Understanding and Inferring Units in Spreadsheets®

Jack Williams'f, Carina Negreanu”, Andrew D. Gordon!2, Advait Sarkar'*
'Microsoft Research
2School of Informatics, University of Edinburgh
3Department of Computer Science and Technology, University of Cambridge
{t-jowil, t-caneg, adg, advait} @microsoft.com

Abstract—Numbers in spreadsheets often have units: metres,
grams, dollars, etc. Spreadsheet cells typically cannot carry
unit information, and even where they can, users may not be
motivated to provide it. However, unit information is extremely
valuable: it allows us to detect and prevent an entire class
of spreadsheet errors, such as accidentally adding values of
different units. What if we could infer the unit of any value
in a spreadsheet, with little or no work from the user?

‘We present a novel method for predicting units and dimensions
in spreadsheets, the first such method that combines logical
constraint solving and probabilistic unit labelling. Our approach
identifies and formalises the critical cells in spreadsheets that
bound the user cost of unit annotation. Separately, we apply
machine learning to infer probabilistic unit labels from cell text.
To contextualise the accuracy of our system, we discuss the
attention investment trade-off for unit inference.

I. INTRODUCTION

Spreadsheet authors often use numbers to represent real-
world quantities with associated wunits. A unit could be a
physical unit like second or gram; or a unit could be a domain-
specific unit like dollar or euro. Each unit belongs to a more
abstract dimension, such as time, mass, or currency.

A numeric calculation must respect the algebra of units [1]
and unit checking for spreadsheets is an effective way to find
spreadsheet errors [2], [3]. The task of unit error checking for
spreadsheets is underpinned by the fundamental task of unit
inference: given a cell containing a number, determine its unit.

One method for unit inference is to use explicit annotations
provided by the user [3]. We formally define and measure the
annotation burden this method incurs, and find that it requires
significant effort from the user. In contrast, automatic unit
inference uses an algorithm to synthesise unit annotations from
information in the spreadsheet.

In this paper we study unit inference as a machine learning
task. We present a new algorithm for automatic unit inference
that uses logical constraints and machine learning. It combines
the following forms of information found in spreadsheets:
number formats, such as currency or time, that directly
indicate the unit of a cell; formulas, such as =A1+A2, that
constrains cells A1 and A2 to have the same unit; and textual
labels, such as “Length (m)” or “Credit Card Charges”, that
suggest the unit of a nearby cell.

*This extended version is the same, apart from the additional appendix,
as the paper published in the proceedings of the 2020 IEEE Symposium on
Visual Languages and Human Centric Computing (VL/HCC 2020), with DOI:
10.1109/VL/HCC50065.2020.9127254.

fDenotes equal contribution.

Our unit inference algorithm begins by applying pre-existing
techniques. We use formatting, formulas, and automatically
detected tables to produce unit constraints between cells [2],
[4]-[6]. We cast these unit constraints into a matrix of linear
equations and solve them using Gaussian elimination [1], [3],
[7]. If there is no unique solution to the matrix we require
additional information to infer a unit for every cell. The extent
of the missing information amounts to the annotation burden a
user would face without unit inference, and can be measured
in distinct cell annotations. We then detect unit annotations
matching known templates [2]; for example, a header of the
form “Apples (kg)” would be detected by our templates for
the kilogram unit.

These steps of our algorithm correspond approximately to
the design of Chambers and Erwig [2], the closest related
work, although our system predicts a unit (and hence also
a dimension) for each cell, whereas their system only predicts
a dimension.! Our template and constraint-driven algorithm
delivers high precision but low recall.

A core problem is that while many spreadsheets refer to
units, they do so indirectly. For example, the text cell “Credit
Card Charges” strongly suggests currency but is missed by
our template analysis. To address this problem we extend
our unit inference algorithm with a novel dimension inference
phase that uses pre-trained word embeddings [8] to predict a
distribution over dimensions. Using our dimension inference
phase we increase recall of unit inference by a factor of 30%,
with some cost to precision (see Table III). On Chambers and
Erwig’s goal of inferring a dimension, we improve recall by
a factor of 90%, with a 20% loss of precision.

Our central contribution is to frame unit inference as a ma-
chine learning task and to develop a theory for understanding
the risk of machine learning error in end-user programming.
Our key results are both theoretical and quantitative:

» We identify unit inference as belonging to a class of prob-
lems that sits at the intersection of the theories of mixed-
initiative systems and attention investment. We show how
these two theories can be interpreted to yield a guideline
for the level of predictive accuracy needed to make the
attention-investment trade-off attractive in a mixed-initiative

'Our baseline system has a more complete coverage of the Excel formula
language than the one implemented by Chambers and Erwig. To detect table
headers, we use TableSense [6] rather than their system. TableSense is a
state-of-the-art deep learning system, but has not been explicitly compared
with Chambers and Erwig’s table detector.

978-1-7281-6901-9/20$31.00 © 2020 IEEE

system (Section IV). To our knowledge, this is the first
time the two theories have been directly compared and the
analogies between them explicitly stated.

« We formally define the notion of critical cells which cor-
respond to the unit annotation burden in spreadsheets. We
measure this burden across a corpus of spreadsheets.

« We identify the subproblem of indirect annotation inference
and present two new algorithms based on word embeddings,
where the second algorithm is a refinement of the first (Sec-
tion V). We show comparable results to a human baseline
on the task of textual dimension inference (Section VI-C) on
a hand-labelled dataset for the subproblem. We consistently
reach over 60% performance on standard quantitative multi-
class metrics.

« We present the first method of unit inference in spreadsheets
that combines logical constraint solving and machine learn-
ing. We obtain a human-labelled dataset of 331 workbooks
and measure performance using standard metrics for multi-
class classification. Hence, we give the first empirical eval-
uation of unit inference for spreadsheets, and demonstrate
that indirect annotation inference delivers better recall than
heuristics for finding direct annotations.

II. BACKGROUND
A. Inference: an end-user tradeoff

The opportunity and challenge of unit inference in spread-
sheets belongs to a class of programming language enhance-
ments with the following property: it asks the user to invest
some attention upfront, in exchange for the possibility of a
payoff in reduced attention requirements later on. A classic
example of a programming language feature that exhibits
this tradeoff is static typing. The upfront cost of providing
type annotations might create barriers to adoption, but might
also pay off in greatly reduced attention expenditure when
reasoning about type errors [9].

Another example, in an end-user programming context, is
Wilson et al’s approach [10] to creating tests in Forms/3 [11].
Tests in Forms/3 take the form of assertions about cell values.
For example, a cell that is meant to contain a positive fraction
should have a value between O and 1. The initial investment
in creating tests should pay off in the long term by preventing
costly errors. However, these upfront costs are a barrier to
user uptake. Wilson et al.’s solution relied on an observation
regarding Blackwell’s attention investment model [12]. Under
this model, the user is motivated to invest attention if they
believe that the (expected) cost of not investing the attention is
greater than investing it now. In order to perform this calculus,
the user creates a mental model of the costs of investment and
non-investment. Wilson et al.’s insight was that the user can be
motivated to invest attention if we introduce design features
that alter this mental model — it is not actually necessary
to reduce the true costs, or increase the true payoff, just to
reduce the mentally modelled cost, and increase the mentally
modelled payoff. They called their concrete implementation of
this strategy ‘surprise, explain, reward’: surprise the user by
showing them an unexpected consequence of their spreadsheet,

explain the consequence in a way that helps them author an
appropriate test, and reward them by giving them a more
correct spreadsheet (reinforced through visual cues).

In our case, the upfront investment is to provide unit
annotations, and we might say that the payoff is a reduced
requirement for attention spent to resolve unit errors. This
makes a couple of simplifications: 1) In practice, unit inference
should enable a wide range of beneficial user experiences
beyond merely preventing unit errors, which for simplicity
we consider out of scope. 2) There might be other external
costs beyond attention investment, e.g., when an error results
in an incorrect decision being made in the real world (i.e., a
“problem” [13]) that incurs negative implications with their
own costs, which we ignore.

B. Approaches to unit checking and inference

Unit and dimension inference for programming languages
has an established history [1], [14], [15]. The core idea is that
program identifiers are assigned unit variables and the program
structure induces constraints on these variables. Unification
is used to solve the unit constraints and provide assignments
for the unit variables in the program. Unit checking is im-
plemented in a similar manner. A program is unit-safe if the
induced unit constraints are consistent.

Spreadsheets have been extended to support variants of
unit checking and inference. Erwig and Burnett [5] develop a
unit-system for spreadsheets that uses header information and
formulas to derive units for cells. Their definition of unit is
based on header categories and set-like operators, rather than
physical units. Abraham and Erwig [4] extend this system and
develop UCheck, which includes automatic table detection.
The XeLda [3] system provides unit checking for spreadsheets
in the style of Kennedy [l]. Formulas in the spreadsheet
generate a set of constraints that are interpreted as a series
of linear equations. XeL.da does not support unit inference; a
user must annotate every numeric cell in the spreadsheet with
its concrete unit. Chambers and Erwig [2] develop a system
for dimension inference, in response to the challenge of the
user annotation burden. Building on existing techniques [4],
[5], they automatically detect headers for cells and derive
dimension labels from these headers. Chambers and Erwig
apply their system to 40 spreadsheets and demonstrate that the
approach can be used to automatically find dimension errors.

There is recent interest in applying machine learning to infer
types. For instance, DeepTyper [16] is trained on a large corpus
of TypeScript code, so as to predict type annotations from
textual context, without logical analysis. Still, ours is the first
work on machine learning to infer units, either in spreadsheets
or in any programming language.

III. UNDERSTANDING THE ANNOTATION BURDEN

Drawing a meaningful comparison between unit checking
via constraint propagation (e.g., XeLda) and unit inference
(e.g., Chambers and Erwig) requires an understanding of
the benefits of inference. There are two factors to consider.
The first factor is the effort required from the user to fully

annotate a workbook—we call this the annotation burden. If
the annotation burden is small then deploying a non-inferential
system could be justified. The second factor is the statistical
performance (e.g., precision and recall) of the inference sys-
tem. If the system provides incorrect unit annotations, or fails
to find many unit annotations, then the merits of using the
system are diminished. In this paper we give the first empirical
measurements for both factors.

In the related domain of scientific computing, Orchard et
al. [7] implement a system of unit inference in Fortran. They
observe that given a program with unit variables, only a subset
of those variables must be annotated to determine all unit
variables in the program. Furthermore, they give an algorithm
that finds these variables, called critical variables, using a
series of unit constraints.

We adapt the concept of critical variables to the domain of
spreadsheets. For example, given the spreadsheet:

A1=10, A2=20, A3=30, A4=(A1+A2)+A3

only two cells must be annotated to determine the units for the
complete program—these are the critical cells. The addition
operator constrains A1 and A2 to have the same unit, therefore
one annotation determines both. The multiplication operator
transforms units but does not constrain them, therefore a unit
must be provided for each operand. The set of critical cells
(known as the critical set) may not be unique; in our example,
both {A1,A3} and {A2,A3} are critical sets. The size of the
critical set corresponds to the annotation burden a user faces if
they want to unit-check a spreadsheet without the aid of unit
inference.

We analyse two spreadsheet corpora to estimate the annota-
tion burden using the frequency of critical cells. Our analysis
is implemented using a subset of our unit inference algorithm
(Section V). Informally, the analysis generates unit constraints
from formulas and solves those constraints by casting each as
a linear equation, and solving for the set of linear equations.
Our implementation is standard; we defer to the work of
Kennedy [1] and Orchard et al. [7] for a complete definition.
Some constraints may remain unsolved, and from these we
extract critical cells as described by Orchard et al. [7].

The first corpus is obtained from ENRON and the second
corpus is obtained from the subset of EUSES we hand-labelled
with unit information. We only analyse a subset of workbooks
from their respective corpus, selected using the following
criteria: each workbook must contain a formula, and each
workbook must be analysed in full. We cannot analyse some
spreadsheet features (discussed in Sections VI-A); workbooks
exhibiting those were excluded.

In total, we analysed 1936 workbooks from ENRON, and
667 workbooks from EUSES. Table I presents the result of
our analysis. For each dataset we give four statistics presented
as mean and median per workbook. A numeric cell contains
a number literal, or a formula that evaluates to a number,
and can therefore be assigned a unit. An active cell contains
a formula, or is referenced by a formula. Our analysis only
exploits constraints induced by formulas. Therefore, a cell that

(Mean/Median) across Workbooks
ENRON EUSES
Numeric Cells 5333/1288 | 423/165
Active Numeric Cells 2781/644 266/81
Critical Cells (C.C.) 102/16 25/3
C.C. with Number Format | 87/13 19/1

TABLE I: Critical Cell Analysis

is never referenced is vacuously critical. We only report the
occurrence of critical cells from the set of active cells. Number
formatting is prevalent in spreadsheets and permits a user to
format a number as a currency, date, time, or percentage. A
number format may provide a strong indication of the unit for a
cell, but despite this, no existing work has studied the effect of
formatting in unit checking or inference. We consider number
formatting to be a unit annotation and report the reduction in
critical cells in Table I.

From Table I it is clear that despite improvements gained
from our algorithm, the annotation burden is still too high.
Any upfront attention requirements can lead to reduced feature
usage. Assuming a streamlined unit annotation interface that
takes a few seconds per annotation, a mean of 19-87 critical
cells per workbook still asks the user to invest several minutes
of dedicated effort to unit annotation. Testing in Forms/3 had
precisely the same issue; some constraints could be inferred
from formulas, but the number of unconstrained cells still
posed a high attention investment requirement.

IV. THE ATTENTION INVESTMENT TRADE-OFF FOR UNIT
INFERENCE

We take the inference approach of Chambers and Erwig,
although we aim to infer concrete physical units (instead
of dimensions). Through a fully-automated process based on
formulas, formatting and nearby textual labels (described in
Section V), we infer the units of each critical variable without
any upfront user attention requirements. By reducing the
(apparent) cost to the user to zero, we can greatly reduce the
barrier to adoption.

Of course, there is no free lunch. The catch is that inference
is not perfect, and when inferred units are incorrect, the user
will need to invest attention to rectify the inference (a tradeoff
that has not been previously acknowledged in such work).
The question is under what circumstances does this result in a
situation beneficial to the user, i.e., under what conditions does
the unit inference system result in a lower overall attention
investment cost?

This question is precisely the one answered by the decision
calculus of Horvitz’s principles for mixed-initiative systems
[17], but applied to the user’s attention. Our key observation,
which allows us to combine the theories of attention invest-
ment and mixed-initiative systems, is that the utility functions
in Horvitz’s calculus can be expressed in terms of Blackwell’s
attention units.?

Consider a simple model of unit errors, inference errors,
and their associated attentional costs in a spreadsheet, as

2 Although Horvitz’s utility functions are reals in the interval [0, 1], we do
not place the same constraints on attention costs.

follows: Over the course of interacting with a spreadsheet
(authoring, editing, reading, etc.), a unit error occurs with
some probability. If a unit error occurs, the user incurs an
attentional cost of recovering from the unit error. However, if
we have a working inference system, the cost of recovering
from a unit error is zero. If there is an inference error, the
user must recover from it.

We formalise the sketch above, defining the following quan-
tities: P,, the probability of a unit error; P;, the probability
of an inference error; R,,, the cost of recovering from a unit
error; and R;, the cost of recovering from an inference error.

We derive the expected attentional cost to the user without
and with the inference system. Without inference, the expected
cost is P,R, + (1 — P,)-0 = P,R,. The term P, R,
corresponds to the event where a unit error occurs, and the
term (1 — P,) - 0 corresponds to the event where a unit error
does not occur.

Similarly, we derive an expression for the expected cost with
inference, with terms corresponding to the four cases where
unit errors do and do not occur, and inference errors do and do
not occur. Recall our assumption that when inference works,
the cost of fixing a unit error is zero. Therefore, in the case
where there is both a unit error and an inference error, we
assume that resolving a unit inference error must also resolve
any unit errors and therefore costs at most R;, not R; + R,,.
The cost with inference is:

P (PR;+ (1= P;)-0) + (1 = P,)(PR; + (1 - F)-0)
= PR,

Thus, the inference system lowers the overall attentional costs
of using spreadsheets if P;R; < P,R,. If we now further
assume our system is designed such that R; < R,, that is, the
cost of recovering from a unit inference error is not higher
than the cost of recovering from a unit error (a reasonable
design objective), we obtain the bound P; < P,.

Thus, we arrive at a simple, calculable criterion by which
we can contextualise the performance of an imperfect error-
prevention system: in order for an inference system to lower
the expected attentional cost to the user, the rate of inference
error must be less than the natural rate of the error that the
system is designed to prevent. Previous work estimates that
dimension errors occur in 42.5% of spreadsheets [2], thus the
error rate of our system must also not exceed 42.5%.

To arrive at our criterion, we make a number of simplifying
assumptions besides those already stated, as follows:

Risk-neutrality: we assume the user is risk-neutral; that is,
it is sufficient for the expected attentional cost of a system with
inference to be merely lower than the expected attentional cost
without inference. However, behavioural economics shows that
people can be risk-averse or risk-loving, with most people
being slightly risk-averse [18]. For example: given the choice
of a 50% chance of winning $100, or a guaranteed win of
$50, which would you choose? A risk-neutral person views
both options as equivalent due to their equal expected payoff.
A risk-averse person prefers the uncertain win only if the
expected payoff is higher than that of the certain win; the

difference between those two quantities is known as the
person’s risk premium. It is almost certainly the case that users
of inference systems are slightly risk-averse, and therefore
our inference system must not merely match the attention
requirements of the status quo, but improve upon it by a risk
premium (that might be possible to empirically determine, but
has not yet been done).

No external costs: we only model attentional costs and
utility. The full cost of an error in a spreadsheet varies
according to its context; a unit error might result in incorrect
real-world decisions, financial and reputational loss, and many
other negative externalities. It is unclear how to model or
account for these in a principled way.

Single error: we do not model multiple errors and episodes
of error recovery.

Guaranteed error discovery and recovery: we do not
model the likelihood of the user nor detecting unit and
inference errors, and of not fixing them. We assume that if
a unit or inference error exists, the user always discovers it,
chooses to fix it, and does so successfully. In the case where
both a unit and an inference error occurs, the user discovers
and fixes the inference error (which automatically fixes the
unit error, see next point).

Zero-sum inference: we assume that if unit inference
works, then the cost of recovering from a unit error is zero.
This would be trivially the case if unit inference prevented
unit errors from occurring in the first place. In this case P,
can be interpreted as the probability that a unit error would
have occurred without the interface. This assumption and the
previous one subsume another assumption we make (which
Horvitz’s model is particularly concerned about), namely
perfect inference of user goals. That is, we assume that the
way in which our inference system ultimately fixes or prevents
unit errors is always perfectly aligned with the user’s goals.

Inference has cheaper recovery: the cost of recovering
from a unit inference error is less than or equal to the cost of
recovering from a unit error (note a corollary design principle:
incorrect inference should not be error-genic; if the inference
system introduces the very error it is designed to prevent, the
cost of recovering from an inference error cannot be less than
the cost of recovering from a unit error).

Fixed error probabilities and costs: we model the proba-
bility of unit and inference errors to be fixed for all users and
spreadsheets (e.g., interpreted as an empirical probability).

Short-term/long-term conflation: we do not distinguish
between Blackwell’s long-term focus (on the inference system
as a whole) and Horvitz’s short-term focus (on each individual
opportunity for inference and user interruption). In the future
we might treat these differently, using long-term empirical
probabilities for the former analysis, and sheet-specific prob-
abilities generated by our inference model for the latter.

A. Attention investment and mixed-initiative systems: two
sides of the same coin?

Since our system sits at the intersection of concerns treated
by both Blackwell’s account of attention investment and

Aspect

Attention investment

Mixed-initiative systems

non-automation? If so, the
user takes action.

Purpose of To explain user behaviour To determine system be-
model haviour

Decision Is the expected payoff of au- Is the expected utility of the
problem tomation greater than that of (automated) action greater

than that of inaction? If so,
the system takes action.

Instance of
concern

This model applies at each
investment opportunity, that
is, each time the user has
an opportunity to automate
something.

This model applies at each
inference/automation/inter-
ruption opportunity, that is,
each time the system can
take an individual action.

rational, learning user, who
will eventually approximate
P, to be the long term rate
of unit error, P; to be the
overall inference error rate.

Implemen- This is a long-term calcu- This is a short-term calcu-
tation of lus in the user’s mind. In lus which the system can
model our context, we assume a calculate for any given pre-

diction. In our context, P
would be interpreted as the
sheet or cell error likeli-
hood, and P; would be the
inference confidence in a

specific prediction.
TABLE II: A comparison of attention investment and mixed-
initiative systems.

Horvitz’s account of mixed-initiative systems, we have con-
ducted an analysis that draws on concepts from both. In doing
so, we have been able to identify a number of similarities
and differences between them. In Table II, we present our
comparison of the two theories.

These theories approach two different problems from two
very different perspectives, but ultimately produce a mathe-
matically identical solution (namely, to compute the expected
payoff to the user of implementing a technical intervention,
versus not implementing it). Therefore, when applying these
theories in new contexts, it is important to consider their
difference in perspective, because though the equations are
the same, our interpretation of the quantities encoded varies.
To our knowledge, this is the first time the mathematical
equivalence of these theories has been explicitly stated, and
their differences explicitly compared.

B. From unit inference to error detection

In the following sections, we describe a pipeline for infer-
ring the unit of any numeric cell. However, merely detecting
the units of cells does not by itself solve the problem of
detecting unit-related errors. An additional step is needed
(which may itself have a non-zero chance of error). We have
not implemented any such error-detection step, but a small
example of a potential application follows.

Consider Figure 1, which
shows a spreadsheet with a po-

A B
1 |Weight (kg) 5 Fential unit error. The forrr.u.lla
in cell B3 adds two quantities
2 |Length (m) 10 .
that appear to have different
3 | =B1+82

units, according to the user la-
bels in cells A1 and A2. How
to best assist the user depends
on our belief in the relative correctness of different parts of
the spreadsheet: in particular, the relative correctness of the
formula and the labels. If we believe the formula is more likely
to be correct than the labels, we could highlight the labels

Fig. 1: A spreadsheet with a
potential unit error

in A1 and A2 to the user as being potentially misleading. If
we believe the labels are more likely to be correct, we could
highlight the formula as being potentially erroneous.

How might we arrive at such a belief? One heuristic might
be that the user’s most recent action is more likely to be the
source of an error than the state of the workbook prior to the
action (because we assume the user is likely to discover and
fix errors as they go along). Another might be that users are in
general more likely to make errors in formulas than they are
in textual labels. These options need to be tested in practice;
this is a difficult problem that we leave for future work.

V. OUR ALGORITHM FOR UNIT INFERENCE

Our unit inference algorithm has two steps:

1) We generate constraints over cells using three sources:
formulas, inferred tables, and number formats. We then
solve these constraints.

2) For the remaining set of unconstrained cells, which we call
critical cells, we synthesise unit annotations for these cells
from text in the spreadsheet.

As input to our algorithm we assign a unit variable to every
numeric cell. The output of our algorithm is an assignment (or
substitution) for every unit variable. A variable can be assigned
a unit that is: concrete, denoting a known unit; critical,
denoting an identity assignment; or determined, denoting a
unit that contains variables from other cells. Consider the
assignment {A1 — $ A2 — A2, A3 — $/A2}. We use unit
variable names that are in one-to-one correspondence with cell
addresses. The assignment for A1 is concrete; the assignment
for A2 is critical, indicating that A2 is a critical cell; and
the assignment for A3 is determined by A2. Our metrics of
success are based on finding correct concrete assignments,
corresponding to precision, and reducing the number of critical
assignments, corresponding to recall.

Step 1 and Step 2 produce a unit assignment as output,
where the purpose of Step 2 is to convert critical assignments
to concrete assignments using text in the spreadsheet. We now
describe each step in detail.

A. Constraint Generation (Step 1)

Constraints are generated from three sources: formulas,
inferred tables, and number formats. We use an instrumented
spreadsheet runtime to evaluate formulas and dynamically
generate constraints when arithmetic operations are applied
to numbers. Our runtime handles a large range of spreadsheet
features including array formulas, implicit intersection, and
worksheet functions such as VLOOKUP and SUMIF.

We detect tables in workbooks using the TableSense
model [19]. Tables are used in two ways. First, a table con-
strains values in a row or column (depending on orientation) to
have the same unit. Second, a table provides headers, which
label cells—we use headers in Step 2. Our use of tables is
derived from existing work [2], [4], [5], [20], although we
make a strong distinction between using table headers and
constraining values in a row or column. This distinction means
that we benefit from the detection of a table, even if we fail to

A B C D E
1 | $1000 2000 52
2 20 51 1500
3 | =A1/A2 —Di—-D2

Fig. 2: Example sheet where s; represents some string.

detect or extract annotations from headers. Cunha et al. [21]
build a model capable of extracting richer constraints from a
table, including functional dependencies. Combining this with
table detection to improve unit inference is future work.

Figure 2 presents an example spreadsheet from which our
runtime will generate the constraint set {A1 ~ $ A3 ~
A1/A2,D1 ~ D2,D1 ~ D3}, where we write (~) to indicate
an equality constraint. The first constraint is generated by
the number format for A1, and the remaining constraints are
generated by formulas.

The final part of Step 1 is to solve the set of constraints and
produce an assignment. We transform unit constraints to linear
equations and use matrix reduction to solve them, as described
by Orchard et al. [7]. The resulting unit assignment is: {A1 —
$,A2 — A2, A3 — $/A2,D1 — D1,D2 — D1,D3 — D1}.

Logical methods are precise, but fail to incorporate contex-
tual information from nearby text. In our example, we fail to
infer a concrete unit for all but A1, with A2 and D1 remaining
as critical cells. We address the limitations of logical inference
with Step 2, where unit annotations are synthesised from text.

B. Annotation Synthesis (Step 2)

We attempt to synthesise direct or indirect unit references
from text cells. If a unit is found we annotate any cells within a
relevant distance that share a unit with a critical cell. Relevance
is determined by the vertical or horizontal distance between the
cells, subject to a configurable distance, or when the text cell
is a table header for the numeric cell. In our experiments we
use a distance of two, and if multiple annotations are found
we select the first annotation starting vertically and moving
clockwise (assuming a left-to-right writing system).

A direct unit reference is found using a template-driven
approach that examines the text for exact occurrences of units
in a set of templates. An indirect unit reference is found using
the dimension inference algorithm we describe in Section V-C.

Revisiting the example in Figure 2, suppose that s; =
Area (acres) and so = Credit Card Charges. The text si is
a direct reference as it matches the template where a unit
occurs in parentheses at the end of a string. The text so is
an indirect reference to dimension currency, from which we
synthesise the most frequent unit $. The annotations produce
an assignment {A2 — acre, D1 — $} which is applied to the
assignment generated in Step 2, yielding assignment {A1 —
$,A2 > acre, A3 — $/acre, D1 +— $,D2 +— $, D3 > $}.

C. Dimension Inference Algorithm

The model can be described as a two-step process: predic-
tion (Predictor 1) followed by validation (Predictor 2).

For prediction, we created a dictionary of dimensions
and their representative units and synonyms (e.g., for the
currency dimension, units include dollar, euro, money, cash,
etc.), by mining WikiData [22]. We consider 14 dimensions:
%, dimensionless, length, mass, angle, power, energy, speed,
temperature, time, volume, force, currency, area. We ignore
dimensions encountered seldom or never (such as luminosity)
to reduce computational cost.

We compute similarity scores between word embeddings
of each unit and the header. We could either use pre-trained
word embeddings (such as Glove [23], Word2Vec [8] or Fast-
Text [24]), or we can train word embeddings on spreadsheets.
We have chosen to create custom FastText embeddings on a
dataset generated by collecting every text snippet present in
our corpora (as described in Section VI). We can motivate the
choice of using static word embeddings over dynamic ones by
exploring the vocabulary that is characteristic for spreadsheets.
In general, dynamic word embeddings are preferred as words
that have multiple meanings can retain their versatility. For-
tunately, we found that 88% of the words in our corpora are
mono-semantic (i.e., have a single meaning for part of speech)
compared to 42% in Wiki English by using Wordnik [25].

We use cosine similarity [26] as implemented in
gensim [27]. We create a header embedding by averaging
the embedding of its words [8]. For each dimension d, we
obtain a score s(d), the maximum of the set: {s(u) | u €
U(d) A Yu' € U(d). ¢(u,u’) }. There is a score s(u) in this
set for each unit u such that for all units »’ from the same
dimension, if cos(e(u), e(u’)) ~ 1 (meaning that v and v’ are
textual synonyms) and s(u) &~ 1 (meaning that u scores highly
on this header) then s(u’) ~ 1 (meaning that u’ also scores
highly). The check prevents a high artefactual dimension score
produced by a single high scoring unit that is unrepresentative
of similar units.

The dimension scores are transformed into a distribution
by using softmax. We find that the distribution our predictor
returns is variously either flat (i.e., there is no dimension
or we cannot predict), or unimodal (strong signal from one
dimension) or multimodal (a few possible dimensions).

For Predictor 1 we make two simplifications. First, we only
predict % when we see certain delimiters in the header (e.g.,
per). We predict for the text on each side of the delimiter
and combine the predictions. Second, we predict dimensionless
if the distribution over the other dimensions is uniform. The
disadvantage of this simplification is that we cannot be certain
if a header is truly dimensionless or we could not predict.

In Predictor 2 we use constraints derived from formulas to
construct equivalence classes of headers that have the same
unit. We are interested in sets with more than one element
as we want to validate the results of Predictor 1 in an
unsupervised manner. Equivalence for headers (denoted =) is
defined in terms of their distribution over dimensions: two
headers are equivalent if their distributions share at least one
dominant dimension (the intersection of their mode sets is
non-empty). We ignore headers with flat distributions.

Predictor 2 has two phases, an offline training phase and an

Predictor 1 Prediction

h € (HDR = P(WORD)), a header, or sequence of words.
D e P(DIMEN), a set of dimensions.

U € DIMEN — P(UNIT), dimension to units map.

e € WORD — R", an n-dimensional word embedding.

x ~ y iff | — y| < e where € > 0 is a given bound.

predict(h) = softmax({ s(d) | d € D }) where
s(u) = cos(mean({e(w) | w e h}),e(u))
d(u,u') iff cos(e(u),e(u’)) ¥ 1 A s(u) 1 =s(u') ~ 1
s(d) = max({s(u) | ue U(d) A Yu' € U(d). d(u,u’) }

Predictor 2 Validation (extends Predictor 1)

HDRS = P(HDR x DIST)

HEQ = P(HDRS)

H € HDRS, header and pre-computed distribution pairs.
‘H € HEQ, header equivalence classes.

offline(#) = (UC, UE, UZ, UU) where
headers(H) = {h | (h,D) € H}
C={HeH|VY(h,D),(h,D')e H D=D'}
& = {H € H\C | headers(H) < headers(| JC)}
U ={H € H\C | headers(H) n headers(| JC) = &}
I=H\CuZIvué¢)

D if (h,D) e C
online(h,C,Z,U) = 1 if h € headers(Z u U)
predict(h) otherwise

online prediction phase. In the offline training phase, Predictor
2 uses the context from the header’s equivalence class and our
definition of equivalence to partition headers from the training
set into three sets: Correct (C), Unresolved (If), or Incorrect
(Z). The error set (£) is not used for prediction, but can be
used to report errors. Prediction function online either returns
a dimension distribution for the header, or fails. If the header
is found in the Correct set, it returns the cached dimension
distribution. If the header is found in the Unresolved or
Incorrect set, it fails. Otherwise, it calls Predictor 1.

We have 458 headers in the Correct Set, 132 in the Unre-
solved Set, and 56 in the Incorrect Set. The strengths of this
method are that it is extensible (as we acquire more data we
can extend the sets and improve coverage), and economical (it
can significantly reduce the running cost of the algorithm as
we can bypass Predictor 1).

VI. EVALUATION
A. Dataset description

We create a corpus by selecting spreadsheets from ENRON
[28], FUSE [29] and EUSES [30]. After data cleaning and
table detection we retain 14,281 unique workbooks. We use
3,610 workbooks to produce two test datasets, split between
Annotated and Text(unit). Remaining workbooks are used to

create the dataset for the offline phase of Predictor 2, and for
training custom word embeddings. In ENRON some individuals
authored several spreadsheets; to avoid overfitting, the same
individual’s spreadsheets are not used in both test and training.

Annotated is a hand-labelled subset of EUSES. The anno-
tated set contains 867 workbooks of which 823 had formulas,
and 456 (of 823) contained a unit tag. Mainstream spreadsheet
implementations have an extensive set of features and our
modified runtime only implements a subset. Features we do
not handle include structured table references, as well as
implementations of some functions. Our coverage per formula
is high, over 90%, but we choose not to selectively eval-
vate formulas from a workbook. Instead, we only consider
workbooks that our runtime can evaluate completely (331 of
456 workbooks). Within these there were 1130 critical cells.
These cells constitute our unit inference test set. The labelled
annotations for these cells span 8 dimensions and 35 units.

Text(unit) is a dataset consisting of 760 table headers,
originally matching the template Text(unit). We strip off the
unit in brackets and transform the unit to its dimension; the
final dataset contains 760 items of the form Text, dimension.
The headers were gathered from FUSE (65%), ENRON (25%)
and EUSES (10%). For headers that occurred multiple times
with different dimensions (e.g., Capacity had both volume and
power units attached), we randomly selected one to resolve
ambiguity. There are 18 recorded dimensions with time, length,
mass the most common.

To establish a baseline for human performance on this
task, we asked three English-speaking researchers who were
unfamiliar with the dataset to independently label each header
with their best guess for its dimension, selecting from one
of the 18 dimensions. We observed high inter-rater agreement
(Fleiss’ k = 0.73 [31]). We did not observe fatigue or learning
effects; label correctness did not significantly change over the
course of the labelling exercise for any participant.

We prepare two sets of aggregated labels to serve as
benchmarks: the first aggregates by majority vote (for ties,
we used the label from P3 who had the highest correctness
overall); the second chooses the correct label if any of the 3
raters had chosen it. (If none chose correctly, the majority is
taken. If there is no majority, we default to P3.)

B. Unit inference evaluation

We evaluate the effect of direct and indirect annotation
synthesis using an ablation study. The preparatory phase
of our analysis runs logical unit inference, as described in
Section V-A, on the 331 workbooks from the Annotated
set. After logical inference 1130 critical cells remain. We
implement three algorithms that attempt to synthesise a unit
annotation for each critical cell, and we compare the synthe-
sised annotation with the labelled annotation. Our algorithms
are: a baseline that always synthesises USD, an algorithm
that only synthesises direct annotations, and an algorithm
that synthesises direct and indirect annotations using our
dimension inference algorithm. We selected the baseline as our
dataset is skewed towards currencies: 280/1130 of all unit tags

Unit Prediction Dimension Prediction
Metric Type Always USD Direct Direct + Indirect Always Currency | Direct Direct + Indirect
Micro 24.8% (280/1130) | 91.1% (112/123) | 49.7% (164/330) 42.5% (480/1130) | 93.5% (115/123) 65.2% (215/330)
Precision | Macro 0.8% 58.0% 44.8% 5.3% 78.8% 39.4%
Weighted | 6.1% 82.6% 67.4% 18.0% 97.7% 79.8%
Recall Micro 24.8% (280/1130) | 9.9% (112/1130) | 14.5% (164/1130) | 42.5% (480/1130) | 10.2% (115/1130) | 19.0% (215/1130)
Macro 3.3% 25.3% 24.3% 12.5% 34.8% 31.8%

TABLE III: Performance for annotation synthesis. For micro precision and recall we report absolute numbers.

Metric Type IJI.uIr?an baseh.ne Baseline | Our model
Majority | Optimal
.. Macro 62.5% 69.3% 1.7% 62.6/63.1%
Precision .
Weighted % | 83.8% 87.8% 4.89% 68.7/69%
Recall Macro 57.3% 61.2% 7.69% 60.9/61.1%
Top 1 80.7% 85.3% 22.1% 66.8/67.4%
Accuracy | Top 3 54.9% 79.9/80.4%
Top 5 69.8% 90.7/91%

TABLE 1V: Dimension inference performance. Human base-
line, naive baseline and our model (Predictor 1 / Predictor 2).
Note: Top 1 accuracy = micro precision = micro recall [34].

are USD. The inclusion of the baseline allows us to highlight
this disparity. We report the performance of unit and dimension
prediction in Table III using a selection of standard metrics
including multi-class precision and recall [32]. In line with the
scikit—-learn package [33], when precision and recall are
undefined we assign 0. We use micro, macro, and weighted
metrics as our test datasets are unbalanced. Micro-precision
is calculated globally by counting the total true positives,
false negatives and false positives. Macro-precision calculates
precision for each class, and finds their unweighted mean,
ignoring label imbalance. Weighted precision calculates preci-
sion metrics for each class, and finds their average weighted
by support (the number of true instances for each label). We
include Top-k accuracy for dimension inference, in line with
previous work [16]. If we fail to infer an annotation we predict
unknown, which we treat as a false negative; consequently,
micro precision and recall are different.

The inclusion of indirect annotations significantly improves
recall, at the cost of precision. Micro recall in dimension
prediction improves by a factor of 90%, from 115/1130 to
215/1130, with a decrease in precision by a factor of 20%.
Micro recall in unit prediction improves by a factor of 30%,
from 112/1130 to 164/1130, while precision drops below 50%.
We focus on the micro and weighted metrics as the dataset
has high class imbalance and we prioritise correct results for
common units and dimensions.

C. Dimension inference algorithm

We evaluate dimension inference on the dataset Text(unit)
(only those dimensions we consider as per Section V-C; the
final size of the dataset is 737). The task is to predict the
dimension of unit using only Text. For the heuristic baseline
we predict the most common dimension(s). Table IV shows
that Predictor I and Predictor 2 significantly outperform the
heuristic baseline and are comparable to human performance

in macro precision and recall. In our model we do not see
a significant difference between macro and Top 1 (micro)
performance. Since the dataset exhibits class imbalance, this
suggests that the model performs similarly for frequent and
rare dimensions, validating our unit dictionary. In contrast, the
human baselines are good (70-80% correctness) at detecting
mass, length, speed, and area, but significantly worse (less than
50% correctness) at detecting volume, power, %, and energy.
Although our sets for Predictor 2 are small, they improve
performance modestly, likely because ENRON and FUSE have
many similar or identical headers. The main improvement is
the reduction in false negatives for length.

We inspected 140 headers that our optimal human baseline
correctly labelled, but the model did not. We hoped to identify
systematic deficiencies in the model and opportunities to
improve it. Informally, we found that these mis-predicted head-
ers formed three categories: 1) headers containing distractor
words, which mislead the model (e.g., “Average Life of Loan”
is misclassified as a currency, due to the influence of the word
“Loan”.); 2) headers requiring domain knowledge (e.g., “Na-
tional Gross Domestic Product” is misclassifed as mass instead
of currency); and 3) headers with language understanding
issues, suggesting deficiencies in the word embeddings (e.g.,
“Median age” is misclassified as length).

D. Does this satisfy our criterion?

Previous work estimates dimension error rate in spread-
sheets as 42.5% [2] . The criterion derived in Section IV sug-
gests that an inference precision of 1—42.5% (= 57.5%) is the
minimum sufficient to justify the attention investment trade-
off. Our precision for direct and indirect inference exceeds this
threshold, but there is clear opportunity for improvement.

VII. CONCLUSION

We have framed unit inference in spreadsheets as a machine
learning problem. We present a novel analysis of the trade-off
between the attention costs of unit errors and unit inference
errors. We present a new algorithm for inferring the units
of numeric cells in spreadsheets, using constraints derived
from formulas, tables, formatting, and textual labels. Our
work shows that textual dimension inference improves recall
while maintaining reasonable precision, when compared to the
estimated rate of dimension error in spreadsheets. In future, we
aim to improve our detection of textual annotations, improve
our training datasets and word embeddings, and improve our
estimates of the natural unit-related error rate through analysis
of larger corpora.

VIII. ACKNOWLEDGEMENTS

We would like to thank Nate Kushman, Nuno Lopes, Tom
Minka, and Sruti Srinivasa Ragavan for their advice; Martin
Erwig for sharing the source code of the system he developed
with Chris Chambers; Shi Han and Ran Jia for assistance
with table detection and knowledge sharing; Dany Fabian
and Gavin Smyth for engineering support; our unit annotator
Kathryn Smyth; Anusha Iyer for help designing the unit
annotation tool; and our dimension annotators.

[1]

[2

—

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

REFERENCES

A. J. Kennedy, “Programming languages and dimensions,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-391,
Apr. 1996. [Online]. Available: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-391.pdf

C. Chambers and M. Erwig, “Reasoning about spreadsheets with labels
and dimensions,” Journal of Visual Languages & Computing, vol. 21,
no. 5, pp. 249 - 262, 2010.

T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen, “Validating the unit correctness of spreadsheet programs,”
in Proceedings of the 26th International Conference on Software Engi-
neering. 1EEE Computer Society, 2004, pp. 439-448.

R. Abraham and M. Erwig, “Ucheck: A spreadsheet type checker for
end users,” J. Vis. Lang. Comput., vol. 18, no. 1, p. 71-95, Feb. 2007.
[Online]. Available: https://doi.org/10.1016/j.jv1c.2006.06.001

M. Erwig and M. Burnett, “Adding apples and oranges,” in Practical
Aspects of Declarative Languages, S. Krishnamurthi and C. R. Ramakr-
ishnan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
173-191.

H. Dong, S. Liu, S. Han, Z. Fu, and D. Zhang, “Tablesense: Spreadsheet
table detection with convolutional neural networks,” in AAAI. AAAI
Press, 2019, pp. 69-76.

D. A. Orchard, A. C. Rice, and O. Oshmyan, “Evolving fortran types
with inferred units-of-measure,” J. Comput. Science, vol. 9, pp. 156-162,
2015. [Online]. Available: https://doi.org/10.1016/j.jocs.2015.04.018

Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, ser. JIMLR Workshop and Conference Proceed-
ings, vol. 32. JMLR.org, 2014, pp. 1188-1196.

Z. Gao, C. Bird, and E. T. Barr, “To type or not to type:
quantifying detectable bugs in javascript,” in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, S. Uchitel, A. Orso, and M. P.
Robillard, Eds. IEEE / ACM, 2017, pp. 758-769. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.75

A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel, “Harnessing curiosity to increase
correctness in end-user programming,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2003, pp. 305-312.
G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What you see is what
you test: A methodology for testing form-based visual programs,” in
Proceedings of the 20th international conference on Software engineer-
ing. 1EEE, 1998, pp. 198-207.

A. F. Blackwell, “First steps in programming: A rationale for attention
investment models,” in Proceedings IEEE 2002 Symposia on Human
Centric Computing Languages and Environments. 1EEE, 2002, pp.
2-10.

D. Kulesz and S. Wagner, “Asheetoxy: a taxonomy for classifying nega-
tive spreadsheet-related phenomena,” arXiv preprint arXiv:1808.10231,
2018.

M. Wand and P. O’Keefe, “Automatic dimensional inference,” in Com-
putational Logic - Essays in Honor of Alan Robinson, 1991.

J. Goubault and R. Jaures, “Inférence d’unités physiques en ML,”
Journées Francophones des Langages Applicatifs, Noirmoutier, 1995.
V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep
learning type inference,” in Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, G. T. Leavens,
A. Garcia, and C. S. Pasareanu, Eds. ACM, 2018, pp. 152-162.
[Online]. Available: https://doi.org/10.1145/3236024.3236051

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

E. Horvitz, “Principles of mixed-initiative user interfaces,” in Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems,
1999, pp. 159-166.

C. A. Holt and S. K. Laury, “Risk aversion and incentive effects,”
American economic review, vol. 92, no. 5, pp. 1644-1655, 2002.

H. Dong, S. Liu, S. Han, Z. Fu, and D. Zhang,
“Tablesense: ~ Spreadsheet table detection with convolutional
neural networks,” in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI’'19), January 2019. [Online].
Available: https://www.microsoft.com/en-us/research/publication/

tablesense- spreadsheet- table-detection- with-convolutional-neural-networks/

C. Chambers and M. Erwig, “Dimension inference in spreadsheets,”
in 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, Sep. 2008, pp. 123-130.

J. Cunha, M. Erwig, J. Mendes, and J. Saraiva, “Model inference for
spreadsheets,” Automated Software Engineering, vol. 23, no. 3, pp. 361—
392, 2016.

D. Vrandecic and M. Krotzsch, “Wikidata: a free collaborative knowl-
edgebase,” Commun. ACM, vol. 57, no. 10, pp. 78-85, 2014.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532-1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 135-146, 2017. [Online].
Available: https://www.aclweb.org/anthology/Q17-1010

E. McKean, “Wordnik,” in The Routledge Handbook of Lexicography.
Routledge, 2017, pp. 473-484.

C. Allen, I. Balazevic, and T. Hospedales, “What the vec? towards prob-
abilistically grounded embeddings,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 7467-7477. [Online]. Available: http://papers.nips.cc/paper/
8965-what-the- vec-towards- probabilistically- grounded-embeddings.pdf
R. Rehtifek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45-50, http://is.muni.cz/publication/884893/en.

F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, vol. 2. 1EEE, 2015, pp.
7-16.

T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-Hill, “Fuse: a
reproducible, extendable, internet-scale corpus of spreadsheets,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, 2015, pp. 486-489.

M. Fisher and G. Rothermel, “The euses spreadsheet corpus: a shared
resource for supporting experimentation with spreadsheet dependability
mechanisms,” in Proceedings of the first workshop on End-user software
engineering, 2005, pp. 1-5.

J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

M. Hossin and M. Sulaiman, “A review on evaluation metrics for
data classification evaluations,” International Journal of Data Mining
& Knowledge Management Process, vol. 5, no. 2, p. 1, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

B. Shmueli, “Multi-class metrics made simple, part II: the FI-
score,” Dec 2019. [Online]. Available: https://towardsdatascience.com/
multi-class-metrics-made- simple- part-ii- the-f1-score-ebe8b2c2cal

APPENDIX
A. Extra details for Predictor 1

This appendix provides extra details that can be useful for
reproducibility (e.g. for reaching the results of Predictor 1
as shown in Table IV) and for future model extensions. In
particular we address how to train word embeddings for tabular
data using FastText [24] and provide further intuition for our
modelling choices.

1) Processing choices for training word embeddings: In
our work we experimented with various static word embed-
dings (either pre-trained on a large external corpus or trained
on Excel tables) and found that FastText produces the best
performance when trained on tabular data.

Instead of learning vectors for words directly, FastText
represents each word as an n-gram of characters. This helps
capture the meaning of shorter words and allows the embed-
dings to have a sense of suffixes and prefixes. It also helps
with rare or out of vocabulary words as even if a word is
not present in the training set it can be broken into n-grams.
Unsurprisingly these are important considerations for tabular
data.

In order to use FastText on our data we transformed every
table to a list of tokens. We kept only non-numerical cells
and removed the columns that had words from a banned
set. We generated the set of forbidden words by looking at
the histogram of word occurrences in our training data. We
identified words that are likely to be non-informative for the
context of the spreadsheet (e.g. ’yes’, ’true’).

For training, we used most of the default settings with
the exception of learning rate (0.05), number of epochs (20),
number of threads (maximum number of CPUs), size of the
context window (4), size of the embedding vectors (300) and
length of n-grams (2).

We created a random selection of workbooks for training
embeddings (11538 workbooks) from a mix between ENRON,
FUSE and EUSES . We had to eliminate spreadsheets with
significant duplication. For instance in ENRON data the file
name contains the name of the person who authored the
spreadsheet and it is common for one person to duplicate
their template across many spreadsheets. We keep just
one of those workbooks to avoid too much overlap. In
our best experiment we added the documents -created
from Excel workbooks to a well known dataset of business
articles, Reuters-21578, Distribution 1.0 which can be found at
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html.
We chose articles that are short so there is no significant
discrepancy.

In our work we have investigated other approaches as well.
For Glove embeddings one can fine-tune to new data (for
example by using Mittens), but the technique is not very
reliable and it did not produce good results in our case. For
FastText there is currently no equivalent. Another approach
that we leave to future work is to train word embeddings on
new data and then aligning the embedding space to a richer
space of pre-trained embeddings on a large corpus.

2) The intuition behind our modelling choices: As previ-
ously mentioned, we can motivate the choice of using static
word embeddings over dynamic ones by exploring the vocab-
ulary that is characteristic for spreadsheets. In our study we
found that 88% of the words in our corpora are mono-semantic
(i.e. have a single meaning for part of speech) compared to
42% in Wiki English by using Wordnik [25].

The only assumption that we make in our work is that the
embedding of mono-semantic words is within a small error
from the correct embedding and that error is isotropic.

In order to find how similar are two words (for example
cm’ is closer in meaning to 'metre’ than to ’volume’) we use
the standard cosine similarity metric, whose inherited error
remains low and bounded, and avoids issues identified with
Euclidean distance [26]. Intuitively let’s consider two vectors
in 2D, a and b that are the correct (oracle) representations for
two words. Our assumption states that our embeddings will
be within a maximum (small) error of ¢ (another 2D vector)
from the correct representations. So the similarity error &
can be bounded by:

derr < |cos(a— b+ 2¢) —cos(a—) (1)

= |cos(a — b) cos(2¢) 2)
—sin(a — b) sin(2¢) — cos(a — b)|

~ 2¢|sin(a — b)| to first order in e. (3)

For the words that are truly similar to each other we can
see that ., should stay small. This is an intuitive explanation
for 2D and in higher dimension we need more machinery to
support this argument, but we can formulate it using a similar
line of reasoning.

As shown in Predictor 1 we define functions s(u) and
s(d) that compute the similarity score of a unit or dimension
to input header h. To aggregate the unit similarities into a
dimension similarity we pick the highest unit similarity per
dimension that satisfies a weak version of transitivity, defined
by predicate check. This constraint is a desirable property for
faithful embeddings and we can show that it is not violated
if the embedding error is consistent with our assumption. To
exemplify, if depth and metre are very similar and metre and
cm are truly similar, we require depth and cm to also be very
similar. If this relation is not true we have identified a false-
positive similarity, an artefact of the propagated error (i.e. the
two words are not truly similar, but appear to be due to the
error in our embedding).

