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ABSTRACT
In the last few years, artificial intelligence (AI) and machine learn-
ing (ML) have become ubiquitous terms. These powerful techniques
have escaped obscurity in academic communities with the recent
onslaught of AI & ML tools, frameworks, and libraries that make
these techniques accessible to a wider audience of developers. As a
result, applying AI & ML to solve existing and emergent problems
is an increasingly popular practice. However, little is known about
this domain from the software engineering perspective. Many AI &
ML tools and applications are open source, hosted on platforms such
as GitHub that provide rich tools for large-scale distributed soft-
ware development. Despite widespread use and popularity, these
repositories have never been examined as a community to identify
unique properties, development patterns, and trends.

In this paper, we conducted a large-scale empirical study of AI &
MLTool (700) and Application (4,524) repositories hosted on GitHub
to develop such a characterization. While not the only platform
hosting AI & ML development, GitHub facilitates collecting a rich
data set for each repository with high traceability between issues,
commits, pull requests and users. To compare the AI & ML com-
munity to the wider population of repositories, we also analyzed a
set of 4,101 unrelated repositories. We enhance this characteriza-
tion with an elaborate study of developer workflow that measures
collaboration and autonomy within a repository. We’ve captured
key insights of this community’s 10 year history such as it’s pri-
mary language (Python) and most popular repositories (Tensorflow,
Tesseract). Our findings show the AI & ML community has unique
characteristics that should be accounted for in future research.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Software and its engineering → Collabora-
tion in software development; Software libraries and repositories.
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machine learning, artificial intelligence, mining software reposito-
ries, software engineering, Open Source, GitHub
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1 INTRODUCTION
In the last few years, artificial intelligence (AI) andmachine learning
(ML) have become ubiquitous terms. AI & ML tools are increasingly
used in day-to-day applications. At the same time, the need for AI &
ML applications has led to a tremendous growth in the GPU market.
The 2019 Global Developer Population and Demographic Study by
Evans Data Corporation estimates that about 7 million developers
use artificial intelligence or machine learning in their development
work, and another 9.5 million are expected to use it within the
next twelve months [23]. With new emerging technologies, it is
important to understand how existing development practices are
affected. Initial work has focused on interviews and surveys to
understand how AI & ML projects are different [1, 54], and the
challenges that developers face [3, 21, 37, 58].

In this paper, we contribute additional insights into AI & ML
development and triangulate results from existing studies. We char-
acterize the landscape of AI & ML repositories on GitHub in order
to understand the AI & ML boom in recent years and the differ-
ences between AI & ML and traditional software development.
Specifically, we conduct a large-scale empirical study of GitHub to
characterize and compare software development across three types
of repositories (Section 2):

(1) AI & ML Tools: 700 AI & ML frameworks & libraries
(2) Applied AI & ML: 4,524 repositories using AI & ML
(3) Comparison: 4,101 repositories unrelated to AI & ML

GitHub is not the only platform hosting AI & ML software develop-
ment. However, we chose to focus on GitHub due to its integration
of collaborative development artifacts (issues, pull requests) into
the repositories, allowing us to leverage mining tools to collect a
rich dataset for each repository from a single source.

The research goal is to understand, among others things, the
timeline of the AI & ML boom, ownership of AI & ML software,
their popularity, and programming language use. In addition, we
investigate collaboration and autonomy because they have been
found to be important factors related to productivity [42, 49]. Some
of our findings include (Sections 4 and 5.1):

• The oldest active AI & ML repository (cilib [9]) on GitHub
was created in 2009. The annual proportion of new reposito-
ries related to AI & ML gradually rose since 2012, until the
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“boom” in 2017. More applications of AI & ML are created
annually than tools, libraries, and frameworks.

• The primary language for AI & ML is Python.
• Users own the majority (79.1%) of applied AI & ML reposito-
ries, but organizations own more (51.43%) of the AI & ML
tools.

• IBM owns the most (61) AI & ML repositories.
• AI & ML Tools are more popular than Applied AI & ML
repositories. Tensorflow [19] is the most popular tool, and
has over 100,000 more stars than Tesseract [18], the most
popular Applied AI & ML repository.

Our findings show the AI & ML community has unique charac-
teristics that should be accounted for in future research (Section 6):
(1) more research and support is needed for Python as the main AI &
ML programming language; (2) the significant differences between
internal and external contributors in AI & ML projects suggest
that empirical studies need to account for contribution types; (3)
since a company owns the most AI & ML repositories, many public
AI & ML projects on GitHub will have commercial interests and
involve paid software developers; and (4) as the most popular AI
& ML projects, TensorFlow and Tesseract should be included in
any AI & ML-related research; (5) the collaboration study found
users collaborate through interactions like discussions across all
artifacts, which are not considered in current collaboration studies;
(6) several measurements show Applied AI & ML and AI & ML
Tool repositories should be treated as related but unique groups,
and (7) the measurements for collaboration and autonomy can be
applied for groups of repositories or at the individual level, with
each scope leading to interesting insights. A supplementary data
package containing .csv files of the mined and generated repository
data is also provided: https://doi.org/10.5281/zenodo.3722449

This paper is organized as follows. Section 2 describes the data
collection and selection criteria for the repositories. Section 3 de-
scribes the analysis methods. In Section 4, we present the results
based on quantitative measures such as ownership, programming
language, timeline, and popularity. In Section 5.1, we discuss AI
& ML repositories with respect to collaboration and autonomy. In
Section 6, we present the implications of this paper for AI & ML
and SE research. We discuss in Section 7 the threats to validity, in
Section 8 the related work, and we conclude in Section 9.

2 DATA COLLECTION
To identify projects that apply or develop artificial intelligence
or machine-learning software, we deviated from traditional ap-
proaches such as topic-modelling that require parsing repository
artifacts [30, 34, 43, 44, 46, 48]. These are inefficient when the repos-
itory’s topic is the selection criteria over ‘all of GitHub’. Instead,
we treated GitHub as a search engine by using the API to curate
a list of relevant repository topic labels [25] and then searching
for projects with these labels. Additionally, we sampled the rest of
GitHub to create a set of Non-AI or ML Comparison projects.
Collecting AI & ML Repositories First, the API was queried for
repository topic labels related to artificial intelligence, deep learning,
and machine learning. Including the search terms, the result was
439 topic labels. The new terms were sub-topics (e.g. adversarial-
machine-learning), technologies (e.g. tensorflow), and techniques

(e.g. natural-language-processing) related to AI & ML. Next, we
searched the API for all repositories that had at least 1 of these
labels. 53,427 public repositories had at least 1 of the AI & ML labels
in our search set. We collected the metadata returned by the API
for each search result.
Distinguishing AI & ML Tools & ApplicationsWe also catego-
rized each AI & ML repository as Applied or Tool. This helped to de-
termine if observations made during analysis were unique to these
sub-classes. For example, the Tensorflow project is a well-known
AI & ML framework (Tool), and the Faceswap [11] project applies
an AI & ML framework towards solving a problem. To identify
Tool repositories we used two approaches. First, a well-known and
actively maintained list of AI & ML tools [40] was cross-referenced
with our list of repositories. Second, the description of each re-
maining repository was parsed for terms such as Tool, framework,
toolkit, library, ’code/models for. . . ’, etc. Each remaining repository
was manually classified based on its GitHub page.
Collecting a Comparison Set To sample the rest of the GitHub
repository population, the API was queried for 10,000 repositories
updated within the year 2019, sorted by stars. These extra param-
eters were included because this search space was much larger.
Repositories in the query results containing 1 or more of the AI &
ML topic tags were removed (but remain in the AI & ML set).
Filtering Our goal was to curate representative samples of active
software projects (1) applying or developing artificial intelligence
and machine learning software and (2) the rest of the repository
population. To achieve this, we manually reviewed all the collected
metadata to filter the repositories by the following criteria:

(1) Size: Must have size greater than 0 (KB)
(2) Popularity:Must have ≥5 stars OR ≥5 forks
(3) Activity: The last commit must have been within 2019
(4) Data Availability: Repository data must be accessible via

the GitHub API and GHTorrent [27]
(5) Content:Must be a software project and not a tutorial, home-

work assignment, coding challenge, ‘resource’ storage, or
collection of model files/code samples

This criteria was adapted from best practices [28, 35, 41] to re-
move inactive, unused, and non-software repositories. The criteria
for popularity and size are purposefully lax to ensure the study rep-
resents the whole community and not just the ‘top’ repositories. To
verify the Content criteria, each repository’s name and description
were manually reviewed. If this was not sufficient, the repository’s
GitHub page was inspected.
Data Summary After collecting and filtering both repository sam-
ples, the study proceeded with 5,224 repositories applying (4,524)
or developing (700) artificial intelligence and machine learning
software, and a comparative set of 4,101 repositories. We feel that
this procedure resulted in representative samples that allowed us
to characterize and differentiate AI & ML software development
on GitHub. In Table 1, the number of repositories in the data set
per class (Applied, Tool, Comparison) are shown. These counts are
also subdivided by owner type as some analyses compare user and
organization-owned repositories in each class.

Data for each repository was collected from the GitHub API and
the (June 2019) GHTorrent database. From GHTorrent we collected
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Table 1: Summary of Repository Data Sets

Owner Type/
Repository Type Total Organization User

Applied Use of AI & ML 4,524 1,273 3,253
AI & ML Tool 700 344 360
Comparison 4,101 1,346 2,755
Total 9,325 2,963 6,368

detailed information about repository artifacts: contributors, issues,
commits, and pull requests.

3 METHODS OF ANALYSIS
Repositories using and applying machine learning & artificial intel-
ligence have not previously been studied as a unique community
within GitHub’s ecosystem. Our analysis strategy was designed
to provide novel insights into the scope, scale, and character of
these repositories and how they are developed. To contextualize
findings and highlight unique properties of this community, we
include data from our comparison set of repositories unrelated to
artificial intelligence or machine learning.

3.1 Characterization
Analysis started by using the repository data to defineGitHub’s AI &
ML community, inspired by the “State of the Octoverse" [26] reports
that characterize development on the platform. We establish the
history of AI &ML development on GitHub, quantify characteristics
(e.g. languages), and identify trends in contribution, popularity
and growth. For example, we reviewed repository creation dates
and found the oldest AI & ML repository was created in 2009. To
contextualize the growth of this community over time, wemeasured
the proportion of new repositories of each type created annually.
Starting in 2017, more AI & ML repositories were created annually
than projects in our Comparison set. When it is significant, we also
highlight trends based on ownership. The “State of the ML-verse”
report is detailed in Section 4.

3.2 Workflow: Collaboration & Autonomy
To study development workflow, we have designed a quantitative
approach to measure collaboration and autonomy within a repos-
itory. The decision to measure these factors has two motivations.
The first is that they reflect the shared repository and fork-and-pull
workflows common in distributed open source development. If most
repository contributors have direct commit access (high autonomy)
it is likely a shared repository; if they submit pull requests to be
merged by others , low autonomy) it is likely fork-and-pull. Second,
recent works have advocated for changes to how productivity in
software development is measured because traditional metrics (e.g.
lines of code) are scoped to individual developers, which can be
inaccurate or harmful [47]. However, team collaboration and auton-
omy have been identified in recent studies as factors that influence
developer’s perceptions of productivity, and can be measured at the
team level [34, 49, 53]. These factors are usually measured with
qualitative methods (e.g. interviews) [34, 49] and have not, to our
knowledge, previously been measured using repository data.

Our measurement approach calculates repository (team)-level
metrics for each factor using only metadata from commits, issues,
and pull requests. To make inferences for the AI & ML community
as a whole, we aggregated the results from each repository.
Measure Collaboration Through User-to-User Interactions
To quantitatively measure how collaborative a development team is,
we must first acknowledge that commits are not the only way two
users collaborate within a repository. Consider all the actions and
roles related to a single artifact: pull requests, issues, and commits
can have authors, maintainers, commentators, etc. It was crucial
to define all possible interaction types between users within an
artifact. The 5 user-to-user collaborative interactions are:

(1) Contribution: The (distinct) author & committer of a single
commit.

(2) Maintenance: Two users that initiate an event (e.g. close)
for the same issue or pull request (except comments), and
neither user is the reporter or opener of the artifact.

(3) Process: The reporter or opener of an issue/pull request and
another user who initiates a maintenance event.

(4) Review: A commentator on a commit, issue, or pull request
and it’s author/reporter/opener.

(5) Discussion: Two commentators for a commit, issue, or pull
request for which neither is the author/reporter/opener.

We developed an automated script to parse the action and history
data from GHTorrent for every pull request, commit, and issue in
our data set and create a record for each instance of the 5 collabora-
tive interactions. An interaction record includes the interaction
& artifact types and the unique identifiers for the project, artifact,
and user IDs.

In the context of these interactions, we developed measurements
for two collaboration perspectives:

(1) Users per Artifact: Total unique users who had collabora-
tive interactions for each artifact.

(2) Interactions per Artifact: Total interactions per type for
each artifact.

For individual repositories and repository groups, these measure-
ments can be used to identify patterns such as the most common
interactions for each artifact and which artifacts have the highest
concentration of unique users.
Measure Autonomy Through User Actions on Artifacts
Beecham et al. defined autonomy as “[The] freedom to carry out
tasks, allowing roles to evolve..." [24]. In distributed development en-
vironments like GitHub, a user’s freedom and tasks are dependent
on their role & permissions within a repository and the reposi-
tory’s development model. Repositories using the fork and pull
model [29] require external contributors to submit pull requests
that are reviewed & merged by a user with write access to the main
repository. In this case, the external contributor is dependent on
the “core team" user. In the shared repository [29] model, contrib-
utors have write access to the repository and commit their own
code. When a contributor can author and merge/commit their own
changes, they are working autonomously. To scale this idea to the
team level, in an autonomous team a majority of contributors
have push access and/or the freedom to merge their own pull re-
quests. Measuring team autonomy could potentially suggest which
development model is being used.
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An automated, rule-based approach was applied to record every
user-to-artifact interaction from all pull requests, commits, and
issues in each repository. This data was collected from GHTorrent.
All possible actions (e.g. merge, commit, subscribe) for each artifact
were accounted for. A user action record includes the artifact
type, artifact & user IDs, the action (e.g. ‘opened’), and the user’s
role (e.g. ‘reporter’) in the action. Each user’s records were then
parsed to count how many times they had each role. For example,
a user’s commit-based actions were used to count their commits
authored, commits self-pushed, and commits pushed by others. The
count data for each user was used to label them with user types:

(1) Maintainer: A user who has merged or closed pull requests
and/or issues which they did not open.

(2) Autonomous Contributor: A majority of the users’ com-
mits were also committed by that user, and/or a majority of
their pull requests were self-merged.

(3) Dependent Contributor: A majority of the users’ commits
were committed by another user, and/or a majority of their
pull requests were merged/closed by another user.

Continuing the previous example, a user whose count of self-
committed commits is higher than the count of their commits
pushed by someone else, is an autonomous contributor. A user
can be a maintainer and a contributor, but they cannot be an au-
tonomous and dependent contributor. User action records were also
used to identify internal and external users; see Section 4.

To determine team autonomy, user type proportions (% of
users who are maintainers, autonomous, and dependent) were com-
puted for each repository. These values can be used to easily recog-
nize autonomous and dependent development teams. The proportion
of maintainers also provides insights into users who manage the
repository but may not commit code. To examine trends within each
repository type, we looked at the distributions of these metrics.

4 THE STATE OF THE ML-VERSE
ADecade ofAI&MLDevelopment: Origins&GrowthTrends
To establish a timeline of AI & ML development, we looked at how
many repositories of each type were created annually. All reposi-
tories studied were created between January 2008 and May 2019.
Figure 1 shows the annual type (Applied, Tool, or Comparison)
distribution for new repositories. The oldest (still-active) AI & ML
repositories were created in 2009: 2 Tools and 5 Applied use projects.
The honor of oldest project goes to cilib [9], a Scala ‘Computational
Intelligence Library’, and the most well-known repository created
this year was the Python Natural Language Toolkit (NLTK) [5]. Most
of the 2009 repositories (4) are owned by Organizations.

For the next 4 years (2010-2013), less than 10% of new reposi-
tories were related to artificial intelligence or machine learning.
This changed in 2014, where 17.66% of new repositories were either
Tools (42) or Applications of (85) AI & ML. A dramatic “boom"
occurred in 2017 with over 1,000 new AI & ML repositories: 1,066
Applied & 179 Tools. From 2017 onward, more AI &ML repositories
are created annually than our comparison repositories, and more
Applied projects are created annually than Tools. When the data is
filtered by owner type, it is revealed that the ‘boom’ (more AI &
ML projects created than Comparison) happened earlier for orga-
nizations: in 2016 only 49.07% of organization-owned repositories

were in the Comparison group. Also, users create more repositories
per year than Organizations.

Takeaways for Origins & Growth: The oldest active AI &
ML repository (Cilib) was created in 2009. Since 2012, the
annual proportion of new repositories related to AI & ML
gradually rose, until a ‘boom’ in 2017 started a trend of new AI
& ML repositories outnumbering our comparison repositories.
More Applications of AI &ML are created annually than Tools.
For Organization-owned repositories, the ‘boom’ occurred a
year earlier, but users create more repositories each year.

Baskets of Eggs: Repository Ownership Most of the reposito-
ries used in this analysis (68.25%) are owned by users. This was
also true for individual repository types as shown in Table 1. 403
accounts in our data set (4.32%) own at least 2 repositories and
42 own at least 5. Users make up the majority of these accounts
(57%), and as shown in Table 2, 60% of accounts with 10 or more
repositories are owned by users.

Table 2: Top 5 Accounts with Multiple AI &ML Repositories
Owner Owner Type Repositories
IBM Organization 61

benedekrozemberczki user 26
Microsoft Organization 23
Stick-To user 17
proycon user 10

There are 2 organization accounts representing industry soft-
ware companies: IBM and Microsoft. Accounts with multiple reposi-
tories tend to have a lot of Applied projects. All of IBM’s repositories
are applied uses of AI &ML, but only 43% of Microsoft’s repositories
are Applied. The 3 users with the most AI & ML repositories are
graduate-level computer science students: each has more than 50%
Applied projects.

Takaways for Repository Ownership: Users own the ma-
jority (79.1%) of Applied AI & ML repositories, but Organiza-
tions own more (51.43%) of the AI & ML Tools. More users
ownmultiple repositories, but an Organization (IBM) owns the
most (61) AI & ML repositories. The top 3 users with multiple
repositories were graduate students, and Applied repositories
were the majority owned by the overall top 5 accounts.

Roll Call: Internal & External Users per Repository To mea-
sure user participation in repositories, we classified them into 2
groups based on their participation within a repository. Figure 2
shows the distribution (outliers omitted) of the unique internal
users per repository, who participate by authoring & pushing com-
mits, maintaining the repository and artifacts (e.g. closing/merging
pull requests), and leaving comments. We examine different types
of contributions in our collaboration and autonomy analysis in
Sections 5.1& 5.2. Applied AI & ML and Comparison repositories
had a median of 2 internal users, but AI & ML Tools had a median
of 4. Tensorflow [19] (Tool) had the most contributing users (1,690)
of all repositories. The Applied repository with the most contrib-
utors was the Magic engine mage [13] (203), and CoreFX [38], a
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Figure 1: Annual Ratios of New AI & ML Application, Tool, & Comparison Repositories From January 2008 to May 2019

Figure 2: Internal (Contributing) Users (outliers omitted)

set of core classes for Microsoft .NET, had the most (814) of the
Comparison repositories.

Figure 3: External Users (outliers omitted)

Figure 3 shows the distribution (outliers omitted) of the unique
external users per repository, who only participate by leaving com-
ments and opening issues. An example of an external user is some-
one who uses the software being designed, and opens/comments
on an issue about a bug they found. The median values for number
of external users were: Comparison (58), AI & ML Tools (4), and Ap-
plied AI & ML (2). A Kruskal-Wallis test was applied to the internal
and external user distributions, which found (p < 0.001) they were
not equal. VSCode [39] was the Comparison project with the most
external users (46,559), followed by the AI & ML Tool Tensorflow

(20,868). The Applied project Openkore [15], an automation client
for Ragnarok Online, had 2,339 external users.

Takeaways for Contribution: AI & ML Tools had more in-
ternal (contributing) users than Applied AI & ML and Com-
parison repositories. However, Comparison repositories have
the most external users, who leave comments and open issues
but do not contribute to the project.

Unique Commit Authors For a closer look at contribution, we
measured unique commit authors per repository. The distributions
for each repository type are shown in Figure 4. The median values

Figure 4: Unique Commit Authors (outliers omitted)

for unique commit authors are: Comparison (5), AI & ML Tools
(3), and Applied AI & ML (1). A Kruskal-Wallis test confirmed (p <
0.001) that the distributions are not equal across groups.

The top 4 repositories with the most unique commit authors
were all AI & ML Tools: Tensorflow [19] with 1,610 followed by
scikit-learn [17] (1,539), PyTorch [16] (1,098), and Julia [12](802).
Fifth on the list was CoreFX [38] (771), a Comparison repository.
Mage [13], an engine for playing the Magic card game online, was
the repository with the most unique commit authors (194) for the
Applied AI & ML group. Tensorflow, CoreFX, and Mage were also
the projects with the most internal (contributing) users for each
repository type.



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan

Takeaway for Unique Commit Authors: AI & ML reposi-
tories have less unique commit authors than the Comparison
repositories. However, the top 4 repositories with the most
unique commit authors were all AI & ML Tools.

Authors vs Committers:WhoHas the Power? There are 2 com-
mon development models on GitHub: fork-and-pull, where contri-
butions are committed by project maintainers via pull requests,
and shared repository where everyone has commit permissions. A
key indicator of which model a repository uses is how many new
contributions were pushed to a repository by the author vs another
user. For each repository, we looked at the ratio of commits pushed
by the author (self-committed) and commits pushed by another
user (other-committed).

AI & ML Tools have the highest median contributions that were
self-committed (15) and other-committed (120). Applied AI & ML
had the lowest medians for each (self:6, other: 21). The Compari-
son repositories had a median of 11 self-committed contributions
and a median of 97 other-committed contributions. For all repos-
itory types, most contributions are not committed by the author,
indicating a fork-and-pull development model. Kruskal-Wallis tests
were applied and found the distributions of self-committed and
other-committed contributions are not the same (p < 0.001) for each
repository type. In Section 5.2, we use this data to explore repos-
itories with development models that facilitate high contributor
autonomy.

Takeaway for Development Models: All repository types
favor a development model (e.g. fork-and-pull) where commit
authors do not push their own contributions to the repository.

Star Power: GitHub’s Popularity Contest On GitHub, the popu-
larity of a repository is often measured by how many stars it has. In
OSS-based research, the number of stars is often used as a filtering
metric [6, 28]. Figure 5 shows the distribution (outliers omitted)
of stars for all AI & ML repositories, as well as Applied & Tool
repositories separately. We exclude our Comparison set from this
analysis because we used number of stars as a sort criteria when
searching for these repositories but not for the AI & ML data set. As
mentioned in Section 2, this was done to optimize sampling quality
non-AI & ML repositories from GitHub’s massive search space.

Figure 5: Stars in AI & ML Repositories (outliers omitted)

For all AI & ML repositories, the median number of stars is 37.
For Tool repositories the median is 83, more than twice that of
Applied repositories (37). However, all of the Applied AI & ML

repositories have at least 4 stars, while some of the Tools have 0.
As described in Section 2, we included repositories with at least 5
stars or 5 forks to include more of the community in our sample.
A Mann-Whitney test found the star distributions of the AI & ML
Tools and Applied AI & ML projects were different at p < 0.001.

Both groups had several extreme outliers, omitted from Figure 5
for readability. In the Tool group, Tensorflow [19] (131,135) was
most popular, with over 100,000 more stars than the most popular
Applied repository tesseract [18] (28,207), aML-basedOCR program.
For reference, the most popular Comparison repository in our data
set is Microsoft’s VSCode [39] with 81,416 stars.

Takeaways for Popularity:AI &ML Tools are more popular
than Applied AI & ML projects. Tensorflow was the most
popular Tool, and had over 100,000 more stars than Tesseract,
the most popular Applied AI & ML repository, and almost
50,000 more than the top Comparison repository, VSCode.

Python: The Champion Language for AI &MLDevelopment
Figure 6 shows the 10 most popular languages for AI & ML

repositories. The majority of these projects are written in Python
(56.8%), followed by Jupyter Notebooks. While not a language, these
projects have a unique format blending code with text. We do
not make assumptions about the language used in the notebooks,
because only the declared language for the repository was observed.
This trend also occurs for just Applied repositories: 58.5% Python,
18.5% Jupyter. For Tool projects, the 2nd most common language
in AI & ML Tool projects was C++. In the Comparison set, the top
language was JavaScript (33.2%), followed by Java (14.5%). Python
was third, labeled as the primary language for 12.9% of Comparison
repositories. We also observed language trends over time using

Figure 6: Top 10 Languages for AI & ML Repositories

repository creation date, which is typically when language labels
are applied to a repository. Python has been the most common
language for AI & ML repositories for the last 8 years. In 2012, the
first repository was labeled as Jupyter Notebook. This ‘language’
gradually gained popularity over the years, tying for second place
with JavaScript in 2015 and surpassing it the next year. The #2
language for Applied AI & ML repositories shifted from JavaScript
(Java in 2013) to Jupyter Notebooks in 2015. For AI & ML Tool
repositories, C++ has been the 2nd most popular language since
2011. In the Comparison set, Ruby was surpassed by JavaScript
for most popular in 2010. Python replaced Ruby for second most-
frequent language in 2012.
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Takeaways for Repository Language: Since 2011, the ma-
jority of AI & ML software was written in Python. C++ was
the second-most popular language for Tool repositories, and
Jupyter was second for Applied projects. The top 3 languages
for our Comparison repositories are JavaScript, Java, & Python.

Hot Topics: Machine Learning, Deep Learning & PythonDur-
ing data collection, we curated a list of GitHub’s topic labels related
to AI & ML, which we used to identify relevant repositories. Look-
ing at how many repositories had each of the 439 topics in our
list reveals the most popular sub-topics, languages, and tools. For
both Applied and Tool repositories, the top 3 labels were machine-
learning, deep-learning, and python. The top 3 labels for our Com-
parison set correspond to our findings of most popular languages:
Javascript, Android, and Python. The Andriod label hints that mobile
development is a hot topic for non-ML repositories (182) but was
only added to 60 of the AI & ML repositories.

Takeaways for Repository Topics: The most popular topic
labels for AI & ML repositories represent sub-topics (deep
learning), languages (python), and tools (tensorflow). In the
Comparison set, the most common topics were language
(JavaScript, Python and platform (Android)-based.

5 COLLABORATION & AUTONOMY
As described in Section 3.2, we developed several measurements for
examining autonomy and collaboration within a repository. These
measurements provide contextual insights into the development
workflow of AI & ML software on GitHub, and these values have
also been identified as factors influencing developers perceptions
of productivity [34, 47, 49, 53].

Table 3: Artifacts per Repository
Artifact Category Median

Commits
Applied AI & ML 8
AI & ML Tools 22
Comparison 20

Issues
Applied AI & ML 4
AI & ML Tools 27
Comparison 12

Pull
Requests

Applied AI & ML 3
AI & ML Tools 3
Comparison 5

5.1 Collaboration
Metadata for every pull request, issue & commit in all projects was
analyzed to record instances of 5 unique interactions between users:
contribution, maintenance, process, review, and discussion. The
formal definition for each interaction is provided in Section 3.2.
For these measurements, we include interactions from internal and
external users, as defined in Section 4.

This analysis relies heavily on repositories having multiple con-
tributors, issues, commits, and pull requests. Our goal was to exam-
ine the entire community, so our filtering requirements for these
artifacts were loose. The consequence of this is that 555 repositories
could not be included in this study. Thus, the following analysis is

based on the 8,770 projects in our data set with sufficient artifacts.
Table 4 shows the categorical breakdown of this subset. For per-
spective on the distribution of each artifact per repository group,
Table 3 shows the median number of each artifact per repository.

Table 4: Dataset for Collaboration Study

Owner Type/
Repository Type Total Organization User

Applied Use of AI & ML 4,143 1,213 2,930
AI & ML Tool 660 332 328
Comparison 3,967 1,324 2,643
Total 8,770 2,869 5,901

Users per ArtifactOur first measurement calculates the total num-
ber of unique users who had at least 1 collaborative interaction with
any of each repository’s commits, issues, or pull requests. For ex-
ample, at the time of data collection (June 2019), 22,157 unique
users had interacted with the 17,989 issues in the Tensorflow [19]
repository. Figure 7 shows the distributions of this metric for each
repository type.

Figure 7: Users per Artifact Type (outliers omitted)

The ranking of users per artifact follows the same trend for each
repository group: issues, pull requests, commits. For Applied AI
& ML projects the median users for issues is 5, 3 for pull requests,
and 2 users per commit. In AI & ML Tool repositories, issues had
a median of 10 users, pull requests had 6, and a median of 4 users
collaborated on commits. The median values in the Comparison set
are quite high: issues have a median of 63 users, pull requests have
median 17, and commits have median 6. We applied the Kruskal-
Wallis test for the 12 combinations of repository & artifact type
(e.g. ‘Tool Commits’) and found the distributions of users to be
different (p < 0.001). A Dunn’s test with bonferroni adjustment
showed that the only pair of user-artifact distributions that were
not significantly different (p < 0.001) are pull requests in AI & ML
Tools and commits in Comparison repositories.

Summary: Issues have the most unique collaborating users
for all repository types. All artifacts in AI & ML Tool reposi-
tories have more collaborating users than Applied AI & ML
projects, and overall Comparison repositories had the most
users per artifact.

Interactions per Artifact This measurement is designed to iden-
tify which collaborative interaction is most common for each arti-
fact. The artifact-interaction distributions for each repository type
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are shown in Figures 8- 9. In these figures, the gaps within arti-
facts represent inapplicable interactions. Specifically, issues and
pull requests will not have contribution interactions, and commits
do not have process or maintenance interactions. All artifacts can
have discussion and review interactions.

Figure 8: Collaborative Interactions per Artifact in Applied AI &
ML Repositories (outliers omitted)

Artifact-interaction distributions for the Applied AI & ML repos-
itories are shown in Figure 8. For commits, the median contribu-
tions is 16, and 2 for discussion & review interactions. Issues have
a median of 4 discussion and review interactions and 3 mainte-
nance and process interactions. Pull requests have a median of 5
discussions, 1.5 maintenance interactions, 4 reviews, and 2 process
interactions. Thus, the most common artifact-interaction group
for Applied AI & ML repositories are commit contributions, fol-
lowed by pull request discussions. Kruskal-Wallis tests applied to
all the artifact-interaction distributions indicated (p < 0.001) dif-
ferent distributions. A Dunn test (bonferroni adjustment) found
commit comments are the only artifact-interaction group with a
significantly unique distribution. Figure 8 shows the significance
letters for each group above its boxplot; distributions that do not
share a letter are different.

Figure 9: Collaborative Interactions per Artifact in AI & ML Tool
Repositories (outliers omitted)

For AI & ML Tools, artifact-interaction distributions are shown
in Figure 9. Commits have medians of 44 contribution interactions
and 4 discussion and review interactions. Issues in AI & ML Tool
repositories havemedians of 14 discussions, 12 reviews, 4 process in-
teractions and median 2 maintenance interactions. For pull requests
the median discussions is 8, review interactions have a median of 7,
maintenance interactions have median 3, and finally a median of 2

process interactions. Thus, the most common artifact-interaction
group for AI & ML Tool repositories are commit contributions, fol-
lowed by issue discussions. A Kruskal-Wallis test found evidence
(p < 0.001) of different distributions, so Dunn’s test (bonferroni
adjustment) was applied. Commit contributions were also the only
significantly different distribution for AI & ML Tools. Each distribu-
tion pair in Figure 9 with different letters are significantly different.

Figure 10: Collaborative Interactions per Artifact in Comparison
Repositories (outliers omitted)

Figure 10 shows the 5 interaction distributions for the Com-
parison repositories. For commits, the median number of contri-
butions interactions is 38; the median is 6 for discussion and 5
for review interactions. Issues have a median of 51 discussions,
34 review interactions, 4 process and 2 maintenance interactions.
Finally, Comparison pull requests have a median of 3 discussion
and review interactions, 2 process interactions, and 1 maintenance
interaction. Thus, the most common artifact-interaction group for
Comparison repositories are issue discussions, followed by commit
contributions. Kruskal-Wallis tests found the distributions of each
artifact-interaction pair for this group to be different (p < 0.001).
We then applied Dunn’s test and found that no artifact-interaction
group has a unique distribution. However, there are subsets of signif-
icantly different distributions as shown by the significance letters
in Figure 10.

Takeaways for Collaborative Interactions per Artifact:
In all groups, the most common interaction for issues and pull
requests is discussions. The most common interaction for AI
& ML repositories are commit contributions. AI & ML Tool
repositories have more (of most) interactions per artifact type
thanApplied AI &ML projects. In the Comparison repositories,
the most common artifact-interaction was issue discussions.
AI & ML Tools have the most commit contributions and pull
request discussion & pull request review interactions overall.

5.2 Autonomy
To measure team autonomy, we parsed each repository’s history
and event data and recorded all user-to-artifact interactions (see
Section 3.2). These records were used to identify three types of users:
maintainers, autonomous contributors, and dependent contributors.
In this section, we report the distributions of user-type proportions
and discuss the number of autonomous teams for each group.
User Type Proportions Once each contributing user’s type is
determined, team autonomy can be measured by calculating user
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type proportions: # users of type n to total contributing users. These
values can be used to compare repositories or observe trends within
groups because they normalize for variations in total users. Fig-
ure 11 shows the distributions of user type proportions per group.
Both AI & ML groups had a median of 33% autonomous contrib-
utors. Tools had more dependent contributors (median 25%) than
the Applied group (median 14%), but Applied AI & ML projects had
more maintainers, with median 50%. The Comparison group had
the lowest median proportion of autonomous contributors, (25%)
but the highest median proportion of dependent contributors (33%).
This group also had a median 38% maintainers, lower than both
AI & ML groups. Kruskall-Wallis tests showed the distributions of
each user type were different for each group at p < 0.001.

460 repositories had 100% autonomous contributors: 84.78% were
Applied AI & ML, 7.83% were Tools, and 7.39% were non-AI & ML.
However, these all-autonomous projects had median of 1 contrib-
utor, mean 1.29, and max 12. The ‘most autonomous’ repositories
with at least 10 contributors per group are: (Comparison) NEKit [14],
98%, 163 contributors; (AI & ML Tool) cilib [9], 92%, 60 contributors;
(Applied AI & ML) LEGALST-190 [10], 89%, 18 contributors. We
also used the proportion measurements to count the number of
autonomous teams in each group. A total of 2,637 repositories were
found to have autonomous teams. The Applied AI & ML group had
the most (1,777) autonomous teams; the Comparison group had 616
and AI & ML Tools had 244.

Figure 11: Distribution of User Type Proportions

Takeaways for User Types: Based on the proportion of
autonomous-to-total contributors per repository, most devel-
opment teams in all groups are not autonomous, implying
fork-and-pull development. AI & ML repositories have more
autonomous contributors than non-AI & ML, but Applied
projects have a higher proportion of maintainers than the
Tools and the lowest proportion of dependent contributors.
The Tools group had the least autonomous teams the and
Applied AI & ML group had the most.

6 IMPLICATIONS FOR SE RESEARCH
Our study has several implications for SE research. The findings
help quantify and highlight challenges and opportunities for SE
researchers. We present some of the important implications below.

Our study showed that the majority of AI & ML software were
written in Python. The SE research community should aim to focus
new research on Python projects which have not gotten as much
attention as needed to keep up with the “AI & ML boom”.

We observed that individuals and organizations (e.g. IBM) own
AI & ML projects. Users own the majority (79.1%) of Applied AI &
ML repositories, but organizations ownmore than (51.43%) of the AI
& ML Tools. SE researchers should account for this in their studies
as organizations have different motivations and expectations for the
projects they support. The ownership type could bias any analysis
when combined with open-source projects driven by volunteers.

Internal & external contributors have significantly different char-
acteristics in AI & ML projects. SE researchers must focus on the
right populations in order to target the right set of individuals
when they perform qualitative analysis and survey/interviews. As
the populations are different mixing the two or picking the wrong
population could to lead to biases in the results.

Tensorflow [19] is the most popular tool and has over 100,000
more stars than Tesseract [18]. For SE researchers looking to inves-
tigate AI & ML Tools, Tensorflow should serve as a baseline given
its popularity and significance in terms of users and contributions.
Any study of AI & ML tools not involving Tensorflow will miss a
large and important part of the AI & ML population.

Collaboration in a repository is multi-dimensional. Although
commit contributions were the top collaborative interaction in AI &
ML repositories, discussion and review interactions were also very
common. Since the autonomy measurements indicate that a large
proportion of contributors are dependent on the actions of other
users in pull requests and commits, studies should not consider
commit data sufficient to measure collaboration.

The aggregated autonomy metric was used to examine the pro-
portion of each repository type that have autonomous teams. We
found that most AI & ML repositories had more dependent con-
tributors, indicating use of the fork-and-pull model. However, the
Applied AI & ML group had the most autonomous teams, indicat-
ing more repositories in this group use a shared repository model.
This and several other observations show that AI & ML Tools and
Applied AI & ML have distinct characteristics that future studies of
AI & ML repositories should account for.

Finally, at the individual repository level, the collaboration met-
rics can be applied to specific artifacts or artifact types. At this level,
this information can be combined with fine-grained details to iden-
tify things like the relationship between issue labels and interaction
types which might reveal if the team collaborates more or less on
specific tasks, bugs, etc. For autonomy, large repository teams could
use these measurements to prevent imbalances in proportions of de-
pendent & autonomous contributors and maintainers, which might
lead to bottlenecks like unreviewed pull requests. We encourage
further studies on the applications of such metrics, especially how
they relate to developers perceptions of productivity.

7 THREATS TO VALIDITY
We identify the following threats to validity.

Construct validity refers to the extent the operational mea-
sures in this paper really represent what we intended to measure.
To identify the AI & ML projects we relied on the topic labels
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that developers manually assign to repositories. This may lead to
false positives and negatives, some projects may have not been
assigned the correct labels and as a result incorrectly included or
excluded from the AI & ML project sample. Since we followed best
practices [28, 35, 41] and only considered active, used software
repositories, we expect that there is only limited amount of misla-
beling. In addition, to distinguish between AI & ML Applications
and Tools we relied on keyword search and manually classified
repositories. Ourmeasures of collaboration and autonomy are based
on activity on issues, pull requests, and commits GitHub. However,
not all developer activity is recorded in software repositories [2]
and as a result there may be aspects of collaboration and autonomy
that are not captures by the measures in this paper.

External validity is concerned with to what extent the find-
ings of this paper can be generalized. We focused the analysis on
public repositories on GitHub. The results might differ for private
GitHub repositories, other code hosting sites, or projects in com-
panies. While we expect to see some differences, we also expect
many similarities, since some of the most popular AI & ML tools
(TensorFlow) are hosted on GitHub.

8 RELATEDWORK
GitHub is one of the largest hosts of software with 40+ million users
and 100 million repositories as of September 2019 [26]. GitHub
has been frequently studied in the context of software develop-
ment. Prominent examples are studies of programming languages
and code quality [4, 45, 46] and bug resolution characteristics [56].
GitHub has also been studied to understand social coding [22] and
development techniques such as continuous integration [52]. For
a more comprehensive overview of studies related to GitHub, we
refer to the systematic mapping study by Cosentino et al. [20]. Re-
search has been facilitated by GHTorrent project, which provides
researchers a continuous stream of activity data from GitHub [27].

In this paper, we studied GitHub with a focus on projects that
are related to artificial intelligence and machine learning (AI & ML).
After the the boom of AI & ML applications in recent years, several
papers have focused on how software development practices has
changed for machine learning systems. Wan et al. [54] conducted a
mixed-methods study with 14 interviewees and 342 survey respon-
dents to identify differences between AI & ML and other software
development. They found that exploratory requirements elicitation
and iterative processes are more common in ML development, ML
systems are more complex, and a stronger demand for unique solu-
tions & ideas in ML development. Amershi et al. [1] identified three
differences through a mixed-methods study with 14 interviewees
and 551 survey respondents at Microsoft: (1) discovering, managing,
and versioning the data needed for machine learning applications
is much more complex and difficult, (2) model customization and
model reuse require different skills than are typically found in soft-
ware teams, and (3) AI components are more difficult to handle
as distinct modules than traditional software components. Other
work on understanding ML-based development focused on identi-
fying design patterns for machine learning systems [55] or what
developers ask about ML libraries on Stack Overflow [33].

Several papers have focused on understanding the challenges that
software developers face with AI & ML applications. Kim et al. [36]
identified several challenges for data scientists in software teams.

The challenges included data quality, data availability, data prepara-
tion, scale, machine learning, and working with non-experts. Zhang
et al. [58] identified five main challenges when working with deep
learning systems based on an analysis of Stack Overflow questions:
API misuse, incorrect hyper parameter selection, GPU computa-
tion, static graph computation, and limited debugging and profiling
support. Nascimento et al. [21] identified the following challenges
using interviews and focus groups: identifying the clients’ business
metrics, lack of a defined development process, and designing the
database structure Belani et al. [3] discussed Challenges in Build-
ing AI-Based Complex Systems from a requirements engineering
perspective. Lwakatare et al. [37] proposed a taxonomy of soft-
ware engineering challenges for machine learning systems along
five evolution stages of ML component use (from prototyping to
autonomous components requiring minimum human intervention).

A prominent topic of research have been bugs in AI & ML sys-
tems. Research has focused on creating taxonomies of faults, root
causes, and symptoms by analyzing data from Stack Overflow, issue
tracking systems, bug fix commits, and developer interviews for
a wide range of AI & ML tools and frameworks such Caffe, Keras,
Tensorflow, Theano, and Torch [31, 32, 50, 51, 59]. Zhang et al. [57]
presented the results of a comprehensive survey of 144 papers of
machine learning testing research.

In this paper, we characterize a large sample of AI & ML projects
with a focus on collaboration & autonomy because they have
emerged as two important aspects of software engineering pro-
ductivity. Collaboration has been extensively studied in software
development. Most prominently, Cataldo, Herbsleb and colleagues
investigated coordination requirements and socio-technical congru-
ence [7, 8]. Other examples of studies on collaboration in GitHub
include the work by Dabbish et al. [22] on transparency and collab-
oration in GitHub projects. Beecham et al. [24] defined autonomy
as the “freedom to carry out tasks, allowing roles to evolve." and
identified autonomy as an important factor for motivation. Indepen-
dent studies of productivity at Google [42] and Microsoft [49] have
identified autonomy as one of the three most influential factors for
productivity. In this paper, we quantify the degree of collaboration
and autonomy and compare across three populations of GitHub
projects (Applied AI & ML; AI & ML Tools; non-AI & ML projects).

9 CONCLUSIONS
As a result of the AI boom over the past few years, artificial intelli-
gence and machine learning are now used by millions of software
developers. Hence, it is important for the SE community to under-
stand the differences to traditional software development. In this
paper, we analyzed the state of “ML-universe” and compared 5,224
AI & ML repositories to 4,101 other repositories on GitHub. Our
analysis focused on aspects such as origins, growth, ownership, con-
tributors, popularity, collaboration, and autonomy. Among other
findings (Section 6), we found that Python is used by most AI & ML
projects, yet little academic research is focused on the Python lan-
guage. Any AI & ML research in software engineering should also
consider the TensorFlow and Tesseract projects because they were
themost popular. This is just the beginning. AI &MLwill require sig-
nificant research efforts to address in the future. A supplementary
data package containing .csv files of the mined and generated repos-
itory data is also provided: https://doi.org/10.5281/zenodo.3722449

https://doi.org/10.5281/zenodo.3722449
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