq

X 3

C 4

obj seq

A 6

Q 5

h1(A) h2(A)

Write Query (obj_id=A)

h3(A)

obj seq

E 1

B 2

obj seq

X 3

C 4

obj seq

A 6

Q 5

h1(A) h2(A)

Read Query (obj_id=A)

h3(A)

obj seq

E 7

B 8

obj seq

X 9

C 10

obj seq

Q 11

h1(A) h2(A)

Write Completion (obj_id=A, seq=6)

(a) Insertion. (b) Search. (c) Deletion.

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

h3(A)

Figure 4: Multi-stage hash table design that supports insertion, search and deletion in the switch data plane.

IDs can be accommodated by having the clients store fixed-length

hashes of the original ID in the Harmonia packet header; the origi-

nal ID is sent in the packet payload. Harmonia then uses the fixed-

length hashes for conflict detection. Hash collisions may degrade

performance but cannot introduce consistency issues; they can only

cause Harmonia to believe a key is contended, not vice versa.

Protocol support. Harmonia is at application level, and thus is

compatible with existing L2-L4 network protocols. The network

forwards Harmonia packets as other packets using L2/L3 protocols.

Harmonia embeds a Harmonia header inside the L4 (UDP/TCP)

payload. The header only carries two fields (i.e., the operation type

and the object ID) from clients, and is additionally inserted the se-

quence number field for writes by the Harmonia switch. Only the

Harmonia switch needs to implement conflict detection and request

scheduling, which is invoked by a reserved L4 port for Harmonia

packets; other switches do not need to understand or implement

Harmonia, and simply treat Harmonia packets as normal packets.

UDP is widely used by many key-value stores for low la-

tency [56, 5, 4, 71]. Harmonia supports UDP by embedding the

Harmonia header inside the UDP payload. A read request only re-

quires one packet, and a write request may span several packets

in order to carry large values for update. To support multi-packet

writes, we use two operation types, namely, WFirst and WRest,

to distinguish between the first and rest packets of a write. Pack-

ets with WFirst are processed as single-packet writes, i.e., caus-

ing the object IDs to be added to the dirty set of the switch; those

with WRest are directly forwarded. This avoids the object ID to be

added to the dirty set by multiple times for the same write.

Some key-value stores use TCP for reliable writes [56, 5, 4,

71]. This can be supported by Harmonia in a similar way as multi-

packet UDP writes. The switch forwards the TCP packets (includ-

ing SYN, FIN, and actual request) based on the normal replica-

tion protocol, e.g., to the primary for primary-backup. In the ac-

tual request packet, the client embeds the Harmonia header in the

TCP payload, so that the Harmonia switch can add the object ID

to the dirty set. Similar to multi-packet UDP writes, WFirst and

WRest are used for large values that require multiple packets to

transmit. Supporting TCP reads is not straightforward because an

uncontended read can be forwarded to any replica, which needs

to be consistent for all packets of the same read, and whether the

read is contended or not cannot be decided when the switch sees

the TCP SYN packet. This can be addressed by requiring the TCP

SYN packet to also include the Harmonia header in the TCP pay-

load, and using a deterministic hash function based on the packet

header to pick replicas for uncontended reads.

7.2 Resource Usage
Switch on-chip memory is a limited resource. Will there be

enough memory to store the entire dirty set of pending writes?

Our key insight is that since the switch only performs conflict de-

tection, it does not need to store actual data, but only the object

IDs. This is in contrast to previous designs like NetCache [36] and

NetChain [35] that use switch memory for object storage directly.

Moreover, while the storage system can store a massive number of

objects, the number of writes at any given time is small, implying

that the dirty set is far smaller than the storage size.

Suppose we use n stages and each stage has a register array with

m slots. Let the hash table utilization be u to account for hash col-

lisions. The switch can support up to unm writes at a given time.

Suppose the duration of each write is t, and the write ratio is w.

Then the switch can support unm/t writes per second—or a total

throughput of unm/(wt)—before exhausting memory. As a con-

crete example, let n=3, m=64000, u=50%, t=1 ms and w=5%. The

switch can support a write throughput of 96 million requests per

second (MRPS), and a total throughput of 1.92 billion requests per

second (BRPS). Let both the object ID and sequence number be

32 bits. It only consumes 1.5MB memory. Given that a commod-

ity switch has 10–20 stages and a few tens of MB memory [67,

36, 35], this example only conservatively uses a small fraction of

switch memory.

In worst cases (e.g., many in-flight writes), the limited switch

memory can be full. The switch drops writes when there are no

empty slots, and the clients can queue and retry the dropped re-

quests after a timeout. It is critical for the switch to drop these

writes to guarantee linearizability. Otherwise, these writes would be

sent to servers without being tracked, and reads on the correspond-

ing objects would be sent to any replica, violating linearizability.

While dropping writes could limit the throughput, the above back-

of-the-envelope calculation shows the switch only needs 1.5MB

memory to support 1.92 BRPS, and the evaluation (Figure 13(a))

empirically shows that the switch has sufficient memory to track

in-flight writes and the memory is not the system bottleneck.

7.3 Deployment Issues
We imagine two possible deployment scenarios for Harmonia.

First, it can be easily integrated with clustered storage systems, as

shown in Figure 1. All servers are deployed in the same rack, al-

lowing the ToR switch to be the central location that sees all the

storage traffic. This is practical to many real-world use cases, in-

cluding on-premise storage clusters for enterprises and specialized

storage clusters in the cloud. It is easy to deploy as it only needs to

add Harmonia’s functionality to the ToR switch of the storage rack,

and does not need to change other switches.

For cloud-scale storage, replicas may be distributed among many

different racks for fault tolerance. Placing the Harmonia scheduler

on a ToR switch, which only sees storage traffic to its own rack,

does not suffice. Instead, we leverage a network serialization ap-

proach [42, 61], where all traffic destined for a replica group is

redirected through a designated switch. This solution incurs mini-

mal drawbacks on performance. First, as shown in prior work [42],

with careful selection of the switch (e.g., a spine switch in a two-

layer leaf-spine network), this need not increase latency. Second,

382



because different replica groups can use different switches as their

request schedulers and the capacity of a switch far exceeds that of a

single replica group, this does not reduce throughput. Importantly,

the designated switch is not a single point of failure, as a switch

failure only affects the replica groups it is responsible for, and the

traffic can be directly rerouted to another switch while guaranteeing

consistency as described in §6.3.

8. Adapting Replication Protocols
Safely using a replication protocol with Harmonia imposes three

responsibilities on the protocol. It must:

1. process writes only in sequence number order;

2. allow single-replica reads only from one active switch at a time;

3. ensure that single-replica reads for uncontended objects still re-

turn linearizable results.

Responsibility (1) can be handled trivially by dropping messages

that arrive out of order, and responsibility (2) can be implemented

in the same manner as leader leases in traditional replication pro-

tocols. We therefore focus on responsibility (3) here. How this is

handled is different for the two categories of read-ahead and read-

behind protocols.

To demonstrate its generality, we apply Harmonia to representa-

tive protocols from both classes. We explain the necessary proto-

col modifications and give a brief argument for correctness. A full

proof of correctness and a model-checked TLA+ specification are

in a technical report [74].

8.1 Requirements for Linearizability
Let us first specify the requirements that must be satisfied for

a Harmonia-adapted protocol to be correct. All write operations

are processed by the replication protocol based on the sequence

number order. We need only, then, consider the read operations.

The following two properties are sufficient for linearizability.

• P1. Visibility. A read operation sees the effects of all write oper-

ations that finished before it started.

• P2. Integrity. A read operation will not see the effects of any

uncommitted write operation at the time the read finished.

In the context of Harmonia, read operations follow the normal-

case replication protocol if they refer to an object in the dirty set,

and hence we need only consider the fast-path read operations. For

these, P1 can equivalently be stated as follows.

• P1. Visibility. The replication protocol must only send a com-

pletion notification for a write to the scheduler if any subsequent

single-replica read sent to any replica will reflect the effect of the

write operation.

8.2 Read­Ahead Protocols
Both primary-backup and chain replication are read-ahead pro-

tocols that cannot have read-behind anomalies, because they only

reply to the client once an operation has been executed on all repli-

cas. As a result, they inherently satisfy P1. We adapt them to send

a WRITE-COMPLETION notification to the switch at the same time

as responding to the client.

However, read-ahead anomalies are possible: reads naively exe-

cuted at a single replica can reflect uncommitted results. We use the

last-committed sequence number provided by the Harmonia switch

to prevent this. When a replica receives a fast-path read for object

o, it checks that the last-committed sequence number attached to

the request is at least as large as the latest write applied to o. If

not, it forwards the request to the primary or tail, to be executed

using the normal protocol. Otherwise, this implies that all writes to

o processed by the replica were committed at the time the read was

handled by the switch, satisfying P2.

8.3 Read­Behind Protocols
We have applied Harmonia to two quorum protocols: View-

stamped Replication [54, 45], a leader-based consensus protocol

equivalent to Multi-Paxos [38] or Raft [55], and NOPaxos [42],

a network-aware, single-phase consensus protocol. Both are read-

behind protocols. Because replicas in these protocols only execute

operations once they have been committed, P2 is trivially satisfied.

Furthermore, because the last committed point in the Harmonia

switch is greater than or equal to the sequence numbers of all writes

removed from its dirty set, replicas can ensure visibility (P1) by re-

jecting (and sending to the leader for processing through the normal

protocol) all fast-path reads whose last committed points are larger

than that of the last locally committed and executed write. In read-

behind protocols, WRITE-COMPLETIONs can be sent along with the

response to the client. However, in order to reduce the number of

rejected fast-path reads, we delay WRITE-COMPLETIONs until the

write has likely been executed on all replicas.

Viewstamped replication. For Viewstamped Replication, we add

an additional phase to operation processing that ensures a quo-

rum of replicas have committed and executed the operation. Con-

currently with responding to the client, the VR leader sends a

COMMIT message to the other replicas. Our additional phase

calls for the replicas to respond with a COMMIT-ACK message.3

Only once the leader receives a quorum of COMMIT-ACK mes-

sages for an operation with sequence number n does it send a

〈WRITE-COMPLETION, object id, n〉 notification.

NOPaxos. NOPaxos [42] uses an in-network sequencer to enable

a single-round, coordination-free consensus protocol. It is a natu-

ral fit for Harmonia, as both the sequencer and Harmonia’s request

scheduler can be deployed in the same switch. Although the repli-

cas do not coordinate while handling operations, they already run a

periodic synchronization protocol to ensure that they have executed

a common, consistent prefix of the log [43] that serves the same

purpose as the additional phase in VR. The only Harmonia modifi-

cation needed is for the leader, upon completion of a synchroniza-

tion, to send 〈WRITE-COMPLETION, object id, commit〉messages

for all affected objects.

9. Implementation
We have implemented a Harmonia prototype and integrated it

with Redis [5]. The switch data plane is implemented in P4 [14] and

is compiled to Barefoot Tofino ASIC [11] with Barefoot P4 Stu-

dio [10]. There are multiple programmable switching chips, such as

Barefoot Tofino [11], Broadcom Trident 3 & 4 [1], Cavium XPli-

ant [20] and NetFPGA SUME [75]. We choose Barefoot Tofino for

the prototype because it is publicly available and compatible with

P4, provides comparable performance as Broadcom Trident 3 &

4, and is faster than NPU-based Cavium XPliant and FPGA-based

NetFPGA SUME. We use 32-bit object IDs, and use 3 stages for

the hash table. Each stage provides 64K slots to store the object

IDs, resulting in a total of 192K slots for the hash table.

The shim layer in the storage servers is implemented in C++. It

communicates with clients using Harmonia packets, and uses hire-

dis [2], which is the official C library of Redis [5], to read from

and write to Redis. In additional to translate between Harmonia

packets and Redis operations, the shim layers in the servers also

communicate with each other to implement replication protocols.

We have integrated Harmonia with multiple representative replica-

tion protocols (§10.5). We use the pipeline feature of Redis to batch

3These messages can be piggybacked on the next PREPARE and
PREPARE-OK messages, eliminating overhead.

383



0 0.5 1 1.5 2 2.5
Throughput (MRPS)

0

1

2

3
La

te
nc

y 
(m

s)
CR
Harmonia

(a) Read-only workload.

0 0.2 0.4 0.6 0.8
Throughput (MRPS)

0

1

2

3

4

5

La
te

nc
y 

(m
s)

CR
Harmonia

(b) Write-only workload.
Figure 5: Performance for reads and writes.

0 0.2 0.4 0.6 0.8
Write Throughput (MRPS)

0

1

2

3

R
ea

d 
Th

ro
ug

hp
ut

 (M
R

P
S

)

Harmonia
CR

(a) Read vs. write.

0 20 40 60 80 100
Write Ratio (%)

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
)

Harmonia
CR

(b) Write ratio.
Figure 6: Performance for mixed workloads.

requests to Redis. Because Redis is single-threaded, we run eight

Redis processes on each server to maximize per-server throughput.

Our prototype achieves about 0.92 MQPS for reads and 0.8 MQPS

for writes on a single server. The client library is implemented in

C with Intel DPDK [3]. It generates requests to the storage system,

and measures the system throughput and latency.

10. Evaluation
We show experimentally that Harmonia provides significant

throughput improvements for read-mostly workloads, in combina-

tion with a variety of replication protocols, storage backends, work-

load parameters, and deployment scenarios.

Testbed. Our experiments are conducted on a testbed consisting of

twelve server machines connected by a 6.5 Tbps Barefoot Tofino

switch. Each server is equipped with an 8-core CPU (Intel Xeon

E5-2620 @ 2.1GHz), 64 GB total memory, and one 40G NIC (Intel

XL710). The server OS is Ubuntu 16.04.3 LTS. Ten storage servers

run Redis v4.0.6 [5] as the storage backend; two generate client

load using a DPDK-based workload generator.

Comparison. Redis is a widely-used open-source in-memory stor-

age system. However, Redis does not provide native support

for replication, only a cluster mode with weak consistency. We

use a shim layer to implement several representative replication

protocols, including primary-backup (PB) [17], chain replication

(CR) [70], CRAQ [69] (a version of chain replication that makes

reads more scalable at the cost of more expensive writes), View-

stamped Replication (VR) [54] and NOPaxos [42]. As described in

§9, we run eight Redis processes on each server to maximize per-

server throughput. The shim layer batches requests to Redis; the

baseline (unreplicated) performance for one server is 0.92 MQPS

for reads and 0.8 MQPS for writes.

We compare system performance with and without Harmonia for

each protocol. Due to space constraints, we show the results of CR,

a high-throughput variant of PB, in most figures; §10.5 compares

performance across all protocols, demonstrating generality.

Workload. By default, we use three replicas and a workload of 5%

write ratio based on YCSB [23] with uniform distribution on one

million objects with 32-bit IDs and 128-bit values. The 5% write ra-

tio is similar to that in real-world storage systems [53, 9], previous

studies [47], and standard benchmarks like YCSB [23]. Harmonia

supports atomic read-modify-write operations. The switch adds the

16 32 64 128 256 512 1024
Value Size (Byte)

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
)

Harmonia
CR

(a) Value size.

1M 5M 10M 50M 100M
Dataset Size (Number of Objects)

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
)

CR Harmonia

(b) Dataset size.
Figure 7: Impact of value size and dataset size.

Redis MongoDB MySQL
Storage Arcitecture

0

1

2

3

4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CR Harmonia

(a) Storage architecture.

YCSB Epinions Voter
Benchmark

0

1

2

3

4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

CR Harmonia

(b) Benchmark.
Figure 8: Performance under different storage architectures

and benchmarks.

object IDs to the dirty set when it receives the requests and re-

moves the IDs when it receives the replies to ensure linearizability.

In the experiments, we vary the parameters (write ratio, value size,

dataset size, number of in-fight writes, storage system latency, num-

ber of replicas, and switch memory size), the storage architecture

(Redis [5], MongoDB [48] and MySQL [51]), and the benchmark

(YCSB [23], Epinions [28] and Voter [68]).

10.1 Latency vs. Throughput
We first conduct a basic throughput and latency experiment. The

client generates requests to three replicas, and measures the average

latency at different throughput levels.

Figure 5(a) shows the relationship between throughput and la-

tency under a read-only workload. Since CR only uses the tail node

to handle read requests, the throughput is bounded by that of one

server. In comparison, since Harmonia uses the switch to detect

read-write conflicts, it is able to fully utilize the capacity of all the

three replicas when there are no conflicts. The read latency is a

few hundred microseconds at low load, and increases as throughput

goes up. For write-only workloads (Figure 5(b)), CR and Harmo-

nia have identical performance, as Harmonia simply passes writes

to the normal protocol.

To evaluate mixed workloads, the client fixes its rate of generat-

ing write requests, and measures the maximum read throughput that

can be handled by the replicas. Figure 6(a) shows the read through-

put as a function of write rate. Since CR can only leverage the ca-

pacity of the tail node, its read throughput is no more than that of

one storage server, even when the write throughput is small. On the

other hand, Harmonia can utilize all three replicas to handle reads

when the write throughput is small. At low write rate, Harmonia

improves the throughput by 3× over CR. At high write rate, both

systems have similar throughput as Harmonia and CR process write

requests in the same way. Figure 6(b) evaluates the performance for

mixed workloads from another angle. The client fixes the ratio of

writes and measures the saturated throughput. The figure shows the

total throughput as a function of write ratio. Again, the throughput

of CR is bounded by the tail node, while Harmonia can leverage

all replicas to process reads. Similar to Figure 6(a), when the write

ratio is high, Harmonia has little benefit as they process writes in

the same way.

Figure 7 evaluates the impact of value size and dataset size. The

throughput of both Harmonia and CR decreases with larger value

384



2 4 6 8 10
Number of Replicas

0.0

2.5

5.0

7.5

10.0
Th

ro
ug

hp
ut

(M
R

P
S

)
Harmonia
CR

(a) Read-only.

2 4 6 8 10
Number of Replicas

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia
CR

(b) Write-only.

2 4 6 8 10
Number of Replicas

0

2

4

6

8

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia
CR

(c) 5% writes.

2 4 6 8 10
Number of Replicas

0

2

4

6

8

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia(CR)
CR

(d) 10% writes.

2 4 6 8 10
Number of Replicas

0

2

4

6

8

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia(CR)
CR

(e) 15% writes.

2 4 6 8 10
Number of Replicas

0

2

4

6

8

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia(CR)
CR

(f) 20% writes.
Figure 9: Total throughput with increasing numbers of replicas

for three workloads.

size, as the servers spend more time on processing larger values.

Because Harmonia only stores object IDs, instead of object values,

in the switch, the value size does not affect Harmonia’s ability to

detect conflicts, and Harmonia outperforms CR regardless of the

value size. Harmonia also outperforms CR under different dataset

sizes, and the throughput of both systems is not affected by the

dataset size in the evaluated range from 1 million to 100 million

objects, because the servers in the testbed have sufficient memory

to store all objects.

Besides Redis, our prototype also supports MongoDB [48] and

MySQL [51] as storage engines. Figure 8(a) shows their through-

put. The throughput of Harmonia is normalized to that of CR in

each storage architecture to depict the improvement. The result

demonstrates that Harmonia is a general approach that can be ap-

plied to different storage architectures. Figure 8(b) shows the nor-

malized throughput under different benchmarks. Harmonia’s per-

formance depends on the read/write ratio of the workload: it pro-

vides a substantial performance improvement on the read-mostly

(95% read) YCSB workload [23] and a modest one on the mixed

(50%) Epinions [28] benchmark. Voter [68], a 100% write bench-

mark, is an example of a workload that Harmonia will not benefit,

though neither does it impose a performance penalty.

10.2 Scalability
Harmonia offers near-linear read scalability for read-intensive

workloads. We demonstrate this by varying the number of replicas

and measuring system throughput in several representative cases.

The scale is limited by the size of our twelve-server testbed: we can

use up to ten servers as replicas, and two servers as clients to gener-

ate requests. Our high-performance client implementation written

in C and DPDK is able to saturate ten replicas with two clients.

Harmonia offers dramatic improvements on read-only workloads

(Figure 9(a)). For CR, increasing the number of replicas does not

Server Racks Clients

ToR
Switches

Spine
Switches

Harmonia
Switch

Figure 10: Topology for multi-rack experiments.

1 2 3
Number of Racks

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

R
P

S
)

Harmonia
CR

(a) Throughput.

1 2 3
Number of Racks

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y(

m
s)

Harmonia (Write)
CR (Write)
Harmonia (Read)
CR (Read)

(b) Latency.

Figure 11: Performance with multiple racks.

change the overall throughput, because it only uses the tail to han-

dle reads. In contrast, Harmonia is able to utilize the other repli-

cas to serve reads, causing throughput to increase linearly with the

number of replicas. Harmonia improves the throughput by 10×
with a replication factor of 10, limited by the testbed size. It can

scale out until the switch is saturated. Multiple switches can be used

for multiple replica groups to further scale out (§7.3). On write-only

workloads (Figure 9(b)), Harmonia has no benefit regardless of the

number of replicas because Harmonia uses the underlying replica-

tion protocol for writes. For CR, the throughput stays the same as

more replicas are added since CR uses a chain to propagate writes.

Figure 9(c) considers throughput scalability under a mixed read-

write workload with a write ratio of 5%. Again, CR does not scale

with the number of replicas. In comparison, the throughput of Har-

monia increases nearly linearly with the number of replicas. Under

a read-intensive workload, Harmonia can efficiently utilize the re-

maining capacity on the other nodes. The total throughput here is

smaller than that for read-only requests (Figure 9(a)), because han-

dling writes is more expensive than handling reads and the tail node

becomes the bottleneck as the number of replicas goes up to 10.

Figure 9(d), Figure 9(e) and Figure 9(f) show the throughput scala-

bility under 10%, 15% and 20% writes, respectively. Similarly, the

throughput of Harmonia keeps increasing with more replicas, while

that of CR does not scale. The throughput improvement is smaller

with higher write ratio, because Harmonia uses in-network conflict

detection to achieve read scalability, and does not change how the

system handles writes.

In addition to single-rack deployments, we also consider the

multi-rack deployment shown in Figure 10. This uses a differ-

ent testbed consisting of four racks, each containing four servers

(Xeon Silver 4114 at 2.2 GHz); up to three racks are used for Redis

servers and the fourth for clients. Each rack has a single top-of-rack

switch, and the racks are interconnected via 100 GbE links to two

aggregation switches. We use one of the aggregation switches as

the Harmonia switch, using a Tofino-based Arista 7170-64C; the

other switches are Arista 7060CX-32 models, based on the (non-

programmable) Broadcom Tomahawk chipset.

Figure 11(a) shows that Harmonia continues to provide scalabil-

ity benefits as the number of racks increase. The tradeoff is that all

traffic from clients to replicas must pass through the single Har-

385



2 4 6 8 10
Number of Replicas

10-1

100

101

102

103

104

Th
ro

ug
hp

ut
(M

R
P

S
)

NetChain
Harmonia

NetCache(in-cache)
NetCache(out-cache)

(a) Performance.

NetChain

Value

Size

Dataset

Size

≤128 Byte ≤	64K

NetCache

Harmonia

≤128 Byte

Unlimited*

Unlimited*

Unlimited*

* Unlimited means the value size
and data size are restricted by the

storage system, not the switch.

(b) Value and dataset size.
Figure 12: Comparison with NetCache & NetChain.

monia switch. Though this does not pose a throughput bottleneck,

there is a slight increase in latency for read and write operations

(Figure 11(b)) caused by the routing constraint and the additional

latency of the programmable switch. It remains, however, 1-2 order

of magnitudes lower than the operation processing cost.

10.3 Comparison with In­Switch Storage
Two recent systems, NetCache [36] and NetChain [35], also use

programmable switches, but in a different way: they store applica-

tion data directly in the switch. These systems are able to achieve

dramatically higher performance – as high as 4 billion operations

per second (Figure 12(a)) – but subject to severe workload restric-

tions. As a result, they are designed for specific scenarios rather

than the generic replicated storage that Harmonia targets: NetCache

caches a small number of objects to alleviate hotspots and improve

load balancing of a larger storage system, and NetChain provides

replicated storage for a limited set of small objects, targeting con-

figuration services and similar workloads.

Specifically, Figure 12(b) summarizes the supported workloads

for these systems as compared to Harmonia. Both NetCache and

NetChain are limited to values less than 128 bytes; most database

workloads do not meet this constraint. On our workload, NetChain

is forced to fall back to the much slower switch control processor,

as it is limited to 64K objects (though for smaller workloads, it can

achieve up to 2 billion QPS). NetCache integrates with a storage

system that can handle larger datasets, but the cache itself can only

hold a similar amount of data. These limitations are fundamental:

on-die memory capacity and parse depth are major limiting factors

in switch ASIC performance [15]. Harmonia avoids these limita-

tions by storing only metadata in the switch.

10.4 Switch Resource Usage and Overhead
Harmonia uses switch memory sparingly, as it only tracks meta-

data (object IDs and sequence numbers). In addition to the analyt-

ical evaluation (§7.2), we provide an empirical one by varying the

size of the Harmonia switch’s hash table, and measuring the total

throughput of three replicas. Here, we use a write ratio of 5% and

both uniform and skewed (zipf-0.9) request distributions across one

million keys. As shown in Figure 13(a), Harmonia only requires

about 2000 hash table slots to track all outstanding writes. Below

this point, skewed workloads are more heavily affected by memory

constraints: a hot object would always occupy a slot in the hash ta-

ble, making the switch drop writes to other objects that collide on

this slot, thus limiting throughput.

With 32-bit object IDs and 32-bit sequence numbers, 2000 slots

only consume 16 KB memory. Given that commodity switches

have tens of MB on-chip memory [67, 36, 35], the memory used

by Harmonia only accounts for a tiny fraction of the total mem-

ory, e.g., only 1.6% (0.8%) for 10 MB (20 MB) memory. This

result roughly matches the back-of-envelope calculations in §7.2,

with differences coming from table utilization, write duration and

total throughput. Thus, Harmonia can be added to the switch and

4 16 256 4096 65536
Hash Table Size (log-scale)

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
) uniform

zipf-0.9

(a) Switch memory size.

100 101 102 103

Number of In-Flight Writes

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
)

1M total objects
10K total objects
3K total objects
1K total objects

(b) In-flight writes.

0 5 10 15 20
Extra Storage Latency (ms)

0

1

2

3

Th
ro

ug
hp

ut
 (M

R
P

S
)

Harmonia
CR

(c) Storage latency.

0.0 0.3 0.6 0.9
Throughput (MRPS)

0

1

2

3

La
te

nc
y 

(m
s)

Switch (with Harmonia)
Switch (forwarding only)
Direct Link

(d) Switch overhead.

Figure 13: Switch resource usage and overhead.

0.0 0.3 0.6 0.9
Write Throughput (MRPS)

0

1

2

3

4

R
ea

d 
Th

ro
ug

hp
ut

 (M
R

P
S

)

Harmonia(CR)
Harmonia(PB)
CRAQ

CR
PB

(a) Primary-backup.

0 0.04 0.08 0.12
Write Throughput (MRPS)

0

0.2

0.4

0.6

R
ea

d 
Th

ro
ug

hp
ut

 (M
R

P
S

)

Harmonia(NOPaxos)
Harmonia(VR)
NOPaxos
VR

(b) Quorum-based.

Figure 14: Read throughput as write rate increases, for a vari-

ety of replication protocols.

co-exist with other modules without significant resource consump-

tion. It also allows Harmonia to scale out to multiple replica groups

with one switch, as one group only consumes little memory. This is

especially important if Harmonia is deployed in a spine switch to

support many replica groups across different racks.

Figure 13(b) shows the impact of in-flight writes. Here, we man-

ually insert object IDs into the switch dirty set, representing in-

flight writes and measure read throughput using a uniform access

distribution. The throughput decreases with more in-flight writes,

as contended reads can only be sent to the tail. This effect is smaller

with larger dataset size, as the contended objects become a smaller

subset of the total objects. One way this scenario might arise is

if the backing store is slower (e.g., disk-based), causing writes to

remain in flight longer. Figure 13(c) evaluates this effect more di-

rectly by adding extra latency to query processing to Redis. While

the throughput decreases with longer storage latency, Harmonia

still provides significant throughput improvements.

Figure 13(d) evaluates the switch packet processing overhead. It

compares the latency and throughput of a Redis client and server,

connected by either a direct link, a conventional switch, and a Har-

monia switch. There is no significant difference, as the switch only

incurs microsecond-level delay.

10.5 Generality
We show that Harmonia is a general approach by applying it to

a variety of replication protocols. For each protocol, we examine

throughput for a three-replica storage system with and without Har-

monia. Figure 14 shows the read throughput as a function of write

rate for different protocols. Figure 14(a) shows the results for two

primary-backup protocols, PB and CR. Both PB and CR are limited

by the performance of one server. Harmonia makes use of all three

386



0 20 40 60 80 100
Time (s)

0

1

2

3
Th

ro
ug

hp
ut

(M
R

P
S

)
stop switch

reactivate switch

Figure 15: Failure handling result.

replicas to handle reads, and provides significantly higher through-

put than PB and CR. CR is able to achieve higher write throughput

than PB, as it uses a chain structure to propagate writes.

CRAQ, a modified version of CR, obtains higher read throughput

than CR, as shown in Figure 14(a). This is because CRAQ allows

reads to be sent to any replica (reads to dirty objects are forwarded

to the tail). However, CRAQ adds an additional phase to write op-

erations (first marking objects as dirty then committing the write).

As a result, CRAQ’s write throughput is much lower—hence the

steeper curve. Harmonia (CR), which applies in-network conflict

detection to CR, performs much better than CRAQ, achieving the

same level of read scalability without degrading the performance

of writes. Figure 14(b) shows the results for quorum-based proto-

cols VR and NOPaxos. For faithful comparison, we use the orig-

inal implementation of NOPaxos, including the middlebox-based

sequencer prototype, which runs on a Cavium Octeon II network

processor. We integrate Harmonia with these, rather than the Tofino

switch and Redis-based backend. As a result, the absolute numbers

in Figures 14(a) and 14(b) are incomparable. The trends, however,

are the same. Harmonia significantly improves throughput for VR

and NOPaxos.

10.6 Performance Under Failures
Finally, we show how Harmonia handles failures. To simulate a

failure, we first manually stop and then reactivate the switch. Har-

monia uses the mechanism described in §6.3 to correctly recover

from the failure. Figure 15 shows the throughput during this period

of failure and recovery. At time 20 s, we let the switch stop for-

warding any packets, and the throughput drops to zero. We wait for

a few seconds and then reactivate the switch to forward packets.

Upon reactivation, the switch retains none of its former state and

uses a new switch ID. The servers are notified with the new switch

ID and agree to drop single-replica reads from the old switch. In the

beginning, the switch forwards reads to the tail node and writes to

the head node. During this time, the system throughput is the same

as without Harmonia. After the first WRITE-COMPLETION with the

new switch ID passes the switch, the switch has the up-to-date dirty

set and last-committed point. At this time, the switch starts schedul-

ing single-replica reads to the servers, and the system throughput is

fully restored. Because the servers complete requests quickly, the

transition time is minimal, and we can see that the system through-

put returns to pre-failure levels within a few seconds.

11. Related Work

Replication protocols. Replication protocols are widely used by

storage systems to achieve strong consistency and fault toler-

ance [33, 52, 66, 46, 58, 31, 7, 30, 22, 27, 8, 72, 12, 49, 19]. The

primary-backup protocol [17] and its variations like chain replica-

tion [70] and CRAQ [69] assign replicas with different roles, and

require operations to be executed by the replicas in a certain order.

Quorum-based protocols [37, 63, 55, 54, 13] only require an op-

eration to be executed at a quorum, instead of all replicas. While

they do not distinguish the roles of replicas, they often employ an

optimization that first elects a leader and then uses the leader to

commit operations to other nodes. Vertical Paxos [39] proposes to

incorporate these two classes of protocols into a single framework,

by dividing a replication protocol into a steady state protocol and

a reconfiguration protocol. CRAQ [69] is most similar in spirit to

our work. It adapts chain replication to allow any replica to answer

reads for uncontended objects by adding a second phase to the write

protocol: objects are first marked dirty, then updated. Harmonia

achieves the same goal without the write overhead by in-network

conflict detection, and supports more general replication protocols.

Query scheduling. A related approach is taken in a line of database

replication systems that achieve consistent transaction processing

atop multiple databases, such as C-JDBC [21], FAS [64], and

Ganymed [60]. These systems use a query scheduler to orches-

trate queries among replicas with different states. The necessary

logic is more complex for database transactions (and sometimes

necessitates weaker isolation levels). Other systems, e.g., Breitbart

et al. [16], use specific tree topologies to propagate updates lazily

while maintaining serializablity, a conceptually similar approach to

chain replication. Harmonia provides a near-zero-overhead sched-

uler implementation for replication using the network. Query pro-

cessing also needs to be scheduled, and prior work has extended

query planners to take into account network-level state. Xiong et

al. [73] adapt a query planner to take into account available band-

width and use traffic prioritization and bandwidth reservation to

differentiate users. NetStore [24] selects the least congested path

for transactions and caches data away from congested links.

In-network computing. The emerging programmable switches in-

troduce new opportunities to move computation into the network.

NetCache [36] and IncBricks [47] use in-network caching to im-

prove the load balancing of key-value stores. NetChain [35] builds

an in-network key-value store for coordination services. In each

of these cases, because data is stored in switches themselves, both

object size and dataset size are limited by the switch memory (Fig-

ure 12). SwitchKV [44] leverages programmable switches to re-

alize content-based routing for load balancing in key-value stores.

Eris [41] exploits programmable switches to realize concurrency

control for distributed transactions. NetPaxos [26, 25] implements

Paxos on switches. SpecPaxos [61] and NOPaxos [42] use switches

to order messages to improve replication protocols. With NetPaxos,

SpecPaxos and NOPaxos, reads still need to be executed by a quo-

rum, or by a leader if the leader-based optimization is used. Har-

monia improves these solutions by allowing reads not in the dirty

set to be executed by any replica.

12. Conclusion
Harmonia is a new replicated storage architecture that achieves

near-linear scalability and guarantees linearizability with in-

network conflict detection. Harmonia leverages new-generation

programmable switches to efficiently track the dirty set and de-

tect read-write conflicts in the network data plane. Such a powerful

capability enables Harmonia to safely schedule reads to the repli-

cas without sacrificing consistency. Harmonia demonstrates that re-

thinking the division of labor between the network and end hosts

makes it possible to achieve performance properties beyond the

grasp of distributed systems alone.

Acknowledgments We thank the anonymous reviewers for their

valuable feedback. This work is supported in part by NSF grants

CRII-1755646, CNS-1813487 and CCF-1918757, Facebook Com-

munications & Networking Research Award, and Amazon AWS

Cloud Credits for Research Program.

387



13. REFERENCES
[1] Broadcom ethernet switches and switch fabric devices.

https://www.broadcom.com/products/

ethernet-connectivity/switching.

[2] Hiredis: Redis library. https://redis.io/.

[3] Intel data plane development kit (dpdk).

http://dpdk.org/.

[4] Memcached key-value store.

https://memcached.org/.

[5] Redis data structure store. https://redis.io/.

[6] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,

L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy

nodes. In ACM SOSP, pages 1–14, 2009.

[7] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,

D. S. Roselli, and R. Y. Wang. Serverless network file

systems. ACM Transactions on Computer Systems,

29(5):109–126, 1996.

[8] Apache Hadoop Distributed File System (HDFS).

http://hadoop.apache.org/.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-value

store. In ACM SIGMETRICS, pages 53–64, 2012.

[10] Barefoot P4 Studio.

https://www.barefootnetworks.com/

products/brief-p4-studio/.

[11] Barefoot Tofino. https://www.barefootnetworks.

com/technology/#tofino.

[12] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al.

Finding a needle in Haystack: Facebook’s photo storage. In

USENIX OSDI, pages 1–8, 2010.

[13] K. Birman and T. Joseph. Exploiting Virtual Synchrony in

Distributed Systems. SIGOPS Operating Systems Review,

21(5):123–138, 1987.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming

protocol-independent packet processors. SIGCOMM CCR,

44(3):87–95, 2014.

[15] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,

M. Izzard, F. Mujica, and M. Horowitz. Forwarding

metamorphosis: Fast programmable match-action processing

in hardware for SDN. In ACM SIGCOMM, pages 99–110,

2013.

[16] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and

A. Silberschatz. Update propagation protocols for replicated

databases. In ACM SIGMOD, pages 97–108, 1999.

[17] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.

The primary-backup approach. In Distributed systems,

volume 2, pages 199–216, 1993.

[18] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In USENIX OSDI, pages 335–350, 2006.

[19] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,

S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci,

J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar,

S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u.

Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,

S. Sankaran, K. Manivannan, and L. Rigas. Windows Azure

storage: A highly available cloud storage service with strong

consistency. In ACM SOSP, pages 143–157, 2011.

[20] Cavium XPliant. https://www.cavium.com/.

[21] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-jdbc:

Flexible database clustering middleware. In USENIX ATC,

pages 9–18, 2004.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for structured

data. In USENIX OSDI, pages 205–218, 2006.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB.

In ACM Symposium on Cloud Computing, pages 143–154,

2010.

[24] X. Cui, M. Mior, B. Wong, K. Daudjee, and S. Rizvi.

NetStore: Leveraging network optimizations to improve

distributed transaction processing performance. In

Proceedings of the Second International Workshop on Active

Middleware on Modern Hardware, pages 1–10, 2017.

[25] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos made

switch-y. SIGCOMM CCR, 46(2):18–24, 2016.

[26] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé.

NetPaxos: Consensus at network speed. In ACM SOSR,

page 5, 2015.

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available

key-value store. In ACM SOSP, pages 205–220, 2007.

[28] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux.

OLTP-Bench: An extensible testbed for benchmarking

relational databases. PVLDB, 7(4):277–288, 2013.

[29] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A

distributed, searchable key-value store. In ACM SIGCOMM,

pages 25–36, 2012.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file

system. In ACM SOSP, pages 29–43, 2003.

[31] J. H. Hartman and J. K. Ousterhout. The Zebra striped

network file system. ACM Transactions on Computer

Systems, 13(3):274–310, 1995.

[32] M. P. Herlihy and J. M. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Transactions on

Programming Languages and Systems, 12(3):463–492, 1990.

[33] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale

and performance in a distributed file system. ACM

Transactions on Computer Systems, 6(1):51–81, 1988.

[34] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:

Wait-free coordination for Internet-scale systems. In

USENIX ATC, pages 145–158, 2010.

[35] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim,

and I. Stoica. NetChain: Scale-free sub-RTT coordination. In

USENIX NSDI, pages 35–49, 2018.

[36] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,

and I. Stoica. NetCache: Balancing key-value stores with fast

in-network caching. In ACM SOSP, pages 121–136, 2017.

[37] L. Lamport. The part-time parliament. ACM Transactions on

Computer Systems, 16(2):133–169, 1998.

[38] L. Lamport. Paxos made simple. ACM SIGACT News,

32(4):18–25, 2001.

[39] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and

primary-backup replication. In ACM PODC, pages 312–313,

2009.

[40] A. Lerner, R. Hussein, and P. Cudré-Mauroux. The case for

network accelerated query processing. In CIDR, 2019.

[41] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free

consistent transactions using in-network concurrency

388

https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.broadcom.com/products/ethernet-connectivity/switching
https://redis.io/
http://dpdk.org/
https://memcached.org/
https://redis.io/
http://hadoop.apache.org/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.cavium.com/


control. In ACM SOSP, pages 104–120, 2017.

[42] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.

Ports. Just say NO to Paxos overhead: Replacing consensus

with network ordering. In USENIX OSDI, pages 467–483,

2016.

[43] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K.

Ports. Just say NO to Paxos overhead: Replacing consensus

with network ordering (extended version). Technical Report

UW-CSE-TR-16-09-02, University of Washington CSE,

Seattle, WA, USA, 2016.

[44] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J.

Freedman. Be fast, cheap and in control with SwitchKV. In

USENIX NSDI, pages 31–44, 2016.

[45] B. Liskov and J. Cowling. Viewstamped replication revisited.

Technical Report MIT-CSAIL-TR-2012-021, MIT Computer

Science and Artificial Intelligence Laboratory, Cambridge,

MA, USA, July 2012.

[46] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,

and M. Williams. Replication in the Harp file system. In

ACM SOSP, pages 226–238, 1991.

[47] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and

K. Atreya. IncBricks: Toward in-network computation with

an in-network cache. In ACM ASPLOS, pages 795–809,

2017.

[48] MongoDB. https://www.mongodb.com/.

[49] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. f4:

Facebook’s warm BLOB storage system. In USENIX OSDI,

pages 383–398, 2014.

[50] C. Mustard, F. Ruffy, A. Gakhokidze, I. Beschastnikh, and

A. Fedorova. Jumpgate: In-network processing as a service

for data analytics. In USENIX HotCloud Workshop, 2019.

[51] MySQL. https://www.mysql.com/.

[52] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in

the Sprite network file system. ACM Transactions on

Computer Systems, 6(1):134–154, 1988.

[53] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,

H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,

D. Stafford, T. Tung, and V. Venkataramani. Scaling

Memcache at Facebook. In USENIX NSDI, pages 385–398,

2013.

[54] B. M. Oki and B. H. Liskov. Viewstamped replication: A

new primary copy method to support highly-available

distributed systems. In ACM PODC, pages 8–17, 1988.

[55] D. Ongaro and J. Ousterhout. In search of an understandable

consensus algorithm. In USENIX ATC, pages 305–319, 2014.

[56] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,

B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,

S. Rumble, R. Stutsman, and S. Yang. The RAMCloud

storage system. ACM Transactions on Computer Systems,

33(3):7, 2015.

[57] C. Partridge, T. Mendez, and W. Milliken. Host anycasting

service. RFC 1546, November 1993.

[58] D. A. Patterson, G. Gibson, and R. H. Katz. A case for

redundant arrays of inexpensive disks (RAID). In ACM

SIGMOD, pages 109–116, 1988.

[59] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and

W. Belluomini. Flex-KV: Enabling high-performance and

flexible KV systems. In Workshop on Management of Big

Data Systems (MBDS), pages 19–24, 2012.

[60] C. Plattner and G. Alonso. Ganymed: Scalable replication for
transactional web applications. In Proceedings of the

International Middleware Conference, pages 155–174, 2004.

[61] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and

A. Krishnamurthy. Designing distributed systems using

approximate synchrony in data center networks. In USENIX

NSDI, pages 43–57, 2015.

[62] D. R. K. Ports and J. Nelson. When should the network be

the computer? In ACM HotOS Workshop, 2019.

[63] B. Reed and F. P. Junqueira. A simple totally ordered

broadcast protocol. In ACM Large-Scale Distributed Systems

and Middleware, page 2, 2008.

[64] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS — a

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proceedings of the 28th International

Conference on Very Large Data Bases (VLDB ’02), pages

754–765, 2002.

[65] A. Sapio, M. Canini, C. Ho, J. Nelson, P. Kalnis, C. Kim,

A. Krishnamurthy, M. Moshref, D. R. K. Ports, and

P. Richtárik. Scaling distributed machine learning with

in-network aggregation. CoRR, abs/1903.06701, 2019.

[66] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,

E. H. Siegel, and D. C. Steere. Coda: A highly available file

system for a distributed workstation environment. IEEE

Transactions on Computers, 39(4):447–459, 1990.

[67] N. K. Sharma, A. Kaufmann, T. E. Anderson,

A. Krishnamurthy, J. Nelson, and S. Peter. Evaluating the

power of flexible packet processing for network resource

allocation. In USENIX NSDI, pages 67–82, 2017.

[68] M. Stonebraker and A. Weisberg. The VoltDB main memory

DBMS. IEEE Data Engineering Bulletin, 36(2):21–27, 2013.

[69] J. Terrace and M. J. Freedman. Object storage on CRAQ:

High-throughput chain replication for read-mostly

workloads. In USENIX ATC, pages 11–11, 2009.

[70] R. Van Renesse and F. B. Schneider. Chain replication for

supporting high throughput and availability. In USENIX

OSDI, pages 91–104, 2004.

[71] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,

P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,

J. Hoon, S. Kulkarni, N. Lawrence, M. Marchukov,

D. Petrov, and L. Puzar. TAO: How Facebook serves the

social graph. In ACM SIGMOD, pages 791–792, 2012.

[72] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and

C. Maltzahn. Ceph: A scalable, high-performance distributed

file system. In USENIX OSDI, pages 307–320, 2006.

[73] P. Xiong, H. Hacigumus, and J. F. Naughton. A

software-defined networking based approach for

performance management of analytical queries on distributed

data stores. In ACM SIGMOD, pages 955–966, 2014.

[74] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and

X. Jin. Harmonia: Near-linear scalability for replicated

storage with in-network conflict detection. In Technical

Report (https://arxiv.org/abs/1904.08964), 2019.

[75] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.

Moore. NetFPGA SUME: Toward 100 Gbps as research

commodity. IEEE Micro, 34(5):32–41, 2014.

389

https://www.mongodb.com/
https://www.mysql.com/

	Introduction
	The Case for Programmable Switches in Database Clusters
	The Quest for Scalable Replication
	Replication Protocols
	Towards Linear Scalability

	Harmonia Approach
	Challenges

	Harmonia Architecture
	In-Network Conflict Detection
	Basic Request Processing
	Handling Network Asynchrony
	Failure Handling

	Data Plane Design and Implementation
	Data Plane Design
	Resource Usage
	Deployment Issues

	Adapting Replication Protocols
	Requirements for Linearizability
	Read-Ahead Protocols
	Read-Behind Protocols

	Implementation
	Evaluation
	Latency vs. Throughput
	Scalability
	Comparison with In-Switch Storage
	Switch Resource Usage and Overhead
	Generality
	Performance Under Failures

	Related Work
	Conclusion
	References

