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A recent growth area in computer science education  

is physical computing, which involves combining software and 

hardware to build interactive physical systems that sense and 

respond to the real world. This article provides an overview of  

physical computing and its value in the classroom,  

using the BBC micro:bit as an example.

Policymakers and educators around the globe 
acknowledge the importance of formal com-
puter science education programs and the 
computational thinking skills these instill in 

students. Not only do we need to furnish our future work-
force with the prerequisites to meet the growing number 
of computing-related jobs,1 but computational literacy 
is also increasingly needed in all vocations. Computa-
tional skills are foundational skills.

Despite the large number of computer science education 
tools and methodologies available, traditional computer 

Physical Computing:
A Key Element of
Modern Computer
Science Education

Digital Object Identifier 10.1109/MC.2019.2935058
Date of current version: 9 April 2020



	 A P R I L  2 0 2 0 � 21

science education pathways do not 
address the needs of a diverse student 
population. Particular groups highlighted 
in the literature as underserved include 
females, those specializing in subjects 
other than computer science, adult learn-
ers, juvenile offenders, and a variety of 
minorities.1–4 It is becoming broadly 
accepted that we need new approaches to 
computer science education that resonate 
with the broad set of backgrounds, abil-
ities, and learning styles of diverse pop-
ulations of students around the world. 
We also need new styles of computer sci-
ence education that fit with today’s mod-
ern and rapidly evolving programming 
techniques and paradigms, including 
interactive computing experiences and 
data-centric approaches. In summary, 
there is a growing need for inclusive and 
engaging computer science programs 
that can educate more students around 
the world than ever before.

At the same time, many teachers 
with minimal experience in computing 
are being asked to support new com-
puter science curricula, and they need 
tools that are easy to deploy and keep 
students engaged as their learning pro-
gresses. Those who do have experience 
teaching computer science are eager 
to find new ways to draw in students 
who do not necessarily have a natu-
ral affinity with computing and sup-
plement what can be a somewhat dry 
and “virtual” on-screen learning expe-
rience with more dynamic, hands-on 
activities. Teachers also need tools to 
stimulate digital creativity, collabora-
tion, end-to-end systems thinking, and 
broader technology skills alongside cod-
ing and computational thinking.

THE BENEFITS OF GETTING 
PHYSICAL
A va r iet y of t a ng ible, e m b e d d e d 
“m i c r o computer” devices targeted 

at students and hobbyists are estab-
lished in the market, for example, 
Arduino, Raspberry Pi, and the BBC 
micro:bit. The research community 
has developed similar devices, such 
as the Scratch Pico Board (http://
w w w.picoc r icket.com/p i c o b o a r d 
.html), Microsoft’s .NET Gadgeteer  
(https://en.wikipedia.org/wiki/.NET 
_Gadgeteer), and the Sense system  
(http://www.open.edu/openlearncreate/ 
mod/oucontent/view.php?id=22780). 
W h i le t hese produc t s h ave ver y 
different features, they all offer a 
hybrid and extensible experience that 
cuts across hardware and software. 
Reprogrammable computing sys-
tems like these—which can interact 
with their physical environment—are 
known as physical computing devices.21

To understand the benefits of phys-
ical computing devices and the expe-
riences they deliver, particularly in 
a kindergarten-to-12th-grade (K–12) 
computer science education context, 
it is insightful to review the relevant 
literature. Constructivist learning 
theory suggests that knowledge is 
actively constructed by the student.5 
Papert built on the constructivist con-
cept using the term constructionism6 
to indicate a combination of construc-
tivism and hands-on construction. He 
argues that learning happens most 
readily in a context where the learner 
is consciously engaged in construct-
ing a real, visible thing—whether it’s 
a sandcastle on a beach or a theory of 
the universe.6 The Logo programming 
language and the robotic “turtles,” 
which became popular for engag-
ing students with programming and 
computational thinking in the 1980s, 
are constructionist in nature. Addi-
tionally, physical devices naturally 
support an exploratory “bricolage” 
approach, as advocated by Stiller.7 

Students learn by building on existing 
knowledge following a pedagogy of 
incremental problem solving. When 
physical computing is adopted in 
schools, more structured pedagogical 
approaches can be used, such as use–
modify–create,8 where students work 
with existing working programs on 
devices before modifying them to add 
functionality while learning program-
ming concepts in the process.

From the student’s perspective, 
physica l comput i ng ca n be much 
more positive than a more traditional 
screen-based experience because it 
more readily supports open-ended 
ideation, rather than causing frustra-
tion through restrictions.9 Students 
appreciate building real, tangible 
devices and report that physical com-
puting platforms stimulate their cre-
ativity.10,11 This, in turn, engenders 
a broader and deeper engagement in 
computer science learning activities.

Anecdotally, girls seem to be more 
engaged when exposed to physical 
computing compared with traditional 
programming systems, often enjoying 
coding an embedded device application 
as a means to an end. Programming 
is done in service of a larger, person-
ally meaningful project and goal, such 
as building a digital magic wand or 
electronic piggy bank. Crucially, girls 
consistently describe growing in confi-
dence when exposed to physical com-
puting.11 The BBC conducted a survey of 
year-seven students in the United King-
dom who had been given a micro:bit 
physical computing device (see “BBC 
micro:bit Inspires a New Generation” 
for more details) and found that, among 
girls, it increased by 70% their predis-
position to study information and com-
munications technology and computer 
science in the future.22 Similarly, the 
other minorities mentioned earlier, 
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BBC micro:bit INSPIRES A NEW GENERATION

T he BBC micro:bit is a palm-sized interactive 
physical computing device designed to enable 

children to get engaged and creative with technol-
ogy and coding. The device is used in conjunction 
with a programming environment that runs in 
a web browser. Simple programs—for example, 
lighting up LEDs to display a pattern in response to 
a sensor input—can be coded in seconds with little 
prior knowledge of computing and no software 
installation.

The micro:bit project was conceived by the BBC 
with the aim of building on the heritage of the BBC 
Microcomputer developed in the 1980s, but the 
micro:bit takes a more modern approach to improv-
ing computer literacy and programming skills. The 
micro:bit experience was designed with a focus on 
universal appeal and accessibility coupled with sim-
plicity and progression. This design ethos pervades 
both the hardware and software, which are rich in 
capability to motivate and inspire yet remain simple, 
safe, extensible, and ef-
ficient in their operation.

From the outset of 
the project, the BBC 
set an ambitious goal 
to build and give away 
1 million micro:bit 
devices to school 
children in the United 
Kingdom. A collabora-
tion involving tens of 
partners worked with 
the BBC, and over the 
course of 18 months, 
this group resourced, 
designed, built, and 
delivered an integrated 
micro:bit experience, 
an online programming 

experience, and a variety of teaching support 
materials.

ACCESSIBLE AND ENGAGING 
PHYSICAL COMPUTING
The micro:bit, shown in Figure S1, measures  
4 cm × 5 cm and is powered by an Arm Cor-
tex-M0 microcontroller with 256-kB nonvolatile 
flash for the program and static data and 16-kB 
volatile RAM for dynamic memory requirements. 
Key hardware features of the micro:bit include  
the following:

»» 25 red LEDs in a 5 × 5 matrix to display 
simple graphics and scrolling text

»» two programmable buttons to provide input
»» an accelerometer motion sensor to detect 

movement and forces acting on the device
»» a magnetometer or digital compass to 

sense orientation

FIGURE S1. The (a) front and (b) back of the micro:bit. The device, designed to look 
friendly and appealing, is available in four colors. (Yellow is shown here.) Like many  
physical computing boards, no attempt was made to hide the components on the rear.  
In fact, they are clearly labeled as an invitation for students to engage with their function  
and purpose.

(a) (b)
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»» Bluetooth low energy to communicate 
with other micro:bit devices and with such 
devices as phones and tablets

»» a temperature sensor
»» basic light-level sensing
»» support for power over USB or from two 

AAA batteries.

In addition to its onboard capabilities, the 
micro:bit can be extended via its expansion port, 
which combines a standard edge connector with 
three 4-mm “sockets.” In this way, the micro:bit can 
easily be connected to other sensors, actuators, 
and devices.

A FRICTIONLESS PROGRAMMING 
EXPERIENCE
A cross-platform web-based development envi-
ronment supporting several different program-
ming languages—both graphical and text based—
was created as part of the micro:bit initiative. 
Programs are compiled into Arm machine code 
and combined with a precompiled runtime based 
on a new device abstraction layer (DAL). The DAL, 
which was developed for micro:bit by Lancaster 
University, provides an efficient, evented, reac-
tive-based programming model based on cooper-
ative threading. The compilation process can run 
within the browser to produce a text-based hex 
file format that can readily be downloaded.

When the micro:bit is plugged into a computer 
over a USB, it appears as a mass storage device, 
requiring no special software or driver installation. 
To transfer code to the hardware, the correspond-
ing hex file is first saved to the local computer,  
and then it can simply be dragged to the micro: 
bit mounted as a drive. This flashes the micro: 
bit with the new program and starts running it  
within seconds.

Web-based IDEs, such as Microsoft Make-
Code, allow students to see their code working 

in real time using a built-in simulator. Programs 
may be developed using a block-based graph-
ical representation or as JavaScript text, and as 
they are edited, they are continuously compiled 
from within the browser, enabling real-time 
simulation. The simulator supports the LED 
screen, buttons, digital input/output pins,  
and sensors.

In addition to the installation-free MakeCode 
IDE described previously, micro:bit also sup-
ports other programming environments. Special 
firmware supports MicroPython in conjunction 
with a custom IDE and also allows the micro:bit 
to be programmed by simply saving a text 
file containing the desired code onto the USB 
mass-storage device. Alternatively, Arm’s mbed 
platform can be used to program in C++ using 
the mbed IDE. The micro:bit supports a  
CMSIS-DAP debugging and firmware program-
ming interface and provides a serial interface for 
serial input/output.

CREATING A LASTING IMPACT
Following the successful delivery of around 
800,000 devices in 2016 to 11–12 year olds in 
the United Kingdom, an organization called the 
Micro:bit Educational Foundation was created. 
The foundation’s charter is to amplify the impact 
of the micro:bit and in particular to extend its 
reach to other countries.

Thanks to the foundation’s hard work, the 
micro:bit hardware is now available in 60 coun-
tries, and the microbit.org website is available in 
24 languages. The programming experience has 
continued to evolve thanks to ongoing support 
from partner organizations. A vibrant ecosys-
tem of micro:bit kits, accessories, and books is 
emerging via an international network of more 
than 100 partners (see Figure S2 for some 
examples). Following the United Kingdom’s lead, 
Canada, Croatia, Denmark, Hong Kong, Norway, 

(Continued)
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who represent a cross section of those 
currently underserved by computer 
science education programs, have all 
responded positively to a computer sci-
ence education approach built on phys-
ical computing hardware.1–4

Marshall12 and Horn et al.13 both 
describe how tangible and physical 
computing environments, in addition 
to the technical skills they imbue, can 

have a very positive effect on collab-
orative and active learning because 
students work together in a ver y 
visible way. Similarly, Hodges et al.14

report that students with a diversity of 
skills and abilities support and learn 
from each other. Physical computing 
also develops valuable interpersonal 
skills14 and facilitates more natural 
and often more effective learning.12,13

We summarize the benefits of phys-
ical computing in the classroom as 
follows:

› Motivation: Physical computing 
in  c rea ses mot iv at ion for 
s t udent s,  including those 
from diverse backgrounds, 
because the learning experience 
and the outcome are visible, not 

Iceland, Uruguay, Singapore, and the Western 
Balkan countries have deployed micro:bit devices 
on a national scale. To date, 4.5 million micro:bit 
devices have been manufactured.

Early feedback from those using micro:bit 
devices has been very positive. A study by 
Discovery Research22 showed that high school 
students are highly engaged when using the 
device, and their desire to continue studying 
computing or information and communica-
tions technology increases. At the same time, 
nearly 90% of their teachers indicated they 
would continue to use micro:bit devices in their 

classrooms. Initial reports from Denmark and 
the Western Balkans are equally positive.S1

But the ultimate test of success, based on the 
original ambition of the BBC and micro:bit 
project partners, will be the continued use of 
micro:bit devices in schools over many years 
and an uplift in the number of students who 
pursue careers in technology. For that, check 
back in a decade.

Reference
 S1. Micro:bit Educational Foundation, “Academic research into 

the BBC micro:bit,” BBC News. [Online]. Available: https://
microbit.org/research/

FIGURE S2. An ecosystem of micro:bit teaching materials and accessories has emerged. These range from kits and 
robots to games and books. Some images courtesy of Greg Norris.

BBC micro:bit INSPIRES A NEW GENERATION (Continued)
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virtual. This is especially true 
when a programming task is in 
service of a practical, meaning-
ful device.

›› Tangibility and interactivity: 
The tangible nature of physical 
devices helps students make 
natural connections. Itera-
tively debugging and refining 
tangible systems gives stu-
dents a better understanding 
of programming concepts and 
the software development 
process.

›› Creativity: Students naturally 
relate to the physical nature of 
the task, unleashing creativity 
in terms of what they build and 
thereby strengthening engage-
ment with the task.

›› Learning by doing: Physical com-
puting projects promote trial and 
error because there are many 
ways to achieve most goals rather 
than a single correct solution. 
This supports paradigms like 
learning by doing and use–mod-
ify–create in an iterative fashion.

›› Collaboration and inclusion: 
Working with devices lends 
itself to group work. Different 
roles include enclosure design, 
hardware interfacing, algorithm 
design, and user interaction. 
Groups of students can readily 
cooperate (or compete!) because of 
the physical nature of challenges 
and tasks.

›› Holistic view of computing 
education: Computer systems 
comprise hardware as well as 
software, and computer science 
is not just about programming. 
It is important for students to 
learn about the physical hard-
ware components of computer 
systems and how they work, 

especially given the emergence 
of the Internet of Things.

›› Engages the whole learner: The 
physical nature of the work 
engages the whole student—
both mind and body—making 
the learning process a deep, 
immersive experience.

Finally, it is worth noting that the 
benefits of physical computing aren’t 
limited to computer science education. 
There are diverse connections to other 
science, technology, engineering, and 
mathematics subjects,15 such as the 
simulation of behavior in biology, the 
collection and analysis of measure-
ments in physics, and logical mathe-
matical operations.13,16 These activ-
ities pave the way for learning about 
data science. Physical computing also 
connects into the arts and human-
ities,17 with applications to topics rang-
ing from interactive art pieces to geog-
raphy and dance.2,13 In a world where 
computing is increasingly relevant 
across all disciplines, it is valuable for 
students to make these connections.

PHYSICAL COMPUTING  
IN PRACTICE
Given the many advantages of physical 
computing, it is not surprising that a wide 
range of physical computing devices 
have been developed by the research 
community, spawning numerous prod-
ucts. Table 1 illustrates many of these 
products, building on the categorization 
proposed by Przybylla and Romeike.13 
The numbered categories in Table 1 don’t 
necessarily represent a progression in 
terms of student age or ability, nor do they 
map directly onto particular computer 
science concepts or levels of sophistica-
tion. Rather, they provide a basic taxon-
omy for grouping products with simliar 
form factors and technical capabilities.

A range of sophisticated modular 
kits and programmable toys at prices 
up to many hundreds of dollars are 
popular. These include packaged com-
ponents and modules like LittleBits 
(category 1 in the table), robotic tur-
tles like Sphero (category 2), and pro-
grammable construction sets like 
LEGO (also category 2). However, in 
recent years, a large range of board-
level devices in the under-US$50 price 
bracket (categories 3, 4, and 5) have 
become well established, and, argu-
ably, devices in these categories are 
currently driving the adoption of 
physical computing. These board-level 
devices are extensible with basic elec-
tronic interfacing and/or via readily 
available pluggable modules.

The simplest board-level devices 
(category 3) require a connected PC 
during use and are typically most 
appropriate for very young students, 
starting in early primary school. 
The embedded devices of category 4 
require a PC or tablet for programming 
but can then be used as standalone 
devices; some of these, such as Crum-
ble and micro:bit, can be used with stu-
dents aged from eight years upward. 
Despite their ease of use, many have 
plenty of headroom for teaching quite 
advanced programming concepts if 
appropriate. Finally, the general-pur-
pose board-level products in category 5 
are essentially standalone PCs in their 
own right and naturally provide the 
greatest flexibility, albeit with a little 
added complexity. See “Physical Com-
puting 1–2–3” for practical informa-
tion about getting started with board-
level physical computing devices.

In terms of the programming ex
periences associated with physical 
computing, the Massachusetts Insti-
tute of Technology’s Scratch envi-
ronment18 and its many derivatives 
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TABLE 1. Commercially available physical computing products. This 
categorization builds on that proposed by Przybylla and Romeike.13

Categorization Type of product Examples

1.  Packaged 
electronics; no 
programing

Kits of packaged 
components and 
modules

Snap Circuits, basic 
LittleBits, Circuit 
Stickers

2.  Packaged 
programmable 
products 
(not boards); 
programmable via 
PC or phone; often 
battery-powered

Robot turtles Sphero, Ozobot, Kibo, 
Dash and Dot, BeeBot, 
Cubetto

Programmable 
construction sets

Lego WeDo, Lego 
Mindstorms, Pico 
Cricket, Vex Robotics

3.  Board-level 
peripheral devices; 
need PC during use

Integrated input/
output devices for 
PCs

Makey Makey, 
PicoBoard, BlinkM, 
Sense Board

Modular input/
output devices for 
PCs

Phidgets

4.  Board-level 
embedded devices; 
need PC to program 
but can operate as 
standalone device; 
can be battery 
powered

Microcontroller 
boards with 
integrated input/
output devices

micro:bit, Light Blue 
Bean, Arduino Esplora, 
Circuit Playground, 
Calliope

Microcontroller 
boards with low-
level input/output

Crumble, BASIC stamp, 
Arm mbed, Chibi Chip

Microcontroller 
boards with support 
for modular input/
output

Arduino variants

.NET Gadgeteer, 
TinkerKit, Hummingbird

5.  Board-level general-
purpose devices; 
often use wired 
power

Often used without 
PC; input/output 
available through 
accessories

Raspberry Pi, 
BeagleBone,
Intel Galileo

Some images courtesy of AlesiaKan/Shutterstock.com; Chester Fitchett/phidgets.com; Bunnie Huang; and Greg Norris.
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are well established at the entry level. 
Beyond this, a variety of text-based lan-
guages and integrated development 
environments (IDEs) are used, with vari-
ants of C being particularly popular due 
to Arduino and its family of devices. 
Modkit19 was one of the first systems 
to extend a Scratch-like environment 
with a “code view,” bridging the wide 
gap between these two experiences. This 
“blocks-to-code” graduation paradigm 
is now becoming more common, as 
exemplified by Microsoft’s MakeCode 
(http://makecode.com) programming  
environment,10 which supports the  
micro:bit (https://microbit.org), among  
other devices.

The history of both hardware and 
sof tware in the physical comput-
ing space also provides a lesson in 
the importance of design. Logo and 
Scratch demonstrate how compel-
ling visual and interaction designs 
can create powerful and sustained 
engagement,20 and researchers have 
observed the value of intuitive user-in-
terface design in assisting learners.19 
Similarly, board-level products are 
increasingly designed to be accessi-
ble and visually appealing. Arduino 
started this trend with its nonstandard 
but easy-to-wire headers, and products 
like Lilypad (https://store.arduino.cc/
lilypad-arduino-main-board), Circuit 
Playground Express (https://adafruit 
.com/product/3333), Makey Makey 
(https://makeymakey.com/), and the 
micro:bit have taken this to new levels.

Given the proven advantages of 
using a physical computing approach 
in computer science education, it 
is not surprising that most of the 
products listed in Table 1 have been 
used in the classroom. However, in 
the past, several barriers have pre-
vented more widespread and routine 
adoption. These have recently been 

eliminated by way of the following 
four trends:

1.	 Powerful but low cost: There 
is an inherent cost associ-
ated with a physical comput-
ing device. Thankfully, cost 
continues to fall. Silicon for 
embedded processors is still 
following Moore’s law, while 
board production and distribu-
tion costs are lower than ever. 
Powerful embedded comput-
ing devices that cost no more 
than a movie ticket are already 
available.

2.	 Instant, intuitive, and convenient: 
Almost by definition, physi-
cal computing devices target 
nonexperts. Some of the latest 
physical computing experi-
ences require no installation. 
They are instead based on an 
in-browser web-based pro-
gramming environment, which 
provides instant gratification. 
On-screen simulation lets stu-
dents and teachers experiment 
without hardware; the ability 
to transition to a self-contained 
and battery-powered physical 
computing device provides a lot 
of flexibility in and beyond  
the classroom.

3.	 Engaging, extensible, and sus-
taining: Just like any product, 
a physical computing expe-
rience is more approachable, 
engaging, and inclusive when 
thoughtfully designed from 
end to end. Visually appealing 
devices with built-in input/
output deliver an absorbing 
interactive experience out of 
the box, but there needs to be 
enough extensibility to  
sustain interest.

4.	 Reliable and compatible: It is 
imperative that any technology 
used in the classroom works 
every time so that teachers can 
rely on it. It is important that 
any required software or driver 
installation is quick and easy, 
ideally avoiding administrator 
access, which is a significant 
hurdle for many teachers. At 
the same time, supporting a 
consistent experience across 
multiple operating systems 
makes life much easier for 
teachers and school IT staff.

In summary, the combined hard-
ware and software experience pro-
vided by modern physical computing 
systems is better suited to teaching 
environments than ever before.

THE FUTURE OF PHYSICAL 
COMPUTING: A CALL TO ARMS
We believe that today’s inexpensive, 
instant, intuitive, engaging, and sus-
taining physical computing solutions 
have tremendous value in the class-
room. A variety of integrated, thought-
fully designed physical computing 
devices, such as the micro:bit, have the 
potential to firmly establish physical 
computing as a key element of modern 
computer science education. Over time, 
we expect these board-level embed-
ded devices to have increasing com-
putational capabilities, better wireless 
connectivity, better integration with 
physical construction kits, and more 
extensibility. At the same time, they are 
likely to become smaller and cheaper 
than today’s products, making them 
even more suitable for a variety of class-
room projects and such applications as 
wearables, robotics, and gaming.

We also believe that there will be 
many additional opportunities for 
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PHYSICAL COMPUTING 1-2-3

It’s easy to get started with physical computing! 
Here we suggest three devices that provide an 

on-ramp to the concepts of physical computing 
and a path toward more sophisticated applica-
tions in data science and the Internet of Things.

MAKEY-MAKEY
One of the most intuitive and quick devices to 
start with is Makey Makey (https://makeymakey 
.com/). This board doesn’t require any soft-
ware or driver installation. Just plug it into any 
computer with a USB port, and it appears as an 
additional keyboard. However, it doesn’t have 
any real keys or buttons; instead it has several 
places for attaching crocodile clip leads. Makey 
Makey simulates keypresses when it detects  
actions in the physical world based on chang-
ing electrical signals sensed through the 
attached leads.

A common configuration for Makey Makey in-
volves having a student use the resistance of his or 
her body to complete a circuit by touching an ob-
ject wired to it via the leads and, using the resulting 
“keypress,” cause the PC to do something notable, 
such as play a sound. Instructions describing how 
to build a classic Makey Makey project, the “banana 
piano,” can be found at http://librarymakers.net/
piano-keyboard-makey-makey.

micro:bit
From a physical computing perspective, Makey-
makey is an input-only device. It senses in the 
physical world, but in its standard configuration, 
output is contained to the computer it’s attached 
to. Makey Makey is Arduino compatible and so 
can be reprogrammed using the Arduino IDE to 
target all sorts of physical computing scenarios, 
including those involving outputs. However, many 
students and educators find that the jump from 
the simple automation afforded by a standard 
Makey Makey to Arduino is hard, so instead 
we’d recommend the BBC micro:bit as a  
natural progression.

The micro:bit works with several program-
ming environments; we suggest starting with a 

block-based editor, such as Microsoft MakeCode 
(https://www.microsoft.com/makecode). The 
micro:bit has a lot of onboard functionality (see 
“BBC micro:bit Inspires a New Generation”), but 
the hardware is also readily extended via an 
ecosystem of accessories with different sen-
sors, actuators, displays, and so on. The built-in 
Bluetooth low-energy radio supports Internet of 
Things scenarios. As a learner progresses, Make-
Code supports a natural transition to text-based 
programming. See Figure S2 for examples of 
teaching materials and accessories.

RASPBERRY PI
The micro:bit packs a lot of functionality into a 
small and relatively inexpensive package, provid-
ing an experience that’s accessible to beginners 
but that also provides a lot of headroom for more 
advanced usage, including as an embedded 
controller in class and hobby projects. For those 
looking to go beyond micro:bit, the Raspberry Pi 
is an obvious next step. Unlike the Makey Makey 
and the micro:bit, the Pi is a self-contained, 
general-purpose computer running a variant of 
the Linux operating system; it’s harder to set up 
but supports a huge range of applications, which 
makes it extremely versatile. There are several 
models, and we suggest a Raspberry Pi 3 Model 
B+ or the latest model, the Raspberry Pi 4.

The first step with a Pi is to plug in a keyboard, 
mouse, monitor, SD card, and USB power sup-
ply. The SD card needs to have the Raspberry Pi 
operating system Raspian on it. This can be fiddly 
to set up, but there are the online instructions 
here: https://projects.raspberrypi.org/en/projects/
raspberry-pi-setting-up. The Pi has a 40-pin con-
nector designed for wiring to sensors, actuators, 
and other physical computing devices. As with the 
micro:bit, a wide range of accessories plug in to 
this, but to get started, we suggest simple projects 
that only require two or three connections. These 
can be built by directly attaching wires. A good ex-
ample is the digital “whoopee cushion,” described 
in detail at https://projects.raspberrypi.org/en/
projects/whoopi-cushion.
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physical computing beyond computer 
science. There is a natural progression 
into other high school subjects. We 
envisage a plethora of teaching mate-
rials that show how to take the same 
device used in the computer science 
classroom and apply it across the cur-
riculum to leverage hands-on learning 
in other subjects. For example, physi-
cal computing devices readily support 
data collection in the natural and envi-
ronmental sciences. As the emerging 
discipline of data science becomes 
increasingly established, we imagine 
that physical computing devices—nat-
ural sources of sensor data—will be rel-
evant here too, engaging and educat-
ing the next generation of scientists. 
And finally, both students and hobby-
ists can be empowered to embark on a 
maker-to-market journey in many dif-
ferent application domains.

However, there are still many chal-
lenges. Creating an end-to-end expe-
rience that is compelling for both stu-
dents and teachers requires a close 
collaboration between educators and 
technology developers. Tight integra-
tion between the hardware and the pro-
gramming environment is critical to a 
seamless and compelling end-to-end 
experience. Quality content, curric-
ulum, and teacher training are, of 
course, absolutely necessary as well.

In conclusion, we encourage read-
ers who are not familiar with the 
latest developments in physical 

computing to experiment! We suggest 
starting with one of the board-level 
embedded systems described in “Phys-
ical Computing 1–2–3” because these 
are relatively inexpensive and acces-
sible, yet versatile. At the same time, 
we encourage those who are already 
familiar with physical computing to 

look for opportunities to extend the 
reach and develop the capability of 
existing solutions. We are excited at 
the potential of physical computing 
to engage and inspire the next genera-
tion of scientists and engineers, but we 
need help from our colleagues across 
industry, academia, and education to 
communicate and realize the potential 
of the technology. 
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