
CoCoGUM: Contextual Code Summarization with
Multi-Relational GNN on UMLs

Yanlin Wang
yanlwang@microsoft.com
Microsoft Research Asia

Lun Du
lun.du@microsoft.com
Microsoft Research Asia

Ensheng Shi∗
s1530129650@stu.xjtu.edu.cn
Xi’an Jiaotong University

Yuxuan Hu†
huyuxuan@emails.bjut.edu.cn

Beijing University of Technology

Shi Han
shihan@microsoft.com
Microsoft Research Asia

Dongmei Zhang
dongmeiz@microsoft.com
Microsoft Research Asia

ABSTRACT
Code summaries are short natural language (NL) descriptions of
code snippets that help developers better understand and main-
tain source code. Due to the pivotal role of code summaries in
software development and maintenance, there is a surge of works
on automatic code summarization to reduce the heavy burdens of
developers. However, contemporary approaches only leverage the
information within the boundary of the method being summarized
(i.e., local context), and ignore that using broader context could
assist with code summarization. In this paper, we explore two global
context information, namely intra-class and inter-class context in-
formation, and propose the model CoCoGUM: Contextual Code
Summarization with Multi-Relational Graph Neural Networks on
UMLs. CoCoGUM first incorporates class names as the intra-class
context, which is further fed to a Transformer-based sentence em-
beddingmodel to extract the class lexical embeddings. Then, relevant
Unified Modeling Language (UML) class diagrams are extracted
as inter-class context and we use a Multi-Relational Graph Neu-
ral Network (MR-GNN) to encode the class relational embeddings.
Class lexical embeddings and class relational embeddings, together
with the outputs from code token encoder and AST encoder, are
passed to the decoder armed with a two-level attention mechanism
to generate high-quality context-aware code summaries. We con-
duct extensive experiments to evaluate our approach and compare
it with other automatic code summarization models. The experi-
mental results show that CoCoGUM outperforms state-of-the-art
methods.

KEYWORDS
Source Code Summarization, Unified Modeling Language, Graph
Neural Network, Transformer

1 INTRODUCTION
Code summaries (i.e., code comments) are short natural language
descriptions of source code and an essential part of software devel-
opment and maintenance [1, 2]. It often takes developers plenty of
time to read and understand other people’s code. Good comments
can help developers quickly understand what a method does and
achieve higher degrees of program comprehension in terms of both
clarity and depth. But many developers are not used to writing

∗The contributions by Ensheng Shi have been conducted and completed during
his joint PhD program with Microsoft Research Asia.

†The contributions by Yuxuan Hu have been conducted and completed during
his internship at Microsoft Research Asia.

comments or the comments are mismatched, missing or outdated.
Therefore, it is desirable that source code can be automatically
summarized in natural language.

There is a surge of work on source code summarization in order
to enhance program comprehension and software maintenance [3].
Rule-based approaches rely on predefined rules or templates [4]
and thus are limited in the types of summaries that can be gener-
ated. Information Retrieval (IR) based approaches use similar code
snippets to select or synthesize a comment [5], and thus lack the
capability of learning semantic meanings from existing code. With
the accumulation of publicly available source code, data-driven ap-
proaches based on deep learning techniques have largely overtaken
traditional methods [3]. Inspired by the success of Neural Machine
Translation (NMT) [6], some researches have applied NMT models
for the code summarization task [7–10].

We have noticed that most previous code summarization tech-
niques [7–15] only leverage the information within the boundary
of the method being summarized (code sequence, AST, etc), which
means only local context has been used and this could be a limita-
tion. From the perspective of Object Oriented Programming (OOP),
a method typically defines an operation that can be conducted by its
enclosing class, applying to the class itself or against other classes.
The operation initiator/receptor classes (e.g., keywords in class
name) and their interactions may be mentioned in a good summary,
which is typically outside of the local context of a method. For ex-
ample, the word resource in the following method summary comes
from its enclosing class name Resource:

class Resource {
...
// check whether a resource is occupied
boolean isOccupied() { return ownerId >= 0; }

}

Take the following code snippet as another example, the word
compiler in the method summary comes from class Compilerwhich
the enclosing class Parser extends:

class Parser extends Compiler {
...

// add source code to the compiler
void addSource(String className, String

sourceCode) {
sourceCodes.put(className, new SourceCode(

className, sourceCode)); }
}

Based on such an insight, we argue that leveraging broader context
of a method would help better summarize the method.

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

In this paper, we proposeCoCoGUM:ContextualCode Summa-
rization with Multi-Relational Graph Neural Networks on UMLs. It
addresses the aforementioned limitations by exploring two global
contexts: intra-class level context and inter-class level context. For
the intra-class context, we aim to capture the ⟨method, class⟩ rela-
tionship by using class name information to enrich generated code
summaries. For the inter-class context, we choose the ⟨class, class⟩
relationship as the target where the Unified Modeling Language
(UML) class diagram∗ is a proper choice. Nodes in a UML represent
classes/interfaces and edges reflect the class-class relationship such
as extension, association, implementation, etc.

In our model design of CoCoGUM, in addition to the con-
ventional code token encoder and AST encoder as in other ap-
proaches [8–10, 15], we incorporate intra-class context by using
the class name representations learned from the Transformer-based
sentence embedding model [16]. This is used as an additional en-
coder to the prevalent 2-encoder architecture (i.e., code token en-
coder and AST encoder). Moreover, we extend the idea of graph
neural network GAT [17] and design a Multi-Relational Graph Neu-
ral Network (MR-GNN) that uses the attention mechanism to learn
the UML graphs of source code to encode the inter-class context.

We summarize our main contributions as follows:
• To our best knowledge, we are the first to consider global con-
texts (i.e., class name and UML) in the automatic code summa-
rization task.

• We propose the Multi-Relational Graph Neural Network (MR-
GNN) to model the UML diagrams of source code so that inter-
class context can be captured.

• We design an end-to-end automatic code summarization frame-
work CoCoGUMwith two novel components, i.e., a Transformer-
based sentence embedding model for encoding class names and
a MR-GNN for modeling UML graphs, which work together with
the components of code token encoder and AST encoder from
any existing Seq2Seq-based neural code summarization model.

• We conduct extensive experiments which demonstrate that
CoCoGUM outperforms state-of-the-art code summarization
methods, since incorporating intra-class and inter-class contexts
and combining them with the attention mechanism improves
the quality of generated code summaries.
The remainder of this paper is organized as follows: Sec. 2

presents the background. Sec. 3 introduces the design of CoCoGUM.
We present details about our experiment settings in Sec. 4. We
compare CoCoGUM with state-of-the-art works in Sec. 5. Sec. 6
illustrates the related work. Finally, we conclude our work in Sec. 7.

2 BACKGROUND
In this section, we briefly illustrate some background knowledge.

2.1 Unified Modeling Language
The Unified Modeling Language (UML) [18, 19] has being widely
accepted as a modeling notation for visualization during the design
and development of software systems. UML is also part of many
software engineering course curricula of universities worldwide,

∗There are several types of UML diagrams. For simplicity, we will use ‘UML’ or
‘UML graph/diagram’ to refer to ‘UML class diagram’ in this paper.

«interface»
Vehicle

Car

+ Car()

 Person

+ Person()
+ trip(bmws :BMW)

BMW

- tyre : Tyre
- engine:Engine
- body :Body

+ BMW()

Tyre

+ Tyre()

Engine

+ Engine()

Body

+ Body ()

(a) UML

interface Vehicle {}
class Car implements Vehicle

{}

class Tyre {}
class Engine {}
class Body {}

class BMW extends Car {
Tyre tyre;
Engine engine;
Body body;

}

class Person {
void trip(BMW bmws) {}

}

(b) Source code snippet

Figure 1: UML class diagram example

providing a recognized tool for practical training of students in
understanding and visualizing software design.

There are several types of UML diagrams and each of them serves
a different purpose. The most common one for software documen-
tation is UML class diagram. In a nutshell, a UML class diagram
contains classes, alongside with their attributes and methods (also
referred to as member functions). More specifically, each class in the
UML class diagram has 3 fields: the class name at the top, the class
attributes right below the name, the class methods at the bottom.
The relation between different classes (represented by a connecting
line) makes up a class diagram.

Fig. 1 shows a basic class diagram example. The class Car im-
plements the interface Vehicle. The dashed line with a hollow
arrow connecting class Car and interface Vehicle indicates the
‘implement’ relationship. The class BMW inherits from the more gen-
eral class Car. The ‘inheritance’ relationship is represented by a
solid line with an hollow arrow. Further, a BMW class is associated
with its children classes Type, Engine and Body. The ‘association’
relationship is represented by a solid line with a solid arrow. The
Person class should depend on BMW class for its method trip. The
‘dependency’ relationship is represented by a dashed line with a
solid arrow.

2.2 Seq2Seq
Seq2Seq [20] is a family of machine learning models which aims at
transforming a sequence into another sequence. Typical applica-
tions are machine translation [6], text summarization [21], image
captioning [22], etc.

Seq2Seq approaches are based on an encoder-decoder architec-
ture, with an encoder mapping a source sequence to a latent vector
and a decoder translating the latent vector into a target sequence.
Recurrent Neural Networks (RNNs) [23], Long Short-term Mem-
ory Networks (LSTMs) [24], Gated Recurrent Units (GRUs) [6],
Transformers [25] or other deep neural networks [26], which are
capable of modeling sequential data, are are widely used for the
encoder and the decoder in such a design. Furthermore, there are
some techniques that are commonly used in the encoder-decoder
architecture, including the attention mechanism [25], teacher forc-
ing [27], etc. Attention mechanism endows the decoder with the

CoCoGUM: Contextual Code Summarization with Multi-Relational GNN on UMLs

Embedding

GRU

Embedding

GRU

Embedding

GRU

Embedding

GRU

Transformer

MR-GNN

 Encoder

Code AST Class Info

Sequential Attention

Method summary

UML

Graph
Topology

Multi-Modal Attention

 Decoder

Figure 2: The overview of CoCoGUM.

ability to process the input sequence selectively. Teacher forcing
uses the ground-truth sequences to guide the generation in the
training phase.

2.3 Graph Neural Networks
The recent advances of deep learning techniques have facilitated
many machine learning tasks like object detection, machine trans-
lation, and speech recognition [28]. The key to such a technical
evolution is several deep neural networks such as Convolutional
Neural Networks (CNNs) [29]. They are able to automatically learn
the data features instead of heavily relying on handcrafted feature
engineering.

Unlike the data that are originally organized in euclidean space
(e.g., image on 2D grid and text in 1D sequence) where CNNs and
RNNs can effectively capture hidden patterns, graph data is irregular
and each node may have a different number of neighbors. The
irregularity of graph data makes some important operations (e.g.,
convolution), which are easy to compute in euclidean data, difficult
for graph data [28]. The attempt to extend deep neural networks to
graph data has spawned Graph Neural Networks (GNNs) [28, 30].

The first motivation of GNNs roots in CNNs, since CNNs have a
strong ability to learn local stationary structures via localized con-
volution filter and compose them to form multi-scale hierarchical
patterns. Many efforts have been devoted to defining the convo-
lution operation for graph data. This branch of GNNs is therefore
called Graph Convolutional Networks (GCNs) and can be divided
into spectral methods which define convolution in spectral domain
and spatial methods which define convolution in the vertex domain.

The prevalence of graph data in real-world makes GNNs appli-
cable for many learning-based systems. Due to the strong ability
of learning from graph data, GNNs have achieve a great success
in many tasks like learning chemistry rule and phenomenon [31],
recommender systems [32], document classification [33], traffic
predication [34], etc.

3 COCOGUMMODEL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

0

5000

10000

15000

20000

Co
un

t

Figure 3: The distribution of class name recall in summaries

In this section, we present our model CoCoGUM. The archi-
tecture of CoCoGUM (see Fig. 2) follows the Seq2Seq framework,
including two main components, i.e., the encoder module and the
decoder module. The encoder module can be divided into two parts,
namely the local (method-level) encoder and the global (class-level)
encoder. The former is responsible for representing the lexical and
syntactic information of eachmethod, and the latter encodes the lex-
ical information of each class and the relationship between classes.
The decoder integrates the multi-modality representations from
the above encoders through an attention mechanism and generates
the final summary.

3.1 Local Context Encoders using GRU
Contemporary code summarization approaches mainly leverage lo-
cal contexts including code tokens and abstract syntax trees (ASTs)
to capture the lexical and syntactic information of a code snippet.
For the local context encoders, we follow the Ast-attendgru model
of LeClair et al. [10]. We preprocess the code snippets to ASTs and
adopt the structure-based traversal (SBT) format [15] to flatten
ASTs into sequences. CoCoGUM feeds the code sequence and SBT
sequence into a code encoder and an AST encoder, respectively.
Both encoders adopt GRU [6], but the parameters are not shared:

r𝑡 = 𝜎 (W𝑟x𝑡 + b𝑟 +Wℎ𝑟h𝑡−1 + bℎ𝑟)
z𝑡 = 𝜎 (W𝑧x𝑡 + b𝑧 +Wℎ𝑧h𝑡−1 + bℎ𝑧)
n𝑡 = 𝑡𝑎𝑛ℎ

(
W𝑛x𝑡 + b𝑛 + r𝑡 ◦ (Wℎ𝑛h𝑡−1 + bℎ𝑛)

)
h𝑡 = (1 − z𝑡) ◦ n𝑡 + z𝑡 ◦ h𝑡−1

(1)

where x𝑡 indicates the embedding of the 𝑡-th token in either code
token sequence or SBT sequence, h𝑡 is the hidden state for the 𝑡-th
token, and r𝑡 , z𝑡 , n𝑡 indicate the reset, update and new gates, re-
spectively. 𝜎 denotes the sigmoid function and “◦” is the Hadamard
product. W𝑟 , Wℎ𝑟 , W𝑧 , Wℎ𝑧 , W𝑛 and Wℎ𝑛 are learnable weight
matrices. b𝑟 , bℎ𝑟 , b𝑧 , bℎ𝑧 , b𝑛 and bℎ𝑛 are bias vectors.

It is worth noting that the detailed design of the local context
encoder can be replaced by the encoder from any Seq2Seq-based
code summarization methods (e.g., [9, 15, 35]), as the local context
encoder is orthogonal to the global context encoder (illustrated in
Sec. 3.2) in CoCoGUM.

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

Graph Convolution
& Inner Attention

Graph with ‘Extend’ Rel

Class Embedding
(‘Extend’ Rel)

Out DimOut DimOut Dim
w

u

v

w

u

v

u
v

u
v

Graph Convolution
& Inner Attention

Graph with ‘Extend’ Rel

Class Embedding
(‘Extend’ Rel)

Out Dim
w

u

v

u
v

Graph Convolution
& Inner Attention

Graph with ‘Assoc’ Rel

Class Embedding
(‘Assoc’ Rel)

Out DimOut DimOut Dim
w

u

v

 w

u

v

w

u

w

u

Graph Convolution
& Inner Attention

Graph with ‘Assoc’ Rel

Class Embedding
(‘Assoc’ Rel)

Out Dim
w

u

v

w

u

UML Diagram

Node (Class) Features

Multi-Relation Graph

Mini-Batch
of size B

Outer
Attention

Class Embedding

Feature DimFeature Dim

u
v

w

u

v

w

Multi-Relational Graph Attention
Association

 Extend

 Implement

 Depend

Association

 Extend

 Implement

 Depend

Out DimOut Dim

Figure 4: Global context encoder based on our proposed MR-GNN

3.2 Global Context Encoder based on MR-GNN
The global context in CoCoGUM contains the intra-class (i.e., class
name) and the inter-class (i.e., relationship between classes) infor-
mation. In order to intuitively show the importance of class names,
we define class name recall to be the rate of tokens in the class
name that also appear in the method summaries. As shown in Fig. 3,
there is a strong correlation between method summaries and the
corresponding class names: a large number of summaries directly
refer to some of the words in class names. For the class-class re-
lationship, we extract the UML of the package that contains the
target method and retain four common relationships: IMPLEMENTS,
EXTENDS, DEPEND, and ASSOCIATION. As illustrated in Fig. 4, the
global context encoder takes two steps to encode global contexts.

Firstly, a class name is preprocessed to a token sequence by
the steps described in Sec. 4.1. Then CoCoGUM generates class
name embeddings using the Transformer-based sentence embed-
ding model [16] to obtain the class lexical embedding. The sentence
embedding model is trained and optimized for greater-than-word
length text, such as sentences or short paragraphs on a variety of
NL data sources and tasks, and the output is a 512-dimensional
vector. The class lexical embedding is part of the output of the
global context encoder, which will be passed to the subsequent
GNN module as initial features of the nodes in the UML graph.

Secondly, we extract structure from UML graphs and use the
proposed Multi-Relational Graph Neural Network (MR-GNN) to
encode inter-class context. Specifically, we set each class as a node
and each relationship between two classes as an edge between cor-
responding nodes. Since there are four types of class relationships,
we get four graphs accordingly with each graph containing one
type of the four relationships. Each class node 𝑣𝑖 has one general
node embedding h(𝑔)

𝑖
and four relation-specific embeddings h(𝑟)

𝑖
with 𝑟 being one of the four class-class relations. The class lexical
embedding h(𝑙)

𝑖
, which is generated by the sentence embedding

model for class node 𝑣𝑖 , will be used as the initial hidden state
for h(𝑔)

𝑖
. The UML graphs have certain characteristics which are

rarely considered in general graphs. On one hand, they have multi-
relational edges. And on the other hand, the definition of each type
is relatively broad, resulting in a huge difference in the semantics
of edges with the same relationship. For instance, ASSOCIATION
relationship may exist between <Student, Professor> and also
<Student, Course>, but their semantics are obviously different.
Some classic GNN models such as GCN [33] cannot handle such
scenarios. As a comparison, our proposed MR-GNN is able to cap-
ture different relation semantics in UML graphs via inner-attention
and outer-attention. The former is mainly used to distinguish the
effects of different neighbors in the same relationship, while the
latter reflects the influence of different relationships.

To be specific, similar to Graph Attention Network (GAT) [17],
inner attention defines an attention layer to capture the different
importance of each neighbor in the same relation 𝑟 :

𝛼
(𝑟)
𝑖, 𝑗

=

exp
(
Γ (𝑟)

(
W(𝑟)

𝑎 h(𝑟)
𝑖

⊕ W(𝑟)
𝑎 h(𝑟)

𝑗
)
)

∑
𝑘∈N (𝑟)

𝑖

exp
(
Γ (𝑟)

(
W(𝑟)

𝑎 h(𝑟)
𝑖

⊕ W(𝑟)
𝑎 h(𝑟)

𝑘
)
) , (2)

where 𝛼 (𝑟)
𝑖, 𝑗

is the inner attention coefficient of node 𝑣 𝑗 to node 𝑣𝑖 ,

h(𝑟)
𝑖

is the hidden representation of node 𝑣𝑖 for relation 𝑟 , N (𝑟)
𝑖

is
the first-order neighbors of node 𝑣𝑖 with the relation 𝑟 , “⊕” is the
concatenation operation, Γ (𝑟) (·) is a single-layer feedforward neu-
ral network with a scalar being the output, and W(𝑟)

𝑎 is a learnable
parameter matrix. Given the inner attention coefficient, the hidden
representation of node 𝑣𝑖 with respect to the relation 𝑟 is:

h(𝑟)
𝑖

= 𝜎

(∑
𝑗 ∈N (𝑟)

𝑖

𝛼
(𝑟)
𝑖, 𝑗

W(𝑟)
ℎ

h(𝑟)
𝑗

)
, (3)

where W(𝑟)
ℎ

is the learnable weight matrix and 𝜎 (·) is LeakyReLU.
Outer attention, defined in the relation level, is to aggregate the

hidden representations of different relations for each node. The

CoCoGUM: Contextual Code Summarization with Multi-Relational GNN on UMLs

outer attention coefficient of relation 𝑟 to node 𝑣𝑖 is defined as:

𝛽
(𝑟)
𝑖

=
exp

(
< W𝑏h

(𝑔)
𝑖

,W(𝑟)
𝑐 h(𝑟)

𝑖
>
)∑

𝑟 ∈R exp
(
< W𝑏h

(𝑔)
𝑖

,W(𝑟)
𝑐 h(𝑟)

𝑖
>
) , (4)

where “< · , · >” indicates inner product, W𝑏 and W(𝑟)
𝑐 are

parameter matrices to ensure space alignment, and R is the set of
the four relationships in UML graphs. Based on the outer attention
coefficient, we calculate the updated general node representation
as:

h
′ (𝑔)
𝑖

= 𝜎

(∑
𝑟 ∈R

𝛽
(𝑟)
𝑖

W(𝑟)
𝑑

h(r)i

)
, (5)

where h
′ (𝑔)
𝑖

is the output representation of node 𝑣𝑖 in the current
MR-GNN layer and also the input of the next MR-GNN layer when
stacking multiple layers, and W(𝑟)

𝑑
is a learnable parameter matrix.

Compared to using concatenation and feedforward network in
Eq. 2, we simply adopt an inner product in Eq. 4 due to the small
number of UML relationship types. It will help avoid introducing too
many parameters and thus causing over-fitting when calculating
the attention coefficient. In practice, we stack two MR-GNN layers
to obtain the class relational embedding.

3.3 Attention-based Decoder
Similar to the code token encoder and AST encoder, we deploy
GRU as the backbone of the decoder. Additionally, we use a two-
level attention mechanism to endow CoCoGUM with the ability
to learn from code token sequence, SBT sequence and UML graph
selectively.

Let H(𝑐) = [h(𝑐)1 , · · · , h(𝑐)
𝑇𝑐

], H(𝑎) = [h(𝑎)1 , · · · , h(𝑎)
𝑇𝑎

] be the out-
puts from code token encoder and AST encoder, where 𝑇𝑐 and 𝑇𝑎
are the length of code token sequence and SBT sequence, respec-
tively. Firstly, the hidden state h(𝑠)𝑡 of the 𝑡-th summary token is
obtained similar to Eq. 1. Then the sequential attention [36] is used
to incorporate the different coefficients between each token in code
token sequence (and SBT sequence) and the 𝑡-th summary token,
and generate the code context vector s(𝑐)𝑡 and SBT context vector
s(𝑎)𝑡 for the 𝑡-th summary token:

s(𝑐)𝑡 =

𝑇𝑐∑
𝑖=1

𝛾𝑖,𝑡 · h(𝑐)𝑖
, 𝛾𝑖,𝑡 =

exp
(
< h(𝑐)

𝑖
, h(𝑠)𝑡 >

)∑𝑇𝑐
𝑘=1 exp

(
< h(𝑐)

𝑘
, h(𝑠)𝑡 >

)
s(𝑎)𝑡 =

𝑇𝑎∑
𝑖=1

𝛿𝑖,𝑡 · h(𝑎)𝑖
, 𝛿𝑖,𝑡 =

exp
(
< h(𝑎)

𝑖
, h(𝑠)𝑡 >

)∑𝑇𝑎
𝑘=1 exp

(
< h(𝑎)

𝑘
, h(𝑠)𝑡 >

) . (6)

We then perform a modality-level attention to integrate code
context, SBT context, intra-class level context h(𝑙) (i.e., class lexical
embedding) and inter-class level context h(𝑔) (i.e., class relational
embedding). The integrated encoding vector q𝑡 for 𝑡-th summary
token can be obtained by the following formula:

q𝑡 = 𝜎
(
𝜆
(𝑐)
𝑡 V𝑐s

(𝑐)
𝑡 + 𝜆

(𝑎)
𝑡 V𝑎s

(𝑎)
𝑡 + 𝜆

(𝑙)
𝑡 V𝑙h

(𝑙) + 𝜆
(𝑔)
𝑡 V𝑔h(𝑔)

)
, (7)

where 𝜆𝑡 = 1
𝑍𝑡

(𝜆 (𝑐)𝑡 , 𝜆
(𝑎)
𝑡 , 𝜆

(𝑙)
𝑡 , 𝜆

(𝑔)
𝑡)T is a normalized attention co-

efficient vector with 𝑍𝑡 being the normalized factor, and V denotes
a learnable parameter matrix. To be specific, each entry of vector

Table 1: Statistics of the CodeSearchNet dataset.

Github repositories # Package uml diagram. # Method

4,116 73,856 267,047

𝜆𝑡 is defined as:

©­­­­«
𝜆
(𝑐)
𝑡

𝜆
(𝑎)
𝑡

𝜆
(𝑙)
𝑡

𝜆
(𝑔)
𝑡

ª®®®®®¬
= exp

©­­­­«
< V𝑐s

(𝑐)
𝑡 ,V𝑠h

(𝑠)
𝑡 >

< V𝑎s
(𝑎)
𝑡 ,V𝑠h

(𝑠)
𝑡 >

< V𝑙h
(𝑙)
𝑡 ,V𝑠h

(𝑠)
𝑡 >

< V𝑔h
(𝑔)
𝑡 ,V𝑠h

(𝑠)
𝑡 >

ª®®®®®¬
, (8)

where V𝑐 ,V𝑠 ,V𝑎,V𝑔 and V𝑙 are parameter matrices to ensure
space alignment.

Given the 𝑡-th summary token hidden state h(𝑠)𝑡 and the corre-
sponding integrated encoding vector q𝑡 , CoCoGUM predicts the
probability distribution of the 𝑡-th summary token as:

y𝑡 = softmax
(
𝑓 (h(𝑠)𝑡 ⊕ q𝑡)

)
, (9)

where “⊕” is the concatenation operation and 𝑓 (·) is a single-layer
feedforward neural network. The cross entropy loss is utilized to
evaluate the gap between the prediction and the ground truth, i.e.

𝑙 =
1
𝑇𝑠

𝑇𝑠∑
𝑡=1

< ŷ𝑡 , log y𝑡 >, (10)

where ŷ𝑡 is the 𝑡-th target token by one hot encoding and 𝑇𝑠 is the
length of the target summary. Many gradient descent based meth-
ods can be used for optimizing CoCoGUM and we adopt adaptive
moment estimation (i.e., AdamW) [37].

4 EXPERIMENTS SETUP
In this section, we will explain data preprocessing, experimental
settings and evaluation metrics.

4.1 Dataset and Preprocessing
In our experiment, we use the Java corpus from CodeSearchNet [38].
It contains 542,991 Java methods and associating properties across
the training, validation and test sets. In order to build the UML class
diagrams for the programs, project-level source code is needed.
Fortunately, the CodeSearchNet dataset provides the url and repo
information for each function. We download all the projects (pub-
licly available open-source non-fork GitHub repositories) according
to the urls provided in the data.

Then, we filter the dataset with a set of constraints:
(1) Code snippets with missing GitHub repositories are removed.
(2) Code snippets that cannot be processed by UMLGraph† to

build UML class diagrams are removed.
(3) Summaries shorter than three words are removed.
(4) Non-English summaries are removed.
Finally, we get 267,047 pairs of source code and summaries. Tab. 1

illustrates the statistics of the filtered corpus. The dataset is par-
titioned into training, validation, and test sets by project so that
methods from the same repository can only exist in one partition.
The relative size of train:validation:test is 9:0.4:0.6.

†https://www.spinellis.gr/umlgraph/index.html

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

0 50 100 150 200
Code length

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

5 10 15 20 25 30
Summary length

0

200

400

600

800

1000

1200

1400

1600

Co
un

t
Figure 5: Length distribution of code and summary.

We use UMLGraph to extract UML class diagrams at package
level. Four class-class relationships are extracted: implementation,
extension, dependency and association (which are represented by
IMPLEMENTS, EXTENDS, DEPEND and ASSOC in UMLGraph, respec-
tively). We also take the following rules to preprocess code and
summaries in the dataset:

(1) We split code and summary tokens into subtokens by applying
the spiral ronin algorithm‡ to reduce data sparsity, and then
all the tokens are transformed to lower cases.

(2) Punctuations in summaries are removed.
(3) Numerals and string literals are replaced with the generic

tokens <NUM> and <STRING>, respectively.
(4) We use srcml§ to parse Java methods into ASTs and then we

flatten the ASTs to SBT sequences as described in [15].

For class names used in global context, we preprocess a class
name by: (1) splitting by camel case or underscores; (2) removing
the <T>-like tokens in template classes; and (3) removing parent
class name, e.g. Parent.Child will be processed to Child.

Fig. 5 shows the length distribution of code and summaries.
We can observe that the length of most code snippets distributes
between 50 and 150 and the length of most summaries distributes
between 5 and 15.

4.2 Experiment Setting
The maximum lengths of code, summary and SBT are set to 100,
12, and 435 respectively (each covering at least 80% data). We use
the special symbol <NULL> to pad the short sequences and <UNK> to
replace the out-of-vocabulary tokens, <s> and </s> to represent the
start and end of the summary sequence, respectively. The vocabu-
lary size is 10,000 (most frequent words in trainning set) for code,
summary and SBT sequences.

For UML diagram, we use a 2-layer MR-GNN to encode the
class-level information. The class embedding size and hidden di-
mensions of MR-GNN are 512 and 256, respectively. For baseline
Ast-attgru [10], the embedding size and hidden dimension of GRU
are 128 and 256 respectively. We set the mini-batch size to 256 and
a maximum of 40 epochs for each approach. We use the optimizer
AdamW [37] with the learning rate 0.001 for training. To prevent
over-fitting, we use Dropout with drop probability 0.5, and Weight
Decay with decay ratio 0.3. The experiments are conducted on a
server with 2 GPUs of NVIDIA Tesla V100.

‡https://github.com/casics/spiral
§https://www.srcml.org/

4.3 Evaluation Metrics
Similar to previous work [7, 8, 39], we evaluate the performance of
our proposed model based on four widely-used metrics including
BLEU [40], METEOR [41], ROUGE-L [42] and CIDER [43]. BLEU,
METEOR, ROUGE-L and CIDER are prevalent metrics in machine
translation, text summarization and image captioning tasks.

BLEU measures the average n-gram precision between the refer-
ence sentences and generated sentences, with brevity penalty for
short sentences. The formula to compute BLEU-1/2/3/4 is:

BLEU-N = 𝐵𝑃 · exp
𝑁∑
𝑛=1

𝜔𝑛 log𝑝𝑛, (11)

where 𝑝𝑛 (n-gram precision) is the fraction of n-grams in the gen-
erated sentences which are present in the reference sentences, and
𝜔𝑛 is the uniform weight 1/N. Since the generated summary is
very short, high-order n-grams may not overlap. We use the +1
smoothing function [44]. BP is brevity penalty given as:

𝐵𝑃 =

{
1 if 𝑐 > 𝑟

𝑒 (1−𝑟/𝑐) if 𝑐 ≤ 𝑟
(12)

Here, c is the length of the generated summary, and r is the length
of the reference sentence.

Based on longest common subsequence (LCS), ROUGE-L is
widely used in text summarization. Instead of using only recall,
it uses F-score which is the harmonic mean of precision and recall
values. Suppose 𝐴 and 𝐵 are generated and reference summaries of
lengths c and r respectively, we have:{

𝑃𝑅𝑂𝑈𝐺𝐸−𝐿 =
𝐿𝐶𝑆 (𝐴,𝐵)

𝑐

𝑅𝑅𝑂𝑈𝐺𝐸−𝐿 =
𝐿𝐶𝑆 (𝐴,𝐵)

𝑟

(13)

𝐹𝑅𝑂𝑈𝐺𝐸−𝐿 , which indicates the value of ROUGE-L, is calculated
as the weighted harmonic mean of 𝑃𝑅𝑂𝑈𝐺𝐸−𝐿 and 𝑅𝑅𝑂𝑈𝐺𝐸−𝐿 :

𝐹𝑅𝑂𝑈𝐺𝐸−𝐿 =

(
1 + 𝛽2

)
𝑃𝑅𝑂𝑈𝐺𝐸−𝐿 · 𝑅𝑅𝑂𝑈𝐺𝐸−𝐿

𝑅𝑅𝑂𝑈𝐺𝐸−𝐿 + 𝛽2𝑃𝑅𝑂𝑈𝐺𝐸−𝐿
(14)

𝛽 is set to 1.2 as in [8, 39].
METEOR is a recall-oriented metric that measures how well the

model captures the content from the references in the generated
sentences and has a better correlation with human judgment. Sup-
pose𝑚 is the number of mapped unigrams between the reference
and generated sentence with lengths 𝑐 and 𝑟 respectively. Then,
precision, recall and F are given as:

𝑃 =
𝑚

𝑐
, 𝑅 =

𝑚

𝑟
, 𝐹 =

𝑃𝑅

𝛼𝑃 + (1 − 𝛼)𝑅 (15)

The sequence of mapping unigrams between the two sentences is
divided into the fewest possible number of “chunks”. This way, the
matching unigrams in each “chunk” are adjacent (in two sentences)
and the word order is the same. The penalty is then computed as:

Pen = 𝛾 · frag 𝛽 (16)

where frag is a fragmentation fraction: frag = 𝑐ℎ/𝑚, where 𝑐ℎ is the
number of matching chunks and𝑚 is the total number of matches.
The default values of 𝛼, 𝛽,𝛾 are 0.9, 3.0 and 0.5 respectively.

CIDER is a consensus-based evaluation metric used in image
captioning tasks. The notions of importance and accuracy are inher-
ently captured by computing the TF-IDF weight for each n-gram

CoCoGUM: Contextual Code Summarization with Multi-Relational GNN on UMLs

and using cosine similarity for sentence similarity. To compute
CIDER, we first calculate the TF-IDF weighting 𝑔𝑘 (𝑠𝑖) for each n-
gram 𝜔𝑘 in reference sentence 𝑠𝑖 . Here 𝜔 is the vocabulary of all
n-grams. Then we use the cosine similarity between the generated
sentence and the reference sentences to compute CIDER𝑛 score for
n-grams of length 𝑛. The formula is given as:

CIDER𝑛 (𝑐𝑖 , 𝑠𝑖) ==
< 𝒈𝒏 (𝑐𝑖) ,𝒈𝒏 (𝑠𝑖) >
∥𝒈𝑛 (𝑐𝑖)∥ ∥𝒈𝑛 (𝑠𝑖)∥

(17)

where 𝒈𝒏 (𝑠𝑖) is a vector formed by 𝑔𝑘 (𝑠𝑖) corresponding to all the
n-grams (n varying from 1 to 4). 𝑐𝑖 is the 𝑖𝑡ℎ generated sentence.
Finally, the scores of various n-grams can be combined to calculate
CIDER as follows:

CIDER (𝑐𝑖 , 𝑠𝑖) =
𝑁∑
𝑛=1

𝑤𝑛 CIDER𝑛 (𝑐𝑖 , 𝑠𝑖) (18)

Note that we usually report the scores of BLEU, METEOR and
ROUGE-L in percentages since they are in the range of [0, 1]. As
CIDER scores range in [0, 10], we display them in real values.

5 EVALUATION
In this section, we evaluate different approaches by comparing
the scores of the metrics mentioned in Sec. 4.3. We explore the
evaluation results to answer the following Research Questions
(RQs):
RQ1: What is the effectiveness of our proposed model CoCoGUM?
RQ2: Does employing global context help improve code summa-

rization results?
RQ3: What is the stability of CoCoGUM?

5.1 RQ1: What is the effectiveness of our
proposed model CoCoGUM?

We evaluate the effectiveness of CoCoGUM by comparing it to the
most recent works on code summarization.
• Code-NN [7] is the first neural approach that learns to generate
summaries of code snippets. It is a classical encoder-decoder
framework in NMT that encodes code to context vector with
attention mechanism and then generates summaries in decoder.

• Ast-attendgru and Attendgru [10] are essentially encoder-
decoder network using GRUs with attention. Ast-attendgru is a
multi-encoder neural model that encodes both code and AST.

• H-Deepcom [9] is the SBT-based model, which is more capable
of learning syntactic and structure information of Java methods.

• Hybrid-DRL [8] is an improved approach with hybrid code
representations (with ASTs) and deep reinforcement learning. It
encodes the sequential and structural content of code by LSTMs
and tree-based LSTMs and uses a hybrid attention layer to get
an integrated representation.
Tab. 2 illustrates the evaluation results of various code summary

generation baselines. CoCoGUM𝑚 is a mini (simplified) version of
CoCoGUM without inter-class context, keeping only the intra-class
context (class name representations learned by the Transformer-
based sentence embedding model). From the results, we can observe
that CoCoGUM𝑚 and CoCoGUM perform the best. In particular,
CoCoGUM achieves better performance than CoCoGUM𝑚 . Other
neural models outperform Code-NN because Code-NN only uses

Table 2: Comparison for code summarization baselines.

MODEL BLEU-4 METEOR ROUGE-L CIDER

Code-NN 13.37 7.99 20.42 0.44
Hybrid-DRL 14.67 8.86 22.33 0.69
H-Deepcom 15.16 9.81 24.83 0.56
Attendgru 17.68 12.49 28.32 0.88

Ast-attendgru 17.81 12.97 29.33 0.96

CoCoGUM𝑚 18.07 13.04 29.76 0.96
CoCoGUM 19.49 14.70 32.42 1.20

raw code token sequences and fails to capture the semantic and
syntax information. H-Deepcom applies SBT to capture semantic
and structural information but the encoded information cannot be
fully utilized in the decoding phase. Ast-attendgru combines the
3-channel information of code, SBT and summary in the decoder
to generate better summaries and it outperforms the best among
all the baselines. The comparison result show that our proposed
model CoCoGUM is effective in terms of the four metrics: BLEU-4,
METEOR, ROUGE-L and CIDER.

5.2 RQ2: Does employing global context help
improve code summarization results?

We apply two levels of global context: intra-class level and inter-
class level. We compare the performance of CoCoGUM𝑚 (employ-
ing intra-class context) and CoCoGUM (employing inter-class con-
text). Since the functionality of a method has a strong relationship
with its corresponding class, CoCoGUM𝑚 uses the information of
class names to help generate summaries. We split a class name to
a sequence of words and embed it to a feature vector to guide the
summaries generation process.

CoCoGUM additionally uses the inter-class context information
by using the UML class diagrams to capture the ⟨𝑐𝑙𝑎𝑠𝑠, 𝑐𝑙𝑎𝑠𝑠⟩ rela-
tionship and generate better summaries of source code. We first
obtain the embedding of each node based on the class information
and UML graph structure. Then we encode classes based on MR-
GNN and eventually get the representation of all nodes via the at-
tention mechanism. From Tab. 2, we can see that both CoCoGUM𝑚

and CoCoGUM outperform other baselines and CoCoGUM per-
forms better in four metrics. As we know, METEOR and ROUGE-L
consider both precision and recall. CIDER is a consensus-based
evaluation. CoCoGUM achieves higher precision and recall and
a better consensus sentence by considering both global and local
information. Thus we can conclude that employing global context
information is helpful for generating high-quality summaries.

5.3 RQ3: What is the stability of CoCoGUM?
We evaluate the stability of CoCoGUM on two perspectives: (1)
how does it perform with different dataset splittings; (2) how does
it perform on source code and comments of different lengths.

5.3.1 Stability on different dataset splittings. Different projects
have different coding style conventions and naming conventions
(leading to different vocabularies) due to programmers’ program-
ming style or companies’ coding guidelines. For example, when
predicting the summary of a given method, if similar methods

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

30 40 50 60 70 80 90 100 110 120 130 140 150
Code length

10

12

14

16

18

20

22

BL
EU

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Code length

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
et

eo
r

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Code length

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

Ro
ug

e

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Code length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ci
de

r

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

6 8 10 12 14 16 18 20 22 24 26 28 30
Summary length

10

12

14

16

18

20

22

24

26

BL
EU

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Summary length

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
M

et
eo

r
CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Summary length

0.15

0.20

0.25

0.30

0.35

Ro
ug

e

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Summary length

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ci
de

r

CoCoGUM
CoCoGUMm
Ast-attendgru
H-Deepcom
Code-NN

Figure 6: Comparison on different code lengths and summary lengths

Table 3: Evaluation results on package-wise dataset

MODEL BLEU-4 METEOR ROUGE-L CIDER

Code-NN 14.97 9.13 22.65 0.58
H-Deepcom 17.17 11.56 26.89 0.78
Attendgru 20.40 14.55 32.17 1.22

Ast-attendgru 20.58 14.74 32.40 1.25

CoCoGUM𝑚 20.87 15.11 33.31 1.27
CoCoGUM 22.20 16.51 35.48 1.50

Table 4: Evaluation results on method-wise dataset

MODEL BLEU-4 METEOR ROUGE-L CIDER

Code-NN 17.34 11.89 27.28 0.82
H-Deepcom 18.99 13.26 29.65 0.96
Attendgru 23.04 16.30 34.56 1.53

Ast-attendgru 23.25 16.25 34.30 1.56

CoCoGUM𝑚 24.34 17.94 37.90 1.74
CoCoGUM 24.93 18.33 38.89 1.80

(probably from the same project) exist in the training set, then the
predicting result is more likely to be accurate. We evaluate how this
factor affects the model performance by experimenting CoCoGUM
and other models for different dataset splittings.

Tab. 2 shows the results on project-wise splitting (default dataset
splitting): methods in one project can only exist in one of the
training, validation or test sets. Tab. 3 and Tab. 4 report results
on package-wise and method-wise splitting, respectively. Firstly,
the results show that scores for method-wise splitting is gener-
ally higher than package-wise splitting, and package-wise splitting
higher than project-wise splitting. This is consistent with the in-
stinct that if the model has seen similar methods (from the same pro-
ject/package), it will perform better when predicting methods from
that project/package. Secondly, the results show that CoCoGUM
still outperforms other approaches in all metrics. We conclude that
CoCoGUM has good stability on different dataset splittings.

5.3.2 Stability on code and comments of different lengths. We fur-
ther analyze the stability of CoCoGUM on code and comments of
different lengths. Fig. 5 displays the length distribution of code and
summary on testing set. The lengths of most code are less than
150 and the lengths of most summaries are less than 30, so we con-
duct the experiment to evaluate the performance for code lengths
varying from 1 to 150 and summary lengths varying from 1 to 30.

Fig. 6 presents the performance of CoCoGUM and other models
for code and summaries of different lengths. In Fig. 6, the first row
shows that CoCoGUM performs the best on four metrics of varying
code lengths. All the models achieve high performance on code
length near 50. The reason is that all the models are data-driven and
perform better when more data is available. Similarly, the second
row of Fig. 6 shows that CoCoGUM outperforms others and all
models achieve higher performance on summary length near 8.
Additionally, the performance of baselines decreases a lot when
code length increases, while our model performs more stably on
all metrics even for longer code and summaries. We conclude that
CoCoGUM has good stability on code and comments of different
lengths.

5.4 Case Study
To conduct qualitative analysis of our approach, we compare the
generated summaries from different models and present 2 case
studies as shown in Tab. 5. We have the following observations from
the results which demonstrates the superiority of our approach:

• In general, CoCoGUM and CoCoGUM𝑚 can generate summaries
better than other baselines and the summaries of our models are
more similar to the ground truth.

• Compared to baselines, CoCoGUM and CoCoGUM𝑚 can gener-
ate summary tokens that accurately describe the purpose of the
method but cannot be found within the scope of the method. For
example, one important summary token should be generated in
case 1 is “class” but it cannot be generated only based on the local
context (source code itself). CoCoGUM and CoCoGUM𝑚 also
consider the global context (e.g. the class name “ClassVisitor”).
Therefore, they are able to produce better summarizations.

CoCoGUM: Contextual Code Summarization with Multi-Relational GNN on UMLs

Table 5: Case studies

Case 1

public FieldVisitor visitField(
final int access,
final String name,
final String descriptor,
final String signature,
final Object value) {

if (cv != null) {
return cv.visitField(access, name, descriptor, signature, value);

}
return null;

}

Enclosing Class Name: ClassVisitor

Ground Truth visits a field of the class
CoCoGUM visit a field in the class
CoCoGUM𝑚 visit a field in the given class
Ast-attendgru this method is called when a constant is a member of
Attendgru this method is called when a constant is a member of
H-Deepcom visit a visitor for a the
Hybrid-DRL adds the visitor to the visitor
Code-NN create the visitor to the the the

Case 2

public PropertyStatus getProperty(QualifiedName propertyName) throws DAVException {
Collection names = new HashSet();
names.add(propertyName);
URLTable result = getProperties(names, IContext.DEPTH_ZERO);
URL url = null;
try {

url = new URL(locator.getResourceURL());
} catch (MalformedURLException e) {

throw new SystemException(e);
}
Hashtable propTable = (Hashtable) result.get(url);
if (propTable == null)

throw new DAVException(Policy.bind("exception.lookup", url.toExternalForm()));
return (PropertyStatus) propTable.get(propertyName);

}

Enclosing Class Name: AbstractResourceHandle

UML (partial): ['AbstractResourceHandle',' PropertyStatus ',{'relationtype': ' DEPEND '}]

Ground Truth return the property status for the property with the given name
CoCoGUM return a property status object for the given property name
CoCoGUM𝑚 get a property from the given property
Ast-attendgru get the property value of the property
Attendgru get the property value of the property
H-Deepcom get the property property of the the the
Hybrid-DRL return the property value
Code-NN get the property of the the the the

• Case 2 shows that CoCoGUM generates the best summary con-
taining the full meaning as in ground truth. Specifically, the
ground truth summary contains a phrase “property status” that
cannot be generated by other models. The reason is that the
enclosing class of the target method is AbstractResourceHandle,
which has a DEPEND relation with class PropertyStatus. This in-
formation is learned by our MR-GNNmodule which analyzes the
corresponding UML diagram. One may notice that although the
token ‘PropertyStatus’ also appears in the method local context,
it is hard for other models to capture this information without
the help of global context, which emphasizes the importance of
class-class relationships.

6 RELATEDWORK
In this section, we survey two lines of research that are related to
our work.

6.1 Source code representation
Previous works suggest various representations of source code for
follow-up analysis [7, 12, 45–52].

Allamanis et al. [12] and Iyer et al. [7] simply consider source
code as plain text and use traditional token-based methods to cap-
ture lexical information. Gu et al. [45] use the Seq2Seq model
to learn intermediate vector representations of queries in natu-
ral language and then predict relevant API sequences. Mou et al.

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

[46] propose a novel Tree-Based Convolutional Neural Network
(TBCNN). In TBCNN, program vector representations are learned
by the coding criterion; structural features are detected by the
convolutional layer; and TBCNN can handle trees with varying
children sizes with the continuous binary tree and dynamic pooling.
There are works [47, 48] that learn representations of source code
by input/output pairs. Piech et al. [47] introduce a neural network
method to encode programs as a linear mapping from an embedded
precondition space to an embedded postcondition space and pro-
pose an algorithm for feedback at scale using these linear mappings
as features. Parisotto et al. [48] produce a continuous representation
of the set of input/output pairs. Given the continuous representa-
tion of the examples, they use RNNs to synthesize a program by
incrementally expanding partial programs. Dam et al. [49] build a
language model for modeling software code using LSTMs. Ling et al.
[50] and Allamanis et al. [51] combine the code-context representa-
tion with representations of other modalities (e.g. natural language)
to synthesize code. Alon et al. [53, 54] represent a code snippet as
a set of compositional paths in the abstract syntax trees. Zhang
et al. [52] propose an AST-based Neural Network (ASTNN) that
splits each large AST into a sequence of small statement trees, and
encodes the statement trees to vectors by capturing the lexical and
syntactical knowledge of statements and apply the representation
to tasks such as source code classification and code clone detection.

6.2 Source code summarization
Popular source code summarization approaches include rule-based
approaches, IR-based approaches, , learning-based approaches, etc.

6.2.1 Rule-based and IR-based approaches. In the early stage of
automatic source code summarization, rule-based approaches and
information retrieval (IR) techniques and are widely used [4, 5, 35,
55, 56].

Sridhara et al. [4] design heuristics to choose statements from
Java methods and use the Software Word Usage Model (SWUM)
to identify keywords from those statements and create summaries
though manually-defined templates. The summaries are generated
according to the function/variable names via these templates.

The basic ideas of IR approaches are retrieving terms from source
code for generating term-based summaries or retrieving similar
source code and use its summary as the target summary [5, 35, 55,
56]. Haiduc et al. [5, 55] use the TF-IDF metric to rank the terms
in a method body based on the importance those terms are to that
method. TF-IDF gives higher scores to keywords which are common
within a particular method body, but rare throughout the rest of the
source code. They treat each function of source code as a document
and index on such a corpus by LSI or VSM, then the most similar
terms based on cosine distances between documents are selected
as the summary. Eddy et al. [56] use topic modeling to improve
the work, and Rodeghero et al. [35] use eye-tracking and modify
the weights of VSM for better code summarization. Code clone
detection techniques are used to retrieve similar code snippets from
a large corpus and reuse their summaries as the targets [57, 58].

6.2.2 Learning-based approaches. Movshovitz-Attias and Cohen
[11] use a statistical language model based approach to predict
comments from Java source code using topic models and n-grams.

Allamanis et al. [12] create the neural logbilinear context model for
suggesting method and class names by embedding them in a high
dimensional continuous space. Allamanis et al. [13] also suggest a
convolutional model for summary generation that uses attention
over a sliding window of tokens. They summarize code snippets
into extreme, descriptive function name-like summaries.

The NMT-based models are also widely used to generate sum-
maries for code snippets [7–10, 14, 15, 59]. Iyer et al. [7] designed a
token-based neural model using LSTMs and attention for trans-
lation between source code snippets and natural language de-
scriptions. Haije [14] model the code summarization problem as
a machine translation task, and some translation models such as
Seq2Seq [20] and attentional Seq2Seq are employed. Hu et al. [15]
structurally flatten an AST and then pass it on to a standard Seq2Seq
model. Hu et al. [59] leverage API sequences and improve the sum-
mary generation by learned API sequence knowledge. LeClair et al.
[10] designed a multi-input neural network using GRUs and atten-
tion to generate summaries of Java methods. Wan et al. [8] encode
the sequential and structure content of code by LSTM and tree-
based LSTM and use a hybrid attention layer to get an integrated
representation. The performance is further improved by deep rein-
forcement learning [60] to solve the exposure bias problem during.

Compared with the above work, our approach also take the
general encoder-decoder architecture but incorporate global con-
text into consideration with the help of GNNs, resulting in better
performance than the most recent works on code summarization.

7 CONCLUSION
In this paper, we propose a new code summarization model called
CoCoGUM, which leverages two types of global context informa-
tion, i.e., class names and UMLs, to assist with code summariza-
tion generation. Contemporary automatic code summarization ap-
proaches only consider a given code snippet in the local context,
without considering its broader context information. We firstly
represent intra-class context by using transformer-based represen-
tation of the class name that a given method belongs to and inject it
into the Seq2Seq model for code summarization. Then CoCoGUM
adopts our proposed model MR-GNN to learn the rich structural
information behind the UMLs in order to capture the class-class
relationships and further enhances the performance of automatic
code summarization. The learned representations of class names
and UMLs are incorporated into the Seq2Seq code summarization
model with the help of our designed two-level attention mechanism
to capture the different importance of differing context informa-
tion. Experimental results has demonstrated the effectiveness of
CoCoGUM and confirmed the usefulness of the two global context
information.

We believe this work will shed some light on future research by
pointing out that source code context including local and global
context can play a vital role in summary generation. In the future,
we plan to explore more information (e.g., call graphs, data flow
graphs) which is shipped with source code to improve the quality
of generated code summarization and enhance the interpretability
on how the summaries are generated and how they relate to the
corresponding global/local contexts.

CoCoGUM: Contextual Code Summarization with Multi-Relational GNN on UMLs

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.

A survey of machine learning for big code and naturalness. ACM Comput. Surv.,
51(4):81:1–81:37, 2018.

[2] Triet Huynh Minh Le, Hao Chen, and Muhammad Ali Babar. Deep learning for
source code modeling and generation: Models, applications and challenges. arXiv
Preprint, 2020. URL https://arxiv.org/abs/2002.05442.

[3] Yuxiang Zhu and Minxue Pan. Automatic code summarization: A systematic
literature review. arXiv Preprint, 2019. URL https://arxiv.org/abs/1909.04352.

[4] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments for javamethods.
In ASE, pages 43–52, 2010.

[5] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program compre-
hension with source code summarization. In ICSE, volume 2, pages 223–226.
ACM, 2010.

[6] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine translation. In
EMNLP, pages 1724–1734. ACL, 2014.

[7] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Sum-
marizing source code using a neural attention model. In ACL, volume 1. The
Association for Computer Linguistics, 2016.

[8] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. Improving automatic source code summarization via deep reinforce-
ment learning. In ASE, pages 397–407. ACM, 2018.

[9] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation
with hybrid lexical and syntactical information. Empirical Software Engineering,
2019.

[10] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for
generating natural language summaries of program subroutines. In ICSE, pages
795–806, 2019.

[11] Dana Movshovitz-Attias and William W. Cohen. Natural language models for
predicting programming comments. In ACL, volume 2, pages 35–40, 2013.

[12] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. Suggesting
accurate method and class names. In ESEC/SIGSOFT FSE, pages 38–49, 2015.

[13] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional attention
network for extreme summarization of source code. In ICML, volume 48, pages
2091–2100, 2016.

[14] Tjalling Haije. Automatic comment generation using a neural translation model.
Bachelor’s thesis, University of Amsterdam, 2016.

[15] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation.
In ICPC, pages 200–210, 2018.

[16] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal sentence encoder. arXiv
Preprint, 2018. URL https://arxiv.org/abs/1803.11175.

[17] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[18] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. The unified modeling
language user guide - the ultimate tutorial to the UML from the original designers.
Addison-Wesley object technology series. Addison-Wesley-Longman, 1999.

[19] James E. Rumbaugh, Ivar Jacobson, and Grady Booch. The unified modeling
language reference manual. Addison-Wesley-Longman, 1999.

[20] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In NIPS, pages 3104–3112, 2014.

[21] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. In EMNLP, pages 379–389, 2015.

[22] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In CVPR, pages 3156–3164, 2015.

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NIPS, pages 5998–6008, 2017.

[26] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing [review article]. IEEE
Comput. Intell. Mag., 13(3):55–75, 2018.

[27] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2):270–280,
1989.

[28] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A comprehensive survey on graph neural networks. IEEE Trans.
Knowl. Data Eng., 2020.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521
(7553):436–444, 2015.

[30] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. Graph neural networks: A review of methods and applications. arXiv
Preprint, 2018. URL https://arxiv.org/abs/1812.08434.

[31] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. Strategies for pre-training graph neural networks. In ICLR,
2020.

[32] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and
Guihai Chen. Dual graph attention networks for deep latent representation of
multifaceted social effects in recommender systems. In WWW, pages 2091–2102,
2019.

[33] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[34] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
Gaan: Gated attention networks for learning on large and spatiotemporal graphs.
In UAI, pages 339–349, 2018.

[35] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney K.
D’Mello. Improving automated source code summarization via an eye-tracking
study of programmers. In ICSE, pages 390–401. ACM, 2014.

[36] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In EMNLP, pages 1412–1421, 2015.

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
ICLR, 2019.

[38] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code
search. arXiv Preprint, 2019. URL https://arxiv.org/abs/1909.09436.

[39] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Retrieval-
based neural source code summarization. 2020.

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In ACL, pages 311–318. ACL,
2002.

[41] Satanjeev Banerjee and Alon Lavie. METEOR: an automatic metric for MT eval-
uation with improved correlation with human judgments. In IEEvaluation@ACL,
pages 65–72. Association for Computational Linguistics, 2005.

[42] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pages 74–81, 2004.

[43] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-
based image description evaluation. In CVPR, pages 4566–4575. IEEE Computer
Society, 2015.

[44] Chin-Yew Lin and Franz Josef Och. ORANGE: a method for evaluating automatic
evaluation metrics for machine translation. In COLING, 2004.

[45] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API
learning. In SIGSOFT FSE, pages 631–642, 2016.

[46] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. Convolutional neural networks
over tree structures for programming language processing. In AAAI, pages 1287–
1293, 2016.

[47] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas J. Guibas. Learning program embeddings to propagate
feedback on student code. In ICML, volume 37, pages 1093–1102, 2015.

[48] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv Preprint,
https://arxiv.org/abs/1611.01855, 2016.

[49] Hoa Khanh Dam, Truyen Tran, and Trang Pham. A deep language model for
software code. arXiv Preprint, https://arxiv.org/abs/1608.02715, 2016.

[50] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás
Kociský, Fumin Wang, and Andrew W. Senior. Latent predictor networks for
code generation. In ACL, volume 1. The Association for Computer Linguistics,
2016.

[51] Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. Bimodal
modelling of source code and natural language. In ICML, volume 37, pages
2123–2132, 2015.

[52] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. A novel neural source code representation based on abstract syntax tree. In
ICSE, pages 783–794, 2019.

[53] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning
distributed representations of code. PACMPL, 3(POPL):40:1–40:29, 2019.

[54] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating
sequences from structured representations of code. In ICLR, 2019.

[55] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. On the use
of automated text summarization techniques for summarizing source code. In
WCRE, pages 35–44. IEEE Computer Society, 2010.

[56] Brian P. Eddy, Jeffrey A. Robinson, Nicholas A. Kraft, and Jeffrey C. Carver.
Evaluating source code summarization techniques: Replication and expansion.
In ICPC, pages 13–22. IEEE Computer Society, 2013.

[57] Edmund Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question and
answer sites for automatic comment generation. In ASE, pages 562–567. IEEE,
2013.

[58] Edmund Wong, Taiyue Liu, and Lin Tan. Clocom: Mining existing source code
for automatic comment generation. In SANER, pages 380–389. IEEE Computer

https://arxiv.org/abs/2002.05442
https://arxiv.org/abs/1909.04352
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1909.09436

Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang

Society, 2015.
[59] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source

code with transferred API knowledge. In IJCAI, pages 2269–2275. ijcai.org, 2018.

[60] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Mach. Learn., 8:229–256, 1992.

	Abstract
	1 Introduction
	2 Background
	2.1 Unified Modeling Language
	2.2 Seq2Seq
	2.3 Graph Neural Networks

	3 CoCoGUM Model
	3.1 Local Context Encoders using GRU
	3.2 Global Context Encoder based on MR-GNN
	3.3 Attention-based Decoder

	4 Experiments Setup
	4.1 Dataset and Preprocessing
	4.2 Experiment Setting
	4.3 Evaluation Metrics

	5 Evaluation
	5.1 RQ1: What is the effectiveness of our proposed model CoCoGUM?
	5.2 RQ2: Does employing global context help improve code summarization results?
	5.3 RQ3: What is the stability of CoCoGUM?
	5.4 Case Study

	6 Related Work
	6.1 Source code representation
	6.2 Source code summarization

	7 Conclusion
	References

