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Abstract—Multimodal interfaces that combine direct manipulation and natural language have shown great promise for data
visualization. Such multimodal interfaces allow people to stay in the flow of their visual exploration by leveraging the strengths of one
modality to complement the weaknesses of others. In this work, we introduce an approach that interweaves multimodal interaction
combining direct manipulation and natural language with flexible unit visualizations. We employ the proposed approach in a
proof-of-concept system, DataBreeze. Coupling pen, touch, and speech-based multimodal interaction with flexible unit visualizations,
DataBreeze allows people to create and interact with both systematically bound (e.g., scatterplots, unit column charts) and manually
customized views, enabling a novel visual data exploration experience. We describe our design process along with DataBreeze’s
interface and interactions, delineating specific aspects of the design that empower the synergistic use of multiple modalities. We also
present a preliminary user study with DataBreeze, highlighting the data exploration patterns that participants employed. Finally,
reflecting on our design process and preliminary user study, we discuss future research directions.
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1 INTRODUCTION

ecently, there has been increased interest within the
Rvisualization community to investigate new interaction
experiences, many emerging from non-traditional input de-
vices and modalities [1]], [2]], [3], [4], [5]. While initial efforts
focused on exploring the use of individual input modalities,
more recent efforts have begun to examine how multiple
forms of input can be combined together to support more
naturalistic interactions. Such multimodal interfaces offer
great potential for data visualization, allowing people to
stay in the flow of their visual exploration by leveraging
the strengths of one interaction modality to complement the
weaknesses of others [5]. A series of recent research projects
have investigated multimodal input for data visualization
and shown that supporting direct manipulation (DM) and
natural language (NL) input together can enhance the user
experience and improve system usability [6], 7], [8], [9].
However, these efforts have focused on exploring NL-
first interactions, using DM to overcome ambiguity in
NL [6], [7] or to refine the results of NL commands [8], [9].
While clearly valuable, these approaches impose a higher
reliance on NL, narrowing the possible space of interactions
and operations that one may perform. On the other hand,
work in the broader HCI community (e.g., [10], [11], [12],
[13], [14], [15]) has shown that multimodal interactions that
synergistically combine DM and NL can help design post-
WIMP interfaces where the “interface disappears,” enabling
people to naturally perform desired operations without
solely relying on conventional graphical widgets such as
menus and icons (or buttons) [16].
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Our goal in this research is to explore whether that same
synergy can be brought to data visualization. By combin-
ing DM and NL more deeply, can we create visualization
interfaces that allow people to interact with data more
fluidly and naturally? Furthermore, what types of visual
representations and interactive operations facilitate such a
synergistic interface? To address these research questions,
we introduce an approach that interweaves DM- and NL-
based multimodal interaction with a flexible visual representation
to enable a novel visual data exploration experience.

As an initial example, we focus on unit visualizations
as the underlying visual representation. Unit visualizations
are “visualizations that maintain the identity property of
its visual marks, i.e., where each visual mark is a unique
entity that is associated with a corresponding unique data
item” [17]. By representing individual data items as unique
visual marks, unit visualizations support both gaining an
overview of the data space as well as allowing for item-level
interactions, such as querying and filtering individual data
points [17], [18]. To help people construct mental models
of an information space, we allow them to freely position,
color, and order marks in unit visualizations. This freedom
allows people to create not only systematically bound views
(e.g., scatterplots, unit column charts), but also manually
customized views based on their external knowledge of the
data or subjective criteria. Such flexibility has been shown to
be valuable to analysts during sensemaking and exploratory
data analysis [19], [20].

We posit that interacting with individual marks in such
flexible unit visualizations is natural via DM, while opera-
tions on a group of marks (e.g., changing the properties of
points that satisfy given criteria) are better performed with
speech. Correspondingly, we employ multimodal interac-
tion that combines DM (through pen and touch) and NL
(through speech) to create and interact with both systemati-
cally bound and manually customized views.



We operationalize our proposed approach in a proof-
of-concept visualization system, DataBreeze. With each data
item as a circle mark, DataBreeze initially presents the entire
dataset as a cluster in a circular shape. People can then
create and interact with desired views using pen, touch, and
speech. Our motivating usage scenario exemplifies how the
combination of flexible unit visualizations and multimodal
interaction in DataBreeze supports free-form visual data ex-
ploration. To assess our design and understand how people
employ the proposed approach, we conducted a prelimi-
nary user study where six participants used DataBreeze to
explore a U.S. colleges dataset to shortlist ones of personal
interest. We observed that participants inspected the data in
novel ways, adopting varying data exploration patterns. Fi-
nally, reflecting on our design process and preliminary user
study, we discuss potential directions for future research.

In summary, the primary contributions of this paper are:

¢ We introduce an approach that interweaves multimodal
interaction combining DM (through pen and touch) and
NL (through speech) with flexible unit visualizations to
facilitate a novel visual data exploration experience.

o We present DataBreeze, a proof-of-concept system real-
izing our proposed approach. We discuss our iterative
design process as well as specific aspects of the system
interface and interaction that empower synergistic use of
the different modalities.

e We report findings from a preliminary user study
with DataBreeze, highlighting the use of different input
modalities and the different data exploration patterns
that participants employed.

2 RELATED WORK
2.1 Pen and Touch Interaction for Data Visualization

A large body of work has investigated the use of pen and
touch interaction to design post-WIMP visualization inter-
faces. While some of these efforts have explored pen-only or
touch-only interaction with visualization systems (e.g., [21],
[22], 1231, [24], [25], [26]), others have also demonstrated
how bimanual interaction combining pen and touch can
lead to novel or enhanced interaction experiences (e.g., [27],
(28], [29], [30I, [31], [32], [33], [34])-

Frisch et al. [27]], [28] investigated how people use pen
and touch to support both structural editing and freehand
sketching to edit node-link diagrams. In addition to eliciting
gestures, they also highlight interaction design challenges
to consider when combining pen and touch input. Sketch-
Story [29] demonstrates how free-form sketching with a pen
coupled with simple touch interactions can be leveraged
to create engaging data-driven presentations. Panoramic-
Data [32] and SketchInsight [30] show how a combination
of pen and touch can enable more naturalistic data explo-
ration on an infinite canvas. As a more recent example, Ac-
tivelnk [34] shows how pen and touch can support seamless
switching between data exploration and externalization to
facilitate sensemaking. Although our work also supports
pen- and touch-based input for visual data exploration,
our focus is not on designing new gestures that leverage
pen and touch. Instead, we place more emphasis on ex-
ploring multimodal interactions that combine pen, touch,
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and speech, while taking into account the underlying visual
representation of the data.

2.2 Natural Language-Based Visualization Systems

A range of commercial (e.g., [35], [36], [37]) and research-
oriented (e.g., [o], 7], [8], [9], [38], [39], [40], [41], [42])
systems have investigated the use of NL input for data
visualization. For instance, Cox et al. [38] demonstrated how
explicit NL commands and dialogue can be used to specify
visualizations. In addition to NL, their system supports
DM interaction (e.g., selection) with specified visualizations.
Articulate [39] maps user queries to tasks and uses these
tasks in combination with data attributes to generate visual-
izations corresponding to those queries. DataTone [6] illus-
trates how NL queries can be ambiguous when specifying
visualizations and presents a mixed-initiative interface to re-
solve these ambiguities through GUI widgets. Alternatively,
systems like Eviza [7]] and Evizeon [41] have placed empha-
sis on conversational interaction, showcasing how NL can
help people preserve a visual analytic flow. Other recent
multimodal systems including Orko [8] and Valletto [9] also
demonstrate how touch and speech can be used for visual
data exploration. While Orko [8] illustrates how multimodal
interaction can aid visual exploration of network data using
node-link diagrams, Valletto [9] highlights how one can use
speech to create a visualization and then refine it (e.g., rotate,
change mark types) using touch gestures.

As part of our work, we also support NL-based in-
teraction, building upon current techniques for resolving
ambiguity [6], [7] and supporting pragmatics [8], [41], [42].
Advancing the line of research on multimodal visualiza-
tion systems supporting NL input, we examine the use of
an additional input modality (pen) with a more general
category of visual representations (unit visualizations). In
doing so, we explore additional types of multimodal interac-
tions for a wide range of general interactive visual analysis
tasks [43] including view specification (e.g., changing axes,
ordering), view manipulation (e.g., explicitly coloring or
moving points), and externalization of one’s exploration
process (e.g., inking, labeling).

2.3 Unit Visualizations with Naturalistic Interactions

We chose unit visualizations as an initial example because
they have frequently been used as visual representations for
data exploration in systems that support more naturalistic
forms of input (e.g., [25]], [26], [44], [45], [46], [47]). For exam-
ple, Rzeszotarski and Kittur presented Kinetica [25], a tablet-
based visualization tool for exploring multivariate data.
They described how multi-touch gestures coupled with
physics-based affordances can let people fluidly perform
operations such as specifying axes and filtering. They also
discussed how such naturalistic interactions with unit visu-
alizations help people build rich mental models of an infor-
mation space by keeping data salient and enabling tracking
of data points during exploration. With ScatterTouch [44],
Heilig et al. illustrated how simple multi-touch gestures
can be leveraged to interactively create focus regions in a
scatterplot, supporting co-located data exploration. Sadana
and Stasko [26] presented a tablet-based visualization sys-
tem, illustrating how multi-touch gestures can be used to



perform various operations with scatterplots. Dai et al. [45]
implemented a version of the Dust & Magnet technique [48]]
on a large touch display, leveraging its multi-touch capa-
bilities. It extended the original technique by allowing the
simultaneous manipulation of multiple magnets, enabling
more expressive and fine-tuned interaction.

While we build upon the common notion of unit visual-
izations, we investigate a variant that affords more flexibility
in its specification and manipulation. We illustrate how
coupling this variant with multimodal interaction enables
a novel free-form visual data exploration experience.

3 SYNERGISTIC COUPLING OF FLEXIBLE UNIT VI-
SUALIZATIONS AND MULTIMODAL INTERACTION

By representing individual data cases as unique visual
marks, unit visualizations allow people to specify views
with different levels of customization. For instance, a 2D
scatterplot is an example of a systematically bound view,
where the position of each visual mark is strictly bound
to two data attributes (e.g., Figure [IA). Alternatively, by
explicitly changing the properties (e.g., position, color) of
marks, one can create a manually customized view, where not
all points in the view are bound to the same set of data
attributes (e.g., Figure ). To allow users to create both
systematically bound and manually customized views, we
propose the notion of flexible unit visualizations.

Similar to flexible linked axes [49], flexible unit visualiza-
tions could be especially powerful during more open-ended
data exploration. For example, users could apply well-
known unit visualization layouts (e.g., scatterplots, unit
column charts) to correlate and compare values. Once they
identify a set of points of their interest or have a specific ex-
ploration criteria in mind, users could then explicitly move
points out from the scatterplot into separate groups, color-
ing these groups to create a customized view that best fits
their mental model (e.g., Figure[IB). Furthermore, the ability
to spatially organize data and create virtual workspaces can
also aid externalization during the sensemaking process,
especially in the initial, exploratory phases [20], [50].

Such flexible data exploration is difficult with exist-
ing unit visualization tools that support interaction only
through DM and control panels [18], [25], [26], [51], [52],
[53]]. For example, SandDance [18] only allows systematic
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(A) Systematically Bound View (B) Manually Customized View

Fig. 1. Flexibility afforded by unit visualizations. Both visualizations are
displaying a U.S. colleges dataset. (A) A standard systematically bound
scatterplot showing the relationship between Average Cost and Median
Debt. (B) A manually customized view having a scatterplot (which is still
bound to Average Cost and Median Debt) and two groups of preferred
and potential colleges created by explicitly moving and coloring points
from the initial scatterplot.

3

specification: the changes to the view need to be specified
through menus, not allowing users to manipulate individual
data points to adjust the view. Alternatively, while other
systems such as ForceSPIRE [51]] and VisExemplar [52] sup-
port direct interaction with individual data points, changes
resulting from this interaction are propagated to all data
points, ultimately resulting in a systematically bound view.
For example, juxtaposing two points in ForceSPIRE recom-
putes the force-directed layout and repositioning points in
VisExemplar creates a new scatterplot.

In general, relying solely on DM and control panels for
interaction with a unit visualization can be problematic: the
user interface can be overly complex when incorporating
all of the desired actions and user interaction can be tedious
for creating manually customized views (e.g., moving points
that are not spatially clustered). On the other hand, the com-
plementary strengths of DM and NL make a combination of
the two a potentially effective solution for this challenge.
The synergistic use of DM and NL when interacting with
flexible unit visualizations could allow users to create both
systematically bound and manually customized views, also
enabling seamless switching between the views. Specifically,
the precision and control afforded by DM can allow peo-
ple to make fine-tuned, customized changes, whereas the
ability of NL to augment systematic actions can help them
overcome the repetition that accompanies DM.

3.1 Motivating Scenario:
among US Colleges

Identifying Preferences

To illustrate how multimodal interaction with flexible unit
visualizations can facilitate visual data exploration, we de-
scribe a usage scenario. Imagine Sarah, a parent who is iden-
tifying colleges her daughter might want to apply to. Sarah
downloads a dataset of the top 100 schoolsﬂ in the U.S. from
a popular college ranking website. The dataset contains 14
attributes for each college including both categorical (e.g.,
Region, Locale) and quantitative (e.g., SAT Average, Average
Cost) attributes. For consistency, we use this dataset in our
examples throughout the paper.

Getting an overview from systematically bound views.
The system initially shows all points clustered at the center
of the screen. To learn more about the available attributes,
Sarah taps on the different attributes in the attribute sum-
mary panel (Figure 2JA). Looking at the Region attribute,
Sarah decides to categorize colleges by their regions. To do
this, she swipes from left-to-right 6 on the canvas and says
“Region.” Inferring the specification of an axis through the
swipe gesture and identifying the attribute via speech, the
system creates a column chart grouping colleges by their
regions (Figure 2B). Although this chart gives her a good
overview, Sarah finds it difficult to compare the different
regions because the placement of regions does not visually
correspond to their geographic locations.

Contextualizing the data space with customized views.
Sarah decides to adjust the view so the points are positioned
similar to how they look on a map of the U.S. To do this, she

1. We describe the scenario with a small set of 100 points only to
improve the readability of figures. Our approach scales to larger data
sets as illustrated in the supplementary video.
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Fig. 2. Scenes illustrating the usage scenario of exploring colleges in the U.S. Sub-figure captions summarize the system states.

starts by saying “Move the colleges in the Far West to the top
left corner.” This moves colleges in the Far West region to
the top left corner of the canvas (Figure P2IC). The ¥ icon
indicates that Sarah explicitly moved the colleges and their
positions are no longer bound to the X-axis. To keep track of
the different regions, Sarah says “Color by region”—applying
a global color mapping to all points. She then continues
to reposition other points through a series of speech-only
(e.g., “Move the New England schools to the top right corner”)
and multimodal utterances (e.g., % + “Bring the Great Lakes

schools here,” {m + “Brown and gray points here”). This results
in a view that combines custom positioning of the colleges
with the systematic color mapping based on the Region
attribute (Figure 2D).

Adding localized mappings for detailed exploration. Cu-
rious about the competitiveness of schools in the different
regions, Sarah decides to organize the schools further by
their Admission Rates. She starts from the Far West schools:
after selecting the schools by drawing a lasso . S\ around
them, Sarah says “Order by admission rate.” The system, in
response, re-orders the selected Far West schools by their ad-
mission rates (in an ascending order). Because the position
of the points is now determined by an attribute value, the
system removes the X icon from the re-ordered points. Sarah
repeats this select-and-order sequence for other regions
by selecting groups of points and saying commands like
“repeat” and “these too.” Inferring from her previous com-
mands, the system re-orders the colleges by their admission
rates, leading to the view shown in Figure 2E.
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Fig. 3. The system’s interface as Sarah concludes her exploration: (A) Side panel with (from top to bottom) the attribute summary container, legends
for global coloring and sizing attributes, annotation options, and a virtual bin for filtered points; (B) Speech input and feedback row; (C) Main canvas.

Here, Sarah is using the brush tool to draw a custom color legend.

Adding annotations and global mappings to switch back
to overview-level exploration. To externalize her mental
mapping of the data space on the canvas, Sarah draws a
rough outline around the points using the brush tool ¢f to
make the view look like a map of the U.S. As they might
provide better career opportunities in the future, Sarah is
more interested in schools in larger localities. To see the
types of locations the schools are in, she says “Color by locale”
and scans the updated chart. Noticing a lot of schools are
in remote locations or small towns, Sarah filters the view
by saying “Remove schools that are not in large cities or large
suburbs.” This removes 47 points from the canvas. Next, to
get a sense of the cost to attend each college, Sarah issues
the command “Size by average cost” and notices that except
for some colleges in the Great Lakes and Rocky Mountains,
most colleges are expensive and potentially beyond their
budget. To filter colleges further, she says “Remove schools
with an average cost of over 30,000,” leaving only 17 colleges
on the canvas (Figure ).

Combining global and local operations for drill-down.
Sarah taps on points individually to see their details and
explores the colleges from different perspectives by iter-
atively assigning different attributes to the position, size,
and color of points. To enable better comparison of schools
within a geographic region, Sarah also creates local views
by mapping attributes to the positions of subsets of points
(Figure [3), inspecting the individual groups. Based on this
inspection, Sarah decides that she does not want to consider
the two colleges in the ‘Outlying Areas” and removes them.

Externalizing custom mappings. Inspecting the remaining
15 schools, Sarah identifies four schools that are her top
picks, six schools that she would strongly consider, and five
schools that she needs to read more about. To externalize
this mental ranking, Sarah selects the four schools that are
her top choices and says “Add labels and color them blue”
to show their names and change their color. Sarah then
selects the six colleges that she would strongly consider

and says “Color these orange,” and selects the remaining five
schools and says “Pink.” Sarah again activates the brush tool
and draws a legend to note her color choices (Figure [B).
Concluding her exploration, Sarah sends this view via an
email to herself to discuss it with her family members.

3.2 Design Process and Goals

To create a system that supports the illustrated style of
visual data exploration, we followed an iterative design
process that helped us identify and refine a set of design
goals we needed to accomplish. Below, we describe this
design process and resulting design goals.

We first define a few key terms we use throughout this
paper. We use the term command to refer to any type of
NL utterance such as a query, comment, or question. By
an operation, we refer to actions like selection, changing
encodings, coloring points, etc. Operations typically require
parameters (e.g., attributes, color names, data values) and
operate on one or more targets (e.g., all points on the canvas,
selected points, points meeting a specific data criteria).

3.2.1 Design Process

As a test bed, we initially implemented a basic version of a
pen-, touch-, and speech-based multimodal unit visualiza-
tion tool. The tool supported a minimal set of operations
(e.g., assign X/Y axes, change color and size, filter) and
interactions (e.g., dragging to move points, drawing a lasso
for selection, speech commands for individual operations).
We implemented the system on an 84” Microsoft Surface
Hub (Figure {4) to support scalability (in terms of number
of points along with the ability to interact with individual
points), as well as to provide the freedom to spatially
organize the view.

We iterated on the tool’s design and implementation
across six design sessions (each between 30-90 minutes)
among ourselves and other graduate students. In these ses-
sions, we investigated interactions during open-ended tasks



Fig. 4. DataBreeze running on an 84” Microsoft Surface Hub with an
external microphone placed on top of the display to record speech input.

(e.g., shortlist a set of startups to invest in, shortlist a set
of colleges for your child or younger sibling). These design
sessions allowed us to critically reflect on the design, get
early feedback on the interactions (e.g., pen/touch gestures,
grammar of spoken commands), and identify operations
that we needed to support. Specifically for the pen/touch
gestures, due to a lack of consensus during the design
sessions, we additionally conducted four informal elicita-
tion sessions with graduate students, observing how they
performed actions such as selecting and moving points,
invoking and interacting with context menus, etc.

3.2.2 Design Goals

We considered several factors for developing a multimodal
system supporting flexible unit visualizations (e.g., How
should the system integrate input from multiple modalities?
Should changes explicitly made to a subset of points be
propagated to all points in the view?). Below we list the
goals that we initially had in mind at the start of the project
( ) as well as the ones we incrementally derived based
on the observations during the design sessions (DG5-8).
While these goals are primarily applicable to multimodal
interfaces supporting flexible unit visualizations, some of
them ( , DG6, DG7) are also generally applicable to
DM- and NL-based multimodal visualization systems.

Support both systematic binding and manual cus-
tomization. The premise of this work is that allowing people
to manually customize systematically bound visualizations
can aid data exploration, offering high flexibility. To enable
this manual customization, the system should allow users to
specify visualizations similar to current tools (e.g., assign-
ing X/Y-axes attributes to create a scatterplot), while still
supporting data item- or subset-level manipulation (e.g.,
dragging points out of a scatterplot to create a customized
group, changing the color of specific points).

Support various multimodal input patterns. Prior re-
search on multimodal interfaces has shown that although a
system supports multiple modalities, people may choose to
interact using a single modality and not combine inputs [54].
Furthermore, even when using multiple modalities, people
may not use them simultaneously and instead combine

6

them sequentially (e.g., select a set of points with touch,
pause, and then issue a spoken command) [54], [55]. Hence,
the system should support unimodal input as well as both
sequential and simultaneous integration of modalities.

Leverage simple pen/touch gestures. While
pen/touch input can be highly expressive, complex gestures
involving multiple fingers or bimanual interaction can be
difficult to learn and discover [56]. These challenges are
further amplified with the addition of a third modality in
the form of speech. Therefore, the system should leverage
simple and familiar pen/touch interactions that are easy to
learn while still supporting the required set of operations.

Provide instruction and feedback for speech in-
put. Lack of instruction (knowing what can be said) and
feedback (understanding what the system did in response
to a command) are well-known challenges with NL inter-
action [57]], [58], [59], [60]. This challenge is amplified in
multimodal interfaces where the linguistic structure of com-
mands may differ when users interact multimodally [54].
Hence, the system should assist discovery and learning of
the supported range of speech commands. Furthermore, the
system should make users aware of the actions it took in
response to speech commands—giving users the option to
revert or correct them.

DGS5. Support both global and local changes. We observed
that participants wanted to perform operations at both a
global (e.g., creating a scatterplot using all data points)
and a local level (e.g., selecting a subset of points within a
scatterplot to form an ordered group). Therefore, to support
incremental data exploration and smoother transitions be-
tween systematically bound and customized views ( ),
the system should let users perform operations on all points
on the canvas (global operations) or on a subset of data
items (local operations). However, local changes may con-
flict with previously applied global mappings (e.g., moving
points may break a globally specified position mapping). To
overcome this, we initially removed the global mapping in
case of conflicting local changes (e.g., removing the global X-
axis scale if a set of points are explicitly moved). During the
design sessions, however, we observed that participants pre-
ferred that visual elements of the previously applied global
changes be preserved even when conflicting local changes
are made. We found that this helped participants contex-
tualize changes and continue their exploration. Hence, the
system should try to preserve context for local changes and
provide visual cues to differentiate between local and global
mappings. For instance, in Figure PIC, the Region scale is
shown on the global X-axis even though a subset of the
points are moved out. Furthermore, the ¥ icons on the
moved points indicate that the points are not bound to the
global view.

DG6. Support equivalence between pen and touch. Fol-
lowing Hinckley et al.’s guideline of “pen writes, touch manip-
ulates,” [61] we initially applied a division of labor tactic sep-
arating the roles of pen and touch: we let people draw lassos
and select points using the pen, while moving the points
with a finger. During the design sessions, however, we
observed that participants frequently confused the role of
pen and touch, often trying to use the two interchangeably



(e.g., drag points with a pen, select points with a finger).
This adversely affected the system’s usability, suggesting
that the benefits of greater expressiveness through separated
roles was not worth the resulting confusion it caused. Thus,
when semantically meaningful differences are missing be-
tween pen and touch interaction, the system should support
equivalent and consistent operations between the two.

DG7. Support implicit and explicit triggering of speech.
While we supported unimodal, sequential, and simultane-
ous integration of modalities in our initial prototypes ( ),
similar to prior systems [8]], [9], users had to explicitly
trigger speech input using a “listen” button or a wake-
word. However, we observed that this impeded multimodal
interaction often resulting in participants saying a command
after performing a gesture only to realize that the system
was not listening. Therefore, to facilitate more seamless
multimodal interaction, the system should provide both
explicit and implicit speech activation techniques.

DGS8. Support externalization of custom mappings. During
the design sessions, participants created custom mappings
( ) fitting their mental models by making local changes
to the view (DGS5). To let people externalize their custom
mappings (e.g., adding labels for “virtual bins” or drawing
custom legends as in Figures[IB and [), the system should
support basic inking features.

4 DATABREEZE

With the design goals listed above in mind, we developed
DataBreeze—a multimodal system that facilitates visual
data exploration by supporting constructing and interacting
with flexible unit visualizations. Table [1| illustrates opera-
tions currently supported in DataBreeze that were derived
and refined based on the aforementioned design sessions.

4.1 Pen & Touch Interaction

DataBreeze supports three familiar gestures (tap, long press,
and drag) ( ) that can be performed on the canvas or on
a data point (Table [2). To support externalization of custom
mappings (DG8), DataBreeze also supports drawing using
a brush tool. If the brush tool is active, dragging the pen on
the canvas renders ink strokes. Otherwise, pen and touch
can be used interchangeably (DG6). Akin to previous pen-
and touch-based visualization tools [46], [62]], DataBreeze
employs radial context menus (Figure [5) with which people
can perform operations.

4.2 Speech Interaction

DataBreeze allows the use of speech unimodally or as part
of multimodal interactions to perform the supported opera-
tions ( ). Table[T|highlights some examples of supported
NL-only and multimodal NL commands.

4.2.1 Triggering Speech Input (DG7)

DataBreeze starts listening or recording user utterances in
response to one of five user actions: 1) tapping the micro-
phone icon (¥), 2) double-tapping on the canvas (similar to
knocking on a door), 3) long pressing on the canvas or a data
point with a finger or pen, 4) selecting one or more points

Selection Position

Bruth) Update Glyph Summarize
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Lab,.@ ” @ome,
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(B) Context menu for local operations

Active Tool

Update Glyph .:
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® Position
@Ied

(A) Context menu for global operations

Fig. 5. Context menus for pen/touch interaction. (A) A global menu
is invoked by long pressing on the canvas background. The user is
switching to the brush tool. (B) A local menu is invoked by long pressing
on selected data points. The user is filtering out the selected points.

by drawing a lasso, or 5) swiping horizontally or vertically
on the canvas to specify an axis. The first two triggering
techniques are explicit and allow users to initiate speech
input on-demand. The latter three are more implicit trigger-
ing techniques to support smoother multimodal interaction
where the system starts listening based on the user’s pen
or touch actions. Whenever the system is listening, the
microphone icon and the input box flash red (&).

4.2.2 Interpreting Speech Commands

General command interpretation strategy. We use a combi-
nation of a template- and lexicon-based parser to interpret
speech. DataBreeze identifies the operations, targets, and
parameters of the spoken command by comparing the input
to predefined command phrasing templates (e.g., Size by
[attribute]) compiled from the initial design sessions. If the
input does not match a template, the system tokenizes the
command string and compares the tokens to the system
lexicon to infer the operations, targets, and parameters.
The system lexicon contains keywords/phrases mapping to
the different operations (e.g., ‘order,” ‘color,” ‘remove’) and
parameter values (e.g., attribute names and values, color
names, canvas regions like ‘top” and ‘right’).

Consider the example command “Remove all private
schools with an average cost of more than 30,000” that does
not match a predefined phrasing template. To interpret this
command, the system first removes all stopwords from
the input command. Next, the system derives all N-grams
from the string and compares the N-grams to the avail-
able lexicon using the cosine similarity and the Wu-Palmer
similarity score [63]]. This comparison results in the system
matching the N-gram “private schools” to the attribute-value
pair Control=Private and “average cost more than 30,000” to
the attribute-value pair Average Cost>30,000. Furthermore,
using the word “Remove”, the system also infers that the user
is referring to the filter operation. Combining the identified
operation and attribute-value pairs, the system removes all
points having Control=Private and Average Cost>30,000.

Handling follow-up commands. In addition to fully-
specified speech commands, DataBreeze also supports
follow-up commands. We use conversational centering [64]
to infer follow-up commands, extending the model beyond
attribute-focused operations (e.g., filtering and changing
encodings [8], [41]) to support additional data item-level
operations introduced in DataBreeze (e.g., updating point



TABLE 1
Examples of supported operations and their corresponding speech and multimodal commands in DataBreeze

Operations

Sample Speech & Multimodal Commands

Assign X/Y-axes

Filter

Color/Size by attribute
Order by attribute
Move

Others

Put the public schools on the right; % + Bring the private schools here;
\@\ + Color red; Highlight Stanford; ‘ﬂ\ + Summarize; Add labels to all public schools;

Sort vertically by Admission Rate; 8 + SAT Average; Align horizontally by debt;

Remove schools in the Far West; Remove all points except the blue ones; v ﬁ* + Remove;

Color by region; . \ﬁ\ + Size these by expenditure; Color by locale and then size by average cost;
! ‘Q\ + Order by admission rate; Rearrange schools in the Southeast by their population;

+ Green here;

TABLE 2
Pen and touch interactions in DataBreeze. Except when the brush tool
is active, pen and touch can be used interchangeably.

Gesture Target Touch | Pen
Ta Canvas  Clears selections
p Point Shows tooltip with label
Long press Canvas  Select + Context menu for global operations
(>1 sec.) Point Select + Context menu for local operations
Draws a selection lasso | (w/ brush tool)

Canvas S . ink K

Dra or initiates X/Y axis Draws ink strokes

g Point Moves point(s)

colors, moving points, specifying local axes). At a high-level,
when it executes a command, the system creates a context
object that contains references to the operations, parameters,
and targets associated with the command. If the subsequent
command contains new operations, parameters, or targets,
this context object is refreshed. If not, the system tries to
identify the missing information using the context object
and updates it accordingly. Figure [l shows a sample follow-
up command sequence employing this strategy.

4.3 Multimodal Interaction

DataBreeze supports three types of multimodal commands
where operations, parameters, and targets are derived using
a combination of the pen/touch and speech input.

Point-and-speak. Figure shows an example of a multi-
modal point-and-speak command where the user points

on the canvas and says “Bring the Great Lakes schools here.”
In this case, the command contains references to the op-
eration (Move operation identified using the word “Bring”)
and target (points with Region=Great Lakes). However, the
parameter for the move operation (i.e., canvas location to
move points to) is provided via touch and is deictically
referenced using the word “here.” Thus, by considering both
the input command and how it was triggered, the system
moves the target points to the requested location.

Select-and-speak. With select-and-speak commands, users
can select a set of points and issue a speech command to
perform a local operation on those points. An example of
this is shown in Figure [2E where the user selects a set of
points \@\ and says “Order by admission rate.” In this case,
the system identifies the operation (Order) and parameter

% 9% 9%, 9% S5 9% 4 55 S T Dy O
§ Ny 25% 9% g o0 e S B S O
Control @ Average Faculty Salary ©

Population ©
Spread horizontally
by population

Fig. 6. An interaction sequence illustrating follow-up commands in
DataBreeze. The first command orders Mid-Atlantic schools by the
Control type (Public vs. Private). The subsequent command implicitly
refers to the Mid-Atlantic schools and the Order operation from the initial
command. The second follow-up command again implicitly refers to Mid-
Atlantic schools but specifies a different operation (Assigning X-axis).

M Private J Order MId-AIIantIcW WW
Public |/ schools by control faculty salary |

(Admission Rate) using the command, inferring the target
based on the preceding selection that triggered speech input.

Swipe-and-speak. With swipe-and-speak commands, users
can swipe horizontally or vertically on the canvas and say
an attribute name to position points by a specific attribute.
An example of this is shown in Figure [2B where the user
swipes from left-to-right (™ and says “region.” By detecting
the swipe gesture and the attribute Region, the system infers
that the user wants to arrange points horizontally by Region
and creates a unit column chart.

4.3.1 Handling Ambiguity and Failure (DG4)

To highlight ambiguity in commands, DataBreeze presents
ambiguity widgets [6]. They appear in the feedback row
and allow users to refine ambiguous values in the input
command using pen/touch. With the range of explicit,
follow-up, multimodal commands and their possible phras-
ing variations ( ), interpretation errors are practically
bound to occur during NL interaction. When input com-
mands are unintelligible (e.g., “Apply a legion shelter” instead
of “Apply a region filter”) due to speech recognition errors
or beyond the scope of supported commands (e.g., “Plot
colleges geographically”), DataBreeze notifies users about this
failure, asking them to try a different command.

A key difference between DataBreeze and existing visu-
alization NLIs lies in how the system handles partially com-
plete commands. Current systems either only notify users
about failure [8]], [41], apply system defaults [8]], [41], or list
all possible operations or values to choose from [8]]. Instead,
utilizing this failure as a teaching opportunity, DataBreeze
performs an additional processing step and checks the com-
mand for partial phrasings or keywords that might map to
potential operations. If it finds a match, the system generates



Remove public schools in the Far West

o
o

NOTE: I'm not very confident about that last command. Remember you can undo my last action.

Okay. Removed points with Control=Public; Region=Far West;

Now by region
Coloring points by Region

Color schools regionally

Trying to color points by an attribute? Looks like you're missing the attribute.
Try: Color by Locale

Fig. 7. Feedback messages shown after (A) successfully executing a
command, (B) executing a follow-up command, and (C) partially inter-
preting a command.

an explanation along with an exemplary command that
could help the user learn the correct phrasing. An example
of this is shown in Figure [/[C where the system suggests
the example command Color by Locale when it is unable
to interpret the user command “Color schools regionally.” In
this case, DataBreeze was able to determine the operation
using the keywords ‘Color by’ but was unable to detect the
attribute to color by (and thus randomly chose Locale as an
example: if there are multiple operations a partial command
may map to, the system selects one at random). By notify-
ing users about its actions and providing suggestions and
explanations when commands fail, DataBreeze attempts to
reduce the “black-box” effect of NL interaction [7], [65].

4.3.2 Command Feedback and Discovery ( )

When DataBreeze processes a spoken command, it updates
the feedback row to summarize the actions it performed in
response to the command. If the user command is success-
fully processed, the system states the operation along with
target or parameter values (e.g., Figure [7A). However, for
follow-up commands, because the system infers user intent
based on previous commands, there is a higher chance of
error. To highlight this, in addition to the action performed,
the system feedback reminds users about the undo feature
that allows reverting the most recent action (Figure [7B).

To preemptively make users aware of possible speech
commands and phrasings, DataBreeze employs an adaptive
command discovery approach [66], [67], suggesting com-
mands through tooltips when users long press on context
menu options (Figure [8). DataBreeze also suggests com-
mands post-hoc once an operation has been performed us-
ing pen/touch. To deliver these suggestions unobtrusively,
the system displays them above the canvas in the feedback
row. For example, if the user removes labels for all points
on the canvas using the context menu, the feedback row
displays the message ‘Q To remove all labels, you could also
2) Clear all labels.” Users can turn off the system suggestions
by tapping the & icon at the top right corner (Figure [3).

4.4 System Implementation and Architecture Overview

DataBreeze is implemented as a web-based application and
supports data files with numerical and categorical attributes
in the CSV format. The visualization is rendered using
D3.js [68]. All pen/touch inputs are collected as standard
JavaScript events and processed by custom event handlers.
DataBreeze uses the HTML5 webkit speech recognition for

Colo@

Fig. 8. A sample deictic speech command for coloring selected points is
shown on long pressing a context menu option.
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Fig. 9. DataBreeze System architecture highlighting the flow of infor-
mation between different components for the exemplary interaction of
coloring points by selecting them and saying “Color green.”

translating speech-to-text. At the start of each session, we
train the recognizer with the data attributes and values from
the input dataset as well as a list of system keywords (e.g.,
remove, summarize). While it still detects arbitrary speech,
this training helps improve the recognition accuracy for
the most relevant keywords in user commands. Translated
commands are processed using a custom interpreter imple-
mented in JavaScript.

Figure [J] gives an overview of the system architecture.
At a high-level, all user input is collected by the I/O Man-
ager which then propagates it to the Speech Interpreter or
the Pen/Iouch Handler depending on the input type. These
components individually process the input and send the re-
sponse with the required changes back to the I/O Manager
which updates the DataBreeze interface. For multimodal
commands where these components are individually unable
to process the input (e.g., the speech interpreter does not
detect the required parameters to execute an operation), the
extracted input details are passed to the Multimodal Fusion
Engine. This component then combines the information from
both input streams to determine the required system action
and passes it back as a response to the I/O Manager.

To combine different input streams, the fusion engine
uses a predefined set of mappings between operations (e.g.,
coloring, assigning axes), their relevant parameters (e.g.,
color names, data attributes), and targets (e.g. data points).
For the example shown in Figure [} the user selects a set of
nodes | S\ with the pen (which implicitly triggers speech)
and says “Color green.” Using the keywords in the input
command, the Speech Interpreter identifies that the operation



being referred to is Color and the color to be used is green
(the operation parameter). However, because the command
does not specify any criteria to select points (missing target
for the Color operation), the Fusion Engine also considers the
input from the Pen/Touch Handler. Detecting that a selection
(lasso) was performed, DataBreeze infers the target points
by considering the active selection state of points on the can-
vas. Upon detecting the selected points, the Fusion Engine
combines this information with the output from the Speech
Interpreter and updates the color of the selected points.

Compared to previous speech-based multimodal visu-
alization systems like Orko [8] which perform the fusion
temporally, the fusion engine in DataBreeze operates based
on the semantics of the system state (e.g., selections, ac-
tive filters) and the intended operation (e.g., creating axes,
moving). This allows using speech and pen/touch simulta-
neously or sequentially (starting with either modality). For
example, one can point ™ to a location on the canvas while
speaking a command, or point and lift the finger to think
about a command and then say it, both resulting in the same
action. DataBreeze also preserves gestures as part of the
context objects across multimodal commands. For instance,
if one swiped 6 and said “Region,” DataBreeze will set the
axis to Region. Now if the user issues “Locale” as the next
command, the fusion engine preserves the swipe gesture
in memory and repeats the axis specification operation but
with the new Locale attribute.

5 PRELIMINARY USER STUDY

We conducted a preliminary user study to gauge people’s
reactions to DataBreeze, and more specifically to observe: (1)
if and when people switch between systematically bound
and manually customized views during data exploration
and (2) the use of different modalities during data explo-
ration with flexible unit visualizations.

5.1 Participants and Experimental Setup

We recruited six participants (P1-P6; four females, two
males), aged 23 to 28. All participants were university
students and indicated their field of study as computer
science (P1), HCI (P2, P3, P5), visual art (P4), and cognitive
science (P6). In terms of prior visualization experience, two
participants (P1, P2) stated they had minimal experience
working with visualization tools, three (P3, P4, P5) said they
had worked with visualization tools on multiple occasions
but not on a regular basis, and one participant (P6) said she
was a frequent Tableau user. All participants were native En-
glish speakers and rated themselves as being moderately to
highly comfortable working with touch-, pen-, and speech-
based systems (e.g., on their iPads or Siri/Alexa). Par-
ticipants interacted with DataBreeze on Google’s Chrome
browser on an 84” Microsoft Surface Hub set to a 3840x2160
resolution with an external microphone to capture voice
commands (as illustrated in Figure [@). All sessions were
audio and video recorded.

5.2 Procedure

Participants were first given a brief introduction to
DataBreeze including the interface components, the inter-
actions they could perform with pen/touch, and how they
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could invoke speech (5 min). To avoid biasing participants
towards interacting in a particular way, we neither showed
examples of speech commands nor gave them an exhaustive
list of the available operations. Next, as “training,” we
directed participants to freely interact with DataBreeze so
they would be comfortable with the different interactions
(10 min). We used a dataset about cars for the introduction
and training phase. Participants were free to ask any ques-
tions they had regarding the interactions or system behavior
during the training phase.

Participants then performed an open-ended task with
the colleges dataset (with 500 U.S. colleges) in which they
were asked to explore the data to produce a list of col-
leges for their younger siblings to apply to (15-30 min).
Participants were free to leverage their external knowledge
of US. colleges as the shortlisting criteria. We did not
ask participants to think-aloud because it could result in
unintended recognition (due to the implicit speech trigger-
ing techniques) and also interrupt their workflow. We did,
however, ask participants to take screenshots whenever they
felt they identified a view that they would like to share with
their family members (e.g., for discussion). Furthermore, we
told participants to let us know whenever the system did not
behave as they expected.

The study session ended with a debriefing in which we
asked participants to provide feedback on their experience
working with the system (5-15 min). We asked a set of
standard questions across participants, but also seeded these
interviews with our observations during the session (e.g.,
always using a specific modality for an operation). Overall,
sessions lasted between 40-60 minutes and participants were
compensated with a $20 Amazon Gift Card for their time.

5.3 Results and Observations

All participants completed the task, identifying at least
ten colleges. Four participants identified multiple groups
of colleges based on different criteria (P1, P3, & P5: two
groups, P6: three groups). After identifying each group,
these participants took a screenshot and reset the tool to
start over. This resulted in 11 shortlisted groups of colleges
across the six participants. Below, we highlight key obser-
vations from the study, focusing on the participants’ data
exploration patterns afforded by the combination of flexible
unit visualizations and multimodal interaction.

5.3.1

We observed three high-level patterns that participants em-
ployed while exploring data with DataBreeze.

The most common pattern was participants starting with
a systematically bound view (SB), switching to a manually
customized view (MC), but later switching back-and-forth
between the two views one or more times (SB—MC+>SB).
We observed this pattern during five (out of 11) short-
lists identified across four sessions (P1, P2, P4, P6). For
example, P4 started with a scatterplot of Average Cost and
Median Earnings. As he inspected colleges, he switched
to a customized view where he removed points from the
scatterplot and spatially categorized them into two virtual
bins of “General” and “Field Specific” schools (SB—MC).
Once he had narrowed down on a subset of colleges and

Visual Data Exploration Patterns



refined his virtual bins by creating smaller, local scatterplots
within the bins. He then specified a global X-axis based
on Region (MC—SB), directly manipulating the resulting
view to order points in a custom manner within each region
(SB—MC). This seamless transition between systematically
bound and manually customized views was enabled by
DataBreeze’s support for global and local operations (DG5)
as well as multimodal interaction (e.g., selecting a set of
points and using swipe-and-speak to define a local axis,
or issuing the same command without selecting points to
create a global axis).

The second common pattern involved participants start-
ing with a systematically bound view, then switching to
a manually customized view and resorting to customized
views until the end of their exploration (SB—MC). We
observed this pattern during four shortlists across four ses-
sions (P1, P3, P5, P6). For example, P5 created a scatterplot
visualizing Admission Rate and Population, coloring points
by Locale. From this scatterplot, she selected a set of colleges
with lower Admission Rates and ordered them by Average
Cost. She continued to work with this subset of points creat-
ing new scatterplots with other attributes. However, while
she worked with these points, she preserved her original
scatterplot and would go back to it to explore a different set
of points. This illustrates an interesting example similar to
the one in Figure[IB, where the initial systematically bound
view and global mappings become a platform to facilitate
more localized exploration.

The last (i.e., least common) pattern comprised of par-
ticipants exploring data exclusively using systematically
bound views (SB). This pattern was employed during two
shortlists, once each by P3 and P6. They created a scatterplot
and iteratively refined it by filtering points or modifying
visual encodings until they identified a group of points that
were interesting to them. This exploration strategy strongly
aligns with Shneiderman’s information seeking mantra [69]
and is largely supported by shelf configuration and control
panel-based visualization tools today.

5.3.2 Multimodal Interaction Usage and Feedback

Participants performed a total of 164 key operations (e.g.,
assign X/Y axes, change color, filter) across all sessions.
As shown in Table (3} 37 (22%) of these interactions were
performed using speech alone (e.g., “Color by region”), 43
(27%) were performed using only pen/touch and context
menus (e.g., selecting points and using the context menu
to remove them), and 84 (51%) involved a combination of
pen/touch and speech input (e.g., select-and-speak, swipe-
and-speak). Besides the 121 speech commands that were
correctly recognized (37 speech-only + 84 multimodal), there
were seven misrecognized commands (0-3 commands per
session). Overall, regardless of their exploration strategy
or pattern, all participants leveraged both touch/pen and
speech (either unimodally or multimodally) to interact with
the system.

Participants preferred speech to perform operations
globally (e.g., color by attribute) but context menus to
perform operations locally (e.g., coloring specific points
red). When we asked participants about their choice to
use context menus over select-and-speak (e.g., ‘@s + “Re-
move”), participants said they felt a stronger sense of control
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TABLE 3
Summary of participants’ interactions with DataBreeze. Cells show the
number of occurrences of an interaction (rows) for each participant
(columns). Cells are colored column-wise from white (no interaction) to
dark blue (most frequent interaction) for each participant.

P1 P2 P3 P4 P5 P6

Context Menu 8 - 4 - 7

7 7 6 2 7 8

B 'EE NN
3 1 4

- 6 2

Total 27 29 19 20 40 29

Speech
Swipe-and-Speak
Point-and-Speak

Select-and-Speak

with menus especially because local operations involved
deletions or making fine-tuned changes that were better
suited for dynamic querying [70] afforded by menus (e.g.,
changing color of points using a color picker).

In general, participant feedback suggested that their
choice of interaction was primarily based on reducing the
time to perform an operation. For instance, regardless of
whether they were creating an axis for a subset of points
(local operation) or for all points on the canvas (global
operation), all participants used swipe-and-speak (e.g.,| W
+ “Admission Rate”) attributing this to being both natural
and fast. P4, for instance, said “especially because the system
was already listening to me when I swiped, it made more sense
to say the attribute name than go to a menu and choose an
attribute.” This comment also highlights the importance
of subtle aspects such as triggering techniques for speech
commands (DG7) during the design of multimodal systems.

6 DiscussiON AND FUTURE WORK

The iterative design process and the preliminary user study
helped us identify a number of key takeaways, raising
additional design questions and highlighting avenues for
future work. We discuss these points below.

6.1 Interweaving Interaction and Flexible Representa-
tion Techniques to Design Novel Tools and Experiences

DataBreeze’s flexibility stems from the fact that it inter-
weaves multimodal interaction combining DM and NL with
a particular visual representation (flexible unit visualiza-
tions) that provides suitable affordances for that style of
interaction. For instance, talking about the ability to drag
points out of a scatterplot during her interview, P5 said
“I really like that flexibility. Being able to drag and drop points
where you want mimics physical interaction like you would with
documents on our table.” This exemplifies how, in this case,
the directness of manipulation [71] afforded by pen and touch
naturally lent itself to participants expecting flexibility not
supported in a common visual representation (dragging
points in a scatterplot).

Another participant (P4) with a design background com-
pared his experience using DataBreeze to that of creating a
mood board with a physical art board. In this context, he
stated “The system was great for that [exploring data similar to



using an art board]. I could just quickly drag and pull things to
create groups and categories that made sense in my head.” Later,
referring to his frequent usage of operations like coloring or
filtering specific points through select-and-speech actions,
he said, “sometimes voice can be more of a novelty than a tool but
in this case, it felt definitely like a tool. Where, if I had to otherwise
keep going to some buttons and pressing them I would probably
have used them less.” Once again, such comments collectively
suggest that the combination of the affordances of the visual
representation and input/interaction techniques resulted in
DataBreeze supporting a workflow that is closer to how
people interact with objects in the real-world (in P4’s case,
with an art board).

Although DataBreeze is just one example of how this
may be accomplished, it illustrates the potential of novel
tools and experiences that can emerge by interweaving in-
teraction techniques and flexible representations, adjusting each
as necessary to enable a seamless user experience. While the
two themes of interaction and representation have individu-
ally received considerable attention in visualization research
today, far fewer examples have explored new tools and
experiences that emerge from their synergistic integration
(e.g., [25], [47]], [49], [72]). With interactive devices and
interfaces supporting alternative forms of input becoming
a more common platform for visualizations, a compelling
research opportunity lies in exploring visualization tools
and user experiences stemming from the combination of
naturalistic input/interaction techniques and more flexible
visual representations.

6.2 Leveraging Complementarity-based Multimodal In-
teraction

A key feature of DataBreeze differentiating it from previ-
ous NL-based multimodal visualization systems is its in-
creased support for complementarity-based multimodal inter-
action [73], where individual modalities are used to acquire
different chunks of information which are then merged
to enable a more sophisticated operation. For example, in
a swipe-and-speak action, the operation of specifying the
location and direction of an axis is specified through a
pen/touch gesture whereas the designation of which data
attribute to place on that axis is done through speech.
Participants frequently performed such interactions and
commented on them favorably. This was also reflected by
the high number (84/164) of multimodal interactions during
the user study. In fact, even participants who were initially
hesitant about multimodal interaction (P3, P4, P6) quickly
adapted to such interactions. For instance, P6 said “Gestures
typically in my mind aren’t combined with voice commands |[...]
but once I got used to it, it was great and saved a lot of time.” Re-
ferring to the swipe-and-speak action, P5 specifically noted
that she found complementarity-based multimodal interac-
tion to be most effective when there was a strong direct
mapping between an operation and the input modality. As
also highlighted earlier (DG7), an inherent consideration for
supporting complementarity-based multimodal interaction
was implicitly triggering speech input at the right time so
that participants can more seamlessly integrate their actions
across modalities. Along these lines, five out of the six par-
ticipants (except P2) commented favorably on the implicit
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triggering techniques stating it made interacting with the
system both fast and more natural.

This feedback suggests that if employed for the right
operations, complementarity-based multimodal interaction
can be a valuable feature in visualization systems by sup-
porting a more fluid, integrated interaction experience [74],
in turn, helping people preserve their workflow. Further-
more, spoken commands in complementarity-based interac-
tions are typically shorter and more focused (e.g., including
only parameter values like attribute names or operation
specific keywords like color, size, etc.). In addition to being
easier for users to speak, from a system standpoint, these
commands are generally easier to interpret [75]. With these
potential user- and system-centered benefits in mind, an
open area for future exploration lies in identifying opera-
tions and tasks that are best suited for complementarity-
based multimodal interaction, as well as the appropriate
interface support to mediate such interactions.

6.3 Complementing Open-ended Exploration with Tar-
geted Question Answering

With DataBreeze, we largely focused on examining how
interweaving flexible unit visualizations with multimodal
interaction can aid visual data exploration. Because one
may want to get data value summaries for subsets of
points, DataBreeze also supports generating visual sum-
maries through histograms. However, participants addition-
ally wanted to get more targeted information or details dur-
ing their exploration. These needs for details would often
stem from participants’ observations based on the view.
For example, after identifying a set of interesting schools,
P1 asked “What is the average Expenditure for these colleges?”
Similarly, noticing the high cost of schools in New England,
P3 asked “Which is the most expensive school in the Far West?”

While these questions could be answered by stating
the requested values and/or data cases, the fact that they
were asked in the context of a specific visual state makes
them semantically meaningful and interesting. Addressing
such scenarios, one promising direction for future work is
developing NL interpreters that are capable of answering
explicit (e.g., “Which is the most expensive public school?”)
and multimodal (e.g., S\ + “What is the average SAT
score for applying to these schools?”) data-driven questions.
In addition to computing the response, another challenge
is designing appropriate feedback mechanisms to present
these responses in the visual context that the question was
asked (e.g., showing a temporary annotation to indicate the
requested average value).

6.4 Providing Appropriate Default Behaviors

Implicit data grouping. Both during the design phase
and the preliminary study, participants often wanted to
operate on spatially co-located groups of points without
explicitly selecting points. Consider the scene in Figure 2.
After ordering the Far West schools, currently, one cannot
issue a command like “Reorder all groups” to order schools
from other regions. Instead, one has to individually select
points from other regions and order them. From a system
standpoint, supporting a command like “Reorder all groups”
would require implicitly determining what the groups are.



Such implicit grouping imposes additional questions re-
garding the implementation and interface design, however.
For instance, should points that are selected or moved
together be considered a group? Or should the system infer
groups based on the X/Y co-ordinates of points? Should
these implicitly determined groups be added as targets for
follow-up commands? Furthermore, how should the system
visually highlight implicit groups? As a first step, we allow
users to select points and tag them to form “virtual” groups
that can be accessed using a common tag. However, incor-
porating more nuanced methods to determine groups and
perform actions on them is an immediate area for potential
improvement in DataBreeze.

The default role of pen input. In response to initial confu-
sion regarding the unequal roles of pen and touch during
the design phase, DataBreeze largely treats pen and touch
interchangeably (i.e., both can be used to move or select
points) (DG6). Although DataBreeze also supports the use
of pen as an inking tool (DGS), its support for drawing,
annotations, and note-taking is limited compared to other
visualization tools that focus on bimanual interaction com-
bining pen and touch. These systems have shown the value
of using a pen as an inking or sketching tool for both visual-
ization authoring (e.g., [27], [28], [29], [46]) and sensemaking
(e.g., [34], [76]). Based on these systems, one approach is to
default the pen’s primary operation to inking (mimicking its
function in the real-world). However, if the pen is used to
ink, operations such as selections and specifying axes may
need to rely on other modalities. Correspondingly, one open
area for future research is to investigate how changing the
primary role of the pen affects the interaction and interface
design of a multimodal visualization system like DataBreeze
that supports touch and speech as alternative modalities.

6.5

An important aspect of the interface design was to provide
appropriate feedback in response to spoken commands
( ). Correspondingly, we reserved an exclusive region
in the interface for feedback directly under the speech input
box (Figure BB). Although the system presented different
types of feedback, even suggesting corrections when possi-
ble, during the user study, participants often failed to notice
the feedback. This was particularly problematic when there
were command phrasing related errors. Since participants
did not see the feedback, they ignored the system’s phras-
ing suggestions and instead hyperarticulated their initial
commands [77], resulting in the same error. Hence, an
open area for improvement in DataBreeze is to examine
alternative feedback techniques that are more noticeable yet
unobtrusive to the user’s workflow.

A related point to feedback is error recovery. Similar
to other speech-based mutlimodal systems (e.g., [78], [79]),
DataBreeze allows users to undo the most recent voice
command. Going forward, it is important to implement a
more complete undo stack, tackling associated challenges in
doing so (e.g., managing scope [80], handling errors in undo
command utterances [81]). With the flexibility of creating
custom views and making global versus local changes,
giving users the ability to backtrack multiple steps would
further enhance the overall usability and user experience.
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7 LIMITATIONS

Our observations in this paper are based on testing
DataBreeze on an 84” vertical display with up to about 1,200
data points. While the described interactions may work
across different display sizes, the fact that each mark needs
to be large enough (to be interacted with a finger) raises
concerns from a scalability standpoint. Thus, an important
next step is to investigate the scalability of the proposed
approach by testing it on different displays (e.g., tablets,
touch-enabled PCs) with varying dataset sizes.

Our goal in designing DataBreeze was to explore if
and how multimodal interaction along with flexible unit
visualizations can facilitate free-form data exploration. The
preliminary user study with six participants performing
an open-ended task helped us assess the overall usage
and feasibility of the proposed approach. However, our
study does not identify potential benefits of the proposed
approach compared to conventional systematically-bound
visualizations such as maps and scatterplots, and the possi-
ble cognitive challenges associated with creating and inter-
acting with flexible unit visualizations. Furthermore, while
our study helps validate system usability, it cannot replace
a more detailed qualitative study that investigates specific
interactions and the use of manually customized views over
the course of multiple tasks or sessions. Therefore, it is
important to conduct follow-up studies with systems like
DataBreeze, investigating multimodal interaction with flex-
ible representations to better understand the accompanying
cognitive, physical, and analytic benefits and challenges.

8 CONCLUSION

Through the design and implementation of DataBreeze,
we exemplify how interweaving DM- and NL-based multi-
modal interaction with flexible unit visualizations enables a
novel data exploration experience. Specifically, we discussed
how allowing people to multimodally create and interact
with both systematically bound and manually customized
views empowered them to freely explore the data and
update the visualization to reflect their mental models.

Our observations coupled with participant feedback
during the design sessions and a user study collectively
highlight promising areas for future research including: (1)
leveraging the complementary nature of pen, touch, and
speech to enable a fluid interaction experience during data
exploration, (2) facilitating targeted question answering dur-
ing open-ended visual data exploration, and (3) supporting
feedback and error recovery mechanisms for speech input
that are noticeable yet unobtrusive. Although DataBreeze
is only one example, it highlights exciting research oppor-
tunities and challenges in developing multimodal systems
facilitating more fluid and natural interaction with data. We
hope this work inspires the design and development of a
new generation of post-WIMP interfaces for data visualiza-
tion that empower our human perceptual, cognitive, and
manipulative abilities.
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