
COVER FEATURE COMPLEXITY VERSUS TRUST

20	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E

Steve Hodges, Microsoft Research

Sue Sentance, Raspberry Pi Foundation

Joe Finney, Lancaster University and Micro:bit Educational Foundation

Thomas Ball, Microsoft Research

A recent growth area in computer science education

is physical computing, which involves combining software and

hardware to build interactive physical systems that sense and

respond to the real world. This article provides an overview of

physical computing and its value in the classroom,

using the BBC micro:bit as an example.

Policymakers and educators around the globe
acknowledge the importance of formal com-
puter science education programs and the
computational thinking skills these instill in

students. Not only do we need to furnish our future work-
force with the prerequisites to meet the growing number
of computing-related jobs,1 but computational literacy
is also increasingly needed in all vocations. Computa-
tional skills are foundational skills.

Despite the large number of computer science education
tools and methodologies available, traditional computer

Physical Computing:
A Key Element of
Modern Computer
Science Education

Digital Object Identifier 10.1109/MC.2019.2935058
Date of current version: 9 April 2020

	 A P R I L 2 0 2 0 � 21

science education pathways do not
address the needs of a diverse student
population. Particular groups highlighted
in the literature as underserved include
females, those specializing in subjects
other than computer science, adult learn-
ers, juvenile offenders, and a variety of
minorities.1–4 It is becoming broadly
accepted that we need new approaches to
computer science education that resonate
with the broad set of backgrounds, abil-
ities, and learning styles of diverse pop-
ulations of students around the world.
We also need new styles of computer sci-
ence education that fit with today’s mod-
ern and rapidly evolving programming
techniques and paradigms, including
interactive computing experiences and
data-centric approaches. In summary,
there is a growing need for inclusive and
engaging computer science programs
that can educate more students around
the world than ever before.

At the same time, many teachers
with minimal experience in computing
are being asked to support new com-
puter science curricula, and they need
tools that are easy to deploy and keep
students engaged as their learning pro-
gresses. Those who do have experience
teaching computer science are eager
to find new ways to draw in students
who do not necessarily have a natu-
ral affinity with computing and sup-
plement what can be a somewhat dry
and “virtual” on-screen learning expe-
rience with more dynamic, hands-on
activities. Teachers also need tools to
stimulate digital creativity, collabora-
tion, end-to-end systems thinking, and
broader technology skills alongside cod-
ing and computational thinking.

THE BENEFITS OF GETTING
PHYSICAL
A va r iet y of t a ng ible, e m b e d d e d
“m i c r o computer” devices targeted

at students and hobbyists are estab-
lished in the market, for example,
Arduino, Raspberry Pi, and the BBC
micro:bit. The research community
has developed similar devices, such
as the Scratch Pico Board (http://
w w w.picoc r icket.com/p i c o b o a r d
.html), Microsoft’s .NET Gadgeteer
(https://en.wikipedia.org/wiki/.NET
_Gadgeteer), and the Sense system
(http://www.open.edu/openlearncreate/
mod/oucontent/view.php?id=22780).
W h i le t hese produc t s h ave ver y
different features, they all offer a
hybrid and extensible experience that
cuts across hardware and software.
Reprogrammable computing sys-
tems like these—which can interact
with their physical environment—are
known as physical computing devices.21

To understand the benefits of phys-
ical computing devices and the expe-
riences they deliver, particularly in
a kindergarten-to-12th-grade (K–12)
computer science education context,
it is insightful to review the relevant
literature. Constructivist learning
theory suggests that knowledge is
actively constructed by the student.5
Papert built on the constructivist con-
cept using the term constructionism6
to indicate a combination of construc-
tivism and hands-on construction. He
argues that learning happens most
readily in a context where the learner
is consciously engaged in construct-
ing a real, visible thing—whether it’s
a sandcastle on a beach or a theory of
the universe.6 The Logo programming
language and the robotic “turtles,”
which became popular for engag-
ing students with programming and
computational thinking in the 1980s,
are constructionist in nature. Addi-
tionally, physical devices naturally
support an exploratory “bricolage”
approach, as advocated by Stiller.7

Students learn by building on existing
knowledge following a pedagogy of
incremental problem solving. When
physical computing is adopted in
schools, more structured pedagogical
approaches can be used, such as use–
modify–create,8 where students work
with existing working programs on
devices before modifying them to add
functionality while learning program-
ming concepts in the process.

From the student’s perspective,
physica l comput i ng ca n be much
more positive than a more traditional
screen-based experience because it
more readily supports open-ended
ideation, rather than causing frustra-
tion through restrictions.9 Students
appreciate building real, tangible
devices and report that physical com-
puting platforms stimulate their cre-
ativity.10,11 This, in turn, engenders
a broader and deeper engagement in
computer science learning activities.

Anecdotally, girls seem to be more
engaged when exposed to physical
computing compared with traditional
programming systems, often enjoying
coding an embedded device application
as a means to an end. Programming
is done in service of a larger, person-
ally meaningful project and goal, such
as building a digital magic wand or
electronic piggy bank. Crucially, girls
consistently describe growing in confi-
dence when exposed to physical com-
puting.11 The BBC conducted a survey of
year-seven students in the United King-
dom who had been given a micro:bit
physical computing device (see “BBC
micro:bit Inspires a New Generation”
for more details) and found that, among
girls, it increased by 70% their predis-
position to study information and com-
munications technology and computer
science in the future.22 Similarly, the
other minorities mentioned earlier,

COMPLEXITY VERSUS TRUST

22	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

BBC micro:bit INSPIRES A NEW GENERATION

T he BBC micro:bit is a palm-sized interactive
physical computing device designed to enable

children to get engaged and creative with technol-
ogy and coding. The device is used in conjunction
with a programming environment that runs in
a web browser. Simple programs—for example,
lighting up LEDs to display a pattern in response to
a sensor input—can be coded in seconds with little
prior knowledge of computing and no software
installation.

The micro:bit project was conceived by the BBC
with the aim of building on the heritage of the BBC
Microcomputer developed in the 1980s, but the
micro:bit takes a more modern approach to improv-
ing computer literacy and programming skills. The
micro:bit experience was designed with a focus on
universal appeal and accessibility coupled with sim-
plicity and progression. This design ethos pervades
both the hardware and software, which are rich in
capability to motivate and inspire yet remain simple,
safe, extensible, and ef-
ficient in their operation.

From the outset of
the project, the BBC
set an ambitious goal
to build and give away
1 million micro:bit
devices to school
children in the United
Kingdom. A collabora-
tion involving tens of
partners worked with
the BBC, and over the
course of 18 months,
this group resourced,
designed, built, and
delivered an integrated
micro:bit experience,
an online programming

experience, and a variety of teaching support
materials.

ACCESSIBLE AND ENGAGING
PHYSICAL COMPUTING
The micro:bit, shown in Figure S1, measures
4 cm × 5 cm and is powered by an Arm Cor-
tex-M0 microcontroller with 256-kB nonvolatile
flash for the program and static data and 16-kB
volatile RAM for dynamic memory requirements.
Key hardware features of the micro:bit include
the following:

»» 25 red LEDs in a 5 × 5 matrix to display
simple graphics and scrolling text

»» two programmable buttons to provide input
»» an accelerometer motion sensor to detect

movement and forces acting on the device
»» a magnetometer or digital compass to

sense orientation

FIGURE S1. The (a) front and (b) back of the micro:bit. The device, designed to look
friendly and appealing, is available in four colors. (Yellow is shown here.) Like many
physical computing boards, no attempt was made to hide the components on the rear.
In fact, they are clearly labeled as an invitation for students to engage with their function
and purpose.

(a) (b)

	 A P R I L 2 0 2 0 � 23

»» Bluetooth low energy to communicate
with other micro:bit devices and with such
devices as phones and tablets

»» a temperature sensor
»» basic light-level sensing
»» support for power over USB or from two

AAA batteries.

In addition to its onboard capabilities, the
micro:bit can be extended via its expansion port,
which combines a standard edge connector with
three 4-mm “sockets.” In this way, the micro:bit can
easily be connected to other sensors, actuators,
and devices.

A FRICTIONLESS PROGRAMMING
EXPERIENCE
A cross-platform web-based development envi-
ronment supporting several different program-
ming languages—both graphical and text based—
was created as part of the micro:bit initiative.
Programs are compiled into Arm machine code
and combined with a precompiled runtime based
on a new device abstraction layer (DAL). The DAL,
which was developed for micro:bit by Lancaster
University, provides an efficient, evented, reac-
tive-based programming model based on cooper-
ative threading. The compilation process can run
within the browser to produce a text-based hex
file format that can readily be downloaded.

When the micro:bit is plugged into a computer
over a USB, it appears as a mass storage device,
requiring no special software or driver installation.
To transfer code to the hardware, the correspond-
ing hex file is first saved to the local computer,
and then it can simply be dragged to the micro:
bit mounted as a drive. This flashes the micro:
bit with the new program and starts running it
within seconds.

Web-based IDEs, such as Microsoft Make-
Code, allow students to see their code working

in real time using a built-in simulator. Programs
may be developed using a block-based graph-
ical representation or as JavaScript text, and as
they are edited, they are continuously compiled
from within the browser, enabling real-time
simulation. The simulator supports the LED
screen, buttons, digital input/output pins,
and sensors.

In addition to the installation-free MakeCode
IDE described previously, micro:bit also sup-
ports other programming environments. Special
firmware supports MicroPython in conjunction
with a custom IDE and also allows the micro:bit
to be programmed by simply saving a text
file containing the desired code onto the USB
mass-storage device. Alternatively, Arm’s mbed
platform can be used to program in C++ using
the mbed IDE. The micro:bit supports a
CMSIS-DAP debugging and firmware program-
ming interface and provides a serial interface for
serial input/output.

CREATING A LASTING IMPACT
Following the successful delivery of around
800,000 devices in 2016 to 11–12 year olds in
the United Kingdom, an organization called the
Micro:bit Educational Foundation was created.
The foundation’s charter is to amplify the impact
of the micro:bit and in particular to extend its
reach to other countries.

Thanks to the foundation’s hard work, the
micro:bit hardware is now available in 60 coun-
tries, and the microbit.org website is available in
24 languages. The programming experience has
continued to evolve thanks to ongoing support
from partner organizations. A vibrant ecosys-
tem of micro:bit kits, accessories, and books is
emerging via an international network of more
than 100 partners (see Figure S2 for some
examples). Following the United Kingdom’s lead,
Canada, Croatia, Denmark, Hong Kong, Norway,

(Continued)

COMPLEXITY VERSUS TRUST

24 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

who represent a cross section of those
currently underserved by computer
science education programs, have all
responded positively to a computer sci-
ence education approach built on phys-
ical computing hardware.1–4

Marshall12 and Horn et al.13 both
describe how tangible and physical
computing environments, in addition
to the technical skills they imbue, can

have a very positive effect on collab-
orative and active learning because
students work together in a ver y
visible way. Similarly, Hodges et al.14

report that students with a diversity of
skills and abilities support and learn
from each other. Physical computing
also develops valuable interpersonal
skills14 and facilitates more natural
and often more effective learning.12,13

We summarize the benefits of phys-
ical computing in the classroom as
follows:

› Motivation: Physical computing
in c rea ses mot iv at ion for
s t udent s, including those
from diverse backgrounds,
because the learning experience
and the outcome are visible, not

Iceland, Uruguay, Singapore, and the Western
Balkan countries have deployed micro:bit devices
on a national scale. To date, 4.5 million micro:bit
devices have been manufactured.

Early feedback from those using micro:bit
devices has been very positive. A study by
Discovery Research22 showed that high school
students are highly engaged when using the
device, and their desire to continue studying
computing or information and communica-
tions technology increases. At the same time,
nearly 90% of their teachers indicated they
would continue to use micro:bit devices in their

classrooms. Initial reports from Denmark and
the Western Balkans are equally positive.S1

But the ultimate test of success, based on the
original ambition of the BBC and micro:bit
project partners, will be the continued use of
micro:bit devices in schools over many years
and an uplift in the number of students who
pursue careers in technology. For that, check
back in a decade.

Reference
 S1. Micro:bit Educational Foundation, “Academic research into

the BBC micro:bit,” BBC News. [Online]. Available: https://
microbit.org/research/

FIGURE S2. An ecosystem of micro:bit teaching materials and accessories has emerged. These range from kits and
robots to games and books. Some images courtesy of Greg Norris.

BBC micro:bit INSPIRES A NEW GENERATION (Continued)

	 A P R I L 2 0 2 0 � 25

virtual. This is especially true
when a programming task is in
service of a practical, meaning-
ful device.

›› Tangibility and interactivity:
The tangible nature of physical
devices helps students make
natural connections. Itera-
tively debugging and refining
tangible systems gives stu-
dents a better understanding
of programming concepts and
the software development
process.

›› Creativity: Students naturally
relate to the physical nature of
the task, unleashing creativity
in terms of what they build and
thereby strengthening engage-
ment with the task.

›› Learning by doing: Physical com-
puting projects promote trial and
error because there are many
ways to achieve most goals rather
than a single correct solution.
This supports paradigms like
learning by doing and use–mod-
ify–create in an iterative fashion.

›› Collaboration and inclusion:
Working with devices lends
itself to group work. Different
roles include enclosure design,
hardware interfacing, algorithm
design, and user interaction.
Groups of students can readily
cooperate (or compete!) because of
the physical nature of challenges
and tasks.

›› Holistic view of computing
education: Computer systems
comprise hardware as well as
software, and computer science
is not just about programming.
It is important for students to
learn about the physical hard-
ware components of computer
systems and how they work,

especially given the emergence
of the Internet of Things.

›› Engages the whole learner: The
physical nature of the work
engages the whole student—
both mind and body—making
the learning process a deep,
immersive experience.

Finally, it is worth noting that the
benefits of physical computing aren’t
limited to computer science education.
There are diverse connections to other
science, technology, engineering, and
mathematics subjects,15 such as the
simulation of behavior in biology, the
collection and analysis of measure-
ments in physics, and logical mathe-
matical operations.13,16 These activ-
ities pave the way for learning about
data science. Physical computing also
connects into the arts and human-
ities,17 with applications to topics rang-
ing from interactive art pieces to geog-
raphy and dance.2,13 In a world where
computing is increasingly relevant
across all disciplines, it is valuable for
students to make these connections.

PHYSICAL COMPUTING
IN PRACTICE
Given the many advantages of physical
computing, it is not surprising that a wide
range of physical computing devices
have been developed by the research
community, spawning numerous prod-
ucts. Table 1 illustrates many of these
products, building on the categorization
proposed by Przybylla and Romeike.13
The numbered categories in Table 1 don’t
necessarily represent a progression in
terms of student age or ability, nor do they
map directly onto particular computer
science concepts or levels of sophistica-
tion. Rather, they provide a basic taxon-
omy for grouping products with simliar
form factors and technical capabilities.

A range of sophisticated modular
kits and programmable toys at prices
up to many hundreds of dollars are
popular. These include packaged com-
ponents and modules like LittleBits
(category 1 in the table), robotic tur-
tles like Sphero (category 2), and pro-
grammable construction sets like
LEGO (also category 2). However, in
recent years, a large range of board-
level devices in the under-US$50 price
bracket (categories 3, 4, and 5) have
become well established, and, argu-
ably, devices in these categories are
currently driving the adoption of
physical computing. These board-level
devices are extensible with basic elec-
tronic interfacing and/or via readily
available pluggable modules.

The simplest board-level devices
(category 3) require a connected PC
during use and are typically most
appropriate for very young students,
starting in early primary school.
The embedded devices of category 4
require a PC or tablet for programming
but can then be used as standalone
devices; some of these, such as Crum-
ble and micro:bit, can be used with stu-
dents aged from eight years upward.
Despite their ease of use, many have
plenty of headroom for teaching quite
advanced programming concepts if
appropriate. Finally, the general-pur-
pose board-level products in category 5
are essentially standalone PCs in their
own right and naturally provide the
greatest flexibility, albeit with a little
added complexity. See “Physical Com-
puting 1–2–3” for practical informa-
tion about getting started with board-
level physical computing devices.

In terms of the programming ex
periences associated with physical
computing, the Massachusetts Insti-
tute of Technology’s Scratch envi-
ronment18 and its many derivatives

COMPLEXITY VERSUS TRUST

26 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

TABLE 1. Commercially available physical computing products. This
categorization builds on that proposed by Przybylla and Romeike.13

Categorization Type of product Examples

1. Packaged
electronics; no
programing

Kits of packaged
components and
modules

Snap Circuits, basic
LittleBits, Circuit
Stickers

2. Packaged
programmable
products
(not boards);
programmable via
PC or phone; often
battery-powered

Robot turtles Sphero, Ozobot, Kibo,
Dash and Dot, BeeBot,
Cubetto

Programmable
construction sets

Lego WeDo, Lego
Mindstorms, Pico
Cricket, Vex Robotics

3. Board-level
peripheral devices;
need PC during use

Integrated input/
output devices for
PCs

Makey Makey,
PicoBoard, BlinkM,
Sense Board

Modular input/
output devices for
PCs

Phidgets

4. Board-level
embedded devices;
need PC to program
but can operate as
standalone device;
can be battery
powered

Microcontroller
boards with
integrated input/
output devices

micro:bit, Light Blue
Bean, Arduino Esplora,
Circuit Playground,
Calliope

Microcontroller
boards with low-
level input/output

Crumble, BASIC stamp,
Arm mbed, Chibi Chip

Microcontroller
boards with support
for modular input/
output

Arduino variants

.NET Gadgeteer,
TinkerKit, Hummingbird

5. Board-level general-
purpose devices;
often use wired
power

Often used without
PC; input/output
available through
accessories

Raspberry Pi,
BeagleBone,
Intel Galileo

Some images courtesy of AlesiaKan/Shutterstock.com; Chester Fitchett/phidgets.com; Bunnie Huang; and Greg Norris.

	 A P R I L 2 0 2 0 � 27

are well established at the entry level.
Beyond this, a variety of text-based lan-
guages and integrated development
environments (IDEs) are used, with vari-
ants of C being particularly popular due
to Arduino and its family of devices.
Modkit19 was one of the first systems
to extend a Scratch-like environment
with a “code view,” bridging the wide
gap between these two experiences. This
“blocks-to-code” graduation paradigm
is now becoming more common, as
exemplified by Microsoft’s MakeCode
(http://makecode.com) programming
environment,10 which supports the
micro:bit (https://microbit.org), among
other devices.

The history of both hardware and
sof tware in the physical comput-
ing space also provides a lesson in
the importance of design. Logo and
Scratch demonstrate how compel-
ling visual and interaction designs
can create powerful and sustained
engagement,20 and researchers have
observed the value of intuitive user-in-
terface design in assisting learners.19
Similarly, board-level products are
increasingly designed to be accessi-
ble and visually appealing. Arduino
started this trend with its nonstandard
but easy-to-wire headers, and products
like Lilypad (https://store.arduino.cc/
lilypad-arduino-main-board), Circuit
Playground Express (https://adafruit
.com/product/3333), Makey Makey
(https://makeymakey.com/), and the
micro:bit have taken this to new levels.

Given the proven advantages of
using a physical computing approach
in computer science education, it
is not surprising that most of the
products listed in Table 1 have been
used in the classroom. However, in
the past, several barriers have pre-
vented more widespread and routine
adoption. These have recently been

eliminated by way of the following
four trends:

1.	 Powerful but low cost: There
is an inherent cost associ-
ated with a physical comput-
ing device. Thankfully, cost
continues to fall. Silicon for
embedded processors is still
following Moore’s law, while
board production and distribu-
tion costs are lower than ever.
Powerful embedded comput-
ing devices that cost no more
than a movie ticket are already
available.

2.	 Instant, intuitive, and convenient:
Almost by definition, physi-
cal computing devices target
nonexperts. Some of the latest
physical computing experi-
ences require no installation.
They are instead based on an
in-browser web-based pro-
gramming environment, which
provides instant gratification.
On-screen simulation lets stu-
dents and teachers experiment
without hardware; the ability
to transition to a self-contained
and battery-powered physical
computing device provides a lot
of flexibility in and beyond
the classroom.

3.	 Engaging, extensible, and sus-
taining: Just like any product,
a physical computing expe-
rience is more approachable,
engaging, and inclusive when
thoughtfully designed from
end to end. Visually appealing
devices with built-in input/
output deliver an absorbing
interactive experience out of
the box, but there needs to be
enough extensibility to
sustain interest.

4.	 Reliable and compatible: It is
imperative that any technology
used in the classroom works
every time so that teachers can
rely on it. It is important that
any required software or driver
installation is quick and easy,
ideally avoiding administrator
access, which is a significant
hurdle for many teachers. At
the same time, supporting a
consistent experience across
multiple operating systems
makes life much easier for
teachers and school IT staff.

In summary, the combined hard-
ware and software experience pro-
vided by modern physical computing
systems is better suited to teaching
environments than ever before.

THE FUTURE OF PHYSICAL
COMPUTING: A CALL TO ARMS
We believe that today’s inexpensive,
instant, intuitive, engaging, and sus-
taining physical computing solutions
have tremendous value in the class-
room. A variety of integrated, thought-
fully designed physical computing
devices, such as the micro:bit, have the
potential to firmly establish physical
computing as a key element of modern
computer science education. Over time,
we expect these board-level embed-
ded devices to have increasing com-
putational capabilities, better wireless
connectivity, better integration with
physical construction kits, and more
extensibility. At the same time, they are
likely to become smaller and cheaper
than today’s products, making them
even more suitable for a variety of class-
room projects and such applications as
wearables, robotics, and gaming.

We also believe that there will be
many additional opportunities for

COMPLEXITY VERSUS TRUST

28	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

PHYSICAL COMPUTING 1-2-3

It’s easy to get started with physical computing!
Here we suggest three devices that provide an

on-ramp to the concepts of physical computing
and a path toward more sophisticated applica-
tions in data science and the Internet of Things.

MAKEY-MAKEY
One of the most intuitive and quick devices to
start with is Makey Makey (https://makeymakey
.com/). This board doesn’t require any soft-
ware or driver installation. Just plug it into any
computer with a USB port, and it appears as an
additional keyboard. However, it doesn’t have
any real keys or buttons; instead it has several
places for attaching crocodile clip leads. Makey
Makey simulates keypresses when it detects
actions in the physical world based on chang-
ing electrical signals sensed through the
attached leads.

A common configuration for Makey Makey in-
volves having a student use the resistance of his or
her body to complete a circuit by touching an ob-
ject wired to it via the leads and, using the resulting
“keypress,” cause the PC to do something notable,
such as play a sound. Instructions describing how
to build a classic Makey Makey project, the “banana
piano,” can be found at http://librarymakers.net/
piano-keyboard-makey-makey.

micro:bit
From a physical computing perspective, Makey-
makey is an input-only device. It senses in the
physical world, but in its standard configuration,
output is contained to the computer it’s attached
to. Makey Makey is Arduino compatible and so
can be reprogrammed using the Arduino IDE to
target all sorts of physical computing scenarios,
including those involving outputs. However, many
students and educators find that the jump from
the simple automation afforded by a standard
Makey Makey to Arduino is hard, so instead
we’d recommend the BBC micro:bit as a
natural progression.

The micro:bit works with several program-
ming environments; we suggest starting with a

block-based editor, such as Microsoft MakeCode
(https://www.microsoft.com/makecode). The
micro:bit has a lot of onboard functionality (see
“BBC micro:bit Inspires a New Generation”), but
the hardware is also readily extended via an
ecosystem of accessories with different sen-
sors, actuators, displays, and so on. The built-in
Bluetooth low-energy radio supports Internet of
Things scenarios. As a learner progresses, Make-
Code supports a natural transition to text-based
programming. See Figure S2 for examples of
teaching materials and accessories.

RASPBERRY PI
The micro:bit packs a lot of functionality into a
small and relatively inexpensive package, provid-
ing an experience that’s accessible to beginners
but that also provides a lot of headroom for more
advanced usage, including as an embedded
controller in class and hobby projects. For those
looking to go beyond micro:bit, the Raspberry Pi
is an obvious next step. Unlike the Makey Makey
and the micro:bit, the Pi is a self-contained,
general-purpose computer running a variant of
the Linux operating system; it’s harder to set up
but supports a huge range of applications, which
makes it extremely versatile. There are several
models, and we suggest a Raspberry Pi 3 Model
B+ or the latest model, the Raspberry Pi 4.

The first step with a Pi is to plug in a keyboard,
mouse, monitor, SD card, and USB power sup-
ply. The SD card needs to have the Raspberry Pi
operating system Raspian on it. This can be fiddly
to set up, but there are the online instructions
here: https://projects.raspberrypi.org/en/projects/
raspberry-pi-setting-up. The Pi has a 40-pin con-
nector designed for wiring to sensors, actuators,
and other physical computing devices. As with the
micro:bit, a wide range of accessories plug in to
this, but to get started, we suggest simple projects
that only require two or three connections. These
can be built by directly attaching wires. A good ex-
ample is the digital “whoopee cushion,” described
in detail at https://projects.raspberrypi.org/en/
projects/whoopi-cushion.

	 A P R I L 2 0 2 0 � 29

physical computing beyond computer
science. There is a natural progression
into other high school subjects. We
envisage a plethora of teaching mate-
rials that show how to take the same
device used in the computer science
classroom and apply it across the cur-
riculum to leverage hands-on learning
in other subjects. For example, physi-
cal computing devices readily support
data collection in the natural and envi-
ronmental sciences. As the emerging
discipline of data science becomes
increasingly established, we imagine
that physical computing devices—nat-
ural sources of sensor data—will be rel-
evant here too, engaging and educat-
ing the next generation of scientists.
And finally, both students and hobby-
ists can be empowered to embark on a
maker-to-market journey in many dif-
ferent application domains.

However, there are still many chal-
lenges. Creating an end-to-end expe-
rience that is compelling for both stu-
dents and teachers requires a close
collaboration between educators and
technology developers. Tight integra-
tion between the hardware and the pro-
gramming environment is critical to a
seamless and compelling end-to-end
experience. Quality content, curric-
ulum, and teacher training are, of
course, absolutely necessary as well.

In conclusion, we encourage read-
ers who are not familiar with the
latest developments in physical

computing to experiment! We suggest
starting with one of the board-level
embedded systems described in “Phys-
ical Computing 1–2–3” because these
are relatively inexpensive and acces-
sible, yet versatile. At the same time,
we encourage those who are already
familiar with physical computing to

look for opportunities to extend the
reach and develop the capability of
existing solutions. We are excited at
the potential of physical computing
to engage and inspire the next genera-
tion of scientists and engineers, but we
need help from our colleagues across
industry, academia, and education to
communicate and realize the potential
of the technology.

ACKNOWLEDGMENTS
We thank many colleagues for pro-
viding the motivation to write this
article and informing several issues

discussed. Clare Riley and Jacqueline
Russell from Microsoft, provided a
great deal of input and support. Dan
Rosenstein, also from Microsoft, and
Gareth Stockdale, from the Micro:bit
Educational Foundation, made com-
ments on drafts of the article. Greg
Norris from GHI Electronics, Ches-
ter Fitchett from Phidgets, and Bun-
nie Huang from Chibitronics kindly
cont r ibuted i mages used i n t he
a r t icle. We also thank the anony-
mous reviewers who provided valu-
a ble f e e d b a c k , w h ic h i m pr o v e d
t he article.

ABOUT THE AUTHORS
STEVE HODGES is a senior principal researcher at Microsoft. His research
ambition is to facilitate innovations in hardware that have a lasting positive
impact in people’s lives. Hodges received a Ph.D. in robotics and computer
vision from Cambridge University, United Kingdom. He is a Senior Member of
the IEEE. Contact him at shodges@microsoft.com.

SUE SENTANCE is the chief learning officer at the Raspberry Pi Foundation
and visiting fellow at King’s College London. Her research interests include
the teaching of programming in school, teacher professional development,
physical computing, and curriculum change. Sentance received a Ph.D. in arti-
ficial intelligence from the University of Edinburgh, Scotland. She is a qualified
teacher and has trained many new computer science teachers. Contact her at
sue@raspberrypi.org.

JOE FINNEY is a professor in the School of Computing and Communications
at Lancaster University, United Kingdom. His research focuses on democratiz-
ing access to embedded tools and technologies to empower others to create
new applications and devices that bring positive impacts on society. Finney
received a Ph.D. in mobile computing from Lancaster University. He is a Mem-
ber of the IEEE. Contact him at j.finney@lancaster.ac.uk.

THOMAS BALL is a partner researcher in Microsoft Research in the Research
in Software Engineering group, he has been working on platforms for computer
science education, including Touch Develop, the BBC micro:bit, and Microsoft
MakeCode. Ball received a Ph.D. in computer science from the University of
Wisconsin-Madison in 1993. He is a fellow of the Association for Computing
Machinery.

COMPLEXITY VERSUS TRUST

30	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

REFERENCES
1.	 E. Barba and S. Chancellor, “Tangible

media approaches to introductory
computer science,” in Proc. 2015
ACM Conf. Innovation and Technology
Computer Science Education, Vil-
nius, Lithuania, pp. 207–212. doi:
10.1145/2729094.2742612.

2.	 K. DesPortes, M. Spells, and B.
DiSalvo, “The MoveLab: Develop-
ing congruence between students’
self-concepts and computing,” in
Proc. 47th ACM Tech. Symp. Com-
puting Science Education, Memphis,
TN, Feb. 2016, pp. 267–272. doi:
10.1145/2839509.2844586.

3.	 S. Sentance, J. Waite, S. Hodges, E.
MacLeod, and L. Yeomans, “ “Creat-
ing Cool Stuff”: Pupils’ Experience
of the BBC micro:bit,” in Proc. 2017
ACM SIGCSE Tech. Symp. Computer
Science Education, pp. 531–536. doi:
10.1145/3017680.3017749.

4.	 G. S. Stager, “Papert’s prison fab
lab: Implications for the maker
movement and education design,”
in Proc. 12th Int. Conf. Interac-
tion Design and Children, New
York, June 2013, pp. 487–490. doi:
10.1145/2485760.2485811.

5.	 M. Ben-Ari, “Constructivism in
computer science education,” in Proc.
29th SIGCSE Tech. Symp. Computer
Science Education, 1998, pp. 257–261.
doi: 10.1145/273133.274308.

6.	 S. Papert and I. Harel, Situating Con-
structionism. Constructionism. Nor-
wood, NJ: Ablex, 1991, pp. 193–206.

7.	 E. Stiller, “Teaching programming
using bricolage,” J. Comput. Sci. Coll.,
vol. 24, no. 6, pp. 35–42, June 2009.
doi: 10.5555/1529995.1530004.

8.	 I. Lee et al., “Computational thinking
for youth in practice,” ACM Inroads,
vol. 2, no. 1, pp. 32–37, 2011. doi:
10.1145/1929887.1929902.

9.	 M. Przybylla and R. Romeike, “Key
competences with physical comput-
ing,” in Proc. Key Competencies Infor-
matics and ICT, vol. 7, 2014, p. 351.

10.	 J. Devine, J. Finney, P. do Hal-
leux, M. Moskal, T. Ball, and S.
Hodges, “MakeCode and CODAL:
Intuitive and efficient embedded
systems programming for edu-
cation,” in Proc. 19th ACM SIG-
PLAN/SIGBED Int. Conf. Languages,
Compilers, and Tools Embedded
Systems, 2018, pp. 19–30. doi:
10.1145/3211332.3211335.

11.	 S. Sentance and S. Schwider-
ski-Grosche, “Challenges and
creativity: Using .NET Gadgeteer
in schools,” in Proc. 7th Workshop
on Primary and Secondary Comput-
ing Education, 2012, pp. 90–100. doi:
10.1145/2481449.2481473.

12.	 P. Marshall, “Do tangible interfaces
enhance learning?” in Proc. 1st Int.
Conf. Tangible and Embedded Interac-
tion, Baton Rouge, LA, Feb. 2007, pp.
163–170. doi: 10.1145/1226969.1227004.

13.	 M. S. Horn, R. J. Crouser, and M.
U. Bers, “Tangible interaction and
learning: The case for a hybrid
approach,” Pers. Ubiquit. Comput., vol.
16, no. 4, pp. 379–389, Apr. 2012. doi:
10.1007/s00779-011-0404-2.

14.	 S. Hodges et al., “.NET Gadgeteer:
A new platform for K-12 computer
science education,” in Proc. 44th
ACM Tech. Symp. Computer Science
Education, 2013, pp. 391–396. doi:
10.1145/2445196.2445315.

15.	 S. Schulz and N. Pinkwart, “Physi-
cal computing in STEM education,”
in Proc. Workshop in Primary and
Secondary Computing Education,
London, Nov. 2015, pp. 134–135. doi:
10.1145/2818314.2818327.

16.	 M. Przybylla and R. Romeike,
“Physical computing and its scope:

Towards a constructionist computer
science curriculum with physical
computing,” Inform. Educ., vol. 13, no.
2, pp. 241–254, 2014. doi: 10.15388/
infedu.2014.05.

17.	 E. S. Katterfeldt, N. Dittert, and H. Schel-
howe, “Designing digital fabrication
learning environments for Bildung:
Implications from ten years of physical
computing workshops,” Int. J. Child-Com-
put. Interact., vol. 5, pp. 3–10, Sept. 2015.
doi: 10.1016/j.ijcci.2015.08.001.

18.	 M. Resnick et al., “Scratch: Program-
ming for all,” Commun. ACM, vol.
52, no. 11, pp. 60–67, Nov. 2009. doi:
10.1145/1592761.1592779.

19.	 A. Millner and E. Baafi, “Modkit:
Blending and extending approachable
platforms for creating computer pro-
grams and interactive objects,” in Proc.
10th Int. Conf. Interaction Design and
Children. June 2011, pp. 250–253. doi:
10.1145/1999030.1999074.

20.	 P. Blikstein, “Gears of our childhood:
Constructionist toolkits, robotics, and
physical computing, past and future,”
in Proc. 12th Int. Conf. Interaction Design
and Children, New York, June 2013, pp.
173–182. doi: 10.1145/2485760.2485786.

21.	 Wikipedia, “Physical com-
puting,” [Online]. Available:
https://en.wikipedia.org/wiki/
Physical_computing

22.	 Discovery Research, “New BBC
stats reveal micro:bit impact,” BBC
News, July 7, 2017. [Online]. Avail-
able: http://www.microbit.org/
en/2017-07-07-bbc-stats/

Access all your IEEE Computer Society
subscriptions at

computer.org
/mysubscriptions

