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ABSTRACT
Bitvector filtering is an important query processing tech-

nique that can significantly reduce the cost of execution, es-

pecially for complex decision support queries with multiple

joins. Despite its wide application, however, its implication

to query optimization is not well understood.

In this work, we study how bitvector filters impact query

optimization. We show that incorporating bitvector filters

into query optimization straightforwardly can increase the

plan space complexity by an exponential factor in the number

of relations in the query. We analyze the plans with bitvector

filters for star and snowflake queries in the plan space of

right deep trees without cross products. Surprisingly, with

some simplifying assumptions, we prove that, the plan of

the minimal cost with bitvector filters can be found from

a linear number of plans in the number of relations in the

query. This greatly reduces the plan space complexity for

such queries from exponential to linear.

Motivated by our analysis, we propose an algorithm that

accounts for the impact of bitvector filters in query optimiza-

tion. Our algorithm optimizes the join order for an arbitrary

decision support query by choosing from a linear number of

candidate plans in the number of relations in the query. We

implement our algorithm in a commercial database DBMS-X

as a transformation rule. Our evaluation on both industry

standard benchmarks and customer workload shows that,

compared with DBMS-X, our technique reduces the total

CPU execution time by 22%-64% for the workloads, with up

to two orders of magnitude reduction in CPU execution time

for individual queries.
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1 INTRODUCTION
Bitvector filters, including bitmap or hash filter [6, 7, 18],

Bloom filter and its variants [2, 7, 15, 24, 32], perform ’prob-

abilistic’ semi-join reductions to effectively prune out rows

that will not qualify join conditions early in the query execu-

tion pipeline. Because they are easy to implement and low

in overhead, bitvector filters are widely used in commercial

databases [13, 17, 21, 23].

Prior work on using bitvector filters has heavily focused on

optimizing its effectiveness and applicability for query pro-

cessing. One line of prior work has explored different sched-

ules of bitvector filters for various types of query plan trees to

optimize its effect on query execution [10–12]. Many variants

of bitvector filters have also been studied that explore the

trade-off between the space and accuracy [2, 7, 9, 15, 24, 32].

In query processing, bitvector filters are mostly used in

hash joins [10–12]. Specifically, the commercial database

DBMS-X implements the bitvector filter scheduling algo-

rithm following [18] (Section 2). At a high level, a single
bitvector filter is created with the equi-join columns at a

hash join operator and is pushed down to the lowest possible
level of the subplan rooted at the probe side. Figure 1 shows

an example of applying bitvector filters to a query plan .

Figure 1a shows the join graph of the query and Figure 1b

shows its query plan, where the arrow in Figure 1b points

from the operator that creates the bitvector filter to the oper-

ator where the bitvector filter is pushed down to. As shown

in Figure 1b, a bitvector filter is created from the build side

https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389769
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Figure 1: Example of pushing down bitvector filters
for a query plan joining relations A,B,C,D

of each hash join operator (H J1, H J2, and H J3). Since C only

joins with B, the bitvector filter created from H J2 bypasses
H J3 and is pushed down to B. Similarly, because D joins with

bothA andC , the bitvector filter created fromH J1 consists of
columns from both A and C . Thus, the lowest possible level
to push down this bitvector filter isH J2. Bitvector filters can
also be adapted for merge joins.

Surprisingly, despite the wide application of and decades

of research on bitvector filters for query processing, the

impact of bitvector filters on query optimization is not well

understood. To the best of our knowledge, most state-of-the-

art DBMSs add bitvector filters to the query plans produced

by the query optimizer as a post-processing step.

Neglecting the impact of bitvector filters in query optimiza-

tion can miss out opportunities of significant plan quality

improvement. Figure 2 shows an example of such an oppor-

tunity with a query using the JOB [25] benchmark schema:

SELECT COUNT(*)
FROM movie_keyword mk, title t, keyword k
WHERE mk.movie_id = t.id AND mk.keyword_id = k.id
AND t.title LIKE '%(' AND k.keyword LIKE '%ge%'

Figure 2a shows the join graph of the query, where each

edge is annotated with the join cardinality of the correspond-

ing tables. Figure 2b shows the best query plan P1 without
using bitvector filters. Each operator is annotated with the

number of tuples after filter predicates being applied and the

operator cost (tuple/cost ).
Figure 2c shows the query plan after adding bitvector

filters to P1 as a post-processing step. Although the cost of

P1 is reduced after adding bitvector filters, it still costs 3× as

much as the best plan when the impact of bitvector filters is

considered during query optimization (Figure 2d).

Because P2 is more expensive than P1 without using bitvec-
tor filters (Figure 2e), the optimizer will choose P1 as the best
plan if it neglects the impact of bitvector filters during query

optimization. Therefore, the optimizer will choose a much

worse plan (Figure 2c) if the bitvector filters are only consid-

ered as a post-processing step after query optimization.

Incorporating bitvector filters into query optimization

is surprisingly challenging. Existing top-down or bottom-

up dynamic programming (DP) based query optimization

framework cannot directly integrate the bitvector filters into

its optimization, because the effect of bitvector filters can

violate the substructure optimality property in DP. In a DP-

based query optimization framework, either top-down or

bottom-up, an optimal subplan is stored for each subsetA of

relations involved in a query. With bitvector filters, however,

in addition to the relations in A, the optimal subplan also

depends on what bitvector filters are pushed down toA and

how these bitvector filters apply to the relations in A based

on the structure of the subplan. For example, Figure 2c and

Figure 2d both contain a subplan of joining {mk , t }. The cost
of the two subplans, however, is more than 3× different due

to the different bitvector filters pushed down to the subplan.

Incorporating bitvector filters into query optimization

straightforwardly can be expensive. Similar to supporting

interesting orders in query optimization [34], the number

of optimal substructures can increase by an exponential fac-

tor in the number of relations to account for the impact of

various combinations of bitvector filters.

Surprisingly, prior work has shown that, under limited

conditions, different join orders results in similar execution

cost when bitvector filters are used. LIP [38] analyzes the

impact of Bloom filters for star schema with a specific type

of left deep trees, where the fact table is at the bottom. They

observe that, if bitvector filters created from dimension ta-

bles are pushed down to the fact table upfront, plans with

different permutations of dimension tables have similar cost.

Motivated by this observation, we study the impact of

bitvector filters on query optimization.We focus on an impor-

tant class of queries, i.e., complex decision support queries,

and the plan space of right deep trees without cross prod-

ucts, which is shown to be an important plan space for such

queries [12, 17]. Our first contribution is to systematically

analyze the impact of bitvector filters on optimizing the

join order of star and snowflake queries with primary-key-

foreign-key (PKFK) joins in the plan space of right deep trees

without cross products (Section 3-5). Prior work has shown

that, without bitvector filters, the number of plans for star

and snowflake queries in this plan space is exponential in

the number of relations in the query [31]. Intuitively, the

plan space complexity should further increase with bitvector

filters integrated into query optimization due to violation

of substructure optimality. Our key observation is that,

when the bitvector filters have no false positives, certain join

orders can be equivalent or inferior to others with respect

to the cost function Cout [28, 30], regardless of the query

parameters or the data distribution. By exploiting this obser-

vation, we prove that, with some simplifying assumption, for

star and snowflake queries with PKFK joins, the plan of the
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Figure 2: Example of ignoring bitvector filters in query optimization results in a suboptimal plan

minimalCout with bitvector filters can be found by choosing

from a linear number of plans in the number of relations in

the query in this plan space. To the best of our knowledge,

this is the first work that analyzes the interaction between

bitvector filters and query optimization for a broad range of

decision support queries and a wide plan search space.

While star and snowflake queries are common patterns

for decision support queries, in practice, the join graphs can

include multiple fact tables and non-PKFK joins. Our sec-
ond contribution is to propose an algorithm that optimizes

the join order for arbitrary decision support queries moti-

vated by our analysis (Section 6). Our technique applies to

queries with arbitrary join graphs. Since creating and ap-

plying bitvector filters adds overhead, we further optimize

our algorithm by selectively adding bitvector filters based on

their estimated benefit (Section 6.3). Our algorithm can be

integrated into a query optimization framework as a trans-

formation rule [19, 20]. Depending how a DBMS handles

bitvector filters in query optimization, we propose three op-

tions to integrate our technique into the DBMS (Section 6.4).

We implement our algorithm in a commercial database

DBMS-X (Section 7.1).We evaluate our technique on industry

benchmarks TPC-DS [1] and JOB [25] as well as a customer

workload (Section 7). We show that, comparing to the query

plans produced by DBMS-X, our technique reduces the total

CPU execution time of a workload by 22% to 64%, with up to

two orders of magnitude reduction in CPU execution time for

individual queries. We show that our technique is especially

effective in reducing execution cost for expensive queries

with low selectivity, where right deep trees is a preferable

plan space [12, 17].

We discuss related work in Section 8 and conclude the

work in Section 9.

2 BITVECTOR FILTER ALGORITHM
In this section, we describe the details of bitvector filters

creation and push-down algorithm following [18].

At a high level, each hash join operator creates a single
bitvector filter from the equi-join columns on the build side.

This bitvector filter is then pushed down to the lowest pos-

sible level on the subtree rooted at the probe side so that it

can eliminate tuples from that subtree as early as possible.

Algorithm 1 shows how to push down bitvectors given

a query plan. The algorithm takes a query plan as its input.

Starting from the root of the query plan, the set of bitvector

pushed down to the root is initialized to be empty (line 3) and

each operator is then processed recursively in a pre-order

traversal. At each operator, it takes the set of bitvector filters

pushed down to this operator as an input. If the operator is

a hash join, a bitvector filter is created from the build side

with the equi-join columns of this hash join as the keys of

the bitvector filter and is added to the set of bitvector filters

applied to the probe side of this hash join (line 8-10). Now

consider every bitvector filter that is pushed down to this

hash join operator. If one of the child operator of the join

operator contains all the columns in the bitvector filter, the

bitvector filter is added to the set of bitvector filters pushed

down to this child operator; otherwise, the bitvector filter

cannot be pushed down further, and it is added to the set

of bitvector filters pushed down to this join operator (line

12 - 23). If the set of bitvector filters pushed down to this

join operator is non-empty, add a filter operator on top of

this join operator to apply the bitvector filters. In this case,

update the root of this subplan to the filter operator (line

24-29). Recursively process the bitvector filters pushed down

to the child operators and update the children accordingly

(line 30 - 33). Finally, return the updated root operator of this

subplan (line 34). An example of creating and pushing down

bitvector filters with Algorithm 1 is shown in Figure 1.

3 OVERVIEW AND PRELIMINARIES
3.1 Overview
We start with the properties of bitvector filters and the cost

function (Section 3). We then show that, with bitvector filters,



PlanPushDown(plan):
Input: Query plan plan
Output: New query plan plan′ with bitvectors

1 root ← plan.GetRootOperator ()

2 plan′← plan

3 root ′← OpPushDown(op, ∅)

4 plan′.SetRootOp(root ′)

5 return plan′

OpPushDown(op, B):
Input: Operator op, set of bitvectors B
Output: New operator op ′ with bitvectors

6 residualSet ← ∅

7 pushDownMap ← ∅

8 if op is Hash Join then
9 b ← bitvector created from

op.GetBuildChild()

10 pushDownMap[op.GetProbeChild()] ←
pushDownMap[op.GetProbeChild()] ∪ b

11 end
12 foreach bitvector b in B do
13 ops ← ∅

14 foreach child c of operator op do
15 if b can be pushed down to c then
16 ops ← ops ∪ {c}

17 end
18 end
19 if |ops | , 1 then

residualSet ← residualSet ∪ {b}

20 else
21 pushDownMap[c] ←

pushDownMap[c] ∪ {b}
22 end
23 end
24 op ′← op

25 if residualSet , ∅ then
26 f ilterOp ← CreateFilterOp(op, residualSet)

27 f ilterOp.AddChild(op)

28 op ′← f ilterOp

29 end
30 foreach child c of op do
31 c ′← OpPushDown(c,pushDownMap[c])

32 op.UpdateChild(c, c ′)

33 end
34 return op ′

Algorithm 1: Push down bitvectors

the number of candidate plans of the minimal cost is linear

for star and snowflake queries with PKFK joins in the plan

space of right deep trees without cross products (Section 4

Table 1: List of notations

Notation Description

q a query

R a relation

R a set of relations

T = T (R1, · · · ,Rn)
a right deep tree with R1 as the right

most leaf and Rn as the left most leaf

S(R1, · · · ,Rn,
B1, · · · ,Bm)

join of relations R1, · · · ,Rn after ap-

plying bitvector filters created from

B1,B2, · · · ,Bm , where Bi is either a

base relation or a join result. We omit

B1, · · · ,Bm when they are clear from

the context. We use the notation in-

terchangeably with Z

|R |
cardinality of a base relation or an in-

termediate join result after applying

bitvector filters

R1/R2

semi join of R1 with R2, where

R1/R2 ⊆ R1

R1/(R2, · · · ,Rn)
semi join ofR1 withR2, · · · ,Rn , where
R1/(R2, · · · ,Rn) ⊆ R1

R1 → R2

the join columns of R1 and R2 is a key

in R2. If the join columns form a pri-

mary key in R2, then R1 → R2 is a

primary-key-foreign-key join

Cout cost function (See Section 3.3)

∏
R1

(R2)

project out all the columns in R1 from

R2, where the columns in R2 is a super-

set of that in R1. The resulting relation

has the same number of rows asR2 but

less number of columns per row

and Section 5). We finally describe the general bitvector-

aware query optimization algorithm for arbitrary decision

support queries and how to integrate it with a Volcano /

Cascades style optimizer (Section 6). Table 1 summarizes the

notations. Table 2 summarizes the results of our analysis.

3.2 Properties of bitvector filters
We start with the properties of bitvector filters:

Property 1. Commutativity: R/(R1,R2) = R/(R2,R1)

Property 2. Reduction: |R/R1 | ≤ |R |

Property 3. Redundancy: (R1 ▷◁ R2)/R2 = R1 ▷◁ R2

Property 4. Associativity: R/(R1,R2) = (R/R1)/R2 if
there are no false positives with the bitvector filters created
from (R1,R2),R1, and R2.
Now we prove the absorption rule of bitvector filters for

PKFK joins. The absorption rule says that, if R1 joins R2 with

a key in R2, the result of joining R1 and R2 is a subset of the

result of semi-joining R1 and R2. Formally,



Table 2: Summary of the plan space complexity for star and snowflake queries with unique key joins

join

graph

graph size

# of rela-

tions

original complexity

complexity

w/ our

analysis

candidate plans with minimal Cout

star

n dimension

tables

n + 1 exponential to n n + 1
T (R0,R1, · · · ,Rn),
{T (Rk ,R0,R1,R2, · · · ,Rk−1,Rk+1, · · · ,Rn),
1 ≤ k ≤ n}

snowflake

m branches

of lengths

ni , 1 ≤ i ≤ m

n + 1,n =∑m
i=1 ni

exponential to n n + 1

T (R0,R1,1, · · · ,R1,n1
, · · · ,Rn,1, · · · ,Rn,nm ),

{T (Ri ,a1, · · · ,Ri ,an
1

,R0,R1,n1
, · · · ,Ri−1,1,

· · · ,Ri−1,ni−1,Ri+1,1, · · · ,Ri+1,ni+1, · · · ,Rn,1,
· · · ,Rn,nm )} (see Section 5 for a1, · · · ,an1

)

Lemma 1. Absorption rule: If R1 → R2, then R1/R2 ⊇∏
R1

(R1 ▷◁ R2) and |R1/R2 | ≥ |R1 ▷◁ R2 |. The equality happens
if the bitvector filter created from R2 has no false positives.

Proof. For every tuple r in R1, it can join with a tuple in

R2 if and only if the join columns in r exist in R2. Because

R1 → R2, there is at most one such tuple inR2. Thus,R1/R2 ⊆∏
R1

(R1 ▷◁ R2). □

3.3 Cost function
Since our analysis focuses on the quality of logical join or-

dering, we measure the intermediate result sizes (i.e., Cout )

as our cost function similar to prior work on join order anal-

ysis [28, 30]. In practice, Cout is a good approximation for

comparing the actual execution cost of plans.

Cout measures the cost of a query plan by the sum of

intermediate result sizes. Because bitvector filters also impact

the cardinality of a base table, we adapt Cout to include the

base table cardinality as well. Formally,

Cout (T ) =

{
|T | if T is a base table

|T | +Cout (T1) +Cout (T2) if T = T1 ▷◁ T2
(1)

Note that |T | has reflected the impact of bitvector filters,

where |T | represents the cardinality after bitvector filters

being applied for both base tables and join results.

4 ANALYSIS OF STAR QUERIES WITH
PKFK JOINS

We define star queries with PKFK joins as the following:

Definition 1. Star query with PKFK joins: Let R =
{R0,R1, · · · ,Rn} be a set of relations and q be a query joining
relations in R. The query q is a star query with PKFK joins
if R0 → Rk for 1 ≤ k ≤ n. R0 is called a fact table, and
Rk , 1 ≤ k ≤ n, is called a dimension table.

Figure 3 shows an example of a star query, where R0 is

the fact table and R1,R2,R3 are dimension tables.

R3

R2 R0 R1

Figure 3: Star query graph with PKFK joins, where the
fact table is R0 and dimension tables are R1,R2,R3

R2 R0

HJ2

HJ1

R1

|R1|

|R2| |R0/(R1, R2)|

 |R0    R1    R2|

|R0    R2/R1|

 |R0    R1    R2|

|R0    R2/R1|

(a) Plan P1

R1 R0

HJ2

HJ1

R2

|R2|

|R1| |R0/(R1, R2)|

 |R0    R1    R2|

|R0    R1/R2|

(b) Plan P2

Figure 4: Example of two plans of a star query
{R0,R1,R2} with PKFK joins using bitvector filters.
Each operator is annotated with the intermediate re-
sult size. Plan P1 and P2 have different join orders of
dimension tables but the same cost.

Nowwe analyze the plan space complexity for star queries

with PKFK joins. We show that, in the plan space of right

deep trees without cross products, we can find the query plan

of the minimal cost (under the cost function from Section 3.3)

from n + 1 plans with bitvector filters if the bitvector filters

have no false positives, where n+1 is the number of relations

in the query. In contrast, the original plan space complexity

for star queries in this plan space is exponential to n [31].

Our key intuition is that, in the plan space of right deep

trees without cross products, the cost of plans of a star query

with PKFK joins can be the same with different join orders

of dimension tables. This is because all the bitvector filters

for a star query will be pushed down to the fact table; and by

Lemma 1, we can show the cost of many join orders is the

same. Figure 4 shows an example of two plans of a star query



with PKFK joins using different join orders of dimension

tables but having the same cost.

Formally, our key results in this section are:

Theorem 4.1. Minimal cost right deep trees for star
query: LetR be the set of relations of a star query as defined in
Definition 1. LetA = {T (X0, · · · ,Xn)} be the set of right deep
trees without cross products forq, whereX0, · · · ,Xn is a permu-
tation of R0, · · · ,Rn . If Cmin = min{Cout (T ),T ∈ A}, then
there exists a plan T ∈ Acandidates = {T (R0,R1, · · · ,Rn)} ∪
{T (Rk ,R0,R1, · · · ,Rk−1,Rk+1, · · · ,Rn), 1 ≤ k ≤ n} such that
Cout (T ) = Cmin .

Theorem 4.2. Plan space complexity for star query:
Let R be the set of n + 1 relations of a star query as defined in
Definition 1. We can find the query plan with the minimal cost
in the place space of right deep trees without cross products
from n + 1 candidate plans.
We omit most of the proofs due to space limit, and they

can be found in our technical report [14].

We start the analysis by understanding the plan space of

right deep trees without cross products for star queries:

Lemma 2. Right deep trees for star query: Let R be the
set of relations of a star query as defined in Definition 1. Let
T = T (X0,X1,X2, · · · ,Xn) be a query plan, whereX0, · · · ,Xn
is a permutation of {R0,R1,R2, · · · ,Rn}. ThenT is a right deep
tree without cross products if and only if X0 = R0 or X1 = R0.

By Lemma 2, we divide the plans into two cases: whether

R0 is the right most leaf or not.

We first generalize Lemma 1 to multiple relations:

Lemma 3. Star query absorption rule: Let R be a star
query as defined in Definition 1, then R0/(R1,R2, · · · ,Rn)⊇∏

R0

(R0 Z R1 Z · · · Z Rn) and |R0/(R1,R2, · · · ,Rn)|≥|R0 Z
R1 Z · · · Z Rn |. The equality happens when the bitvector
filters created from (R1,R2, · · · ,Rn) has no false positives.

We now show that, all the plans in this plan space where

the right most leaf is R0 has the same cost Cout if bitvector

filters have no false positives. Formally,

Lemma 4. Minimal cost right deep tree for star query
with rightmost leaf R0: LetR be the set of relations of a star
query as defined in Definition 1. The cost of the right deep tree
Cout (T (R0,X1,X2, · · · ,Xn)) is the same for every permutation
X1,X2, · · · ,Xn of R1,R2, · · · ,Rn .

Proof. Because R1,R2, · · · ,Rn only connects to R0, and

R0 is the right most leaf, based on Algorithm 1, all the

bitvector filters created from R1,R2, · · · ,Rn will be pushed

down to R0. Thus, Cout (Xk ) = |Xk | for 1 ≤ k ≤ n and

Cout (R0) = |R0/(X1,X2, · · · ,Xn)|. By Lemma 3, Cout (R0) =

|R0/(R1,R2, · · · ,Rn)|.
Now consider the intermediate join result for S(R0,X1,
· · · ,Xk ), where 1 ≤ k ≤ n. By Lemma 3, |S(R0,X1, · · · ,Xk )|

= |S(R0/(R1, · · · ,Rn),X1, · · · ,Xk )| = |S(R0,R1, · · · ,Rn)|.

R3,1

R2,1 R0 R1,1R2,2

R3,2

Figure 5: Snowflake query with PKFK joins,
where the fact table is R0 and the branches are
{R1,1}, {R2,1,R2,2}, {R3,1,R3,2}

Thus, Cout (S(R0,X1, · · · ,Xk )) = Cout (S(R0,R1, · · · ,Rn)) for
all 1 ≤ k ≤ n.

Since the total cost of the plan isCout (T (R0,X1, · · · ,Xn−1))

=
∑n

i=1 |Ri | + n · |S(R0,R1, · · · ,R0)|, every permutation

X1, · · · ,Xn of R1, · · · ,Rn has the same cost. □

Now consider the other case where R0 is not the right

most leaf, and X1 = R0. Let X1 = Rk , 1 ≤ k ≤ n, sim-

ilarly, we show that the cost of the plans in the form of

T (Rk ,R0,X1,X2, · · · ,Xn−1) is the same for every permuta-

tion of R1,R2, · · · ,Rk−1,Rk+1, · · · ,Rn if bitvector filters have

no false positives. Formally,

Lemma 5. Minimal cost right deep tree for star query
with rightmost leaf Rk : LetR be the set of relations of a star
query as defined in Definition 1. The cost of the right deep tree
Cout (T (Rk ,R0,X1,X2, · · · ,Xn−1) is the same for every permu-
tation X1,X2, · · · ,Xn−1 of R2,R3, · · · ,Rk−1,Rk+1, · · · ,Rn .

By combining Lemma 4 and Lemma 5, we can prove The-

orem 4.1 and Theorem 4.2.

5 ANALYSIS OF SNOWFLAKE QUERIES
WITH PKFK JOINS

We define snowflake queries with PKFK joins as below:

Definition 2. Snowflake query with PKFK joins: Let
R = {R0,R1,1, · · · ,R1,n1

,R2,1, · · · ,R2,n2
, · · · ,Rm,1, · · · ,Rm,nm }

be a set of relations and q be a query joining relations in R.
The query q is a snowflake query with PKFK joins if
• R0 → Ri ,1 for 1 ≤ i ≤ m and
• Ri , j−1 → Ri , j for 1 ≤ i ≤ m, 1 < j ≤ ni .
We call R0 the fact table and Ri ,1,Ri ,2, · · · ,Ri ,ni a branch. We
denote the branch {Ri ,1,Ri ,2, · · · ,Ri ,ni } as Ri .

Figure 5 shows an example of a snowflake query, where R0

is the fact table, and {R1,1}, {R2,1,R2,2}, {R3,1,R3,2} are three

branches of dimension tables.

Now we analyze the plan space complexity for the

snowflake query (Definition 2). We will show that, in the

plan space of right deep trees without cross products, we can

find the query plan of the minimal cost (under the cost func-

tion from Section 3.3) from n + 1 query plans with bitvector

filters if the bitvector filters have no false positives, where

n + 1 is the number of relations in the snowflake query. In



contrast, the original plan space complexity for snowflake

queries in this plan space is exponential to n.
We divide the plans into two cases: whether R0 is the right

most leaf or not. We start with the case where R0 is the right

most leaf. Then we analyze a subproblem of the plan space

for a branch in a snowflake query. We finally analyze the

case where R0 is not the right most leaf.

Formally, our key results in this section are:

Theorem 5.1. Minimal cost right deep trees for
snowflake query: Let R be the set of relations of
a snowflake query q as described in Definition 2. Let
Cmin = min{Cout (T (X0,X1, · · · ,Xn))}, where X0,X1, · · · ,
Xn is a permutation of R, and T (X1,X2, · · · ,Xn) is
a right deep tree without cross products for q. Then
there exists a right deep tree T ′ ∈ {T (Ri ,a1,Ri ,a2, · · · ,
Ri ,ani ,R0,R1,1, · · · ,R1,n1

, · · · ,Ri−1,1, · · · ,Ri−1,ni−1,Ri+1,1,
· · · ,Ri+1,ni+1 · · · ,Rn,1, · · · ,Rn,nm )} ∪ {T (R0,R1,1,R1,2, · · · ,
Rn,1, · · · ,Rn,nm )}, where a1,a2, · · · ,ani is a permutation of
1, 2, · · · ,ni , such that Cout (T

′) = Cmin .
Theorem 5.2. Plan space complexity for snowflake

query: Let R be the set of n + 1 relations of a snowflake
query q as described in Definition 2. We can find the query
plan with the minimal cost in the place space of right deep
trees without cross products from n + 1 candidate plans.
We omit most of the proofs due to space limit, and they

can be found in our technical report [14].

5.1 R0 is the right most leaf
Let’s first look at the right deep trees where R0 is the right

most leaf. Our key insight is to extend our analysis on star

queries and show that all the trees in this plan space have

the same Cout .

We define a class of right deep trees where a relation with

a PKFK join condition only appears on the right side of the

relations it joins with in a snowflake query. Formally,

Definition 3. Partially-ordered right deep tree: Let
R be the set of relations of a snowflake query q as described
in Definition 2. Let T = T (R0,X1, · · · ,Xn) be a plan for q,
where X1, · · · ,Xn is a permutation of R − {R0}. If for any
Xi , 1 ≤ i ≤ n, either Xi = Rp,1 or there exists X j , 1 ≤ j < i
such that X j → Xi , we call T a partially-ordered right deep
tree.

Now we show that the plans in the space of right deep

trees without cross products are partially-ordered trees if R0

is the right most leaf. Formally,

Lemma 6. Right deep tree without cross products for
snowflake query: Let R be the set of relations of a
snowflake query q as described in Definition 2. If T =

T (R0,X1,X2, · · · ,Xn) is a right deep tree without cross prod-
ucts for q, then T is a partially-ordered right deep tree.

Proof. If T is not partially ordered, then there exists Xi
such that Xi < {R1,1,R2,1, · · · ,Rn,1} and there does not exist

X j , i < j ≤ n such that X j → Xi . Then Xi does not join with

R0,Xn,Xn−1, · · · ,Xi+1. So there exists a cross product. □

Now we show all the partially-ordered right deep trees

have the same cost if R0 is the right most leaf.

Follow Lemma 6 and Algorithm 1, we have

Lemma 7. Bitvector filters in partially-ordered right
deep tree: Let R be the set of relations of a snowflake query q
as described in Definition 2. If T = T (R0,X1,X2, · · · ,Xn) is a
right deep tree without cross products for q, then the bitvector
filter created from Ri , j will be pushed down to Ri , j−1 if j > 1

or R0 if j = 1.

Follow Lemma 7, we have

Lemma 8. Equal cost for partially-ordered right deep
tree: Let R be the set of relations of a snowflake query q as
described in Definition 2. Let T = T (R0,X1,X2, · · · ,Xn) and
T ′ = T (R0,Y1,Y2, · · · ,Yn) be two partially ordered right deep
trees of q. Then Cout (T ) = Cout (T

′).

5.2 Branch of a snowflake query
Before diving into the case whereR0 is not the right most leaf,

we first analyze a subproblem of a branch in a snowflake

query in the plan space of right deep trees without cross

products. We show that the plan space complexity is linear

in the number of relations in the branch. Formally, we define

a branch as the following:

Definition 4. Branch of a snowflake query: Let R =
{R0,R1, · · · ,Rn} be a set of relations and q be a query joining
relations in R. The query q is a branch if Rk−1 → Rk for all
1 ≤ k ≤ n.

Figure 5 shows an example of a snowflake query with

three branches.

We show that, in the plan space of right deep trees without

cross products, we can find the query plan with minimalCout
from n + 1 plans with bitvector filters if the bitvector filters

have no false positives, where n+1 is the number of relations

in the query. In contrast, the original plan space complexity

for a branch is n2 [31].
Our key insight is that, for a plan with right most leaf

Rk , where 1 ≤ k ≤ n, if the plan has minimal cost, it must

join Rk ,Rk+1, · · · ,Rn consecutively in its right subtree. Oth-

erwise, we can reduce the plan cost by altering the join order

and ’pushing down’ the relations Rn,Rn−1, · · · ,Rm+1 into
the right subtree. Figure 6 shows an example of how the plan

cost can be reduced by ’pushing down’ the relations.

Formally, our key results in this subsection are:

Theorem 5.3. Minimal cost right deep trees for a
branch: Let R be the set of relations of a branch as de-
scribed in Definition 4. Let A = {T (X0,X1, · · · ,Xn)} be the
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|R0    R1    R2    R3|

(b) Plan P2

Figure 6: Example of two plans for a branch
{R0,R1,R2,R3} of a snowflake query with PKFK
joins using bitvector filters. Each operator is anno-
tated with the intermediate result size. Plan P1 does
not join R2 and R3 consecutively in its right subtree.
Pushing down R3 to join with R2 consecutively results
in plan P2 with reduced cost.

set of right deep trees without cross products for q, where
X0,X1, · · · ,Xn is a permutation of R0,R1, · · · ,Rn . If Cmin =

min{Cout (T (X0,X1, · · · ,Xn))}, then there exists a plan T ∈
Acandidates = {T (Rn,Rn−1, · · · ,R0)} ∪ {T (Rk ,Rk+1, · · · ,
Rn,Rk−1,Rk−2, · · · ,R0), 0 ≤ k ≤ n − 1} such that Cout (T ) =

Cmin .

Theorem 5.4. Plan space complexity for a branch: Let
R be the set of n + 1 relations of a branch as described in
Definition 4. We can find the query plan with the minimal cost
in the place space of right deep trees without cross products
from n + 1 candidate plans.

Consider the query plan for a branch {R0,R1, · · · ,Rn} of
the snowflake in the plan space of right deep trees without

cross products. Let’s first look at the query plans where Rn
is the right most leaf. Formally,

Lemma 9. Let R be the set of relations of a branch as de-
scribed in Definition 4. There exists only one right deep tree
without cross products such that Rn is the right most leaf, that
is, T (Rn,Rn−1, · · · ,R0).
This can be derived from the join graph of a branch.

Now we look at the query plans where Rn is not the

right most leaf. Let T (X0, · · · ,Xn) be a right deep tree with-

out cross products where X0, · · · ,Xn is a permutation of

R0, · · · ,Rn . We show that, without joining Rn,Rn−1, · · · ,Rk
consecutively, a plan cannot have the minimal cost. Formally,

Lemma 10. Cost reduction by pushing down Rn : Let
R be the set of relations of a branch as described in Def-
inition 4. Let T = T (X0,X1, · · · ,Xn) be a right deep tree
without cross products for R0,R1, · · · ,Rn . Assume Xk = Rn
for some 1 ≤ k ≤ n. If Xk−1 , Rn−1, then T ′ =
T (X0,X1, · · · ,Xk ,Xk−1,Xk+1,Xk+2, · · · ,Xn) is a right deep
tree without cross products and Ccout (T

′) ≤ Cout (T ).

Lemma 11. Cost reduction by pushing down
Rn,Rn−1, · · · ,Rn−m : Let R be the set of relations of a branch
as described in Definition 4. Let T = T (X0,X1, · · · ,Xn) be
a right deep tree without cross products for R0,R1, · · · ,Rn .
Let Xk = Rn,Xk−1 = Rn−1, · · · ,Xk−m = Rn−m for
some m ≤ k ≤ n. If Xk−m−1 , Rn−m−1, then T ′ =
T (X0,X1, · · · ,Xk−m−2,Xk−m,Xk−m+1, · · · ,Xk ,Xk−m−1,
Xk+1, · · · ,Xn) is a right deep tree without cross products and
Ccout (T

′) ≤ Cout (T ).
The proofs can be found in our technical report [14].

By combining Lemma 9 and Lemma 11, we can prove

Theorem 5.3 and Theorem 5.4.

5.3 R0 is not the right most leaf
Now let’s look at the right deep trees where R0 is not the

right most leaf for a snowflake query with PKFK joins.

We first show that the relations appear on the left side of

R0 can only come from a single branch given the join graph

of a snowflake query. Formally,

Lemma 12. Single branch in right most leaves: Let R
be the set of relations of a snowflake query q as described in
Definition 2. Let T = T (X0,X1, · · · ,Xn) be a right deep tree
without cross products for q, where X0,X1, · · · ,Xn is a permu-
tation ofR. IfXk = R0, thenX0,X1, · · · ,Xk−1 is a permutation
of Ri ,1,Ri ,2, · · · ,Ri ,k for some 1 ≤ i ≤ m.

Now we show that the relations on the left side of R0 are

partially ordered. Formally,

Lemma 13. Partially-ordered subtree: Let R be the set of
relations of a snowflake query q as described in Definition 2.
Let T = T (X0,X1, · · · ,Xn) be a right deep tree without cross
products for q, where X0,X1, · · · ,Xn is a permutation of R. If
Xk = R0, then Xk+1,Xk+2, · · · ,Xn is a partially ordered right
deep tree of the new relation R′

0
= X0 Z X1 Z · · · Z Xk .

Nowwe show that if a subset of relations of a single branch

Ri is on the right side of R0, there exists a query plan with

lower cost where all the relations in Ri are on the right side

of R0. Formally,

Lemma 14. Cost reduction by consolidating a
single branch: Let R be the set of relations of
a snowflake query q as described in Definition 2.
Let T = T (X0,X1, · · · ,Xk−1,R0,Xk+1, · · · ,Xn) be a
right deep tree without cross products for q, where
X0,X1, · · · ,Xk−1 is a permutation of Ri ,1,Ri ,2, · · · ,Ri ,k
for some 1 ≤ i ≤ m, 1 ≤ k ≤ ni − 1. Then there
exists a right deep tree without cross products T ′ =
T (X0,X1, · · · ,Xk−1,Ri ,k+1,Ri ,k+2, · · · ,Ri ,ni ,R0,Y1,Y2, · · · ,
Yn−ni−1) for q such that Cout (T

′) ≤ Cout (T ).
By combining Lemma 8 and Lemma 14, we can prove The-

orem 5.1, and Theorem 5.2 directly follows from Theorem 5.4

and Theorem 5.1.



6 BITVECTOR-AWARE QO FOR
GENERAL SNOWFLAKE QUERIES

While star and snowflake queries with PKFK joins are impor-

tant patterns in decision support queries, in practice, such

queries can have more complicated join graphs. For example,

a decision support query can join multiple fact tables, where

the joins may not be PKFK joins. In addition, there can be

join conditions between the dimension tables or branches,

where the bitvector filters created from the dimension tables

may not be pushed down to the fact table. Finally, there can

be dimension tables or branches that are larger than the fact

table after predicate filters, where the fact table should be

on the build side in the plan space of right deep trees.

In this section, we first propose an algorithm to ex-

tend bitvector-aware query optimization to an arbitrary

snowflake query with a single fact table. We then gener-

alize it to arbitrary decision support queries with multiple

fact tables. Our algorithm applies to queries with arbitrary

join graphs. We further optimize our algorithm with cost-

based bitvector filters. We also discuss options to integrate

our algorithm into a Volcano / Cascades query optimizer.

6.1 Queries with a single fact table
We propose an algorithm (Algorithm 2) with simple heuris-

tics to construct the join order for an arbitrary snowflake

query with a single fact table. The key insight is to leverage

the candidate plans of minimal cost analyzed in Section 5.

Algorithm 2 shows how to construct the join order for a

decision support query with a single fact table.

We first assign priorities to the branches based on their

violations of the snowflake pattern as defined in Definition 2.

We then sort the branches in descending order by their prior-

ities (line 1). Intuitively, if the bitvector filters created from

dimension tables are all pushed down to the fact table ex-

cept for one, where the corresponding dimension table either

joins with another dimension table or is not on the build side.

Since this dimension table does not create a bitvector filter

that is pushed down to the fact table, joining this dimension

table early with the fact table can eliminate the unnecessary

tuples that do not qualify the join condition early in the plan.

Specifically, we assign priorities to branches for snowflake

queries with the following heuristics:

• Group P0: Relations that do not have join condition or

PKFK joins with the fact table (line 23). This can happen

when joining multiple fact tables. As a heuristic, we join

these branches by descending selectivity on the fact table

(line 23).

• Group P1: Branches that do not join with any other

branches and have smaller cardinality than the fact ta-

ble (line 24). These branches are joined with the fact table

before joining the branches in group P0.

• Group P2: Branches joining with other branches (line 21).

Such branches should be joined consecutively in the right

deep tree to allow pushing down bitvector filters created

by these branches. As a heuristic, within a set of connected

branches, we join these branches with descending selec-

tivity on the fact table (line 31); across sets of connected

branches, we prioritize the sets of larger numbers of con-

nected branches (line 21).

• Group P3: Branches that are larger than the fact table (line

25). Since it is clearly suboptimal to put these branches

on the build side, we reorder the build and probe sides

for them (line 12-13). Joining these branches early allows

pushing down the bitvector filters created from the fact

table. As a heuristic, we order the branches in this group

with descending selectivity on the fact table (line 31).

Based on the analysis in Section 5, we construct the candi-

date plans by two cases. If R0 is the right most leaf, we join

all the branches with the fact table (line 2); otherwise, for

each branch, we optimize the branch based on the analysis

in Section 5.2, join the remaining branches to complete the

plan, and update the best plan if the estimated cost of the

new plan is lower (line 3-7).

6.2 Queries with multiple fact tables
In addition to snowflakes with a single fact table, complex

decision support queries can include multiple fact tables.

We further extend our algorithm to arbitrary join graphs by

iteratively extracting and optimizing snowflake join graphs.

At a high level, our algorithm produces a join order for a

join graph by alternating two stages iteratively as shown in

Algorithm 3. In the snowflake extraction stage (line 2), we ex-

tract a snowflake subgraph from a join graph by identifying

a single fact table and its related dimension tables, poten-

tially with non-PKFK joins. In the snowflake optimization

stage (line 3), we use Algorithm 2 to produce a join order

for the extracted subgraph. The resulting snowflake will be

marked as ’optimized’ and considered as a new relation in

the updated join graph (line 4-5). Our algorithm alternates

the two stages until the full join graph is optimized (line 1).

Specifically, when extracting a snowflake (line 8-19), a

relation is considered as a fact table if it does not join with

any other table where the join predicate is an equi-join on

its key columns. Among all the unoptimized fact tables in

G, we find the one with the smallest cardinality and expand

from this table recursively to include all related dimension

relations (line 4-9). If there is only one fact table in G, we
simply return the original join graph (line 11).

6.3 Cost-based Bitvector Filter
In practice, creating and applying bitvector filers has over-

heads. Consider a hash join with build side R and probe side



OptimizeSnowflake(G):
Input: Join graph G
Output: Query plan plan

1 B ← SortedBranches(G .Branches)

2 best → JoinBranches(B,G .Fact, ∅)

3 foreach branch b in B do
4 p ← Join(OptimizeChain(b,G .Fact),G .Fact)

5 p ← JoinBranches(B \ b,G .Fact,p)

6 if best .Cost > p.Cost then best ← p

7 end
8 return best

JoinBranches(B, f , p):
Input: A set of branches B, fact table f , a plan p
Output: A query plan p ′

9 p ′← p

10 foreach branch b in B do
11 foreach table t in b do
12 if t .Card > f .Card then

p ′← Join(p ′, t)

13 else p ′← Join(t,p ′)

14 end
15 end
16 return p ′

SortBranches(G):
Input: Join graph G
Output: Sorted branches sortedBranches

17 дroups ← GroupBranches(G)

18 sortedG ← SortBySizeDesc(дroups)

19 priority ← []

20 for i = 0; i < дroups .Count(); i + + do
21 if sortedG[i].Size > 1 then

priority[i] ← sortedG[i].Size

22 else
23 if IsNonUniqueKeyJoin(д[0], f ) then

priority[i] ← 0

24 if д[0].Card < f .Card then
priority[i] ← 1

25 else priority[i] ← |G | + 1

26 end
27 end
28 sortedG ← SortByPriorityDesc(дroups,priority)

29 sortedBranches ← []

30 foreach дroup in sortedG do
31 branches ← SortBySelectivityDesc(дroup)

32 foreach b in branches do
sortedBranches .Add(b)

33 end
34 return sortedBranches
Algorithm 2: Construct a join order for a snowflake

query with a single fact table

OptimizeJoinGraph(G):
Input: Join graph G
Output: Query plan plan

1 while |G | > 1 do
2 G ′← ExtractSnow f lake(G)

3 p ← OptimizeSnow f lake(G ′)

4 G ← Update JoinGraph(G,G ′)

5 plan ← UpdateQueryPlan(plan,p)

6 end
7 return plan

ExtractSnowflake(G):
Input: Join graph G
Output: Snowflake G ′

8 n ← 0

9 Gsor ted ← SortByCardinalityAsc(G)

10 foreach д in Gsor ted do
11 if д is an unoptimized fact table then
12 if n == 0 then
13 G ′← ExpandSnow f lake(д)

14 end
15 n ← n + 1

16 end
17 end
18 if n == 1 then G ′← G

19 return G ′

Algorithm 3: Construct a join order for a decision sup-

port query with an arbitrary join graph

S . Assume the bitvector filter eliminates λ percent of the tu-

ples from S . The ratio λ can be estimated by the optimizer the

same way as an anti-semi join operator, and it can include

the estimated false positive rate of the bitvector filter.

Assume the cost of a hash join consists of building the

hash table дb , probing the hash table дp , and outputing the

resulting tuples дo . Let the cost of creating and applying a

bitvector filter be h and f . The cost difference of the hash
join with and without using the bitvector filter is

Cost∆ = дp (|S |) − дp (λ |S |) − f (|R |) − h(|S |)

Assume the cost of probing a tuple isCp , the cost of check-

ing a tuple against a bitvector filter is Cf , and creating a

bitvector filter is relatively cheap, i.e., f (|R |) << h(|S |). Then

Cost∆ = |S |((1 − λ)Cp −Cf ) − f (|R |) ∼ |S |((1 − λ)Cp −Cf )

Using a bitvector filter reduces the cost of a hash join if

Cost∆ < 0 ∼ |S |((1 − λ)Cp −Cf ) < 0⇔ λ > 1 −Cf /Cp

Let λthresh = 1 −Cf /Cp . Note that λthresh is independent

of R and S . We can run a micro-benchmark to profileCf and

Cp and compute λthresh . When the bitvector filter is pushed

down below the root of the probe side, a more detailed anal-

ysis is needed to account for the cascading effect of tuple



elimination. Empirically, choosing a threshold that is slightly

smaller than 1 −Cf /Cp works well.

6.4 Integration
Our algorithm can transform a query plan by optimizing the

join order with the underlying join graph. Thus, our algo-

rithm can be used as a new transformation rule in a Volcano

/ Cascades query optimization framework upon detecting a

snowflake join (sub)graph. There are three integration op-

tions depending on how the underlying optimizer accounts

for the impact of bitvector filters:

• Full integration: When applying join order transformation

to a (sub)plan, the placement of bitvector filters and their

selectivity can change. If the underlying Volcano / Cas-

cades query optimization framework can correctly account

for the placement and the selectivity of bitvector filters

during query optimization, the new transformation rule

can be transparently integrated into the query optimizer

the same way as any existing transformation rule.

• Alternative-plan integration: If the query optimizer can

account for the placement and the selectivity of bitvector

filters in a final plan after query optimization, the new

transformation rule can be used to produce an alternative

plan. The optimizer can then choose the plan with the

cheaper estimated cost from the alternative plan and the

plan produced by the original query optimization.

• Shallow integration: We mark a (sub)plan after it is trans-

formed by our new transformation rule. The underlying

query optimization framework works as usual, except ad-

ditional join reordering on marked (sub)plans is disabled.

7 EVALUATION
7.1 Implementation
We implement Algorithm 3 in a commercial database DBMS-

X as a transformation rule. DBMS-X has a cost-based, Vol-

cano / Cascades style query optimizer. Starting from an ini-

tial query plan, the optimizer detects various patterns in

the plan and fires the corresponding transformation rules.

Due to the importance of decision support queries, DBMS-X

has implemented heuristics to detect snowflake patterns and

transform the corresponding subplans.

We leverage the snowflake detection in DBMS-X and trans-

form the corresponding subplan as described in Algorithm 3.

We implement a shallow integration (Section 6.4), where

join reordering is disabled on the transformed subplan. The

subplan is subject to other transformations in DBMS-X. We

use the original cardinality estimator and cost modeling in

DBMS-X, and the selectivity of a bitvector filter is estimated

the same way as the existing semi-join operator. We imple-

ment the cost-based bitvector filter as described in Section 6.3,

Table 3: Statistics of workloads, including database
size, the number of tables, queries, indexes (B+ trees
and columnstores), and joins.

Statistics TPC-DS JOB CUSTOMER

DB Size 100GB 7GB 700GB

Tables 25 21 475

Queries 99 113 100

B+ trees / column-

stores

0 / 20 44 / 20 680 / 0

Joins avg / max 7.9 / 48 7.7 / 16 30.3 / 80

and we will discuss how we profile the elimination thresh-

old λthresh in Section 7.3. The final plan is chosen with the

existing cost-based query optimization framework.

7.2 Experimental Setup
Workload. We evaluation our technique on three work-

loads: TPC-DS [1] 100GB with columnstores, JOB [25] with

columnstores, primary key indexes, and foreign key indexes,

and a customer workload (CUSTOMER) with B+-tree indexes.

Table 3 summarizes the statistics of our workloads. In par-

ticular, CUSTOMER has the highest number of average joins

per query, and JOB has the most complex join graphs, includ-

ing joining multiple fact tables, large dimension tables, and

joins between dimension tables. Our workloads also cover

the range of different physical configurations, with B+ trees

(CUSTOMER), columnstores (TPC-DS), or both (JOB).

Baseline. We use the query plans produced by the original

DBMS-X as our baseline. Bitvector filters are widely used in

the query plans of DBMS-X. As shown in Appendix A, 97%

queries in JOB, 98% queries in TPC-DS, and 100% queries in

CUSTOMER have bitvector filters in their original plans. A

bitvector filter can be created from a hash join operator, and

it is pushed down to the lowest level on the probe side as

described in Algorithm 1. The query optimizer in DBMS-X

uses heuristics to selectively add bitvector filters to the query

plan without fully accounting for the impact of bitvector

filters during the query optimization stage. In particular, the

heuristics used in its snowflake transformation rules neglect

the impact of bitvector filters. We use a generous timeout

for the query optimizer in DBMS-X so that it can explore a

large fraction of the relevant plan search.

Overhead. Our technique adds very low overhead to query

optimization. In fact, since we disable join reordering on the

snowflake subplan after it is optimized by our transformation

rule, the query optimization time with our transformation

rule is one third of that with the original DBMS-X in aver-

age. We also measure the memory consumption for query



execution. We observe some increase in memory consump-

tion with our technique, since it favors right deep trees. The

overall increase in memory consumption is not significant.

Environment. All the experiments are run on a machine

with Intel Xeon CPU E5 - 2660 v3 2.6GHz, 192GB memory,

a 6.5TB hard disk, and Windows Server 2012 R2. To reduce

runtime variance, all the queries are running in isolation at

the same level of parallelism. The query CPU time reported

is an average over ten warm runs.

7.3 Overhead of bitvector filters
As discussed in Section 6.3, we can choose a tuple elimination

threshold to selectively create bitvector filters. We profile

the overhead of bitvector filters with a micro-benchmark by

running the following query in TPC-DS:

SELECT COUNT(*)
FROM store_sales, customer
WHERE ss_customer_sk = c_customer_sk
AND c_customer_sk % 1000 < @P

The query plan joins customer and store_sales with a hash

join. A bitvector filter is created from customer on the build

side and pushed down to store_sales on the probe side, where

tuples are eliminated before the join. We control the selec-

tivity of the bitvector filter with the parameter @P.

Figure 7 shows the CPU time of execution of the query

varying its selectivity with and without bitvector filtering,

normalized by the same constant. We further break down

the CPU time by the hash join operator, the probe side, and

the build side. Since the CPU time for reading customer is
very small, we omit it in Figure 7 for readability.

With selectivity 1, no tuples are eliminated by the bitvector.

With bitvector filtering, the hash join operator is slightly

more expensive due to creating the bitvector filter, and the

probe side operator has higher execution CPU due to the

overhead of checking the tuples from store_sales against the
bitvector filter. As the selectivity increases, the bitvector

filter eliminates more tuples from the probe side and the

execution cost of the hash join operator reduces. The plan

with bitvector filtering becomes cheaper than the other plan

once the bitvector filter eliminates more than 10% of the

tuples. The cost reduction can be even more with queries of

multiple joins. Empirically, we find 5% to be a good threshold,

and we set λthresh to 5% in our implementation.

In Appendix A, we further evaluate the effectiveness and

applicability of bitvector filters as a query processing tech-

nique. As shown in Table 4, DBMS-X uses bitvector filters

for 97% − 100% queries in the benchmarks, with 10% − 80%

workload-level execution CPU cost reduction. This confirms

that bitvector filters is a widely applicable query processing

technique, and thus bitvector-aware query optimization can

potentially impact a wide range of queries.

7.4 Evaluation on bitvector-aware query
optimization

Figure 8 shows the total amount of CPU execution time

reduction with our technique. We sum up the total CPU ex-

ecution time of the plans produced by DBMS-X with our

technique and divide it by that of the plans produced by the

original DBMS-X. On average, the total workload execution

CPU time has been reduced by 37%. We observe that work-

loads withmore complicated decision support queries benefit

more from our technique, with the highest reduction of 64%

in CPU execution time for JOB. Since DBMS-X has been

heavily tuned to optimize for these benchmarks, the degree

of reductions in CPU execution time is very significant.

We break down the CPU execution cost by query types.

We divide the queries into three groups based on their selec-

tivity, i.e., high (S), moderate (M), low (L). We approximate

the query selectivity by the execution CPU cost of the origi-

nal query plans, with the cheapest 33.3% queries in group S ,
the 33.3% most expensive queries in group L, and the rest in

groupM . We showed that, our technique is especially effec-

tive in reducing CPU execution cost for expensive queries

or queries with low selectivity, i.e., with execution CPU re-

duced by 4.8× for expensive queries in JOB benchmark. This

is because that right deep trees is a preferable plan space for

queries with low selectivities ([12, 17]), and our technique

produces a better join order for right deep trees.

Figure 9 shows the total number of tuples output by op-

erators in the query plans produced by the original query

optimizer (Original) and the bitvector-aware query optimizer

(BQO), normalized by the total number of tuples output by

the original query plans in each workload. We sum up the

number of tuples by the type of operators, including leaf op-

erators, join operators, and other operators. Figure 9 sheds

some insight on the amount of logical work done by oper-

ators and thus the quality of query plans. With BQO, both
the number of tuples processed by join operators as well

as leaf operators reduces. In particular, for JOB benchmark,

BQO reduces the normalized number of tuples output by

join operators from 0.50 to 0.24, i.e., a 52% reduction. This

again confirms that BQO improves query plan quality by

producing a better join order.

Figure 10 shows the normalized CPU execution time for

individual queries with the plans using our technique and

these from the original DBMS-X. The queries are sorted by

the CPU execution time of their original query plans, and

the top 60 most expensive queries are shown for readability.

Note that the Y axis uses a logarithmic scale. We observe a

reduction of up to two orders of magnitude in CPU execution

time for individual queries. Again, Figure 10 confirms that

our technique is especially effective in reducing the CPU

execution time for expensive decision support queries.



Figure 7: Profile bitvector filters. A
bitvector filter reduces overall cost if
it eliminates > 10% tuples
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0.00

0.01

0.04

0.20

1.00

N
o

rm
al

iz
ed

 C
P

U

Original

BQO

(a) JOB

0.00

0.01

0.04

0.20

1.00

N
o

rm
al

iz
ed

 C
P

U

Original

BQO

(b) TPC-DS

0.00

0.01

0.04

0.20

1.00

N
o

rm
al

iz
ed

 C
P

U
 Original

BQO

(c) CUSTOMER

Our technique can improve plan quality for two reasons.

First, if a query optimizer does not fully integrate bitvector

filters into query optimization, it can consider the best plan

with bitvector filters as ’sub-optimal’ as shown in Figure 2.

Second, due to the importance of decision support queries,

many commercial DBMSs have developed dedicated heuris-

tics to identify and optimize snowflake queries [3, 17, 37].

If these heuristics do not consider the impact of bitvector

filters, they can explore a different plan space which does

not even contain the plans considered by our technique.

Inevitably, there are regressions compared with the origi-

nal plans. We investigate such regressions and discover three

major reasons. First, our cost functionCout does not capture

the physical information of operators and can be inaccurate.

Second, our technique favors right deep trees, which can be-

come suboptimal when the query is highly selective. Finally,

our algorithm uses heuristics to extend to complex decision

support queries, which can be suboptimal in some cases.

8 RELATEDWORK
We discuss two lines of related work: plan search and bitvec-

tor filters.

Plan search. Many query optimization (QO) frameworks in

DBMSs are based on either top-down [19, 20, 35] or bottom-

up [4] dynamic programming (DP). There has been a large

body of prior work on join ordering and plan space complex-

ity analysis with such QO frameworks [16, 26, 27, 29, 31].

Due to the importance of decision support queries, many

commercial DBMSs have developed dedicated heuristics for

optimizing complex decision support queries [3, 17, 37] based

on the plan space of snowflake queries [22].

In this work, we adapt the cost function used in analyzing

join order enumeration [28, 30] for our analysis. We analyze

the space of right deep trees without cross products, which

has been shown to be a favorable plan space for decision

support queries and bitvector filters [12, 17, 38].



Bitvector filter and its variants. Semi-join is first introduced

to reduce communication cost of distributed queries [6]. Effi-

cient implementation of semi-joins have been heavily studied

in the past [8, 18, 36]. Several prior work has explored differ-

ent schedules of bitvector filters for various types of query

plan trees [10–12]. Sideways information passing and magic

sets transformation generalize the concept of bitvector filters

and combines them with query rewriting [5, 33].

Many variants of bitvector filters have also been studied

in the past, such as Bloom filters [7], bitvector indexes [9],

cuckoo filters [15], performance-optimal filters [24] and oth-

ers [2, 32]. The focus of this line of research is on the trade-off

between space and accuracy, the efficiency of filter opera-

tions, and the extensions of Bloom filter.

Due to the effectiveness of bitvector filters in reducing

query execution cost, several commercial DBMSs have im-

plemented bitvector filter or its variants as query processing

techniques for decision support queries [13, 17, 21, 23].

In this work, our analysis is based on the classic bitvector

filter algorithm described in [18]. We mainly study the in-

teraction between bitvector filters and query optimization,

which is orthogonal to the prior work on bitvector filters as

query processing techniques.

Lookahead Information Passing (LIP) [38] is the closest

prior work to our work. LIP studies the star schema where

Bloom filters created from dimension tables are all applied

to the fact table. The focus is on the order of applying Bloom

filters, and they observe such query plans are robust with

different permutations of dimension tables. Compared with

LIP, our work systematically analyzes a much broader range

of decision support queries and plan search space. Their con-

clusion on plan robustness can be derived from our analysis.

9 CONCLUSION
In this work, we systematically analyze the impact of bitvec-

tor filters on query optimization. Based on our analysis, we

propose an algorithm to optimize the join order for arbi-

trary decision support queries. Our evaluation shows that,

instead of using bitvector filters only as query processing

techniques, there is great potential to improve query plan

quality by integrating bitvector filters into query optimiza-

tion for commercial databases.

This work is the first step to understand the interaction be-

tween bitvector filters and query optimization, and it opens

new opportunities for query optimization with many open

challenges. Extending the analysis to additional plan space,

query patterns, operators beyond hash joins, and more com-

plex cost modeling is challenging. Efficient full integration

of bitvector filters for commercial databases with various

architectures remains an open problem. Since our analysis

shows that bitvector filters result in more robust query plans,

Table 4: Query plans with andwithout bitvector filters

Workload

CPU

ratio

Ratio of quer-

ies w/ bitvec-

tor filters

Improved

queries

Regressed

queries

JOB 0.20 0.97 0.58 0.00

TPC-DS 0.53 0.98 0.88 0.00

CUSTOMER 0.90 1.00 0.42 0.00

which is also observed in [38], understanding how bitvector

filters impact robust and interleaved query optimization is

also an interesting direction.

A ADDITIONAL EVALUATION
We evaluate the effectiveness of bitvector filters by execut-

ing the same query plan with and without bitvector filter-

ing. We use the original DBMS-X to produce a query plan p
with bitvector filters. DBMS-X provides an option to ignore

bitvector filters during query processing. For comparison,

we execute the same plan p with bitvector filters ignored.

Table 4 shows the performance of the plans with and with-

out bitvector filters for the three benchmarks. At a workload

level, using bitvector filters reduces the execution CPU cost

by 10% − 80% (CPU ratio). In addition, for 97% − 100% of

the queries (Ratio of queries w/ bitvectof filters), the original
query plan uses bitvector filters. At an individual query level,

48% − 88% of the queries has CPU execution cost reduced

by more than 20% (Improved queries), with no regression on

CPU execution cost by more than 20% (Regressed queries).
This confirms that bitvector filtering is a widely applicable

query processing technique, and thus bitvector-aware query

optimization can potentially impact a wide range of queries.
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