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ABSTRACT
Data preparation is widely recognized as the most time-

consuming process in modern business intelligence (BI) and

machine learning (ML) projects. Automating complex data

preparation steps (e.g., Pivot, Unpivot, Normalize-JSON, etc.)

holds the potential to greatly improve user productivity, and

has therefore become a central focus of research.

We propose a novel approach to “auto-suggest” contextu-

alized data preparation steps, by “learning” from how data

scientists would manipulate data, which are documented

by data science notebooks widely available today. Specif-

ically, we crawled over 4M Jupyter notebooks on GitHub,

and replayed them step-by-step, to observe not only full

input/output tables (data-frames) at each step, but also the

exact data-preparation choices data scientists make that they

believe are best suited to the input data (e.g., how input tables

are Joined/Pivoted/Unpivoted, etc.).
1

By essentially “logging” how data scientists interact with

diverse tables, and using the resulting logs as a proxy of

“ground truth”, we can learn-to-recommend data preparation

steps best suited to given user data, just like how search

engines (Google or Bing) leverage their click-through logs

to learn-to-rank documents. This data-driven and log-driven

approach leverages the “collective wisdom” of data scientists

embodied in the notebooks, and is shown to significantly

outperform strong baselines including commercial systems

in terms of accuracy.

∗
Work done at Microsoft Research.
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We plan to release this data set at https://github.com/congy/AutoSuggest

to facilitate future research, once it is approved by an internal review.
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1 INTRODUCTION
Data preparation, also known as data wrangling, refers to
the process of preparing raw data from disparate sources

into formats that are ready for business-intelligence report-

ing (BI) or machine-learning modeling (ML). Gartner calls

data preparation “the most time-consuming step in analyt-

ics” [12]; while others report that business analysts and data

scientists spend up to 80% of their time on data prepara-

tion [39, 40]. Automating data preparation has the potential

to significantly improve user productivity, and democratize

modern BI and ML practices for even non-technical users.

Not surprisingly, there is an increasing number of research

efforts (e.g., [31, 32, 40, 50, 51, 53, 59, 72, 76, 77, 84]), and

commercial systems (e.g., Trifacta [28], Microsoft Power

Query [20], Paxata [19], Tableau Prep [26], Informatica En-

terprise Data Prep [6]), all aimed at improving users produc-

tivity in data preparation. This trend is sometimes referred

to as “self-service” data preparation or smart data prepara-
tion [12], as the goal is to enable non-technical users (e.g.,

in Microsoft Excel or Tableau) to be able to prepare data

themselves without help from IT.

Intelligent Recommendations. Intelligent recommen-

dation is an important class of self-service features in data

preparation software, which are specifically designed to au-

tomate commonly-used operators.

As an example, for the “Join” operator, vendors like Tableau

Prep [26], Paxata [19], and Trifacta [28] all have features to

recommend likely Join columns. Figure 1 shows the Join-

recommendation features in their respective UIs. Once users

open the Join UI wizard, it gives an explicit intent to perform

Join on two given tables, and these systems will recommend

Join columns in a ranked list as shown in the figure, so that

users only need to pick suggested Joins from the UI without

needing to manually inspect input tables (which may have

hundreds of columns).

https://github.com/congy/AutoSuggest
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738


(a) Paxata (b) Tableau Prep (c) Trifacta

Figure 1: Joins recommendation UI in commercial systems: likely join columns are suggested in ranked lists.

Similar recommendation features are also available for a

few other simple operators, such as recommending GroupBy

and Aggregation columns as ranked lists, when users open

the GroupBy/Aggregation UI wizards.

While these recommendation features are clearly benefi-

cial, they are currently limited to operators for which simple

heuristics can be devised (e.g., high value-overlap for predict-

ing Join columns, and low-cardinality for GroupBy columns),

which our analysis suggests are not always accurate.

More importantly, there are no recommendation-based

features for a number of equally common but more com-

plex operators, such as Pivot and Unpivot in the vendors we

surveyed, presumably because these complex operations are

more difficult to predict with simple heuristics. Given that

Pivot and Unpivot are significant pain-points for users, as

evidenced by a large number of questions on user-forums [3,

21, 24, 25, 29], extending intelligent recommendation to these

complex operators is clearly important.

“Learn-to-recommend”withnotebooks +Pandas.We

in this work propose a data-driven approach to learn-to-

recommend data prep operations, by leveraging a large col-

lection data science notebooks. Specifically, computational

notebooks such as Jupyter [8] are increasingly popular and

have become a de-facto standard in data science. Moreover,

such notebooks have becomewidely available in public repos-

itories like GitHub – our crawl in Mar 2019 suggests that the

number of notebooks on GitHub is around 4.7 million. Anal-

ysis shows that these notebooks cover a variety of use cases,

ranging from data science projects (e.g., Kaggle), data-driven

journalism (e.g., ProPublica), to reproducible academic pub-

lications.

Furthermore, we leverage the fact that Python, as well
as a table manipulation API in Python called Pandas, are
particularly popular in these notebooks. Pandas can roughly

be thought of as a rich super-set of SQL, where some example

operators are listed in Table 1.

Figure 2 shows an example step in a Python notebook. This

code block calls the “merge” method in Pandas (equivalent

to Join), which joins two input tables (“result” and “devices”)

using specified columns (“device” and “Model”), as a left-

outer join. The resulting table is shown after the code block.

Figure 2: Example step in notebook for merge (Join).
Logical

Operator
Join Pivot Unpivot Groupby

Relationalize

JSON

Pandas

Operator
merge[17] pivot[18] melt[16] groupby[14] json_normalize[15]

#nb crawled

w/ the operator
209.9K 68.9K 16.8K 364.3K 8.3K

Table 1: Popular table-manipulation operators used in
the Pandas DataFrameAPI, and their “logical” counter-
parts (the entire API [13] has over 100 methods).

The fact that Jupyter notebooks and Pandas in Python
are de-facto standards gives us a unique opportunity to har-

vest a large number of data pipelines, with real invocations

of data preparation operators (Join, GroupBy, Pivot, Unpivot,

etc.) on diverse data sets. We build a system to crawl, re-

play, and analyze such pipelines in notebooks at scale, and

log detailed input/output tables (known as DataFrames in

Pandas) of each operator, as well as exact choices data scien-

tists make to manipulate tables (e.g., what columns are used

in Join, how are tables Pivoted/Unpivoted, etc.)

We note that the detailed “logs” of how data scientists

interact with diverse data sets is a treasure trove that allows

us to learn-to-recommend data preparation steps. This is in

essence analogous to the “click-through logs” used by search

engines to improve search relevance.

Recommendation Tasks. In this work, we consider two

types of recommendation tasks for data preparation:

• Single-Operator Prediction: Given input tables and a user-

specified target operation (e.g. Pivot, Join, etc.), the task is

to recommend suitable parameterization for the operator

(e.g., how to Pivot and Join), based on characteristics of the

input data. Note that the target operator is known, as the

recommendation is triggered only after a user opens relevant

UI Wizards (e.g., Figure 1 for Join), which gives a clear intent

in terms of which operation the user wants to perform.



Figure 3: System Architecture.
• Next-Operator Prediction: Given all operations a user has

performed in a pipeline up to the i-th step, predict the next

operator the user would likely invoke at step i+1, by exploit-
ing latent sequential correlations between operators, as well

as characteristics of input data. We note that recommending

the next-operator is similar in spirit to commercial features,

such as predictive-transformation in Trifacta [30, 53], and

smart-suggestion in Salesforce Analytics Data Prep [23].

We develop a combination of optimization and machine-

learning-based solutions for these tasks. We demonstrate

that by leveraging the collective wisdom of data scientists

embodied in their notebooks, our data-driven approaches

are substantially more accurate than existing methods.

2 SYSTEM ARCHITECTURE
We build an end-to-end system that harvests public note-

books on GitHub to recommend data prep steps. Figure 3

shows the overall architecture of our system, which has an

offline component and an online component.

At offline time, we first use the GitHub API to crawl note-

books and clone them locally. We perform syntactic analysis

of the notebooks to find ones with relevant Pandas API calls.
Statistics of collected notebooks that invoke each operator

is listed in Table 1.

We then programmatically replay these notebooks and

instrument their executions, to build data-flow graphs with

fine-grained information of input/output tables and the oper-

ations taken at each step.We use an in-house implementation

to address issues such as automatically resolving missing

data-files and missing package dependency (Section 3).

Using data so collected, we build machine-learning-based

and optimization-based models, to predict appropriate pa-

rameterization of each operator such as how to Pivot or Join

(Section 4). We also develop deep-learning architecture to

predict the next likely operator (Section 5).

At online time, the models we train can then make rele-

vant recommendations for each operator – e.g., when users

click on the Join menu button to invoke a Join UI wizard, it

triggers Join recommendation that produces ranked lists of

suggestions for given input tables (similar to Figure 1). Based

on past operations and available tables, the next-operator

can also be recommended and exposed similar to [23, 30, 53].

3 COLLECT DATA: REPLAY NOTEBOOKS
We first describe the offline component of our system that

harvests and replays notebooks.

As a concrete example of the data we collect, for the note-

book step in Figure 2, we would log an instance of the merge
call (part of the PandasAPI), together with a full dump of the

two input tables “result” and “devices”, as well as additional

parameters passed into the merge method (e.g., “device” and

“Model” are join columns, and a left-outer-join is used).

We now highlight a few select aspects of our system. Ad-

ditional details will be available in a full version of the paper.

3.1 Crawl Notebooks on GitHub
We leverage the GitHub API [5] to crawl notebooks based

on file suffix (.ipynb). Statistics of notebooks with common

table-manipulation operators (Join, Pivot, etc.) are shown in

Table 1. The results are based on a crawl in May 2019.

3.2 Replay and Instrument Notebooks
Given a large set of crawled notebooks, we develop an end-

to-end system to automatically replay the notebooks step-

by-step, while collecting fine-grained information of each

operator through instrumentation.

Dynamic Instrumentation. In order to replay a note-

book, we use a Python tracing library [22] to instrument

program execution line-by-line, which gives us access to call

stacks for every function invocation, from which we extract

detailed information such as parameters of function calls

(including input/output tables), as well as the return value.

In the case of Figure 2, we can log all 5 parameters that are

explicitly passed into this pd.merge() call (two of which are

input tables for join), as well as 8 implicit parameters that

use default values (the full mergeAPI has 13 parameters[17]).

Since we have a large number of notebooks to replay, we set

a times-out of 5 minutes for the execution of each cell.

Handling Missing Packages. The execution of a cell

can often fail for various reasons, where a common cause is

missing packages in our local environment (Python library

dependency is typically not explicitly specified in notebooks).

We implement a module that can parse error messages pro-

duced from the execution of a cell, to identify likely names

of missing package. We programmatically install such depen-

dencies (e.g., by invoking pip install PKG, where PKG is the
name of the missing package identified from error messages).

We then re-execute the failed cell, until it runs successfully

or we run out of options to fix the missing dependency.

Handling Missing Data Files. Another common rea-

son for failed execution is due to missing data files (.csv,

.json, etc.), when we read data using the path specified in



notebooks. This is common because notebook authors of-

ten “hard-code” absolute paths of data files in his/her local

environment, as shown below:

df = pd.read_csv('D:\ my_project\titantic.csv')

Such absolute paths are not valid in the GitHub repo or in

our local replay environment, and will thus fail. Our replay

system attempts to address missing data files in a few ways:

(1) Given a file path that we fail to load when executing a

notebook (e.g., D:\my_project\titantic.csv), we ignore
the path and search using the file name (titantic.csv) in
the code repository, starting from the working directory;

(2) We look for URLs in comments and text cells adjacent to

the failed code cell, and attempt to download missing data

using the URLs extracted.

(3) Because many notebooks deal with data science chal-

lenges such as Kaggle [9], where the data sets are public

and may be hosted in online data repositories. We thus also

attempt to resolve missing data files by programmatically

download using the Kaggle Dataset API [10] (e.g. command

kaggle datasets download -d titanic) to download

the missing dataset.

We are able to locate missing files in most cases using a

combination of these methods.

3.3 Track Operator Sequences
In addition to instrumenting invocations of individual oper-

ators, we also keep track of the sequence of operations in

notebooks and reconstruct the data-flow.

Specifically, we record input/output of 7 Pandas API calls

that take data-frames (tables) as parameters, or produce

data-frames as output. These are: concat, dropna, fillna,
groupby, melt, merge, and pivot. We record the unique

hash id of each data-frame, and trace input/output depen-

dencies between data-frames to construct data-flow graphs

(even if dependencies are far apart in the notebook).

Figure 4 shows an example of the data-flow graph for the

code snippet on the right. This code snippet first reads two

CSV files into data-frames, before joining the two and saving

the result in psg. It then performs Pivot and GroupBy on psg
for exploratory data analysis. Figure 4 shows its correspond-

ing data-flow graph we extract, where each node is a (ver-

sioned) data-frame variable, and each edge is an operation.

This allows us to construct operator sequences/pipelines, in

order to predict the “next operator”.

psg.v1 surv.v1

psg.v2

psg.v3 psg.v4

join join

pivot groupby

1 import pandas as pd
2
3 psg=pd.read_csv(‘passenger_data.csv’)
4 surv=pd.read_csv(‘survive.csv’)
5 psg=psg.merge(surv,on=‘PassengerId’,

how=‘left’)
6 psg.pivot(header=[‘Survived, Pclass’],

index=‘Sex’, aggrfunc=‘count’)
7 psg.groupby(‘Sex’,aggrfunc=‘count’)

Figure 4: Example code snippet and its data-flow.

4 PREDICT SINGLE OPERATORS
Leveraging rich logs, we will first discuss “single-operator”

recommendations, using Join, GroupBy, Pivot and Unpivot as

example operators. Recommendation methods for additional

operators such as Normalize-Json can be found in a full

version of the paper.

Note that Join and GroupBy are relatively straightforward

as both can be modeled as simple feature-based machine-

learning. We start with the two nevertheless as they are

“building blocks” required for other operators.

Pivot and Unpivot are considerably more complex – we

formulate them as novel optimization problems and solve

them using custom-built algorithms.

4.1 Join Predictions

Figure 5: An example Join: The ground-truth is to join
using book-titles (in solid red boxes). Existing meth-
ods using heuristics tend to incorrectly pick columns
in dashed-boxes that have a higher value overlap.

Join is a widely-used operator that combines data from

multiple tables. Figure 5 shows an example taken from a real

notebook. The left table has a list of best-selling books, and

the right one has historical information about these books.

From our logs we observe that data scientists choose to left-

outer-join using “title” from the left and “title_on_list” from

the right (in solid boxes).

For Join we have two essential prediction tasks:

(1) Predict join columns: This is to decide which columns

should be used as join keys, which is a feature available

commercial systems (e.g., Figure 1), and has been studied

in the literature (e.g. [36, 56, 71, 83]).

(2) Predict join types: This predicts whether the join should

be inner/left-outer/right-outer/full-outer-join, etc. Since dif-

ferences between these choices can be subtle and not obvi-

ous to non-expert users, accurate predictions (with intuitive

explanations/visualization) would be beneficial.

Join columnprediction.Given two tablesT andT ′
, with

columns {C1, . . . ,Cn} ∈ T and {C ′
1
, . . . ,C ′

m} ∈ T ′
, our prob-

lem is to find two sets of columns (S , S ′) that are likely join

columns, with S ⊆ T , S ′ ⊆ T ′
and |S | = |S ′ | (note that this

can be single-column or multi-columns).



We consider each pair (S, S ′) that are not pruned away2 as
a candidate join columns, and since we would like to produce

a ranked list of candidates like in Figure 1, we model the

problem as point-wise ranking [63]. Specifically, because our

prediction problems use binary 0/1 labels, we use gradient

boosted decision trees to directly optimize regression loss.

We use a number of features listed below:

• Distinct-value-ratio of S and S ′: Defined as the ratio of

distinct tuples in S and S ′, over total number of rows in T
andT ′

, respectively. (In most cases at least one of S and S ′

should be approximate key columns with distinct-value-

ratio close to 1).

• Value-overlap of S and S ′: Measured as Jaccard-similarity,

as well as Jaccard-containment in both directions. Pairs

with higher overlap are likely to be join columns.

• Value-range-overlap of S and S ′: If both S and S ′ are nu-
meric types (e.g., numbers, date-time, etc.), we compute

the min/max range of S and S ′, and calculate the inter-

section of the ranges over the union of the ranges. The

intuition is that if the range-overlap is low, then even if

we have a perfect containment in value-overlap (e.g., S has

integers from 0-10 and S ′ has 0-1000), we are still not as
confident whether the pair should be the Join column.

• Col-value-types: Column types can be string vs. integer vs.

float, etc. In general two string columns with high overlap

are more likely to be join columns. For integer columns

the confidence is lower because there is a higher chance of

two unrelated integer columns to have accidental overlap

(e.g., the columns in dashed-boxes in Figure 5).

• Left-ness. Columns to the left of tables are more likely join

columns, so we use the positions of S (resp. S ′) within T
(resp.T ′

), in both absolute terms (e.g., the 2nd column from

left), and relative terms (e.g., 2nd column out of 20 total

cols is 2/20=10%). We use average left-ness when there is

more than one column in S and S ′.
• Sorted-ness. Whether values in S and S ′ are sorted (sorted

columns aremore likely to be key columns and Join columns).

• Single-column-candidate. Since we consider both single

and multi-column join candidates, this feature indicates

whether a candidate is single-column or not. Other things

being equal, single-column joins are more likely.

• Table-level-statistics. These include statistics of input tables
such as the number of rows in T and T ′

, and the ratio

of the two row-counts. These auxiliary features can be

predictive when used in conjunction with other features –

for example, if a candidate (S , S ′) has a high-overlap, and
both T and T ′

have many rows, then the overlap is more

2
To reduce the number of candidates, we prune away obvious non-

candidates based on type-mismatch (e.g., string vs. number) and sketch-

based containment-checks.

trustworthy and the confidence may go up (as the chance

of accidental overlap on large tables is low).

Example 1. In Figure 5, the correct join is to use “titles”, de-

spite of the fact that not all titles from one table are contained

in the other (a low containment score).

Heuristics used by existing commercial systems tend to

pick the incorrect pair (“rank_on_list”, “weeks_on_list”), be-

cause “weeks_on_list” are fully contained in “rank_on_list”,

and “rank_on_list” appears to be a key. In comparison, using

a combination of signals learned from notebooks (e.g., “title”

is more to the left in the table, and is a string column for

which value-overlap is more reliable), we can predict “titles”

to be the correct Join.

In our experiments, we will detail a number of observa-

tions on these real ad-hoc join tasks (e.g., task characteristics

and feature importance) that deviate substantially from the

conventional wisdom in the existing literature. Overall, we

find the data-driven approach combining multiple signals to

be highly accurate.

Join type Prediction. Our second task is to predict join

types, given tables T and T ′
and join-columns (S, S ′).

Existing commercial systems default to inner-join, which

is reasonable since it is most common in practice (in the

data we collect it accounts for 78% of the join cases). This

however, can still be significantly improved.

For example, we observe that given two input tables, of-

tentimes the larger table (with more rows/columns) tends to

be the “central” table of interest, and the smaller one tends to

enrich the central table via Joins (similar in spirit to fact vs.

dimension tables). As such, users often prefer to use outer-

join to keep all rows in the central table, even if some rows

do not join with the smaller table (inner join on the other

hand, would remove non-joining rows).

As another example, we observe that if one of the input

tableT ′
has few columns (e.g.,T ′

may have only one column

and is used as join-column), or the columns inT ′
are already

contained in T , then the join between T and T ′
is likely

a “filtering” step to prune down rows in T (as opposed to

enriching it), where an inner-join is more likely.

We capture these subtle signals using similar features from

join-column-prediction, and train point-wise ranking mod-

els. This data-driven method substantially outperforms the

alternative approach of always defaulting to inner-join.

4.2 GroupBy/Aggregation
GroupBy/Aggregation are also common operators that are

part of SQL. Figure 6 shows an example input table. Intu-

itively, we can see that any of the columns in the box (“Sec-

tor”, “Ticker”, etc.) can all be used as valid GroupBy columns

(also known as dimension columns in data-warehousing

terms), while columns in the dotted box (“Market Cap” and



Figure 6: Example GroupBy operation on an input table (left). Columns in solid box can be used as GroupBy
columns (dimensions), while columns in dotted box can be used for Aggregation (measures).

“Revenue”) can be used for aggregation (also known as mea-
sures). The right of Figure 6 shows an instance of GroupBy

on “Company” and “Year” and Aggregation on “Revenue”.

Prediction Task. Given a tableT , and columns {Ci } ∈ T ,
our task is to make an independent prediction of whether

eachCi is a reasonable choice for GroupBy and Aggregation

column
3
. Predictions so produced can again be presented as

ranked lists for users to select (similar to Figure 1). Because

users typically have high-level ideas of desired results (e.g.

“revenue by company and by year”), instead of requiring users

to inspect every column (there may be hundreds of columns),

they can simply inspect a list of suggested GroupBy vs. Ag-

gregation columns to quickly produce desired results.

Like Join-prediction, we use features to describe each col-

umn C ∈ T , and feature-based models to rank likely Group-

By/Aggregation columns. The features include:

• Distinct-value-count: This is the number of distinct values

in C . GroupBy columns typically have a small cardinality.

We also divide this cardinality by the number of rows inC
to get a ratio-based feature.

• Column-data-type: String vs. int vs. float, etc. String columns

are more likely used in GroupBy, whereas float is likely

for Aggregation.

• Left-ness: Columns to the left of a table are more likely

GroupBy columns; and ones to the right are more likely to

be metric columns for Aggregation. These are measured

in both absolute and relative terms, like in the case of Join.

• Emptiness: The percentage of null values in column C . A
GroupBy column typically has low emptiness.

• Value-range: If C is a numeric column, we compute the

min-max range of its values, and the ratio of distinct value

count to that range. GroupBy columns (e.g., years) tend to

have small ranges.

• Peak-frequency: The frequency of the most common value

in column C (in both absolute cell-counts and as a ratio

relative to the total number of rows).

• Column-names: Given the name of a column C , we look it

up in the training data (without thisC) to see how often is

this name used as GroupBy vs. Aggregation, and use the

corresponding counts as features. This allows us to capture

3
We do not attempt to use characteristics of T to predict aggregation-

functions such as sum vs. average. Our observation is that sum vs. average

are typically equally plausible in most cases – the exact choice depends

more on the specific task a user has as opposed to the characteristics of T .

common column names for GroupBy (e.g., “company”,

“gender”, etc.) vs. Aggregation (e.g., “profit”, “revenue”).

We find the predictions so produced are substantially more

accurate than existing features in commercial vendors.

4.3 Pivot
Pivot/Unpivot are considerably more complex than Join/-

GroupBy discussed so far. They require custom-built opti-

mization formulations, and have not studied in the literature

despite their importance. (We discuss GroupBy first never-

theless, because Pivot uses GroupBy as a building-block.)

The Pivot operator transforms a flat table into a two-

dimensional table, and is a difficult step that non-expert

users often struggle with [3, 21, 24, 25, 29]. Figure 7 shows

an example Pivot. The input table on the left has SEC filings

of companies in different sectors in the year 2006, 2007 and

2008. To better understand trends, one may create a Pivot-

table shown on the right. Here the names of companies and

their corresponding sectors are shown on the left, while

years are on the top. With this two-dimensional report, one

can better compare financial performances of the same com-

panies over the years (by reading horizontally), and compare

companies within the same sector (by reading vertically).

We note that Pivot is exceedingly common in data ana-

lytics and natively supported by database vendors [46], and

end-user tools (e.g. Microsoft Excel, Tableau, Trifacta, etc.).

Despite its popularity, Pivot is actually quite difficult to get

right – there are four required parameters to properly config-

ure a Pivot-table: index, header, aggregation-function,
and aggregation-columns. In the example of Figure 7, the

index (left-hand-side columns of the pivot) are {“Sector”,

“Ticker” and “Company”}, the header (columns on the top of

the result) is {“Years”}, the aggregation-function is Sum,

and the aggregation-column is “Revenue”.

Today, users are required to go through a UI-Wizard like

shown in Figure 9, to properly supply these 4 parameters,

which however use terminologies alien to end-users, and

would typically take multiple trials-and-errors to get right.

We aim to reduce friction in creating Pivot for users, by

recommending results that they likely want. This essentially

requires us to accurately predict the 4 parameters in Pivot,

which we will discuss below in two steps in turn.

Predict Index/header vs. Aggregation Columns. The
first task here is to predict what columns are valid choices

for index/header and aggregation-column. Intuitively, we
can see that predicting index/header columns in Pivot are



Figure 7: Example Pivot operation that creates two-dimensional Pivot-table (right) from an input table (left).

Figure 8: Example of a “bad” Pivot-table (with many
NULLs) that uses the same dimensions as Figure 7.

Figure 9: UI Wizard to create Pivot-table in Excel. It
requires users to drag suitable columns into 4 possi-
ble buckets (shown at bottom) to properly configure
Pivot, which typically takes many trials to get right.
Creating Pivot in other systems is similarly complex.
essentially predicting GroupBy columns (both are dimension
attributes); while predicting aggregation-column in Pivot

is the same as predicting Aggregation (both are measures).
Example 2. Observe that the input table for Pivot in Fig-

ure 7 and the input table for GroupBy in Figure 6 are identical.

Furthermore, the candidate GroupBy columns in Figure 6

(first 5 columns) are all reasonable choices as index/header
in a Pivot table. Similarly, the candidate Aggregation columns

in Figure 6 (“Market Cap” and “Revenue”) are all valid choices

for aggregation-column in Pivot.

We therefore directly apply the GroupBy/Aggregation

prediction in Section 4.2, which would determine “Market

Cap” and “Revenue” in Figure 7 as aggregation-column,
and the rest as index/header. From here, users can pick

columns of interest for the desired Pivot. In Figure 7, users

would pick “Sector”, “Ticker”, “Company”, “Year” as relevant

dimensions, and “Revenue” as the aggregation-column.
Predict to Split Index vs. Header. From user-selected

dimension columns, our second prediction task is to auto-

matically identify a “good” placement of these columns by

splitting them into index vs. header, which is difficult for

users and typically require multiple trial-and-errors.

Example 3. Users have selected { Sector, Ticker, Company,

Year } from Figure 7 as desired dimension columns. Since

they can either be arranged as index (on the left of the result-
ing Pivot) or header (on the top), there are a total of 2

4 = 16

possible choices to Pivot. Many of these arrangements are,

however, not ideal.

Figure 8 shows one such example. Observe that since

{ Company, Ticker, Year } are selected as index, while { Sec-
tor } as header, it creates a large number of “NULL” entries

in the resulting Pivot-table, because of a strong dependency

between “Sector” and “Company”. Splitting the two columns

with one at the top and one to the left of the resulting Pivot

would create a large number of empty cells (with 20 indus-

tries in the table, roughly 95% of the entries in the resulting

Pivot is empty).

Similarly arranging “Company” and “Ticker” to different

sides of Pivot is also undesirable as it creates even more

number of empty cells.

These bad Pivots are unlikely to be selected by data scien-

tists and in the data we collect.

We formulate the problem of splitting dimension columns

into index vs. header as an optimization problem. Specifi-

cally, given columns C = {Ci } that users select as dimensions

for the desired Pivot, we need to partition them into index
vs. header. This requires us to consider desirable factors

such as minimizing emptiness, which we will first quantify.

Specifically, given two columns Ci ,Cj , we model their

“affinity score”, denoted by a(Ci ,Cj ), as the likelihood of

Ci ,Cj being on the same side of Pivot (both in index or

header), which can be seen as their conceptual “closeness”.

To do so, from a large number of Pivot-tables collected from

notebooks, we build a regression model to learn the affinity

score between any pair of columns, using two features:

• Emptiness-reduction-ratio: This reduction ratio is defined

as
| {u |u ∈T (Ci )} | | {v |v ∈T (Cj )} |

| {(u,v) |(u,v)∈T (Ci ,Cj )} |
, where T (C) denotes values in

column C ∈ T . This ratio shows how much emptiness

we can “save” multiplicatively by arranging Ci and Cj
on the same side. For example, Figure 8 has 20 sectors

and 1000 companies, so the reduction-ratio for Sector and

Company is
20∗1000
1000

= 20, which is significant. However

the reduction-ratio between Year and Sector is
3∗20
60
= 1,

indicating no saving. Attributes with higher reduction-

ratio should ideally be arranged on the same side to reduce

emptiness of the resulting Pivot.

• Column-position-difference: This is the relative difference of
positions betweenCi andCj inT . What we observe is that

columns that are close to each other in T are more likely



Figure 10: Example graph with affinity-scores.
to be related (e.g., “Ticker” and “Company” in Figure 7),

and on the same side of Pivot.

We use all pairs of columns on the same side of real Pivot

tables collected as positive examples (with affinity-scores

of 1), and pairs of columns on different sides as negative

examples (affinity-score of -1). We train a regression model

to first predict pair-wise column affinity.

Example 4. In the example of Figure 7, we need to split

dimension columns {Sector, Company, Ticker, Year} selected

by users. In Figure 10, we model each column as a vertex in

the graph, and use the regression model to produce affinity-

scores on all edges.

We see that (“Company”, “Ticker”) have high affinity-score

(0.9), mainly because of the high emptiness-reduction-ratio

– placing the two on different sides would create 1000*1000

entries with most being NULLs, whereas placing them on

the same side leads to only 1000 entries, which amounts to a

1000x emptiness-reduction.

Similarly (“Ticker”, “Sector”), and (“Company”, “Sector”)

all have high affinity-scores (0.6), because of emptiness-ratios.

Also observe that “Year” and other attributes have low

affinity-scores (0.1 or -0.1), because they have low emptiness-

reduction-ratios (1), and they are far apart in the table.

Given the graph with affinity-scores like in Figure 10, we

can now quantify the “goodness” of an index/header split,
and are ready to formulate it as an optimization problem.

Let C be the set of dimension columns. Intuitively, wewant

to partition C intoC andC , such that the intra-partition pair-

wise affinity-scores are maximized (these columns should

be similar), while inter-partition pairwise affinity-scores are

minimized (such columns should be dis-similar).

We write this as an optimization problem termed as AMPT

(Affinity-Maximizing Pivot-Table).

(AMPT) max

∑
ci ,c j ∈C

a(ci , c j ) +
∑

ci ,c j ∈C

a(ci , c j )

−
∑

ci ∈C,c j ∈C

a(ci , c j ) (1)

s.t. C ∪C = C (2)

C ∩C = ∅ (3)

C , ∅,C , ∅ (4)

The constraints in Equation (2), (3), and (4) ensure that the

two partitions C and C fully covers C, are disjoint, and are

non-empty, respectively.

Lemma 1. The AMPT problem above can be solved optimally
in time polynomial to the number of columns in input table T .

It can be shown that this problem reduces to two-way

graph cut [47], which can be solved in polynomial time using

Stoer-Wagner algorithm [78].

Example 5. We continue with Example 4 and the graph

in Figure 10. It can be shown that the best bi-section of the

graph is to cut “Year” on one side, and the rest on the other

side. The intra-partition affinity scores for { Company, Ticker,

Sector } is (0.9+0.6+0.6) = 2.1, intra-partition affinity score

for { Year } is 0 (since it is a singleton with no edge), and the

inter-partition affinity score is (-0.1 - 0.1 + 0.1) = -0.1. Overall

the objective function is 2.1 + 0 - (-0.1) = 2.2, which can be

verified as the maximum possible on this graph.

Overall, combining an affinity-scoring model with the

AMPT formulation allows us to find the most likely Pivot.

4.4 Unpivot
Unpivot is the inverse function of Pivot, which shapes a

two-dimensional Pivot-table back to a tabular form. Concep-

tually, the Unpivot operation will “collapse” a selected set

of columns into two new columns in the result, one being

a new “key” column containing column-names of the col-

lapsing columns, and the other being a new “value” column

containing values of the collapsing columns.

Figure 11 shows such an example. Here {2006, 2007, 2008}

are selected to “collapse” – in this case the column names of

these 3 columns will be used to populate a new “key” column,

marked as “Year” in the output; and the corresponding cell-

values of these 3 columnswill populate a new “value” column,

marked as “Revenue” in the output. The remaining columns

are left unchanged. Note that this can be seen as the inverse

of the Pivot shown in Figure 7.

In Pandas API, the melt function implements Unpivot,

where users have to specify what columns need to collapse.

Prediction Task. Our prediction task here is to predict

from a table T , the set of columns that users will select to

collapse in Unpivot (remaining columns are untouched).

Like in Pivot, we again compute pairwise affinity/com-

patibility scores for each pair of columns (Ci ,Cj ), using the

same regression model and features discussed in Pivot. This

produces a similar graph with each node corresponding to a

column, and weighted edges denoting compatibility between

columns. Note that to differentiate with Pivot, here we use

the term “compatibility” over affinity, because in the case

of Unpivot, all selected columns are collapsed into a single

column, requiring them to be compatible (e.g., columns 2006,

2007, 2008 are merged into a single column in Figure 11).



Figure 11: Example of an Unpivot operation that unpivots a Pivot-table (left) into tabluar format (right).

Example 6. Figure 12 shows a graph that models the case

in Figure 11. Each vertex corresponds to a column in input

tableT , and edges weights show their pairwise compatibility.

Using compatibility scores, we again formulate the prob-

lem of finding columns to Unpivot (collapse) as an optimiza-

tion problem. Unlike Pivot where the two resulting sets of

columns (header and index) are symmetric, and both are

required to have a strong internal affinity, in the case of

Unpivot we only care about the compatibility of columns

selected to collapse (e.g., 2007, 2008, 2009). The compatibility

of columns not collapsing is inconsequential and need not

to be high.

As such, we formulate a CMUT (Compatibility-Maximizing

Unpivot-table) problem that maximizes compatibility within

the group of columns selected, while minimizing the compat-

ibility between the columns we select and ones not selected

(so that we do not leave out columns highly similar to the

collapsing ones in the un-selected set).

(CMUT) max avg

ci ,c j ∈C
a(ci , c j ) − avg

ci ∈C,c j ∈C\C
a(ci , c j ) (5)

s.t. C ⊂ C (6)

|C | ≥ 2 (7)

Note that compared to the objective function in Equation 1

used in AMPT, the objective function in Equation 5 of CMUT

is different in two ways: (1) it has two terms as opposed to

three, since it does not consider the internal affinity/compat-

ibility of columns not selected for Unpivot; and (2) it uses

average scores as opposed to sum, because sum would give

undue bias towards large clusters (which is not an issue in

AMPT as AMPT produces bi-sections).

We show CMUT is hard using a reduction from Densest

Subgraph [34].

Theorem 2. The CMUT problem above is NP-complete.

Given the hardness of CMUT, we develop a greedy algo-

rithm to solve it. We first select the pair of nodes with the

maximum compatibility score into the target setC in CMUT,

and compute the corresponding objective-function in Equa-

tion (5). In each subsequent iteration, we greedily find the

node having the maximum compatibility with the current C ,
merge it into C , and re-compute the objective-function. The

algorithm terminates when all columns are merged intoC , at
which point we backtrack and select the step that produces

the highest objective-function value as our solution.

We use the example below to illustrate the algorithm.

Example 7. We revisit the graph in Figure 12 created from

Example 6. Our greedy algorithm initializes C as the pair

of nodes with the highest compatibility. Suppose the first

pair picked is “2007” and “2008” (ties are broken arbitrarily).

The average intra-group compatibility of this initial group

is
0.9+0.9

2
= 0.9, and the average compatibility score of all

edges crossing the cut is as
0.1∗6+0.9∗2

8
= 0.3. So the objective

function for this step is (0.9 − 0.3) = 0.6.
We continue to the next iteration, where we find a node

with the highest compatibility with the selected group, which

is “2006”, and merge it with “2007” and “2008”. The resulting

objective function can be evaluated as
0.9+0.9+0.9

3
− 0.1∗6

6
= 0.8,

which is higher than the previous iteration, and indeed a

more desirable set to collapse for Unpivot.

We continue adding columns to the selected group C , but
no further groups can produce a score higher than 0.8. As a re-
sult, we predict {2007, 2008, 2009} to be the Unpivot columns.

Figure 12: Example graph with compatibility-scores
for Unpivot (some edges are omitted to reduce clutter).

5 PREDICT NEXT OPERATOR
So far we have focused on predicting parameters for a given

target operation (Join, Pivot, etc.) that users intend to per-

form. In this section we describe our second overall task,

which is to proactively predict the next likely operator before

users provide an explicit intent. As discussed, this is similar

in spirit to predictive-transformation in Trifacta [30, 53], and

smart-suggestion in Salesforce Analytics Data Prep [23].

Recall that we have replayed and obtained large collections

of data pipelines from notebooks, each of which is a sequence

of operators, e.g., S = (o1,o2,o3, ...,on), where each oi is a
Pandas operator (e.g., Pivot, GroupBy, Apply, etc.), invoked

by users at time-stamp ti .
The prediction task of next-operator, is to predict at time-

stamp ti , the next likely operator oi+1, given operators al-

ready invoked in the past (o1, ...,oi ), and input tableTi avail-
able at time-stamp ti .



Figure 13: Model architecture to predict next operator.

Intuitively, we can leverage two main sources of signals:

(1) Since there are typically latent sequential correlations

between operators (e.g., an Aggregation is likely to follow

after GroupBy), we could leverage operators invoked in the

past to predict the next operator;

(2) The characteristics of input tables available at time-

stamp ti are also indicative of likely operations that will

follow. For example, a table Ti that “looks like” a pivot-

table (e.g., Figure 11) will likely see an Unpivot invoked. We

should note that such signals are implicitly captured in our

single-operator models – e.g., we obtain a large objective-

function value in CMUT, whenTi is appropriate for Unpivot.
Thus, invoking single-operator models for each operator

onTi would utilize the characteristics ofTi to produce addi-
tional signals of whether an operator may be invoked.

The sequence-based modeling in (1) above closely resem-

bles language-modeling problems in NLP [38], where a key

task is to predict the next word given a prefix. We tested two

classical approaches to this problem: an N-gram language-

model from the statistical NLP literature [66], and a more

recent neural approach RNN [67]. As we will report in exper-

iments, We find RNN to be more effective in our task, which

we use as the starting point of our model.

In order to also leverage characteristics of Ti at time ti as
discussed in (2) above, we invoke single-operator prediction

onTi for each operator in Section 4, and concatenate the raw

scores of each operator with the continuous representation

produced by the RNN layer.We note that a concatenation like

this is widely used in deep models to combine information

from multiple sources [48].

Figure 13 shows the resulting architecture for our model.

The bottom layer on the left is an embedding layer that

activates based on the presence of an operator. This layer

gives a continuous representation of each operator after

training. These are then fed into an RNN layer (using ReLU

activation) that encodes operators invoked in the past, and

produces a representation that captures the current state

of the sequence at step ti . The output of the RNN layer is

then concatenated with prediction scores produced by single-

operator models on Ti (shown at the bottom right of the

figure). The combined vector is finally fed into an MLP layer

operator join pivot unpivot groupby normalize JSON

#nb crawled 209.9K 68.9K 16.8K 364.3K 8.3K

#nb sampled 80K 68.9K 16.8K 80K 8.3K

#nb replayed 12.6K 16.1K 5.7K 9.6K 3.2K

#operator replayed 58.3K 79K 7.2K 70.9K 4.3K

#operator post-filtering 11.2K 7.7K 2.9K 8.9K 1.9K

Table 2: Statistics of data extracted from Notebooks.
(using Soft-max activation) to jointly produce the likelihood

score of the next operator.

6 EXPERIMENTS
6.1 Evaluation Datasets
We create our data set by replaying and instrumenting a

large number of Jupyter notebooks on GitHub. Table 2 shows

summary statistics of the data set. Because the number of

notebooks with certain popular operators (e.g., Join) is too

large, we sample a subset for replay in those cases.

We believe the data we collect is a representative reflec-

tion of how data scientists manipulate data in the public

domain like Kaggle (there are many notebooks that we fail

to replay because of missing data files, which may be propri-

etary enterprise data not uploaded to GitHub). We note that

our approach is generic and can be deployed in proprietary

domains like Enterprise Git [7], to learn from proprietary

notebooks and data in these enterprises, and produce models

that may be more tailored to these domains.

After a notebook is successfully replayed, we filter invoca-

tions that are deemed as duplicate (e.g., identical invocation

on the same tables across notebooks, or repetitive invoca-

tions inside a loop that are similar), or uninformative (e.g.,

when input tables are trivially small with less than 5 rows).

The resulting data set is shown in the last line of Table 2. To

the best of our knowledge this is the first systematic attempt

at harvesting invocations of diverse table-manipulation oper-

ators in real pipelines, which we hope to open-source soon.

For each prediction task, we split the data 80%:20% into

train and test, while making sure that examples involving

the same files/data-sets are either all in train or all in test to

avoid data leakage.

6.2 Methods Compared
For each prediction task, we compare the proposed Auto-

Suggest with two main groups of methods:



(1) Existing features available from commercial vendors,

which are often strong baselines but black-box algorithms.

We anonymize their names as Vendor-A, Vendor-B, etc., in

accordance with their EULAs that explicitly prevent any

benchmarking numbers to be revealed. We note that this is

in keeping with the tradition in the database benchmarking

literature [33, 42, 44, 62, 73].

(2) Related methods from the literature. These are white-box

methods that we will describe separately in each task.

6.3 Experimental Setup
All experiments are performed on a Linux VM on the cloud,

with 16 virtual CPU, and 64 GB memory. Auto-Suggest and

alternative methods are implemented in Python 3.7.

6.4 Evaluation metric
Since most of our problems require a ranked list of sugges-

tions, we use ranking metrics from the Information Retrieval

(IR) literature [74] to evaluate suggestion quality.

Precision@K. Defined as the proportion of relevant pre-

dictions in the top-K, or
#-relevant-in-K

K . After all relevant items

in ground-truth have been correctly identified, we do not

penalize additional predictions at lower-ranked positions.

NDCG@K. NDCG (Normalized Discounted Cumulative

Gain) is a popular metric in IR [74]. Intuitively, it computes a

relevance score called DCGK for the top-K ranked items, and

compare with the score of the ideal top-K, IDCGK . NDCG

at position K is then defined as NDCGK =
DCGK
IDCGK

, where

DCGK =
∑K

i=1
reli

log
2
(i+1) , in which reli is the relevance label

of prediction at position i (in our case 0 or 1), and IDCGK is

the DCG score of the ideal ranked list at position K .
Like Precision@K, NDCG@K is in the range of [0, 1],

where a higher score is more desirable.

6.5 Predict Single-Operators
We first evaluate the quality of all prediction tasks studied.

6.5.1 Predict Joins Columns.
We compare with the following methods:

• ML-FK [71]. This is an influential approach that uses ma-

chine learning and a large number of features to discover

foreign-key joins.

• PowerPivot [36]. PowerPivot [36] employs heuristic rules

to prune away unlikely join columns (e.g., boolean and

numbers), and leverages content similarity to discover

foreign-key joins.

• Multi [83]. This approach leverages distributional distances
between columns (e.g., EMD) to discover multi-column

foreign-keys.

• Holistic [56]. This recent approach proposes to combine

distributional distances like [83], with other features.

method (all data) prec@1 prec@2 ndcg@1 ndcg@2

Auto-Suggest 0.89 0.92 0.89 0.93
ML-FK 0.84 0.87 0.84 0.87

PowerPivot 0.31 0.44 0.31 0.48

Multi 0.33 0.4 0.33 0.41

Holistic 0.57 0.63 0.57 0.65

max-overlap 0.53 0.61 0.53 0.63

method (sampled data) prec@1 prec@2 ndcg@1 ndcg@2

Auto-Suggest 0.92 - 0.92 -

Vendor-A 0.76 - 0.76 -

Vendor-C 0.42 - 0.42 -

Vendor-B 0.33 - 0.33 -

Table 3: Evaluation of Join column prediction. (Top)
methods from the literature, evaluated on all test data.
(Bottom): Comparisons with commercial systems on a
random sample of 200 cases.
• Max-Overlap. This is a common heuristic widely used (e.g.,

in [39] and [36]) to predict join-columns based on value-

overlap (e.g., measured in Jaccard Similarity).

• Vendors-A/B/C. These are commercial systems that use pro-

prietary algorithms. Because there are no programmatic

methods to test their capabilities, we report results on 200

randomly sampled cases.

We should note thatmost existingmethods likeML-FK [71],

PowerPivot [36], Multi [83], and Holistic [56] were devel-

oped specifically for foreign-key (FK) joins, and thus impose

(semi)-strict checks of Uniqueness and Inclusion-Dependency.

While these requirements are perfectly reasonable in a cu-

rated database setting, for the join cases we collect from data

science notebooks, only 68% are strict foreign-key joins –

suggesting that these joins “in the wild” are more ad-hoc

than typical database joins. We thus relax the Inclusion-

Dependency requirements of these FK methods when appro-

priate, which yields better results for these methods.

Table 3 shows a comparison of the prediction quality. On

all test cases, Auto-Suggest is able to predict correctly 89%

and 92% of joins at top-1 and top-2 ranked suggestions, re-

spectively, substantially more accurate than other methods.

We should note that this task is not trivial – on average 148

candidate join-columns are considered for each pair of tables,

thus the low scores for some of the alternative methods.

ML-FK employs a large number of carefully engineered

features, and produces strong quality results. Less sophisti-

cated methods that use only one or two factors (e.g., only

content-overlap) tend to be less accurate, suggesting that

these join cases tested are likely complex, making them in-

teresting test-beds for future research.

The bottom of Table 3 shows the comparison with com-

mercial systems on a sample of 200 test cases, where Auto-

Suggest again outperforms alternatives.

The importance scores of features used are reported in

Table 4. Contrary to conventional wisdom in the foreign-

key (FK) discovery literature that value-overlap (e.g., Jaccard



feature

left-

ness

val-range-

overlap

distinct-

val-ratio

val-

overlap

importance 0.35 0.35 0.11 0.05

feature

single-col-

candidate

col-val-

types

table-

stats

sorted-

ness

importance 0.04 0.01 0.01 0.01

Table 4: Importance of Feature Groups for Join
method prec@1

Auto-Suggest 0.88
Vendor-A 0.78

Table 5: Join type prediction.
containment and similarity) may be the most important (for

database FKs), we find that for ad-hoc joins performed by

data-scientists in the wild, this feature group is substantially

less important than many other features, such as left-ness
and val-range-overlap. It is surprising to see that val-range-
overlap is significantly more important than val-overlap, sug-
gesting that containment arising from accidental overlap

may be common in practice (like shown in Example 5), and

thus not always a reliable signal.

6.5.2 Predict Join Types.
For this task, we compare with Vendor-A/B/C, all of which

default to use inner-join as the join type (and ask users to

modify if needed). We note that this is a sensible choice since

it is by far the most common type of joins.

The result is shown in Table 5. Although most joins are

indeed inner-joins (78% of the cases), Auto-Suggest shows

a substantial improvement over the default-choice. Interest-

ingly, we find features measuring the relative “shapes” of the

two input tables (e.g., ratio of row-counts in two tables) to

be most useful in predicting outer-join vs. inner-joins.

6.5.3 Predict GroupBy Columns.
This task predicts GroupBy column (Section 4.2). We com-

pare with the following methods.

• SQL-history [60]. SnipSuggest [60] is an influential ap-

proach that suggests likely SQL snippets based on his-

torical queries. We adapt this to suggest GroupBy based

on the frequency of columns used in the past (training)

data.

• Coarse-grained-types [68]. This approach leverages a heuris-
tic that numerical attributes (including strings that can be

parsed as numbers) are likely Aggregation columns, while

categorical attributes are likely GroupBy columns.

• Fine-grained-types [2, 65]. This approach improves upon

the method above, by defining fine-grained types and as-

signing them as measures (Aggregation) and dimensions

(GroupBy). For example, date-time and zip-code are likely

for GroupBy, even if they are numbers.

• Min-Cardinality. This heuristic approach picks columns

with low cardinality as GroupBy columns.

• Vendors-B/C. These are commercial systems that use pro-

prietary algorithms.

method prec@1 prec@2 ndcg@1 ndcg@2 full-accuracy

Auto-Suggest 0.95 0.97 0.95 0.98 93%
SQL-history 0.58 0.61 0.58 0.63 53%

Coarse-grained-types 0.47 0.52 0.47 0.54 46%

Fine-grained-types 0.31 0.4 0.31 0.42 38%

Min-Cardinality 0.68 0.83 0.68 0.86 68%

Vendor-B 0.56 0.71 0.56 0.75 45%

Vendor-C 0.71 0.82 0.71 0.85 67%

Table 6: GroupBy column prediction.

feature

col-

type

col-name-

freq

distinct-

val

val-

range

importance 0.78 0.11 0.06 0.02

feature

left-

ness

peak-

freq

empti-

ness

importance 0.01 0.01 0.01

Table 7: Importance of Feature Groups for GroupBy
Table 6 shows the comparison. Prediction from Auto-

Suggest is highly accurate, with a precision of 0.95 and 0.97

for the first 2 suggestions. Min-Cardinality performs sur-

prisingly well, as it typically picks string-columns with low

cardinality (numeric-columns tend to have high cardinality),

which are often good choices. SQL-history also performs rea-

sonably well, but would fail on cases where no prior SQL

history can be observed. While type-based heuristics may

seem reasonable, they do not work as reliably, showing the

complexity of the GroupBy task.

Note that the prediction of whether each column is used

as GroupBy vs. Aggregation, is a unit of evaluation in the

result above. In order to get a big picture of the overall

accuracy at the table-level (each table may have multiple

GroupBy columns), we additionally report the full-accuracy
at the table-level, which is defined as the fraction of table for

which we can predict completely correctly (i.e., all GroupBy

columns are ranked ahead of Aggregation columns).

This full-accuracy number is reported in the last column

of Table 6. Note that we can predict GroupBy/Aggregation

for 93% tables completely correctly, which is quite accurate.

Min-Cardinality is again the second-best approach when

accuracy is measured at the table-level.

The importance of features is reported in Table 7.While we

expect col-type to be important, it is interesting to see that col-
name-freq is the second-most important feature. Intuitively,

as humans we have prior knowledge of what columns are

likely GroupBy columns – e.g., “year”, “department-id”, etc.,

even if values in these columns are numbers. The col-name-
freq feature works similarly – after seeing enough example

column-names used as GroupBy in the training data, it can

predict such cases accurately (e.g., columns named “year”

are likely GroupBy and not Aggregation).

6.5.4 Predict Pivot: Index/header split.
For Pivot we focus on the task of splitting index vs. header

columns, which we solve using an optimization formulation



AMPT (Section 4.3).
4
Since we find no recommendation fea-

tures for Pivot in commercial systems, we compare with a

few related methods studied in other contexts.

• Affinity [65]. ShowMe [65] is an influential approach from

the Visualization literature that studies best practices to

present data based on the type of visualization. For “cross-

tab” (which is similar to Pivot in spirit), an affinity heuristic

is proposed to group together attributes with hierarchical

relationships (e.g., FD-like attributes).

• Type-Rules [43](Page 33, Section II). This patent publication
touches on a few simple heuristics that can be used to

automatically place attributes in a pivot table based on

data types (e.g., date-time, numeric attributes, etc.).

• Min-Emptiness. This is one of the signals considered in

our AMPT, which utilizes the observation that columns

with strong semantic dependency (e.g., “Ticker” and “Com-

pany”) should be arranged to the same side to reduce empty

cells in the resulting Pivot. We develop a greedy base-

line that minimizes the fraction of empty cells (by itera-

tively merging pairs of columns with maximum emptiness-

reduction-ratio).

• Balanced-Split. Since pivot-tables are often balanced in

terms of width vs. height, this approach cuts given index/-

header columns in a balanced manner.

Table 8 shows the quality comparison. When evaluated

using full-accuracy (i.e. the split has to be completely identi-

cal to the ground-truth), our approach gets 77% of the cases

correct. Both Min-Emptiness and Affinity are quite compet-

itive, showing that minimizing empty cells is a reasonably

effective approach to producing Pivot tables (which is a fac-

tor considered by AMPT). Type-Rules uses a static rule-based
heuristics, which performs substantially worse, showing that

it cannot handle diverse Pivot cases in practice.

In addition to full-accuracy, we also measure how close

the predicted split is to the ground-truth. Here, we use the

Rand-Index (RI) from the clustering literature [70] to evaluate

result quality, where RI =
#-correct-edges

#-total-edges
, in which an edge e

is deemed correct if the assignments of two vertices incident

to e are the same in the prediction and the ground-truth (e.g.,

the two are in the same cluster or not). RI gives partial-credit

to predictions that are close enough to the ground-truth,

where full-accuracy only produces 0/1 scores.

We report RI numbers in the second column of Table 8,

which are consistent with the full-accuracy evaluation. This

again shows the benefit of AMPT that uses a principled

optimization-based formulation.

6.5.5 Predict Columns to Unpivot.
For Unpivot, recall that the prediction task is to select the

set of columns to “collapse” into two new columns.

4
We omit details on predicting Index/header columns, as it is identical to

GroupBy column prediction, and our approach has high accuracy (0.96).

method full-accuracy Rand-Index (RI)

Auto-Suggest 77% 0.87
Affinity 42% 0.56

Type-Rules 19% 0.55

Min-Emptiness 46% 0.70

Balanced-Cut 14% 0.55

Table 8: Pivot: splitting index/header columns.

method

full

accuracy

column

precision

column

recall

column

F1

Auto-Suggest 67% 0.93 0.96 0.94
Pattern-similarity 21% 0.64 0.46 0.54

Col-name-similarity 27% 0.71 0.53 0.61

Data-type 44% 0.87 0.92 0.89

Contiguous-type 46% 0.80 0.83 0.81

Table 9: Unpivot: Column prediction.
We observe that input tables in the Unpivot operations

we collect are typically wide, with 183 columns on average.

Furthermore, 170 out of the 183 columns need to be collapsed

in Unpivot on average, leaving the remaining 13 columns

untouched. Given the large number of choices this presents,

it is clearly a difficult prediction task.

Like Pivot, there are no recommendation-based features

in the commercial systems we surveyed. There is also no

existing methods in the literature that directly address the

problem of predicting Unpivot. We therefore compare Auto-

Suggest with a few related methods that are studied in other

contexts.

• Pattern-similarity [58]. In studying methods to restructure

tables, the authors in [58] use a heuristic to Unpivot related

columns, which is measured by a form of pattern similarity

that they define.

• Col-name-similarity [79]. This patent publication studies

data deduplication, and proposes a few heuristics to find

similar columns that can be collapsed/Unpivoted, the first

of which is based on column-name similarity (measured

in Jaccard). We implement it as the col-name-similarity
baseline.

• Data-type [79]. A second heuristic proposed in [79] uses

data types (e.g., string vs. numbers) to find related columns,

and is also a baseline we compare with.

• Contiguous-type [79]. This improves on Data-type method

above, by additionally requiring Unpivot columns to be

contiguous in input table T .
Table 9 shows the comparison of prediction quality. When

evaluated using full-accuracy (the full set of columns pre-

dicted for Unpivot has to be identical to ground-truth), Auto-

Suggest uses the CMUT formulation and can correctly solve

67% of the cases, substantially better than other methods.

While there is clearly room for improvement in the future,

the fact that input tables for Unpivot have 183 columns on

average makes us believe that it is a really challenging task.

We note that other methods are substantially less accurate,

with Contiguous-type being the second-best approach.



We additionally evaluate the precision/recall/F1 of the

columns predicted to Unpivot/Collapse, by comparing with

the ground-truth. These results are shown in the last three

columns of Table 9. It can be seen that over 90% of columns

that we predict to Unpivot overlap with the ground-truth,

suggesting that while our approach only gets 67% cases fully

correct, many of the incorrect ones are mostly partially cor-

rect. From the suggested Unpivot, users may be able to use

drag/drop to add/remove columns from the suggested list to

quickly converge to the desired result.

6.6 Predict Next Operator

operator groupby join concat dropna fillna pivot unpivot

percentage 33.3% 27.6% 12.2% 10.8% 9.6% 4.1% 2.4%

Table 10: Distribution of operators in data flows.

method prec@1 prec@2 recall@1 recall@2

Auto-Suggest 0.72 0.79 0.72 0.85
RNN 0.56 0.68 0.56 0.77

N-gram model 0.40 0.53 0.40 0.66

Single-Operators 0.32 0.41 0.32 0.50

Random 0.23 0.35 0.24 0.42

Table 11: Precision for next operator prediction.

We now describe an evaluation of the next-operator pre-

diction task (Section 5). The distribution of operators in the

crawled pipelines is shown in Table 10.

We compare results between the following methods.

• Auto-Suggest. This is the proposed approach using a

deep model architecture in Figure 13 (implemented using

Keras [11]), which combines signals from both sequence

modeling using RNN, as well as the characteristics of input

tables captured by single-operator predictions (Section 4).

• RNN [67]. We also compare with a neural RNN model,

which is effective for language modeling tasks in NLP

(given a prefix of words, predict the next likely word). This

approach uses sequence information only.

• N-gram language model. N-gram [66] is another popular

language modeling approach for sequence prediction. Like

RNN, this uses sequence only. We implement this using

the popular NLTK [64], with trigrams and MLE estimator.

• Single-Operators. In addition to sequence-based models,

we also compare with a baseline that combines predictions

from all single-operator models on given table Ti . Such an

approach makes predictions using only the characteristics

of input tables, without considering operators invoked in

the past. It provides a reference point to see how much

additional benefit can be obtained by using the sequence

history.

Table 11 shows the comparison. Auto-Suggest clearly

improves over other approaches, and can predict the next

operator correctly 72% of the times at top-1, which we think

is reasonable given that there are 7 possible operators in the

candidate space.

Among sequence-based approaches, RNN is substantially

more accurate than N-gram, showing its strength in mod-

eling sequences, and is the reason we chose RNN as the

starting point of our model in Figure 13. There is a sizable

gap between Auto-Suggest and RNN, showing a substantial
benefit by considering the characteristics of the input table

(e.g., when the input table looks like a Pivot table, the single-

operator Unpivot-predictor would give a strong confidence

score, boosting our next-operator prediction to be Unpivot).

Single-Operators uses only information from input tables

and not the sequence, which is also less accurate, showing

the need to take into account both sequences and the input

tables, as is the approach we take in Auto-Suggest.

7 RELATEDWORKS
The research community has played a significant role in

thought-leadership that has influenced the field of self-service

data preparation. Prominent examples include the line of

work started by Wrangler [59] and its commercial instantia-

tion Trifacta [28]. Various methods have been proposed in

the literature to automate different data preparation steps,

some of which we will briefly review here.

Data transformation is a common data preparation step.

Recent progress includes the use of the program-by-example

paradigm, which significantly lowers the barrier to perform-

ing data transformations. Systems like FlashFill [49] and

Transform-Data-by-Example (TDE) [51] allow users to pro-

vide input/output examples to specify desired transforma-

tions. Transformation programs consistent with the given

examples are then synthesized using DSL [49, 76], or code

on GitHub [51]. This line of work has significant impacts on

commercial systems (e.g. FlashFill is available in Excel [4],

TDE is used in Power BI [1, 27], etc.).

Significant progress has also been made towards automat-

ing a variety of other important operators, such as data-

extraction [37, 41, 45, 61, 69], transformation-join [52, 81, 84],

table restructuring [35, 57, 75], error-detection [54, 55, 80, 82],

etc. Some of these advances have already influenced the

commercial space and given rise to new features in existing

commercial systems.

8 CONCLUSIONS
We in this work propose a data-driven approach to “learn”

how data scientists manipulate diverse data sets in Jupyter

notebooks, whose best-practices are then captured as predic-

tive models to recommend data-preparation steps for less-

technical users in self-service data prep software. We show

the promise of such an approach, and believe that leveraging

notebooks is a promising direction for future research.



REFERENCES
[1] Add-Column-From-Examples (in Power BI). http://powerbi.microsoft.

com/en-us/blog/power-bi-desktop-june-feature-summary/

#addColumn.

[2] Dresden Web Table Corpus. https://help.tableau.com/current/pro/

desktop/en-us/datafields_typesandroles.htm.

[3] Excel Forum: Questions tagged with Pivot. https://techcommunity.

microsoft.com/t5/tag/pivottable/tg-p/board-id/ExcelGeneral.

[4] FlashFill in Excel. https://www.microsoft.com/en-us/microsoft-365/

blog/2012/08/09/flash-fill/.

[5] Github api. https://developer.github.com/v3/.

[6] Informatica Enterprise Data Prep. https://www.informatica.com/

products/data-catalog/enterprise-data-prep.html.

[7] Informatica Enterprise Data Prep. https://github.com/enterprise.

[8] Jupyter notebooks. https://jupyter.org/.

[9] Kaggle. https://www.kaggle.com/.

[10] Kaggle dataset api. https://www.kaggle.com/docs/apiinteracting-with-

datasets.

[11] Keras. https://keras.io/.

[12] Market guide for data preparation - gartner, 2017.

[13] Pandas data frame list of apis. https://pandas.pydata.org/pandas-docs/

stable/reference/frame.html.

[14] Pandas groupby operator api. https://pandas.pydata.org/pandas-docs/

stable/reference/api/pandas.DataFrame.groupby.html.

[15] Pandas json normalize operator api. https://pandas.pydata.org/

pandas-docs/stable/reference/api/pandas.io.json.json_normalize.

html.

[16] Pandas melt operator api. https://pandas.pydata.org/pandas-docs/

stable/reference/api/pandas.melt.html.

[17] Pandas merge operator api. https://pandas.pydata.org/pandas-docs/

stable/reference/api/pandas.merge.html.

[18] Pandas pivot operator api. https://pandas.pydata.org/pandas-docs/

stable/reference/api/pandas.DataFrame.pivot_table.html.

[19] Paxata data preparation. https://www.paxata.com/.

[20] Power bi. https://docs.microsoft.com/en-us/power-bi/

desktop-data-types.

[21] Power BI Forum: How To Create Pivot Tables. https://community.

powerbi.com/t5/Desktop/Create-Pivot-table/td-p/627586.

[22] python tracing library. https://pymotw.com/2/trace/.

[23] Salesforce Einstein Data Prep Recipe: Smart Suggestions.

https://help.salesforce.com/articleView?id=bi_integrate_recipe_

column_profile_suggestions.htm&type=5.

[24] StackOverflow: How To Create Pivot. https://stackoverflow.com/

questions/47152691/how-to-pivot-a-dataframe.

[25] StackOverflow: Questions tagged with Pivot. https://stackoverflow.

com/questions/tagged/pivot.

[26] Tableau prep. https://www.tableau.com/products/prep.

[27] Transform Data by Example (from Microsoft Office Store).

https://store.office.com/en-us/app.aspx?assetid=WA104380727&ui=

en-US&rs=en-US&ad=US&appredirect=false.

[28] Trifacta. https://www.trifacta.com/.

[29] Trifacta Forum: How to create Pivot. https://

community.trifacta.com/s/question/0D51L0000745dOdSAI/

how-to-use-pivot-table-please-provide-one-example.

[30] Trifacta: Predictive Transformations. https://docs.trifacta.com/display/

SS/Overview+of+Predictive+Transformation.

[31] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,

P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where

are we and what needs to be done? VLDB, 9(12), 2016.
[32] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-

braker. Dataxformer: A robust transformation discovery system. In

2016 IEEE 32nd International Conference on Data Engineering (ICDE),

pages 1134–1145. IEEE, 2016.

[33] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,

M. Stonebraker, and R. Tibbetts. Linear road: a stream data manage-

ment benchmark. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pages 480–491, 2004.

[34] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense

subgraphs. Discrete Applied Mathematics, 121(1-3):15–26, 2002.
[35] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. Flashrelate: extracting

relational data from semi-structured spreadsheets using examples.

ACM SIGPLAN Notices, 50(6):218–228, 2015.
[36] Z. Chen, V. Narasayya, and S. Chaudhuri. Fast foreign-key detection

in microsoft sql server powerpivot for excel. Proceedings of the VLDB
Endowment, 7(13):1417–1428, 2014.

[37] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction

by global record alignment. In SIGMOD, 2015.
[38] R. Collobert and J. Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine learning, pages
160–167. ACM, 2008.

[39] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining

database structure; or, how to build a data quality browser. In SIGMOD,
2002.

[40] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.

Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang. The data

civilizer system. In Cidr, 2017.
[41] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational

tables from lists on the web. Proceedings of the VLDB Endowment,
2(1):1078–1089, 2009.

[42] V. Ercegovac, D. J. DeWitt, and R. Ramakrishnan. The texture bench-

mark: measuring performance of text queries on a relational dbms. In

Proceedings of the 31st international conference on Very large data bases,
pages 313–324, 2005.

[43] A. Folting, K. Tupaj, R. C. Collie, and A. V. Grabar. Automated place-

ment of fields in a data summary table, us patent 7,480,675, filed by

microsoft, 2009. US Patent 7,480,675.

[44] F. Funke, A. Kemper, and T. Neumann. Benchmarking hybrid oltp&olap

database systems. Datenbanksysteme für Business, Technologie undWeb
(BTW), 2011.

[45] Y. Gao, S. Huang, and A. Parameswaran. Navigating the data lake

with datamaran: Automatically extracting structure from log datasets.

In Proceedings of the 2018 International Conference on Management of
Data, pages 943–958, 2018.

[46] J. Gennick. SQL Pocket Guide: A Guide to SQL Usage. " O’Reilly Media,

Inc.", 2010.

[47] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for

the k-cut problem for fixed k. Mathematics of operations research,
19(1):24–37, 1994.

[48] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,

2016.

[49] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation

using examples. Communications of the ACM, 55(8), 2012.

[50] W. R. Harris and S. Gulwani. Spreadsheet table transformations from

examples. In ACM SIGPLAN Notices, volume 46. ACM, 2011.

[51] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri.

Transform-data-by-example (TDE): an extensible search engine for

data transformations. VLDB, 11(10), 2018.
[52] Y. He, K. Ganjam, and X. Chu. SEMA-JOIN: joining semantically-

related tables using big table corpora. VLDB, 8(12), 2015.
[53] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive interaction for data

transformation. In CIDR, 2015.
[54] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-

shot learning for error detection. In Proceedings of the 2019 International

http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn
http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn
http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-summary/#addColumn
https://help.tableau.com/current/pro/desktop/en-us/datafields_typesandroles.htm
https://help.tableau.com/current/pro/desktop/en-us/datafields_typesandroles.htm
https://techcommunity.microsoft.com/t5/tag/pivot table/tg-p/board-id/ExcelGeneral
https://techcommunity.microsoft.com/t5/tag/pivot table/tg-p/board-id/ExcelGeneral
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://developer.github.com/v3/
https://www.informatica.com/products/data-catalog/enterprise-data-prep.html
https://www.informatica.com/products/data-catalog/enterprise-data-prep.html
https://github.com/enterprise
https://jupyter.org/
https://www.kaggle.com/
https://www.kaggle.com/docs/api
https://keras.io/
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html
https://www.paxata.com/
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
https://docs.microsoft.com/en-us/power-bi/desktop-data-types
https://community.powerbi.com/t5/Desktop/Create-Pivot-table/td-p/627586
https://community.powerbi.com/t5/Desktop/Create-Pivot-table/td-p/627586
https://pymotw.com/2/trace/
https://help.salesforce.com/articleView?id=bi_integrate_recipe_column_profile_suggestions.htm&type=5
https://help.salesforce.com/articleView?id=bi_integrate_recipe_column_profile_suggestions.htm&type=5
https://stackoverflow.com/questions/47152691/how-to-pivot-a-dataframe
https://stackoverflow.com/questions/47152691/how-to-pivot-a-dataframe
https://stackoverflow.com/questions/tagged/pivot
https://stackoverflow.com/questions/tagged/pivot
https://www.tableau.com/products/prep
https://store.office.com/en-us/app.aspx?assetid=WA104380727&ui=en-US&rs=en-US&ad=US&appredirect=false
https://store.office.com/en-us/app.aspx?assetid=WA104380727&ui=en-US&rs=en-US&ad=US&appredirect=false
https://www.trifacta.com/
https://community.trifacta.com/s/question/0D51L0000745dOdSAI/how-to-use-pivot-table-please-provide-one-example
https://community.trifacta.com/s/question/0D51L0000745dOdSAI/how-to-use-pivot-table-please-provide-one-example
https://community.trifacta.com/s/question/0D51L0000745dOdSAI/how-to-use-pivot-table-please-provide-one-example
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation


Conference on Management of Data, pages 829–846, 2019.
[55] Z. Huang and Y. He. Auto-Detect: Data-Driven Error Detection in

Tables. In SIGMOD, 2018.
[56] L. Jiang and F. Naumann. Holistic primary key and foreign key detec-

tion. Journal of Intelligent Information Systems, pages 1–23, 2019.
[57] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish. Foofah: Trans-

forming data by example. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 683–698. ACM, 2017.

[58] N. Kabra and Y. Saillet. Data de-duplication, 2019. US Patent 10,387,389.

[59] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive

visual specification of data transformation scripts. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
3363–3372. ACM, 2011.

[60] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsug-

gest: Context-aware autocompletion for sql. Proceedings of the VLDB
Endowment, 4(1):22–33, 2010.

[61] V. Le and S. Gulwani. Flashextract: a framework for data extraction

by examples. In ACM SIGPLAN Notices, volume 49. ACM, 2014.

[62] S. H. Lee, S. J. Kim, and W. Kim. The bord benchmark for object-

relational databases. In International Conference on Database and
Expert Systems Applications, pages 6–20. Springer, 2000.

[63] T.-Y. Liu et al. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval, 3(3):225–331, 2009.

[64] E. Loper and S. Bird. Nltk: the natural language toolkit. arXiv preprint
cs/0205028, 2002.

[65] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic pre-

sentation for visual analysis. IEEE transactions on visualization and
computer graphics, 13(6):1137–1144, 2007.

[66] C. D.Manning, C. D.Manning, andH. Schütze. Foundations of statistical
natural language processing. MIT press, 1999.

[67] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur.
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