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Abstract
People are becoming increasingly sophisticated in their ability to navigate information spaces using search, hyperlinks, and
visualization. But, mobile phones preclude the use of multiple coordinated views that have proven effective in the desktop
environment (e.g., for business intelligence or visual analytics). In this work, we propose to model information as multivari-
ate heterogeneous networks to enable greater analytic expression for a range of sensemaking tasks while suggesting a new,
list-based paradigm with gestural navigation of structured information spaces on mobile phones. We also present a mobile
application, called Orchard, which combines ideas from both faceted search and interactive network exploration in a visual
query language to allow users to collect facets of interest during exploratory navigation. Our study showed that users could
collect and combine these facets with Orchard, specifying network queries and projections that would only have been possible
previously using complex data tools or custom data science.

CCS Concepts
• Human-centered computing → Information visualization; Visualization systems and tools; User interface design; • In-
formation systems → Search interfaces;

1. Introduction

People regularly interact with complex information networks
that model the attributes and relationships of real-world entities.
Whether through browsing hyperlinked networks or the ranked lists
of search results, navigating between related pages, people, prod-
ucts, and media is a universal quality of the online experience. At
the same time as the search, list, and link paradigm is expanding to
ever more information seeking experiences, the trend towards inte-
grating analytic sensemaking capabilities in consumer experiences
such as video games and fantasy sports is driving the adoption of
business-like dashboards beyond the business context [Mee17].

The representation and analysis of complex information net-
works has rich history in the fields of information visualiza-
tion and visual analytics, with the analysis of social networks
(e.g., [BCD∗10]) and citation networks (e.g., [LCRB05, KPLB07,
CKHF11, ZCCB13]) featuring prominently. Additional use cases
include exploratory analysis of data published by governments
(e.g., migration flows [VdEVW14]) or businesses (e.g., company-
investor networks [CKHF11]), as well as investigative analysis of
potential impropriety or illegality (e.g., in Enron email communi-
cations [SA04], Panama Papers documentation [Lea19], or “open
secrets” interactions between politicians and lobbyists [ope19]).

† Matt conducted this work while with Microsoft Research.

What is less well examined in the literature, however, is how
such information networks may be explored on mobile devices.
We posit that there are potentially significant latent demands across
many everyday activities increasingly performed on mobile phones.
These include sports and gaming analysis (including fantasy sports
and e-sports), media consumption (e.g., music, books, films and
videos, news), and personal research into major life decisions (e.g.,
jobs, houses, schools, cars, vacations). In this work, we present a
new interaction paradigm for exploring such information on mo-
bile phones.

We draw design inspiration from faceted approaches to search,
browsing, and analysis in which users select from prefabricated fil-
ters. These filters are automatically extracted from multiple orthog-
onal data dimensions and their application has the effect of progres-
sively reducing the number of matching entities to a meaningful
and manageable subset. Notable examples of this approach from
the literature include FacetLens [LSR∗09] and Immense [LJH13],
which present multiple coordinated views in a fixed 2D layout,
and GraphTrail [DHRL∗12] and PanoramicData [ZZD14] that pro-
vide freeform 2D canvases on which to compose queries and in-
spect results. Business Intelligence dashboards in general-purpose
tools like Tableau, Qlik, and Power BI may also be constructed in
a faceted style (e.g., to allow browsing of news and social media
“documents” [ELW18]).
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We note that all such faceted interfaces have deficiencies when
applied to multivariate heterogeneous networks on mobile phones.
First, faceted interfaces do not convey the underlying heteroge-
neous network structure. They do not present how facets of nodes
in a network or nodes themselves relate to one other, making it dif-
ficult for users to grasp the concept of pivoting between different
node types. Second, faceted interfaces as developed in the litera-
ture do not translate well to mobile phones, where space is limited.
While it is technically feasible to employ such interfaces within
mobile applications, they would likely impair the user experience.
For example, navigating between views in 2D layouts would re-
quire users to pan and zoom excessively (analogous to when brows-
ing non-mobile-optimized websites).

To address these issues, we present Orchard, a solution that ap-
plies faceted search concepts to the exploratory analysis of mul-
tivariate heterogeneous networks on mobile phones. Our design
draws on the familiar concept of keyword search and result listing,
a paradigm that has already established itself as the dominant form
of mobile information seeking. With Orchard, users can explore ag-
gregated node and edge attributes through sortable list-based views
that simultaneously function as horizontal bar charts for aggregate
values. Orchard combines faceted search on these views with lat-
eral pivoting (following links across one or many hops) that auto-
matically “collects” the ensuing facet trail for future use.

Orchard pivoting extends prior work on interactive network ex-
ploration by allowing free navigation between nodes of any type,
whether or not they are connected directly in the data model. By
inferring a full graph query specification from any partial query,
demand for additional user input is minimized and the result is an
uninterrupted pivoting experience. Orchard also introduces the no-
tion of reflective pivoting, i.e., pivoting from/to the same node type.
While reflective pivoting is usually considered a no-op, Orchard
fills this semantic gap by interpreting commands to pivot nodes
onto themselves as a command to project the nodes into homo-
geneous network in which nodes are connected based on shared
connections to nodes of another type (as selected by users). This
allows users to seamlessly transform and view any subset of a het-
erogeneous network as a homogeneous network, while collecting
more expressive facets in the process (such as pairs of nodes con-
nected by highly-weighted links).

In summary, our contributions are:
• We introduce and motivate the concept of interacting with mul-

tivariate heterogeneous networks on mobile phones.
• We present a novel query specification model for multivariate

heterogeneous networks called Pivot Trails that is particularly
suitable to be implemented on small screen devices, requiring
minimal user input to formulate network queries.
• We design and implement Orchard, a mobile application that

uses Pivot Trails to support casual exploratory workflows over
multivariate heterogeneous networks using a list-based paradigm
with gestural navigation.
• We report a qualitative evaluation of the design of Orchard with

12 participants. Initial results show that users quickly understand
Orchard’s data and query model, and that they are able to accom-
plish common exploratory network tasks.

2. Background and Related Work

Orchard relates to prior work on supporting information explo-
ration in heterogeneous information networks, and is inspired by
work on exploratory search [Mar06, WR09]. An information net-
work represents an abstraction of the real world, focusing on the
objects (nodes) and their attributes, and interactions (links) between
the objects [SH12]. In multivariate heterogeneous networks, mul-
tivariate refers to the fact that each node or link in a network can
have multiple attributes, and heterogeneous indicates that there are
multiple node or link types in a network.

2.1. Core Concepts

There is a large body of prior work on facilitating exploration and
analysis of multivariate heterogeneous networks, including the de-
velopment of taxonomies describing the nature of tasks associated
with such networks [LPP∗06, APS13, PPS14]. We have identified
five core concepts (CC1-5) that capture the characteristics of prior
network exploration systems.

CC1: Faceted Search. To allow iterative and incremental filter-
ing of large information networks down to a few items of inter-
est, a common solution is to provide keyword search function-
ality and the means to apply filters based on a facet type, facet
value, and facet count. For example, in faceted search of a movies
dataset, one facet type might be “Genre”, its values might include
“Drama,” “Comedy,” and “Sci-Fi,” and each of these values may
be accompanied by the count of movies in the dataset matching
that facet value. Early approaches to faceted search, such as Fla-
menco [YSLH03], presented clickable facets that could be pro-
gressively applied as filters to “drill down” into a target dataset.
Similarly, FaThumb [KRR∗06] was the first to introduce faceted
search on mobile devices. Visualizations have also been introduced
to the faceted search experience as an aid navigation. For instance,
PaperLens [LCRB05] features multiple views to formulate a lim-
ited set of publication data-oriented questions, such as the relation-
ships between authors or frequently referenced papers. FacetMap
[SCM∗06] is a domain-agnostic generalization of PaperLens that
supports simple searching and browsing tasks using a tree-map that
scales with display size. FacetLens [LSR∗09] extends this line of
work further by exposing facet values as visualizations such as bar
charts whose elements can be selected directly.

Our approach with Orchard extends the functionality of these
systems in several important ways. First, facet values are shown
in a list-based view, allowing users to sort either alphabetically by
facet value or numerically by facet count and other aggregations.
Second, users can select multiple facet values from such lists and
choose to match either any or all of these values. Third, by in-
corporating network projection into the analysis of heterogeneous
networks, users can retrieve potentially interesting combinations of
facet values more easily and systematically.

CC2: Topological Search. Researchers have devised various vi-
sual query languages to express network queries (e.g., [BCZ13,
CLLT15, CFT∗08]). A recent example of such a system is Vis-
age [PHT∗17], a visual graph querying approach in which users
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iteratively refine attribute and topological constraints on a 2D lay-
out. The system populates user-defined patterns with examples and
allows them to browse other possible matches.

Unlike Visage, Orchard does not require users to define topolog-
ical constraints by specifying a graph, but instead lets them explore
aggregated nodes simply by following links.

CC3: Node and Link Aggregation. A common issue when deal-
ing with node-link representations of multivariate networks is space
and legibility – such representations can easily turn into undiffer-
entiated hairballs for large, dense networks [ELMW18]. To visu-
alize arbitrarily-sized networks compactly, nodes and edges can
be aggregated rather than represented individually. Aggregation is
typically applied on the attribute level, e.g., meta-nodes represent-
ing all nodes with a given categorical attribute value or numeric
attribute range. For example, PivotGraph [Wat06] aggregates and
positions nodes based on their attributes in a grid, encoding the
relationship between node aggregates by the thickness of visual
links. Similarly, OntoVis [SMER06] uses information in the on-
tology associated with a network to semantically prune a large,
heterogeneous network. Juniper [NSL18] lets users explore the re-
lationships of nodes in selected sub-networks using tree visualiza-
tion, where aggregated nodes can be collapsed and expanded. Fi-
nally, both GraphTrails [DHRL∗12] and work by Van den Elzen &
Van Wijk [VdEVW14] use common data visualizations such as bar
charts and tag clouds to summarize subsets of nodes.

Orchard’s approach to aggregation is similar to GraphTrails’ in
that users can choose how facet values of a particular node type are
grouped and aggregated. However, in addition to showing count of
nodes per group, Orchard provides additional metrics, such as the
count of nodes of a linked node type, that users can sort by.

CC4: Pivoting to Linked Nodes. Pivoting is complementary to
searching and filtering as it expands, rather than reduces, the op-
tions for onward navigation. Given a subset of nodes, users can
choose to “pivot” to view linked nodes, e.g., those of a speci-
fied type. Various styles of pivoting between node types have been
proposed in the literature. FacetLens [LSR∗09] provides a one-to-
many pivot mechanism by displaying pivot options for a selected
node. In PivotSlice [ZCCB13], users can configure a 3-by-4 multi-
ple focus view that sub-divides and visualizes network data based
on user-defined facets. PivotPaths [DRRD12] enables pivoting be-
tween partially overlapping sets of resources and facet values, and
attempts to make pivots more comprehensible by using animated
transition to highlight the overlap in elements between successive
views. GraphTrails [DHRL∗12] introduces a many-to-many pivot
mechanism that allows users to pivot from a subset of nodes to the
set of directly connected nodes, providing a freeform canvas on
which users can lay out multiple pivot paths in 2D space.

Orchard adopts a similar kind of many-to-many pivoting as
GraphTrails. However, in Orchard users can freely navigate from
a set of nodes of a particular type to directly or indirectly linked
nodes of any other node type in the network, preventing them from
having to fully understand the underlying network structure and
from getting stuck in leaf nodes.

CC5: Projections of Sub-networks. Given a sub-network, it is
often insightful to analyze interactions between the nodes of a par-
ticular type as a homogeneous network. A commonly used tech-
nique is to “project” a heterogeneous network to a homogeneous
one by connecting two nodes of the same type if both are con-
nected to the same node of a different type [LMDV08]. Systems
such as Orion [HP14] and Ploceus [LNS14] are built to support
users in formulating such transformations as a pre-processing step:
users can map tabular data to a network structure, by defining the
semantics of links between nodes. Such projections are more read-
ily interpretable as node-link representations than the full heteroge-
neous network. Typical analyses of homogeneous networks include
the extraction of connected components and communities of nodes
that are preferentially attached to one another.

Orchard does not make this assumption, but instead promotes
on-demand projection of any node subset to homogeneous net-
works, all as part of an exploratory workflow rather than as a pre-
processing step.

2.2. Data Exploration on Touch-Enabled Devices

Designing visual interfaces for exploring data on touch-enabled
devices is becoming an increasingly important topic within
the information visualization community [LIRC12, LBI∗18,
CDIL19, LCI∗20]. For example, PanoramicData [ZZD14], Viz-
dom [CGZ∗15], and SketchInsight [LSR∗15] featured a pen and
touch interface for visual data exploration on large interactive dis-
plays. Tangraphe [TSS18] proposed a set of single hand, multi-
touch gestures for interactive exploration of network visualizations,
while Schmidt et al. presented a set of multi-touch interactions for
network visualizations, focusing on edge interactions [SNDC10].
Prior work has also focused on smaller tablet devices. For exam-
ple, TouchWave presented a set of multi-touch gestures to inter-
act with a stream graph on tablet devices [BLC12]. Kinetica em-
ployed physics-based affordances with multi-touch interaction for
multivariate data exploration on a scatterplot [RK14]. TouchViz
evaluated a gestural interface for choosing, filtering, and sorting
data in familiar charts on tablet devices [DFS∗13]. Sadana and
Stasko [SS16] have also explored challenges in creating multiple
coordinated views in data visualization systems for tablet comput-
ers. Finally, TouchPivot [JLLS17] proposed a pen-and-touch user
interface that aids visual data exploration on tablet devices, target-
ing novice users.

Orchard builds on this trend towards touch-enabled data explo-
ration, focusing on single-touch gestures on mobile phones for the
simplest and more broadly applicable interaction style for casual
everyday activities.

3. Design Goals

Our research focuses on the casual exploration of multivariate het-
erogeneous networks, specifically in the context of mobile phones.
We set out by designing and implementing various prototypes to
support individual low-level tasks applicable to heterogeneous net-
works (Table 1), and by combining them to support end-to-end ex-
ploratory workflows. To derive a set of design goals we presented
and tested early designs for solving these tasks on mobile phones
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ID Low-Level Task

L1 Determine the attributes and values associated with nodes

L2 Find the nodes with specific attribute values

L3 Find a derived property of a set of nodes with specific attribute
values

L4 Find the set of entities adjacent to or accessible from an entity

L5 Find a derived property of the entities adjacent to or accessible
from an entity

L6 Find the entity with the maximum/minimum number of adjacent
entities

L7 Common connection: Given a set of entities, find a set of entities
that are connected to all of them

L8 Follow path

L9 Revisit an entity and infer further knowledge

L10 Characterize sets of nodes as belonging to different groups,
based on node attributes

Table 1: A set of low-level tasks from Pretorious et al. [PPS14]
that are applicable to heterogeneous networks.

with invited test users and colleagues at our research institution.
We prepared various test datasets ranging from movie databases
to social news feeds, academic publication databases, and publicly
available communication networks. The challenges we faced while
iterating on the designs with our test users can be broadly catego-
rized into representational and functional challenges. On the one
hand we sought to find suitable mobile-friendly representations for
techniques that have been proposed in the literature in the con-
text of network analysis for larger displays. On the other hand, we
learned that in some cases users were interrupted in their flow due
to missing functionality that has not been explored in prior research
multivariate heterogeneous networks. Guided by these findings we
identified two representational (DG1 and DG2) and two functional
design goals (DG3 and DG4) that we address in this paper.

DG1: Introduce mobile-friendly list-based representation.
Views and operations to explore networks should be exposed
through a design suitable for the targeted form factor. With Orchard
we aim to support casual exploration scenarios through a simple
user interface design reminiscent of that of other information re-
trieval applications for mobile phones. Our goal is to introduce a
new list-based paradigm with gestural navigation of large multi-
variate heterogeneous networks.

DG2: Support lightweight gestural navigation. Transitioning
between different node types plays an important role in analyz-
ing heterogeneous networks [DHRL∗12]. However, understanding
which nodes can be pivoted to and deciding on which nodes to
pivot to places extra cognitive load on users. To promote free-form
exploration, we aim to make pivoting a lightweight, single-touch
operation that can easily be reverted, allowing users to quickly ex-
plore multiple pathways.

DG3: Consolidate drill-down filtering and lateral pivoting.
During testing of early prototypes of Orchard we observed that
users often select facets of interest of different node types while
pivoting through the network, until at some point they want to ap-
ply multiple previously selected facets to the current set of nodes.
Drill-down filtering in the style of faceted search can be used to
quickly narrow down a collection of data items to a smaller subset,
whereas lateral pivoting allows users to move between sets of nodes
related through multiple hops. Our goal is to consolidate these com-
plementary mechanisms by allowing users to turn a sequence of
lateral pivot operations into facets that can be applied as filters, or
vice versa.

DG4: Integrate network projections into exploratory analysis.
Although heterogeneous and homogeneous networks can hardly be
explored in the same view, we postulate that users benefit from on-
demand network transformations as part of a regular network ex-
ploratory workflow. Being able to project arbitrary sub-networks
of interest to homogeneous ones allows users to gain insights about
such sub-networks from a different, customized perspective, in
ways that can inform decisions on what to explore next in a het-
erogeneous context.

4. Pivot Trails

To retrieve the data necessary to render network nodes in a list-
based visualization (DG1) users must be able to specify aggre-
gation queries for subsets of nodes satisfying topological and at-
tribute constraints. In this section, we introduce a query specifica-
tion model called pivot trails, designed to capture common queries
for nodes in multivariate heterogeneous networks, and capable of
consolidating drill-down filtering and lateral pivoting (DG3).

4.1. Data Assumptions

Our pivot trails model relies on three assumptions on the data.

First, every node instance of a node type in a heterogeneous net-
work can have an arbitrary number of attributes/facets.

Second, the network is multi-partite (k-partite), meaning that it
can be divided into k independent sets, such that no link connects
two nodes of the same type. Consider, for instance, Figure 1 show-
ing how different entities in a film dataset and the relationships
between them are represented in a k-partite network.

Third, links are homogeneous and univariate, meaning that there
exists one link type only, with no associated attributes. Instead, a
heterogeneous relationship is modeled by association to new node
type. Consider, for instance, the relationship between Person,
Role, and Film in Figure 1. An alternative schema could model
Role as an attribute of a link connecting Person and Film. Yet,
promoting heterogeneous relationships to their own node type ob-
viates the need for the concept of links in a user interface, without
the loss of any of the link semantics.

Furthermore, because the network is k-partite any set of nodes
containing nodes of two different types can be projected to a ho-
mogeneous network. In Figure 1, for instance, the sub-network con-
taining topics and films can be projected onto two different homo-
geneous networks: a film↔ film network, where two films are
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Person

Character

Film

RoleGenre

Topic

Character Name

Role Name

Person Name
Year of Birth
Year of Death

Topic Category
Name

Genre Category
Name

Film Title
Release Year
Revenue
Runtime
Rating

Figure 1: The schema of a multivariate heterogeneous network
containing information about films, actors, and so on, as well as
the attributes for every node type.

connected by a weighted link representing the count of common
topics, or a topic↔ topic network, where two topics are con-
nected by a weighted link representing the count of films about the
two topics.

4.2. Query Specification Model

A typical aggregate network query consist of the following compo-
nents [DHRL∗12]:

• A set of topological and node attribute constraints that describe
how to arrive at a subset of nodes of interest;
• A grouping strategy for the attribute of interest in the retrieved

subset of nodes; and
• An aggregation strategy that defines which metric should be cal-

culated for each bin.

With pivot trails we introduce a convenient way to model net-
work queries as topological and node attribute constraints, appli-
cable to a wide range of network exploration scenarios. Intuitively
a pivot trail defines the order in which to traverse, filter, and com-
bine nodes in a heterogeneous network to a set of nodes of interest,
i.e., a query result. Pivot trails are directed graphs that can easily be
translated to graph query languages such as Cypher, or even SQL.

Formally, assume a k-partite heterogeneous network H where
each node is of a node type tm where m ∈ {0,1, . . . ,k− 1} (Figure
2a). A pivot trail is a directed acyclic graph. Each node Pi in a
pivot trail (pivot node) has a node type T (Pi), a set of node-attribute
constraints (filter predicates) C(Pi), and a set operation O(Pi). A
pivot trail contains exactly one target node Pn, where T (Pn) is the
node type of interest.

A pivot trail defines how nodes in H of a particular type are re-
trieved. The pivot trail shown in Figure 2b, for instance, translates
to the following query: retrieve all nodes in H of type T (P0). For all
nodes that satisfy constraints C(P0) traverse their links leading to
a set of nodes of type T (P1). For all nodes that satisfy constraints
C(P1) traverse their links leading to a set of nodes of type T (P2),
and so on, until the target pivot node is reached.

Pivot Trails are designed to express both lateral pivoting (navi-
gating from a subset of nodes of type a to a set of linked nodes of

...P0 P1

...P0 P1 Pn

t0a)

b)

c)

t2

t1

T(P0) = t2

C(P0) = {...} C(P1) = {...}

C(P1) = {...}C(P0) = {...}

T(P1) = t4 T(Pn) = t

T(P0) = t2 T(P1) = t4 T(Pn) = t

O(Pn) =

t4

t3

Pn

U

Figure 2: a) An example schema of a heterogeneous network with
node types t0 - t4; b) a pivot trail representing a lateral pivoting op-
eration; and c) a pivot trail where all pivot nodes are directly linked
to the target pivot, representing a drill down operation (set opera-
tions for pivot nodes with one or no incoming links were omitted)

.

type b, where a 6= b) and drill down filter operations (navigating
to a set of nodes that are linked to m other sets of nodes, where
m > 1), or combinations thereof. Figure 2b, for instance, represents
a sequence of lateral pivot operations. Conversely, this pivot trail
can be re-structured to a drill down operation by linking any or all
n− 1 pivot nodes directly to the final pivot node Pn and setting its
set operation O(Pn) to ∩, as shown in Figure 2c.

A pivot trail graph does not need to be fully specified, but can
be inferred from a partial specification (at the minimum a target
pivot node must be given). In contrast to traditional query models
proposed in the literature, which only consider adjacent nodes as
valid pivot paths, this allows users to formulate queries in a more
flexible way. For instance, given the schema in Figure 1, people can
be directly related to genres or topics, without the need to specify
intermediate hops. Figure 3 shows a number of concrete examples
of user-defined pivot trails and how full pivot trails are inferred
from partial ones using the schema in Figure 1.

5. Orchard

Guided by the four design goals (DG1-4) presented in Section 3
we built a research prototype, called Orchard. To inform the de-
sign of a visual exploration user interface that incorporates the five
core concepts (CC1-5) of network exploration outlined in Section
2.1, we carried out an iterative design process (Section 3). In this
section, we present the final design of Orchard.

5.1. Implementation

Orchard is a mobile application written in TypeScript and
HTML/CSS, built to run on all modern mobile phones. It uses a
dynamic layout that fits the screen of the phone and is designed to
be used in portrait mode. Orchard is backed by a C#-based imple-
mentation of the query model we propose in Section 4.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



P. Eichmann et al. / Orchard

Topic Film

Topic

Topic Film Person

Topic
Name:
“M16”

Name:
“M16”

Name:
“M16”

Name:
“M16”

Title:
“Dr. No”

Title:
“Dr. No”

Name:
“Judi Dench”

Name:
“Judi Dench”

Name:
“M16”

Name:
“M16”

Person Film

Topic Film

Topic

Topic Film Person

Role

Role Role

Character

Topic Film Person Film

Character Character

b)

User-defined Pivot Trail Inferred Pivot Trail

c)

d)

a)

Figure 3: Examples of pivot trails. a) find all topics; b) find all films
associated with a topic whose name includes ‘MI6’; c) of films re-
lated to a topic containing ‘MI6’ in its name, find all people linked
to the films containing ‘Dr. No’ (note that the intermediate nodes
required to reach Person from Film are not explicitly specified,
but inferred from the network schema); and d) find all the films that
are linked to person nodes containing ‘Judi Dench’ in their name,
which are linked to a topic containing ‘MI6’ in their name.

5.2. Attribute Exploration

The Attribute Exploration View (Figure 4), Orchard’s default view,
is to browse aggregates of nodes in a network. Every item in the
list represents an aggregate (a category for a categorical attribute
or a range for a numerical attribute) defined by the grouping and
aggregation strategy (Figure 4a,b). List items contain a bar whose
length encodes the aggregated value per bin, such as the count of
all nodes linked to the nodes in a bin, the average of one of their
numerical attributes, etc. Tapping on one of the list items reveals
more details about the nodes in that group. By tapping the grouping
strategy (Figure 4a), users can switch the node type of the current
pivot node and pick a facet of interest. Similarly, the aggregation
strategy can be changed by tapping on the second column (Figure
4b). There are two types of aggregate values that can be computed:

1. The count of distinct linked nodes of a certain type (e.g., the
number of films per actor name, how many films have the same
title or a rating between 90 and 100).

2. The min/mean/max of linked numeric node attributes (e.g., the
mean revenue of all “Alice in Wonderland” films, the average
age of all people per film).

A default grouping and aggregation strategy can be configured
per attribute per node type. For instance, users can choose to al-
ways display the count of associated films when looking at genre,
or the count of associated people when looking at characters. Fur-
thermore, lists can be sorted by the facet value (Figure 4a) or by the
aggregated value (Figure 4b).

5.3. Visual Query Interface

To support network exploration we designed a visual query inter-
face that implements the pivot trail model. Orchard exposes a vi-
sual representation of a pivot trail as horizontal list at the top of the
screen. On start up, a single pivot node of a configurable default
node type is shown in the pivot trail, which corresponds to the data
visualized in the Attribute Exploration View. The pivot bar on the
right of the screen shows all pivot node options, and scrolls verti-
cally if the number of pivot nodes exceeds the height of the screen.
Users can add a pivot node to the end of the pivot trail (Figure 4d)
by performing a “swipe left” gesture on the pivot node. As the fin-
ger slides across the display while swiping, the current list moves
to the left and visual feedback indicates which type of pivot node
users are about to add to the pivot trail (Figure 4).

In open-ended browsing sessions, we observed that users of-
ten select facets of interest of different node types while pivoting
through the network, until at some point they want to apply multi-
ple previously selected facets to the current set of nodes. Orchard
supports this browsing behavior (DG3), allowing users to choose
between lateral pivoting and drill down filtering by changing how
nodes in the pivot trail are linked. By default, all nodes in a trail
are linked sequentially, analogous to the depiction in Figure 2b. To
switch from lateral pivoting to drill down filtering, users can link
individual pivot nodes to the target pivot node by pressing the link
icon to the right of each pivot node. An activated link indicates the
corresponding pivot node is linked directly to the target pivot node,
a de-activated link indicates that the pivot node is linked to its suc-
cessor in the trail.

By pivoting from subsets of nodes to new subsets, users keep
adding pivot nodes to the pivot trail. They can navigate back and
forth in the pivot trail by swiping left or right, analogous to travers-
ing an undo/redo stack. They can also jump to or remove a specific
node, or start a new trail from an existing pivot node by using the
context menu that appears when tapping a node in the pivot trail.
Furthermore, users can constrain the subset of nodes from which
to pivot by selecting list items, and select whether all or any of the
selected items should be matched via the context menu. Pivoting
from a list of nodes where no selection has been made is treated as
if all items were selected.

5.4. Keyword Search

A common strategy to explore large graphs is a bottom-up ap-
proach, where the analysis begins with a search and more context is
added as needed [VHP09, VLKS∗11]. Orchards provides keyword
search functionality where partial matches of node attributes are
displayed in a list (Figure 5A). Users can navigate to the matched
nodes by tapping on one of the results, which initializes the pivot
trail with the required pivot node and constraints.

5.5. Reflective Pivots

A special type of pivot operation are reflective pivots, i.e., pivoting
from/to the same node type. As there are no self-referential nodes in
k-partite networks, this interaction is, in theory, meaningless. With
Orchard we address this semantic gap by treating two consecutive
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Figure 4: Orchard’s facet exploration view and swipe-based pivot mechanism. Users can configure how nodes are grouped (a), aggregated
(b), and then visualized in the bar chart-like list (c). The pivot bar (d) displays all node types of a dataset as tabs along the right edge of
the application. Starting a swipe-left gesture on one of these node types moves the current view to the left and pivots to all nodes in the
network that are linked to nodes in the selected group (films linked to characters named “James Bond”). Upon completion of the gesture, a
new instance of the swiped node type is added to the pivot trail (e) and the result list is updated. Since the first pivot node is always directly
connected to the target pivot node when there are only two nodes in the pivot trail, the link between them is activated (f).

pivot nodes with the same type as an instruction to project their
matching nodes to a homogeneous network (DG4). Such a projec-
tion generates a link between any pair of matched nodes, if they are
linked to the same node of another node type specified by users.
The assigned link weight between such a pair of nodes is defined
by the number of distinct nodes to which the pair is connected in
their heterogeneous context. Since network projections are compu-
tationally expensive, Orchard computes the results in a progressive
fashion, giving users the ability to refresh the results on demand.
The result of a projection is displayed as a link list comprising pairs
of facets values and counts indicating how frequently that combina-
tion occurs (the link’s weight). The link semantics can be changed
by changing the node type used in the aggregation strategy, allow-
ing users to create arbitrary projections of interest. For example, as
Figures 5D-F illustrate, a repeated swipe on Character leads to a
projected network shown as an edge list in Figure 5E. Changing the
aggregate pivot, for instance, to Topic, will re-project the current
sub-network, creating pairs of Character nodes if they are con-
nected to the same topic. The edge list behaves analogously to the
node list; items are sorted based on the link weights, and pairs of
node attributes can be selected as constraints, i.e., filter predicates.

6. Applicability

Orchard’s design facilitates domain-agnostic, casual exploratory
workflows of multivariate heterogeneous networks. To demonstrate
its broad applicability, we tested Orchard on a number different
datasets, ranging from politics, social media, to sports and cooking.

In this section, we briefly highlight three exploration examples and
detail the steps of a fictional usage scenario using a movie dataset
(also depicted in the supplementary video).

6.1. Usage Scenarios

Given a dataset containing political lobbying information of the
city of Chicago [chi19], our users found answers to questions such
as: who are prolific or unsuccessful congress members? Who do
they work with? What are common topics in the bills they endorse?
Who endorses similar bills? Is there bias in different committees?

Using “likes”-data from Facebook [RDSS18], we set out to en-
able users to explore how different artists and public figures relate
to companies, food, sport and TV shows. We annotated the data
with additional information through public knowledge graph APIs.
For example, we added descriptions such as singer/songwriter for
Taylor Swift or Fast-Food company for McDonald’s. Browsing this
dataset, users were able to quickly identify unexpected and enter-
taining commonalities between celebrities.

Finally, from a publicly available soccer dataset [Mat16] we ex-
tracted information about entities such as players, matches, leagues,
and teams. Our users were interested in answering questions such
as: which players have played against each other most frequently?
How many teams have they played for? Have these players ever
played on the same team? Which leagues transfer most players
among each other?
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Figure 5: Different views in Orchard. (A) Keyword search with result listing; (B) The context menu of a pivot node in the pivot trail; (C) An
example of customizable detail view for a specific node, in this case the Wikipedia page of an actor; (D,E) Shows an example of a reflective
pivot: swiping from Character to Character projects a subset of network nodes shown in (D) to a homogeneous Character ↔
Character network (E). The result of this operation is a list showing a selected attribute (character name) of pairs of nodes (E). Each pair
shares one or more linked nodes of a selected type (Film in this case). Selecting a pair of nodes in this view is equivalent to selecting both
nodes individually such that they can be used as facets for subsequent views (F).

6.2. Film Dataset Use Case

Emily - a film enthusiast - heard rumors about a new James Bond
film being released soon. Knowing that Daniel Craig will be star-
ring in the new Bond film, she is curious to learn more about other
Bond films, associated actors and actresses, their roles, and so on.
On her commute back from work Emily launches Orchard on her
mobile phone and selects a dataset containing information about
films and TV shows, such as title, release year, ratings, associated
people, characters, and topics (see Figure 3 for more details).

What film characters are named “James Bond”? Emily first uses
keyword search for “James Bond” and sees multiple potential facet
types in which to search for a match (Figure 5A). She decides

to match against characters named “James Bond,” and then find
all associated films. To do so, she selects the Character node
type from the search results (Figure 5A) and picks the exact match,
which also has the greatest number of associated Film node types
(Figure 4). To pivot to all films associated with the James Bond
character, she touches the Film tab on the right and swipes left to
reveal the results.

Which James Bond film has the highest rating? Emily changes
the aggregation strategy, setting it to Film.Rating. She then
sorts the results in descending order by tapping the sort icon next
to the aggregate arrow next to the aggregation strategy.
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What topics are associated with James Bond films? Curious
about the topics associated with any of these films, she swipes left
from the Topic tab. While scrolling through the list of James Bond
film topics, she finds that there are three different kinds of “Aston
Martin” topics, with 1, 2, and 1 linked films, respectively (Figure
5B). But how many of them are James Bond films? She swipes left
from the Film tab to see all films associated with these topics. She
then taps the link icon next to the prior “James Bond” Charac-
ter selection to add this facet to the current filter. As a result, all
non-Bond films are removed from the results list.

Which actors played James Bond in these films? Emily swipes
left again from Person to get a list of actors. She knows Pierce
Brosnan, Roger Moore, and Sean Connery, but who is George
Lazenby? To find out she taps on the “Details” button at the bot-
tom, which takes her to a detail view, in this case George Lazenby’s
Wikipedia page (Figure 5C).

Which Bond characters frequently appear together? Emily goes
back to the previous view by swiping right, and then swipes left
from Character to see all characters associated with Bond films
(Figure 5D). To learn which of these characters frequently co-occur
in the same film, she swipes left from Character again to project
the current heterogeneous sub-network (Character ↔ Film)
to a homogeneous network (Character ↔ Character). She
finds that James Bond and Blofeld are the most frequently occur-
ring pair, co-occurring in three different Bond films (Figure 5F).

7. Evaluation

To assess the utility of Orchard, to learn how quickly users are able
to grasp how to formulate common network queries, and to uncover
potential usability issues in Orchard, we conducted a lab study with
12 participants (4 females). All participants were graduate students
and all except one reported to be at least “slightly interested” in
films and TV shows.

7.1. Dataset and Tasks

We designed our study based on similar experiments carried out in
prior work [ZCCB13]. As most people have at least some familiar-
ity with films or TV shows, we decided to create a custom movie
dataset containing data from IMDB (www.imdb.com/interfaces)
joined with with topics extracted using our own algorithms from
film plots in the CMU Movie Summary Corpus [BOS13]. We then
developed a series of tasks for evaluating Orchard. The tasks are in-
spired by Pretorious et al.’s task taxonomy for multivariate network
analysis [PPS14] which is based on work by Lee et al. [LPP∗06]
and Amar et al. [APS13]. We considered only those tasks that are
equally applicable to homogeneous and heterogeneous networks
alike (Table 2).

7.2. Procedure

We began with a five-minute demonstration of the features of Or-
chard by walking the participants through a scenario similar to the
introductory use case described in Section 6.2. The demonstration
included knowledge required to accomplish the eight tasks we cre-
ated for this evaluation. Following the introduction we handed the

ID User Study Task Low-Level Tasks

T1 In which year was the film “The Shawshank
Redemption” released”?

L1, L2

T2 Which people were involved with this film? L3, L7, L8

T3 Of the people involved with this film, who
contributed most to other films?

L4, L5, L6

T4 Of the people involved with this film, who
contributed to the most distinct genres?

L4, L5, L6

T5 How many writers contributed to the film? L6, L8

T6 Who were these writers? L3, L4, L5, L8

T7 Which other films have these writers worked
on together?

L3, L4, L5

T8 Which two people associated with this film
are the strongest collaborators?

L9, L10

Table 2: Eight tasks we asked used in our user study, and their
corresponding low-level tasks (shown in Table 1).

mobile phone over to the participants and asked them to repeat the
same or a similar sequence of steps. The participants were encour-
aged to ask questions during this initial phase. In the second part
of the study we instructed participants to complete eight tasks we
prepared (Table 2). They were given two minutes to solve each task
without any help. If they were not able to find an answer in two min-
utes, we showed them how to get to the solution. In the third part of
the study we asked participants to freely explore the dataset. Dur-
ing this process, participants were encouraged to think-aloud, i.e.,
to narrate their actions, intentions, and reactions. Finally, we gave
participants a questionnaire and conducted semi-structured inter-
views to collect their feedback. Each session lasted approximately
50 minutes.

7.3. Results

In the second part of the study the majority of our participants were
able to complete all eight tasks quickly (Figure 6), given that they
had only gone through approximately ten minutes of introduction
and training that covered a total of 14 operations to prepare them
for the tasks. More than a half (56.3%) of all tasks were completed
in less than 30 seconds, and 21.8% in less than 10 seconds. In
only 14.6% of all cases, participants exceeded the two-minute limit
and were offered assistance. In T1, for instance, some participants
struggled to find the keyword search or the button to get to the de-
tails of the selected film(s). In T3, some participants forgot how to
change the aggregation strategy to configure what is being shown in
the bar chart. However, once they found out they were able to com-
plete a similar task much faster (T4). A task of similar complexity
was T5, which required participants to use and configure three pivot
nodes, as well as the aggregation strategy. Out of all twelve partic-
ipants, only one was unable to correctly apply facets such that the
count of writers was restricted in the manner directed. Similarly,
only one participant needed assistance in T6 because he did not re-
member he could swipe left on person to see the people’s names
associated with a selected role. In T7, some participants forgot how
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Figure 6: Task completion time for each task.

to change the boolean operator from matching any selections, to
match all selections. Finally, most participants did not immediately
recall how to create pair-wise combinations, but were able to figure
it out in less than a minute.

In the third part of the study we asked participants to freely ex-
plore the dataset. We made the following key observations:

• Intuitive swiping: Participants were immediately comfortable
navigating back/forth by swiping left or right. Swiping on a re-
lated entity to pivot was reported to feel natural and intuitive.
• Long pivot trails: The number of nodes in a pivot trail during

exploration can grow rapidly. Various participants pointed out
that it would be helpful to be able to store intermediate results
by collapsing a (sub)-trail into a named pivot node.
• Difficulty in distinguishing between lateral pivoting and drill-

down filtering: Although most participants were able to under-
stand the semantics of Orchard quickly through trial-and-error,
we observed that it was not immediately obvious to participants
which facets were applied to the current view, i.e., how activating
links in the trail affect the result in the current view.
• Opportunity in exposing the computational path on demand:

While our query model hides the complexity of queries that in-
volve multiple hops, some participants mentioned that exposing
the computational path on demand would help users gain a better
understanding of the network’s topology.
• Configurable defaults: In some cases users would have preferred

different defaults (e.g., the default aggregation strategy per node
type, the order of node types in the swiper).

When completing a questionnaire of five questions using a 7-
point Likert scale (1: “Strongly disagree” to 7: “Strongly agree”;
Figure 7), despite the minimal training, most participants indicated
that Orchard was easy to learn and use (Q1 and Q2). Participants
also indicated that Orchard helped them find new and re-discover
previously known insights (Q3 and Q4), and that swiping aided
orientation while navigating through the network (Q5).

In addition, we overall received encouraging feedback: “Once I
got used to the defaults it started to become very intuitive.”; “I liked
the trails because it was very visual, you can think about everything
as a line, everything is like a chain.”; “Swiping to navigate felt very
intuitive.”; “Exploration was easy, you get where you want to.”; and
“I see this broadly applied to other datasets.”

Q1 Q2 Q3 Q4 Q5

Question / Statement

1

2

3

4

5

6

7

Strongly
agree

Strongly
disagree

Q1: The system was easy to learn
Q2: The system was easy to use
Q3: The system helped me find insights I didn't know about before
Q4: The system helped me confirm/re-discover things I knew before
Q5: Swiping left/right was helpful for orientation

Figure 7: Results of our post-study questionnaire.

8. Future Work

While we have received encouraging feedback, there are a num-
ber of intriguing opportunities for extensions and improvements.
Orchard currently supports on-demand network projections for any
pair of node types, for any sub-network. Although our prototype
shows weighted links for any combination of two nodes aggregates,
we believe that users would benefit from a tighter integration with
homogeneous projections. More specifically, Orchard could extract
entire groups of nodes from projected (sub-)networks, i.e., by com-
puting clusters/communities, connected components, etc. Homoge-
neous projections also open up new possibilities to add meta-data to
nodes that could be used for actions like sorting. For instance, users
could sort a list of nodes by common metrics used in network analy-
sis, such as degree- or betweenness centrality, rather than just an ag-
gregated facet value or facet count. However, blending-in concepts
from homogeneous networks in workflows for exploring heteroge-
neous networks also poses challenges: how can we better commu-
nicate what projected networks represent, and how can we convey
what complex networks metrics indicate in a way that non-expert
users can understand? These questions would be useful to pursue
in future design iterations.

9. Conclusion

We have presented Orchard, a mobile application that uses a novel
query model to facilitate a simple user interface design to explore
multivariate heterogeneous networks. Using our approach, minimal
user input is required to formulate common network queries. With
Orchard, users can fluidly navigate through multivariate heteroge-
neous networks, using gesture-based mechanisms to create facet
trails, to pivot to entities of interest, and to collect and apply facets
as part of an exploratory workflow. Given the ubiquity of infor-
mation networks and the encouraging feedback we received from
experts and lay users, we see great potential in providing a mobile
solution for casual browsing of richly associated datasets.
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