
ScriptNet: Neural Static Analysis for Malicious
JavaScript Detection

Jack W. Stokes∗, Rakshit Agrawal†, Geoff McDonald‡ and Matthew Hausknecht∗
∗Microsoft Research, Redmond, Washington, 98052, USA, Email: jstokes,mahauskn@microsoft.com

†University of California at Santa Cruz, Santa Cruz, California, 95064, USA, Email: ragrawa1@ucsc.edu
‡Microsoft Corp., #305 876 14th Ave. W, Vancouver, British Columbia, V5Z 1R1, Canada, Email: geofm@microsoft.com

Abstract—Malicious scripts are an important computer infec-
tion threat vector for computer users. For internet-scale process-
ing, static analysis offers substantial computing efficiencies. We
propose the ScriptNet system for neural malicious JavaScript
detection which is based on static analysis. We also propose a
novel deep learning model, Pre-Informant Learning (PIL), which
processes Javascript files as byte sequences. Lower layers capture
the sequential nature of these byte sequences while higher layers
classify the resulting embedding as malicious or benign. Unlike
previously proposed solutions, our model variants are trained
in an end-to-end fashion allowing discriminative training even
for the sequential processing layers. Evaluating this model on
a large corpus of 212,408 JavaScript files indicates that the
best performing PIL model offers a 98.10% true positive rate
(TPR) for the first 60K byte subsequences and 81.66% for the
full-length files, at a false positive rate (FPR) of 0.50%. Both
models significantly outperform several baseline models. The
best performing PIL model can successfully detect 92.02% of
unknown malware samples in a hindsight experiment where the
true labels of the malicious JavaScript files were not known when
the model was trained.

Index Terms—Malware detection, Neural models, LSTM

I. INTRODUCTION

The detection of malicious JavaScript (JS) is important for
protecting users against modern malware attacks. Because of
its richness and its ability to automatically run on most oper-
ating systems, malicious JavaScript is widely abused by mal-
ware authors to infect users’ computers and mobile devices.
JavaScript is an interpreted scripting language developed by
Netscape that is often used by webpages to provide additional
dynamic functionality [1]. In addition, JavaScript is sometimes
included in malicious webpages, PDFs and email attachments.
To combat this growing threat, we propose ScriptNet, a novel
deep learning-based system for the detection of malicious
JavaScript files.

There are numerous challenges posed by trying to detect
malicious JavaScript. Malicious scripts often include obfusca-
tion to hide the malicious content which unpacks or decrypts
the underlying malicious script only upon execution. Compli-
cating this is the fact that the obfuscators can be used by both
benign and malware files. Curtsinger et al. [2] measured the
distributions of malicious and benign JavaScript files contain-
ing obfuscation. The authors showed that these distributions
are very similar if a file is obfuscated and concluded that
the presence of obfuscation alone cannot be used to detect
malicious JavaScript.

Another difficulty is that a large number of file encodings
(e.g., UTF-8, UTF-16, ASCII) are automatically supported by
JavaScript interpreters. Thus, individual characters in the script
may be encoded by two or more bytes. As a result, malware
script authors can use the encoding itself to attempt to hide
malicious JavaScript code [3].

Furthermore, these JavaScript files may be very long which
can present computational difficulties. Complex deep learning
models which use a graphic processing unit (GPU) may
provide higher accuracies but must be able to fit into the
onboard memory.

While a wide range of different systems have been proposed
for detecting malicious executable files [4], there has been less
work in investigating malicious JavaScript. Previous JavaScript
solutions include those based purely on static analysis [5],
[6]. To overcome the limitations imposed by obfuscation,
other methods, [2], [3] and [7] include both static and some
form of dynamic (i.e., runtime) analysis to unroll multiple
obfuscation layers. In some cases, the solution is focused on
the detection of JavaScript embedded in PDF documents [7]–
[9]. In addition, deep learning models have recently been
proposed for detecting system API calls in PE files [10]–[12],
JavaScript [13], and Powershell [14].

When latency or computational resources are problematic,
we would like to have an effective, purely static analysis
approach for predicting if an unknown JavaScript file is
malicious. Three important applications of this work are
large-scale, fast webpage, antimalware and email scanning
services. Search engine companies often scan large numbers
of webpages searching for drive-by downloads. Antimalware
companies may scan hundreds of thousands or even millions
of unknown files each day. Similarly, large-scale email hosting
providers often scan email attachments to identify malicious
content. To scan an individual webpage or file, a specially
instrumented virtual machine (VM) must first be reset to a
default configuration. The webpage or email attachment is then
executed, and dynamic analysis is used to determine whether
the unknown script makes any changes to the VM. This
process is time consuming and can require vast amounts of
computing resources for extremely large-scale email services.
If a script classifier can be trained to accurately predict that a
script attachment is benign based solely on fast static analysis,
this could possibly allow search and email service providers to
reduce the number of expensive dynamic analysis executions

performed using full instrumented VMs in the cloud. In this
study, we focus on identifying malicious JavaScript for a large-
scale, production antimalware service. If we can learn an
effective model, it may have application on client computers
as well.

To address these challenges, ScriptNet employs a sequential,
deep learning model for the detection of malicious JavaScript
files based solely on static analysis. The deep learning system
allows high accuracy even in the presence of obfuscation. We
present a novel variant of a sequence learning model which
is capable of capturing malicious behavior in any kind of
JavaScript file.

Since the system operates directly on the byte representation
of characters instead of keywords, it is able to handle the
extremely large vocabulary of the entire script instead of
detecting only the key API calls [8], [9]. In ScriptNet, a Data
Preprocessing module first translates the raw JavaScript files
into a vector sequence representation. The Neural Sequential
Learning module then applies deep learning methods on the
vector sequence to derive a single vector representation of
the entire file. In this module, we propose a novel deep
learning model model called Pre-Informant Learning (PIL).
This model can operate on extremely long sequences and can
learn a single vector representation of the input. The next
module of ScriptNet, the Sequence Classification Framework,
then performs binary classification on the derived vector and
generates a probability pm,z of the zth subsequence of the
input file being malicious. To handle extremely long JavaScript
files, the final probability pm is chosen as the maximum
probability of all of the subsequences in the script. Our models
are trained with end-to-end learning where all the model
parameters are learned simultaneously taking the JavaScript
file directly as the input.

Evaluating the proposed models on a large corpus of
262,200 JavaScript files, we demonstrate that the best perform-
ing PIL model offers a true positive rate of 98.10% for the first
60K byte subsequences and 81.66% for the full-length files,
at a false positive rate of 0.50%. We also show that the best
PIL system was able to discover 3310 malicious JavaScript
files which were not known to be malware at the time that the
model was trained. We summarize the primary contributions
of this paper as follows: 1) A comprehensive definition of a
modular system is provided for detecting the malicious nature
of JavaScript files using only the raw file content. 2) A novel
deep learning model is proposed for learning from extremely
long sequences. In addition, an efficient algorithm is proposed
to overcome the limited memory of the current generation of
GPUs for the processing of arbitrary length files. 3) Strong
malware detection results are demonstrated using ScriptNet
on a large corpus of JavaScript files collected by hundreds
of millions of computers running a production antimalware
product. The results show the robustness of ScriptNet on
predicting the malicious nature of JavaScript files that were
obtained in the future and were not known at the time of
training.

DataSet Start End Total Num % Num %
Date Date Malware Malware Benign Benign

Training 09/14/2017 12/28/2017 151,840 126,505 83.31 25,335 16.69
Files

Training 09/14/2017 12/28/2017 592,872 552,699 93.22 40,173 6.78
Subseq

Validation 12/29/2017 02/01/2018 45,251 38,693 85.51 6,558 14.49
Files

Validation 12/29/2017 02/01/2018 286,457 270,767 94.52 15,690 5.48
Subseq

Test 02/02/2018 03/03/2018 65,109 57,037 87.60 8,072 12.40
Files
Test 02/02/2018 03/03/2018 290,428 277,120 95.42 13,308 4.58

Subseq
Total 09/14/2017 03/03/2018 262,200 222,235 84.76 39,965 15.24
Files
Total 09/14/2017 03/03/2018 1,169,757 1,100,586 94.09 69,171 5.91

Subseq

TABLE I
DATASET STATISTICS.

II. DATA COLLECTION AND DATASET GENERATION

Large labeled datasets are required to sufficiently train deep
learning systems, and constructing a dataset of malicious and
benign scripts for training ScriptNet’s models is a challenge.
When unknown JavaScript is encountered by the user during
normal activity, it is submitted to the antimalware engine
for scanning. The datasets for this study were generated
from JavaScript files encountered in the wild by Microsoft’s
Windows Defender antimalware engine which were submitted
to its production file collection and processing pipeline.
Methodology: Entire JavaScript files are extracted from the
incoming flow of files input to the production pipeline. The
antimalware engine is the only source of these files in this
study which are uploaded from hundreds of millions of end
user computers. A user must provide consent (i.e., opt-in)
before their file is transmitted to the production cloud environ-
ment. In many cases, JavaScript files may be extracted from
installer packages or archives which are also processed by the
antimalware engine and input to the production pipeline.
Labels: Similar to the raw script content, we use labels which
are provided by the Windows Defender analysts and other
sources, and the labeling process which is used in production
cannot be changed for our study.
Datasets: As described in Table I, our anti-virus partner pro-
vided the full content of 262,200 JavaScript files which con-
tained 222,235 malicious and 39,965 benign scripts. For this
research, JavaScript files were subsampled from the production
pipeline from September 2017 through March 2018. These
JavaScript files were partitioned into training, validation, and
test sets containing 151,840, 45,251, and 65,109 samples, re-
spectively, based on the non-overlapping time periods denoted
in the table. In the next section, we propose to divide full-
length scripts into subsequences of length T (e.g., 60,000)
which can be processed on a modern GPU. The result is
several subsequences per file, and the statistics for the full
subsequence dataset are also provided in Table I.

III. SCRIPTNET SYSTEM DESIGN AND MODEL

ScriptNet is motivated by the objective of building a system,
which can predict the malicious nature of a script by analyzing
the file in the absence of any additional information. In this
section, we describe the architecture of ScriptNet in detail

Learning Model

Supervised Learning
 Data Generation

Sequence Preprocessing

Raw
Javascript
files for

training the
model

Script is analyzed by
expert processes and
is assigned a label as
Malicious or Benign

Scripts are
interpreted as byte

sequences

Neural Sequential
Learning

Script label is paired
with the vectorized

representation of the
script as a sequence

Each byte gets a
symbolic identifier,
fixing vocabulary of

symbols.

Sequence gets
transformed from
symbols to vectors

Sequence
Classification
Framework

Loss function

[0.95, 0.31, 0.41, ...]

[0.09, 0.53, 0.03, ...]

[0.04, 0.67, 0.23, ...]

[0.95, 0.05, 0.62, ...]

...

1

2

3

4

..

1

2

3

4

...

76

35

12

121

...

1100110

1110101

1101110

1100011

...

f

u

n

c

..

66

75

6E

63

...

Vector Sequence

Forward
Backpropagation

Sequence

La
b
el

Fig. 1. ScriptNet system architecture for the training phase.

which is designed to achieve this objective. The ScriptNet
system is comprised of multiple modules banded together in
a specific order. The high-level illustration of the ScriptNet
system is shown in Figure 1. In this paper, we present a new
model for sequence learning called Pre-Informant Learning
(PIL). We present the PIL model, and its simpler Convoluted
Partitioning of Long Sequences (CPoLS) variant [15], in
Figure 2. The figure includes descriptions which indicate the
purpose of each of the individual layers.
Data Preprocessing: The first stage of ScriptNet is to process
the raw file data and prepare it for utilization by a deep
learning model. In their raw form, the script files are sim-
ply text files written using readable characters. The content
inside script files is in the form of programming code. This
means that the text includes operators, variable names, and
other syntactical properties. In natural language, the semantic
meaning of a certain word is limited to a small space. Whereas
in programming code, words cannot be directly mapped to
a limited semantic space. Moreover, the number of words
and operators can grow infinitely as variable names do not
need to follow any linguistic limitations. Therefore, we need
to represent the scripts at a much finer level than using
words. We achieve this by interpreting the script files as byte
sequences. Using this method to read the files, we limit the
space of possible options to the number of different bytes, i.e.,
(28) = 256.

For the system to clearly identify the different bytes, we
need to provide them unique identifiers. At this stage, there-
fore, we create an index to map each byte with a symbolic
identifier. Following the convention in deep learning models,
we refer to this index as the vocabulary V for the model. Using
this vocabulary, we can now transform the input file into a
sequence usable by the learning model. At first, by reading
the text as bytes, we get a byte sequence. Next, we perform
a lookup through the vocabulary index and represent each
byte with its symbolic representation. We refer to the derived
sequence as B in Figure 2, where B = [b1, b2, b3, . . .] ∀bi ∈ V
denotes a sequence of symbols bi each of which is identified
in our vocabulary V . To increase accuracy and speed up
processing, we next split the sequence B into chunks labeled
C in Figure 2.

For learning purposes, it is possible to directly use this
symbolic representation. However, symbols serve information

at a very low level of dimensionality. When represented as
symbols, any similarity between two kinds of bytes cannot
be directly identified. In neural networks, the concept of
representations, or ’embeddings’ is extensively used for this
purpose. By representing symbols with embedding vectors
labeled as E in Figure 2, we can increase the dimensionality
of the information associated with each element. These vectors
can be learned from the data itself. The distance between these
vectors also serves as a measure of semantic similarity. In our
case, we use this concept of representations and transform
the symbolic sequence into a sequence of vectors. The initial
value of these vectors is randomly selected using initialization
methods by Glorot and Bengio [16]. During the training phase,
the vectors are updated along with the model.
Neural Sequential Learning: In our preprocessing phase,
we converted the input files into vector sequences. Since the
lengths of these files can vary, the derived sequences are
also of different length. General learning methods based on
feature vectors read fixed-length vectors as input and operate
on them. For our case with more complex-shaped data, we
need to use modules that can process two-dimensional input
data. Therefore, to learn from sequences, we use advanced
neural network architectures like Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs) [17].

In our models, we use a memory-based variant of RNNs
known as Long Short-Term Memory (LSTM) [18], [19] neu-
ral networks. CNNs have also recently shown success in
sequential learning [20], [21] and are much more efficient
than RNNs. In the RECURRENTCONVOLUTIONS block in
Figure 2, a multi-layer CNN performs a convolution over
a sliding window of smaller partitions within the input of
embedding vectors and produces sequence E′.

The Pre-Informant Learning PIL model is an extension
of the CPoLS model [15] where we try to make use of
key information available within the processing of CPoLS by
adding a pre-informant layer in Figure 2. While operating over
individual subsequences using RECURRENTCONVOLUTIONS
in step 4, we derive a vector representation of the subsequence.
Since the malicious nature of the JavaScript file can be
hidden in any of the subsequences, we can use this vector
representation as an early indicator of information. Therefore,
after step 5 of the PIL model, we perform some additional
steps before sending the sequence E′ to the LSTM-based
learning. For each vector e′i ∈ E′, we use a neural sigmoid
layer. A sigmoid layer refers to a fully connected neural layer
which takes an input vector X and produces a scalar output
y ∈ (0, 1), using y = σ(W ∗ X + b) where W is the
weight matrix, and b is the bias in the layer. σ is a non-linear
activation function. In this case, we use the logistic sigmoid
function, σ(x) = 1/(1 + e−x).

Step 5P-1: For each vector e′i, we pass it through the
sigmoid layer and derive a pre-informant scalar yi.

Step 5P-2: In the overall end-to-end model, we use this
output yi as an auxiliary output. Therefore, the model now
generates auxiliary outputs yi∀e′i ∈ E′. By using these
auxiliary outputs, we can train the pre-informant by two

sources (final output and auxiliary output) and can add implicit
regularization to the model.

Step 5P-3: This pre-informant scalar yi can now be used
further in the model as an additional feature holding informa-
tion on each subsequence. We next concatenate this scalar yi
to the subsequence vector e′i to derive e′′i ∀(e′i, yi) ∈ E′.

Step 5P-C: These vectors e′′i are finally combined again in
order to generate a vector sequence E′′ which can be processed
through the standard sequence learning.

Neural Sequential
Learning

Sequence Classification
Framework

s CONCAT

MAXPOOL1D

s

ReLU

RECURRENT

CONVOLUTIONS

STACKED

LSTMS/
BI-LSTMS

PRE-
INFORMANT
LEARNING

ReLU

1. Input Sequence to the

Learning Model

2. Sequence split into

smaller chunks

3. Chunk-wise vector

representation

4. Recurrent Convolutions

for each chunk

5. Sequence derived after

combining chunk-wise outputs

5P. Additional Pre-Informant

Learning Module for

processing chunk-wise outputs

5P-C. Final sequence combining

learned vectors from each chunk

6. Sequence learning using

stacked LSTMs or Bi-LSTMs

7. Temporal MaxPooling over

sequential outputs

8. Derived vector for final

classification

9. Dense neural layers for

NNs and DNNs

10. Final sigmoid layer for

binary classification

B =

C =

E =

E' =

E'' =

hCL =

pm

HL =

Fig. 2. Pre-Informant Learning Model Overview.

We now obtain a reduced-length sequence of vectors E′′.
This sequence can now be processed using a standard sequence
learning approach. We, therefore, next pass this sequence
through an LSTM. For an input sequence E′ of length n, this
layer produces a learned sequence HL of length n but with a
different fixed dimensionality.

For detecting malware, we want to obtain the important
malicious signal information within the sequence HL. An
effective method for such cases is the use of temporal max
pooling, MAXPOOL1D, as proposed by Pascanu et al. [12].
Given an input vector sequence S = [s0, s1, . . . sM−1] ∈ S
of length M , where each vector si ∈ RK is a K-dimensional
vector, MAXPOOL1D computes an output vector sMP ∈ RK

as sMP (k) = max(s0(k), s1(k), · · · sM−1(k))∀k ∈ K. The
vector sMP , therefore, for each dimension, contains the max-
imum value observed in the sequence for that dimension. At
this stage, we pass the sequence HL through MAXPOOL1D
to obtain the final vector hCL.

Sequence Classification Framework: The output vector hCL

from the Neural Sequential Learning module, like PIL, can
be used by any classifier for performing binary classification.
The simplest such model can be a logistic regression model
that uses hCL and derives a probability of maliciousness
pm. We can even use complex models, such as feed-forward
neural networks, or deeper neural networks (DNNs) with
multiple layers for the same purpose. For our experiments, we
use DNNs with the Rectified Linear Unit (ReLU) activation
function, which is defined as f(x) = max(0, x) where f
represents the ReLU function on an input x.
Learning Phase: The modules described above create the
complete ScriptNet system. We use gradient descent-based
methods to train our models. In such methods, a loss L is
measured by comparing the prediction pm generated by the
learning model and the available ground truth label τ . This
loss is then used to update the coefficients (i.e., weights) of
the model. For our objective of binary classification, we use
the binary cross-entropy loss function, which is defined as
L = −(τ log(pm)+(1−τ)log(1−pm)) where τ is the known
ground truth, pm is the predicted probability of maliciousness,
and log is the natural logarithmic function.
End-to-End Learning: Due to the modular nature of our
system, we have the freedom to train it in different ways.
While we present neural models in this paper, the system
can also use different components from machine learning. For
instance, in the Sequence Classification Framework, we can
ideally use any classifier like an Support Vector Machine or
Naive Bayes, which may or may not support gradient-based
updates.

By keeping our models in the realm of neural networks, we
are also able to utilize the concept of end-to-end learning. This
means that our system can train itself completely by just using
the input files and labels. We do not need to train different
modules individually in such a setting. The results presented
in this paper were trained using end-to-end models.
Processing Full File Content: Up to this point, we have only
processed the first S bytes of the JavaScript file where S is
chosen (e.g. 60 kilobytes) such that the model fits in the on-
board memory of the GPU. If the length of the JavaScript file
is shorter than S, the file is processed normally. However, in
some cases, the JavaScript file is longer than S bytes, and
we must further improve our model to prevent attackers from
simply appending the malicious content to the end of the script
to avoid detection. To handle longer files, we further divide the
entire JavaScript file into subsequences of S bytes, and each
of these subsequences is evaluated by the model separately.
The predicted score for the entire file is then found by taking
the maximum score for each of these Z subsequences pm =
maxz∈Z(pm,z).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
ScriptNet classifier models on the JavaScript files described in
Section II.

Model Parameter Description Value
PIT RPIL Chunk Length 200
PIL TPIL Subsequence Length 60,000
PIL BPIL Minibatch Size 50
PIL HPIL LSTM Hidden Layer Size 250
PIL EPIL Embedding Layer Size 100
PIL WPIL CNN Window Size 10
PIL SPIL CNN Window Stride 5
PIL FPIL Number of CNN Filters 100
PIL DPIL Dropout Ratio 0.5

LaMP TLaMP Maximum Sequence Length 200
LaMP BLaMP Minibatch Size 200
LaMP HLaMP LSTM Hidden Layer Size 1500
LaMP ELaMP Embedding Layer Size 50
LaMP DLaMP Dropout Ratio 0.5

TABLE II
HYPERPARAMETER SETTINGS FOR THE VARIOUS MODELS. THE

HYPERPARAMETER SETTINGS FOR THE CPOLS VARIANT ARE IDENTICAL
TO THE PIL MODEL.

Experimental Setup: All the experiments are written in the
Python programming language using the Keras [22] deep
learning library with TensorFlow [23] as the backend deep
learning framework. The models are trained and evaluated on
a cluster of NVIDIA P100 graphical processing unit (GPU)
cards. The input vocabulary size is set to 257 since the sequen-
tial input consumed by each model is a byte stream, and an
additional symbol is used for padding shorter sequences within
each minibatch. All models are trained using a maximum of
15 epochs, but early stopping is employed if the model fully
converges before reaching the maximum number of epochs.
The Adam optimizer [24] is used to train all models.

We did hyperparameter tuning of the various input param-
eters for the JavaScript models, and the final settings are
summarized in Table II. With these settings, we evaluate
the classification error rate on the test set for the JavaScript
dataset.

The PIL model and its CPoLS variant are designed to
operate on the full JavaScript sequences. However, training
on the full-length sequences exhausts the memory capacity of
the NVIDIA P100s in our cluster, depending on the particular
variant and parameter settings of the model. To overcome
this limitation, we truncated the sequence length to T =
60,000 bytes for all the PIL and CPoLS experiments with
the exception of the full-length experiments. Similarly, we
truncated the sequences to lengths of T ∈ {200, 1000} bytes
for the LaMP and Kolosnjaji CNN [11] baseline models.
Pre-Informant Learning and CPoLS Models: We first
evaluate the performance of the PIL and CPoLS models. Their
common performance metrics, along with the metrics of all the
other models, are summarized in Table III. These performance
metrics include the accuracy, precision, recall, F1 score, and
the area under the receiver operating characteristic (ROC)
curve (AUC). The table indicates that, in general, most of
the models perform reasonably well, although some models
clearly outperform others.

The ROC curves for the Pre-Informant Learning models
with several different combinations of LSTM stacked layers
LPIL and classifier hidden layers CPIL, are depicted in
Figure 3. The results are reported for a single forward LSTM

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
False Positive Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

Tr
ue

Po
si

tiv
e

R
at

e
(%

)

PIL-LSTM-LR (L = 1,C = 0,T = 60K)

PIL-LSTM-NN (L = 1,C = 1,T = 60K)

PIL-LSTM-DNN (L = 1,C = 2,T = 60K)

PIL-LSTM-LR (L = 2,C = 0,T = 60K)

PIL-LSTM-NN (L = 2,C = 1,T = 60K)

PIL-LSTM-DNN (L = 2,C = 2,T = 60K)

Fig. 3. ROC curves for different JavaScript PIL models zoomed into a
maximum FPR = 2%.

layer (LPIL = 1) and two stacked LSTM layers (LPIL=2).
Similarly, we investigate models with CPIL = 0 (Logistic
Regression (LR)), CPIL = 1 (Shallow Neural Network (NN)),
and CPIL = 2 (Deep Neural Network (DNN)) classifiers. The
variants with CPIL = 1 are denoted as PIL-LSTM-NN where
NN refers to a shallow neural network. Similarly, the PIL-
LSTM-DNN models include CPIL = 2 hidden layers in the
deep neural network (DNN) stage. If the classifier stage does
not use any hidden layers (CPIL = 0), the classifier is simple
logistic regression and the model is denoted as PIL-LSTM-
LR. Even with the truncated JavaScript file sequences, all of
the models approximate an ideal classifier.

Since it is difficult to evaluate the performance of the differ-
ent models from the full ROC curves, we provide zoomed-in
versions with a maximum FPR of 2% in Figure 3. All subse-
quent ROC curves are also zoomed-in and have a maximum
FPR = 2%. Above a false positive rate (FPR) of 0.15%, the
best performing PIL model utilizes a single LSTM layer and
single classifier hidden layer, LPIL = 1, CPIL = 1. This
result has several benefits. Since the model has a fixed size,
increasing the number of layers can often lead to overfitting
the learned parameters in the model, leading to performance
degradation on model evaluation. Single layer models also help
limit the number of parameters of the PIL model and make it
faster and more compact for deployment at scale.
Baselines: We now compare the performance results of the
best performing PIL and CPoLS models to a number of
baseline systems summarized in Tables III. The LaMP model
originally proposed in [10] for Windows PE files is eval-
uated for this new task of detecting malicious JavaScript.
Table III indicates that we evaluated six variants of the
LaMP architecture in ScriptNet. Similarly, we implemented
the sequential CNN model proposed in [11], and denoted as
KOL-CNN, which is adapted for the new task of detecting
malicious JavaScript. Like [10], this sequential KOL-CNN
model was proposed to detect Windows PE files. We also
re-implemented the logistic regresion model (SDA-LR) [25]
which uses autoencoders to detect malicious JavaScript. We
also compare against trigrams of byte using logistic regression
(LR-Trigram) and a support vector machine (SVM-Trigram) as
proposed in [6]. Naive Bayes with trigrams is also considered
since Zozzle [2] used Naive Bayes for its classifier.

Model Accuracy (%) Precision (%) Recall (%) F1 AUC
PIL-LSTM-LR (L = 1, C = 0, T = 60K) 98.3395 98.4515 99.6721 0.9906 0.9968
PIL-LSTM-NN (L = 1, C = 1, T = 60K) 98.6236 98.5739 99.8737 0.9922 0.9988

PIL-LSTM-DNN (L = 1, C = 2, T = 60K) 99.0092 99.1269 99.7475 0.9944 0.9980
PIL-LSTM-LR (L = 2, C = 0, T = 60K) 98.8372 98.9373 99.7440 0.9934 0.9984
PIL-LSTM-NN (L = 2, C = 1, T = 60K) 98.8541 98.8899 99.8124 0.9935 0.9986

PIL-LSTM-DNN (L = 2, C = 2, T = 60K) 99.0799 99.2993 99.6528 0.9948 0.9983
PIL-LSTM-NN (L = 1, C = 1, R = 200, T = Full) 97.4288 97.5455 99.5704 0.9855 0.9916
PIL-LSTM-NN (L = 1, C = 1, R = 50, T = Full) 96.7315 96.6968 99.6739 0.9816 0.9922

PIL-BILSTM-LR (L = 1, C = 0, T = 60K) 99.0399 99.1649 99.7440 0.9945 0.9979
PIL-BILSTM-NN (L = 1, C = 1, T = 60K) 99.4577 99.6896 99.6914 0.9969 0.9984

PIL-BILSTM-DNN (L = 1, C = 2, T = 60K) 97.5914 97.3677 99.9527 0.9864 0.9977
PIL-BILSTM-LR (L = 2, C = 0, T = 60K) 98.6774 98.6556 99.8510 0.9925 0.9979
PIL-BILSTM-NN (L = 2, C = 1, T = 60K) 99.3241 99.5187 99.7107 0.9961 0.9989

PIL-BILSTM-DNN (L = 2, C = 2, T = 60K) 99.0937 99.1500 99.8211 0.9948 0.9985
CPOLS-LSTM-LR (L = 1, C = 0, T = 60K) 98.8725 98.9990 99.7212 0.9936 0.9985
CPOLS-LSTM-NN (L = 1, C = 1, T = 60K) 98.1997 98.2232 99.7492 0.9898 0.9937

CPOLS-LSTM-DNN (L = 1, C = 2, T = 60K) 98.1966 98.1135 99.8615 0.9898 0.9964
CPOLS-LSTM-LR (L = 2, C = 0, T = 60K) 99.0399 99.3888 99.5160 0.9945 0.9975
CPOLS-LSTM-NN (L = 2, C = 1, T = 60K) 98.9708 99.1626 99.6668 0.9941 0.9984

CPOLS-LSTM-DNN (L = 2, C = 2, T = 60K) 98.8771 99.1909 99.5301 0.9936 0.9981
CPOLS-BILSTM-LR (L = 1, C = 0, T = 60K) 98.5683 98.5394 99.8457 0.9919 0.9967
CPOLS-BILSTM-NN (L = 1, C = 1, T = 60K) 98.6928 98.7318 99.7896 0.9926 0.9956

CPOLS-BILSTM-DNN (L = 1, C = 2, T = 60K) 98.7035 98.8149 99.7159 0.9926 0.9969
CPOLS-BILSTM-LR (L = 2, C = 0, T = 60K) 98.7988 98.8773 99.7615 0.9932 0.9982
CPOLS-BILSTM-NN (L = 2, C = 1, T = 60K) 99.1398 99.2981 99.7229 0.9951 0.9986

CPOLS-BILSTM-DNN (L = 2, C = 2, T = 60K) 97.5530 97.4753 99.7913 0.9862 0.9969
LAMP-LSTM-LR (L = 1, C = 0, T = 200) 95.9861 96.6608 98.8321 0.9773 0.9766
LAMP-LSTM-NN (L = 1, C = 1, T = 200) 97.0138 96.9490 99.7295 0.9832 0.9892

LAMP-LSTM-DNN (L = 1, C = 2, T = 200) 96.3953 96.4409 99.5592 0.9798 0.9873
LAMP-LSTM-LR (L = 2, C = 0, T = 200) 87.5983 87.5983 100.0000 0.9339 0.5000
LAMP-LSTM-NN (L = 2, C = 1, T = 200) 94.1814 96.0273 97.3866 0.9670 0.9500

LAMP-LSTM-DNN (L = 2, C = 2, T = 200) 96.1169 97.8491 97.7151 0.9778 0.9748
SDA-LR (T = 2000) 87.6020 87.6020 100.0000 0.9339 0.5012

KOL-CNN (T = 200) 97.0753 97.4956 99.2097 0.9835 0.9853
KOL-CNN (T = 1000) 96.7446 96.8356 99.5363 0.9817 0.9851

LR - TRIGRAM (T = 60K) 97.5975 97.9394 99.3477 0.9864 0.9237
SVM - TRIGRAM (T = 60K) 97.5560 97.7683 99.4810 0.9862 0.9185
NB - TRIGRAM (T = 60K) 97.5560 97.7683 99.4810 0.9862 0.9185

TABLE III
PERFORMANCE OF THE VARIOUS MODELS WHICH WERE EVALUATED FOR THIS STUDY.

None of these models are designed to process very long se-
quences. In fact, we tried to implement the LaMP models with
length T = 1000 JavaScript bytes, but all those experiments
generated out of memory exceptions. We were able to process
KOL-CNN with length T = 1000 sequences. We were also
able to process length T = 2000 sequences with SDA-LR.

The ROC curves for the best performing PIL and CPoLS
models and some of the baseline models are presented in
Figure 4. We did not plot the results of the SDA-LR model
because it predicted that all the JavaScript files in the test
set were malicious for a number of variants that we ex-
plored. Overall, the PIL-LSTM-NN model offers the best
performance. However, the CPoLS-LSTM-NN variant does
provide a slightly better TPR for extremely low values of
FPR. The PIL-BiLSTM-NN is also competitive, but does not
offer significantly better detection capabilities and requires
more computational resources to evaluate the reverse direction
LSTM during inference.
Evaluation on Full Script Content: The previous perfor-
mance results are based on the evaluating only the first 60
kilobyte subsequence of the JS file. We compare the results
of the best, 60K PIL model to the those of two variants of
the proposed full script model which returns the maximum
prediction for all of the 60K subsequences in the file in
Figure 5. The first variant uses R = 200 length chunks in

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
False Positive Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

Tr
ue

Po
si

tiv
e

R
at

e
(%

)

PIL-LSTM-NN (L = 1,C = 1,T = 60K)

PIL-BILSTM-NN (L = 1,C = 1,T = 60K)

CPOLS-LSTM-NN (L = 1,C = 2,T = 60K)

CPOLS-BILSTM-NN (L = 2,C = 1,T = 60K)

LAMP-LSTM-NN (L = 2,C = 1,T = 200)

KOL-CNN (T = 200)

Fig. 4. ROC curves for different JavaScript models zoomed into a maximum
FPR = 2%.

each 60K subsequence which matches this parameter’s setting
for the 60K PIL model and has 494,230 model parameters
in total. We also plot the results for full-length model with
R = 50 length chunks consisting of 70,105 parameters. While
the results for the full-length models are not as good as the
first subsequence classifier, the full-length models do prevent
the attacker from simply embedding the malicious JavaScript
at the end of the file. Comparing the two full-length models,
R = 200 variant offers better results at very low FPRs but a
slightly higher TPRs for FPRs greater that 0.6%.
Evaluation on Unknown Malware: We next evaluate how

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
False Positive Rate (%)

0.0

20.0

40.0

60.0

80.0

100.0

Tr
ue

Po
si

tiv
e

R
at

e
(%

)

PIL-LSTM-NN (L = 1,C = 1,R = 200,T = 60K)

PIL-LSTM-NN (L = 1,C = 1,R = 200,T = Full)

PIL-LSTM-NN (L = 1,C = 1,R = 50,T = Full)

Fig. 5. Comparison of ROC curves, zoomed into a maximum FPR = 2%,
for the best single subsequence PIL classifier model and the same model
evaluated on the full file content.

well the best performing PIL model can predict unknown mal-
ware in the future. To do so, our anti-virus partners provided
us with 3,597 JavaScript files which were not detected by their
product at the start of the testing phase on February 2, 2018,
when the models were trained. All of these files were later
confirmed to be malicious. In order to be correctly predicted
as malware, the inference score S on the JavaScript files must
be higher than the detection threshold (S ≥ Tc). After tuning
Tc, 3310 (92.02%) of these files had an inference score which
would have allowed the model to correctly predict that these
files are indeed malicious.
Analysis of FPs and FNs: After training, we manually
investigated the false positives (FPs) and false negatives (FNs)
that were predicted by the model. We next summarize an
investigation of the top 20 FPs and FNs by a professional
virus researcher.

Of the FPs, seven files were outputs of a specific commercial
packer. One file appeared to be a corrupted browser cache
file with some JavaScript but nothing was clearly malicious.
Three examples were related to adversiting code where two
were identical and one had light obfuscation. Several files
were mistakenly labeled by the antimalware engine as being
JavaScript, but they did not include JavaScript. Two of these
were game binaries with another embedded script, and two
were Perl files. Two appeared to be benign JavaScript files
where one was very long and the other implemented calendar
functionality. Three JavaScript files were incorrectly labeled
and were malcious (i.e., true positives).

Like the FPs, the FNs also fell into several different groups.
Two of the files were identical auto-likers which were try-
ing to get the user to automatically like a Facebook post.
Several of the samples consisted mostly of other languages
but with a small amount of malicious embedded JavaScript
code. For example, three samples were identical, but random
PDFs which included the same small snippet of embedded
JavaScript. Several files were mostly HTML or PHP source
with either one JavaScript line added to embed a malicious
iFrame or a small amount of packed JavaScript appended to
the end of the file. Other files were either C++ or C sharp
source files which appeared to be used to generate exploits
that included that included a small amount of JavaScript.

Four samples were packed malicious JavaScript. One file was
minified with a small malicious snippet. One of the examples
appeared to be a labeling issue and was a benign JavaScript
(i.e., true negative).
Computation Times: The time required to complete the
training and test phases are reasonable on a GPU card.
For example, the best performing PIL-LSTM-NN model was
trained on the first 60,000 bytes in 17 hours, 44 minutes, and
45 seconds on an NVIDIA P100 in our cluster. For the full-
length scripts, training on all of the subsequences required
4 days, 22 hours, and 9 minutes. Similarly, the test phase
completed in 45 minutes and 55 seconds, with a minibatch
size of 50 for an average of 33.09 milliseconds per file on the
same GPU and cluster configuration.

V. RELATED WORK

JavaScript: Maiorca et al. [9] propose a static analysis-
based system to detect malicious PDF files which use features
constructed from both the content of the PDF, including
JavaScript, as well as its structure. Cova et al. [26] use
the approach of anomaly detection for detecting malicious
JavaScript code. In [5], Likarish et al. classify obfuscated
malicious JavaScript using several different types of classi-
fiers including Naive Bayes, an Alternating Decision Tree
(ADTree), a Support Vector Machine (SVM) with using the
Radial Basis Function (RBF) kernel, and the rule-based Ripper
algorithm. A PDF classifier proposed by Laskov and Šrndić [8]
uses a one-class SVM to detect malicious PDFs which contain
JavaScript code. Zozzle [2] proposes a mostly static approach
extracting contexts from the original JavaScript file. The
system parses these contexts to recover the abstract syntax
trees (ASTs). A Naive Bayes classifier is then trained on the
features extracted from the variables and keyword found in
the ASTs. Corona et al. [7], propose Lux0R, a system to
select API references for the detection of malicious JavaScript
in PDF documents. The features are then classified with an
SVM, a Decision Tree and a Random Forest model. Wang
et al. [13] use deep learning models in combination with
sparse random projections and logistic regression to detect
malicious JavaScript. They also present feature extraction from
JavaScript code using auto-encoders. While they use deep
learning models, the feature extraction and model architec-
tures limit the information extractability from JavaScript code.
Shah [6] propose using a statistical n-gram language model
to detect malicious JavaScript. Our proposed system uses an
LSTM neural model for the language model instead of the
n-gram model proposed by Shah [6].
Other File Types: While more research has been devoted
to detecting malicious JavaScript, partly because of its in-
clusion in malicious PDFs, only a few previous studies have
considered malicious VBScript. In [27], a conceptual graph
is first computed for VBScript files, and new malware is
detected by identifying graphs which are similar to those of
known malicious VBScript files. The method is based on static
analysis of the VBScripts.

A number of deep learning models have been proposed for
detecting malicious PE files including [10]–[12], [28], [29].
Raff et al. [30] discuss a model which is similar to CPoLS
but noted it did not work for PE files. They did not provide
any results for their model.

VI. CONCLUSIONS

Malicious JavaScript detection is an important problem fac-
ing anti-virus companies. Neural language models have shown
promising results in the detection of malicious executable
files. Similarly, we show that these types of models can also
detect malicious JavaScript files, in the proposed ScriptNet
system, with very high true positive rates at extremely low
false positive rates.

The performance results confirm that the PIL model using
CNN, pre-informant, and LSTM neural layers is able to
learn and generate representations of byte sequences in the
JavaScript files. In particular, the PIL JavaScript malware
script classification model using a single LSTM layer and a
shallow neural network layer offers the best results. Therefore,
the vector representations generated by these models capture
important sequential information from the JavaScript files.
ScriptNet extracts and uses this information to predict the
malicious intent of these files.

ACKNOWLEDGMENT

The authors thank Marc Marino, Jugal Parikh, Daewoo
Chong, Mikael Figueroa and Arun Gururajan for providing
the data and helpful discussions.

REFERENCES

[1] Mozilla, “JavaScript.” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/JavaScript

[2] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and
precise in-browser javascript malware detection,” in Proceedings of
Usenix Security, 2011.

[3] W. Xu, F. Zhang, and S. Zhu, “Jstill: Mostly static detection of
obfuscated malicious javascript code,” in Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 117–128.

[4] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” pp. 55–64, 2014.

[5] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious
javascript detection using classification techniques,” in 2009 4th
International Conference on Malicious and Unwanted Software
(MALWARE). IEEE, oct 2009, pp. 47–54. [Online]. Available:
http://ieeexplore.ieee.org/document/5403020/

[6] A. Shah, “Malicious JavaScript Detection using Statistical Language
Model,” Master’s Projects, p. 70, 2016. [Online]. Available:
http://scholarworks.sjsu.edu/etd projects/476

[7] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0r: Detection of
malicious pdf-embedded javascript code through discriminant analysis
of api references,” in Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop, ser. AISec ’14. New York, NY,
USA: ACM, 2014, pp. 47–57.

[8] P. Laskov and N. Šrndić, “Static detection of malicious javascript-
bearing pdf documents,” in Proceedings of the 27th Annual Computer
Security Applications Conference, ser. ACSAC ’11. New York, NY,
USA: ACM, 2011, pp. 373–382.

[9] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto, “A structural and
content-based approach for a precise and robust detection of malicious
pdf files,” in Proceedings of the International Conference on Information
Systems Security and Privacy (ICISSP), 2015.

[10] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 2482–2486.

[11] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer International Publishing,
2016, pp. 137–149.

[12] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2015, pp. 1916–1920.

[13] Y. Wang, W. dong Cai, and P. cheng Wei, “A deep learning approach
for detecting malicious javascript code,” Proceedings of Security and
Communication Networks, vol. 11, no. 9, pp. 1520–1534, 2016.

[14] D. Hendler, S. Kels, and A. Rubin, “Detecting Malicious PowerShell
Commands using Deep Neural Networks,” Proceedings of the Asia
Conference on Computer and Communications Security, 2018.

[15] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, “Robust
neural malware detection models for emulation sequence learning,” in
Proceedings of the Military Communications Conference (MILCOM),
2018.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia,
Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a.html

[17] Y. LeCun and Y. Bengio, “Convolutional networks for images speech
and time series,” 1995.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1–32, 1997.

[19] F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[20] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin,
“A convolutional encoder model for neural machine trans-
lation,” CoRR, vol. abs/1611.02344, 2016. [Online]. Available:
http://arxiv.org/abs/1611.02344

[21] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Con-
volutional sequence to sequence learning,” CoRR, vol. abs/1705.03122,
2017. [Online]. Available: http://arxiv.org/abs/1705.03122

[22] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[23] M. Abadi and et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[24] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
dec 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[25] Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for
detecting malicious javascript code,” Security and Communication
Networks, vol. 9, no. 11, pp. 1520–1534. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1441

[26] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: ACM, 2010, pp. 281–290.

[27] S. Kim, C. Choi, J. Choi, P. Kim, and H. Kim, “A method for
efficient malicious code detection based on conceptual similarity,” in
International Conference on Computational Science and Its Applications
(ICCSA), vol. 3983, 2006, pp. 567–576.

[28] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2013.

[29] W. Huang and J. W. Stokes, “Mtnet: A multi-task neural network
for dynamic malware classfication,” in Proceedings of Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2016,
pp. 399–418.

[30] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware Detection by Eating a Whole EXE,” ArXiv e-
prints, 2017.

