
Autarky: Closing controlled channels with self-paging enclaves

Meni Orenbach
Technion

Andrew Baumann
Microsoft Research

Mark Silberstein
Technion

Abstract
As the first widely-deployed secure enclave hardware, Intel
SGX shows promise as a practical basis for confidential cloud
computing. However, side channels remain SGX’s greatest se-
curityweakness. In particular, the “controlled-channel attack”
on enclave page faults exploits a longstanding architectural
side channel and still lacks effective mitigation.

We propose Autarky: a set of minor, backward-compatible
modifications to the SGX ISA that hide an enclave’s page
access trace from the host, and give the enclave full control
over its page faults. A trusted library OS implements an
enclave self-paging policy.

We prototype Autarky on current SGX hardware and the
Graphene library OS, implementing three paging schemes:
a fast software oblivious RAM system made practical by
leveraging the proposed ISA, a novel page cluster abstraction
for application-aware secure self-paging, and a rate-limiting
paging mechanism for unmodified binaries. Overall, Autarky
provides a comprehensive defense for controlled-channel
attacks which supports efficient secure demand paging, and
adds no overheads in page-fault free execution.
ACM Reference Format:
Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020.
Autarky: Closing controlled channels with self-paging enclaves. In
Fifteenth European Conference on Computer Systems (EuroSys ’20),
April 27–30, 2020, Heraklion, Greece. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3342195.3387541

1 Introduction
Enclave execution environments, and in particular Intel
SGX [40], aim to make confidential cloud computing prac-
tical by removing trust from the cloud [6]. Major cloud
providers have already deployed SGX [2, 34, 53], and an-
other is developing a platform to support it [49].
However, side channels weaken the security of SGX. In

this paper, we tackle the longstanding controlled-channel at-
tack on enclave page tables [59, 67, 72, 76] that still lacks
a general, practical mitigation. Controlled-channel attacks
exploit the separation of concerns in SGX between enclave
execution context, which is protected by the CPU, and re-
source management, which is delegated to the untrusted OS.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Fifteenth European Conference on Computer Systems (EuroSys ’20), April
27–30, 2020, Heraklion, Greece, https://doi.org/10.1145/3342195.3387541.

In particular, the OS manages the enclave’s address space
and performs paging from and to its encrypted memory.
Control over the enclave’s page tables enables an OS-level
adversary to trace the enclave’s page access pattern in a
noise-free manner by inducing page faults of her choice [76],
or by monitoring page table access bits [67, 72]. As long as
the enclave performs secret-dependent memory accesses to
distinct pages, the attack can breach enclave confidential-
ity, extracting, for example, decompressed JPEG images or
spell-checked text [72, 76].
SGX does not defend against controlled-channel at-

tacks [28]; Intel’s stance is that “preventing side-channel
attacks is a matter for the enclave developer” [30]. How-
ever, it is not practical to avoid secret-dependent memory
accesses for all but the simplest enclaves [59]. For example,
the Opaque data analytics platform [78] requires an oblivi-
ous scratchpad memory, that SGX currently cannot provide.
Moreover, existing software-only defenses [46, 58] suffer
from significant practical limitations: they incur substantial
performance overhead, prevent the use of demand paging
and/or suffer from false positives in detecting the attack. Im-
portantly, they require recompilation or even manual code
changes, which limits their use in large enclaves running
unmodified software [6, 50, 65]. On the other hand, proposed
architectural defenses [1] require intrusive hardware modifi-
cations such as oblivious RAM-based paging. Thus, despite
it being the earliest known SGX-specific side channel, the
controlled-channel attack still poses a threat to practical
enclave security.
Recent research revealed other side-channel attacks

against SGX. These are primarily the consequence of shar-
ing an internal CPU state across software trust domains [9,
44, 55, 72]. Coupled with speculative execution side chan-
nels (now mitigated by microcode updates and silicon fixes),
these attacks enabled the extraction of attestation signing
keys [11, 56], register values [70] and even full enclave mem-
ory [68]. While devastating, these microarchitectural attacks
are highly sensitive to the (unpublished) properties of a spe-
cific CPU microarchitecture. Moreover, they are often noisy,
as they exploit subtle timing fluctuations to infer the vic-
tim’s access pattern to hardware resources shared with the
adversary.
The controlled-channel attack is an architectural attack

that does not suffer from these limitations: OS tracing of
enclave page accesses is guaranteed by the Intel architecture
specification [29]. Thus, the attack is noise-free, determinis-
tic, and portable across hardware generations. Moreover, the

1

https://doi.org/10.1145/3342195.3387541
https://doi.org/10.1145/3342195.3387541

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

same mechanism helps remove the noise from microarchi-
tectural attacks, dramatically increasing their precision [61].
The power of the controlled channel was unequivocally
demonstrated in real-world attacks: SgxPectre, Foreshadow,
RIDL and LVI all used it as a precursor [11, 68–70].

Devising a practical mitigation for the controlled-channel
attack poses unique challenges. Grounded in the SGX mem-
ory management architecture, it can only be fully removed
via architectural change. However, SGX’s goal of compatibil-
ity with existing x86 software (the OS in particular), and its
implementation within an existing microarchitecture [14]
constrains the possible solutions. In particular, the back-
ward compatibility requirement would almost certainly pre-
clude hardware designs relying on separate enclave page
tables [15, 17, 37]. On the other hand, software-only defenses
restricting demand paging of enclave memory [46, 58] not
only harm the usability of SGX, but still leak enclave accesses
via page table accessed and dirty bits [67, 72].

We propose Autarky, a hardware/software co-design that
takes a pragmatic and practical approach to closing page-
fault side channels in SGX. The key principle is simple: we
revoke exclusive control of enclave page faults from the OS
and enable trusted enclave software to enforce a secure paging
policy. As a result, the enclave can detect the occurrence of
OS-induced page faults and block attacks, while permitting
demand paging that complies with the enclave-enforced
paging policy.
Autarky introduces minor backward-compatible modifi-

cations to SGX to enforce the new page fault handling flow,
and designs a new secure paging mechanism in software.
Modified ISA for secure paging.We prevent the OS from
silently resuming the enclave after a page fault, without
first invoking a trusted in-enclave page fault handler. In
addition, we stop leaks via page table accessed/dirty bits.
These changes are non-intrusive in that they do not affect
core hardware page-management mechanisms. Further, they
are lightweight as they add only a few conditional checks
to the existing SGX flows. We believe that these properties
increase the chances that our proposal can be implemented
in trusted firmware alone [14], facilitating adoption.
Self-paging runtime. Autarky’s runtime manages an en-
clave’s memory and handles its page faults thereby imple-
menting secure self-paging [21, 32]. As we show in §6, the
runtime is a good fit for SGX library OSes [6, 50, 60, 65]
which enable in-enclave execution of unmodified binaries.
Secure paging policies. While Autarky’s architectural
changes remove an attacker’s ability to target particular
pages, leaks remain through legitimate enclave paging activ-
ity. To this end, the secure runtime may implement a range
of secure paging schemes. We propose three such schemes
demonstrating different security-vs-usability tradeoffs: (i) a
software oblivious RAM (ORAM) providing provably secure
general paging that builds on Autarky to speed up prior SGX

ORAM systems [48] by orders of magnitude, yet requires re-
compilation; (ii) a new page clustersmechanism that provides
strong security without ORAM overheads for enlightened
applications; and (iii) a rate-limited demand paging mecha-
nism that provides a weaker guarantee of bounded leakage
(similar to prior work [46]) yet incurs minimum overhead
and works with unmodified application binaries.
We evaluate Autarky’s performance on the nbench [39],

Phoenix [52] and PARSEC [7] benchmark suites observing
zero overhead in the absence of paging activity, and better
performance with rate-limited demand paging compared to
that reported for software-only defenses [46]. Furthermore,
Autarky successfully mitigates published attacks on known-
vulnerable workloads with a small performance impact only
under paging. Finally, we quantify the tradeoffs between
page clusters and ORAM secure paging on paging-intensive
workloads: Memcached [42] and uthash [22].

2 Background
2.1 Intel SGX
Intel SGX is an x86 architecture extension that supports iso-
lated user-mode enclaves, protecting their confidentiality and
integrity against all other software on the platform (including
the OS, hypervisor, and other enclaves), and most hardware
attacks. We summarize here aspects of SGX that relate to Au-
tarky; full details are documented elsewhere [14, 29, 40, 41].

Overview. Enclaves are backed by a dedicated region of
physical memory known as enclave page cache (EPC). Mem-
ory within this region may only be used by SGX enclaves
and their associated metadata; it is encrypted and integrity-
protected in the processor before it leaves the last-level cache.
While the dedicated physical memory for enclaves is limited
today (256MB), it has already doubled in size and is expected
to grow to be better suited for cloud computing [31].
Architecturally, an enclave occupies a contiguous region

of virtual address space, the initial layout, and contents of
which are guaranteed through remote attestation, and which
is accessible only to software executing inside the enclave.

Enclave execution and state save areas. To run an en-
clave, software uses the EENTER instruction, which transfers
control to a pre-defined (and attested) entry point address.
Execution stays in the enclave until either control leaves it
via the EEXIT instruction, or an exception occurs, such as a
hardware interrupt or page fault. In the latter case, known as
an asynchronous enclave exit (AEX), the processor saves the
register context and the exception cause inside the enclave
before replacing the context with a synthetic one, and finally
leaving the enclave to invoke the untrusted OS exception
handler.
After an asynchronous exit, the OS may re-enter the en-

clave via its entry point, or resume it using ERESUME which
restores the context saved by AEX. The ability of a malicious

2

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Figure 1. SGX page fault flow. 1 The enclave runs. 2 On a page
fault (e.g., present bit clear), an AEX occurs, saving register con-
text and exception details. 3 After resolving the fault, ERESUME
restores enclave context and replays the faulting instruction.

OS to transparently resolve an exception and resume the
enclave, effectively hiding exceptions from in-enclave logic,
is a key ingredient in the controlled-channel attack.

Each enclave contains at least one thread control structure
(TCS), and each logical core entering an enclave must do so
on an exclusive TCS. The TCS, in turn, points to a region
of state save area (SSA) frames used to save enclave context
and exception information on asynchronous exits, and from
which state is resumed by ERESUME. This area is managed as
a stack to allow re-entering the enclave onAEX; conceptually,
AEX pushes a new SSA frame, and ERESUME pops it.

Memory management. Enclaves execute in a user-level
process, and their address space is managed by the OS via the
same page table. To protect enclaves from an untrusted page
table, SGX consults an additional trusted EPC map (EPCM)
structure, which is stored in secure memory inaccessible to
software. After walking the page table, hardware uses the
EPCM to check that enclave pages are mapped correctly, and
that any changes are coordinated with the enclave code.
The EPCM is updated by SGX instructions. Prior to en-

clave launch, EADD populates an enclave’s initial (attested)
pages. After launch, an enclave’s virtual memory can be mod-
ified dynamically (in SGX version 2); adding enclave pages or
invalidating mappings requires the OS to coordinate changes
with the enclave. Specifically, the OS uses instructions such
as EAUG to add a page, EMODT to “trim” (deallocate) a page,
and EMODPR to reduce permissions and, if necessary, per-
forms a TLB shootdown. Then, for the change to take effect,
trusted unprivileged code in the enclave confirms and com-
mits the desired change using EACCEPT or EACCEPTCOPY.

Finally, SGX supports OS-driven demand paging, enabling
enclaves to oversubscribe EPC. Since the OS cannot be
trusted to directly swap EPC pages, the privileged EWB in-
struction evicts a page from EPC, storing it as encrypted data
in regular memory, and its counterpart ELDU restores this
data in the EPC. The instructions guarantee the integrity of
the swapped out contents, and protect against replay attacks.

Access control and page faults. SGX implements its pro-
tection by modifying the processor’s TLB miss handler [14].
The TLB is flushed when entering/exiting an enclave, and

while executing in enclave mode, extra access control checks
apply [29, §37.3]. When a TLB miss occurs in enclave mode,
the processor walks the page table as usual. If it results in
a valid page table entry (PTE) with sufficient permissions,
extra SGX-specific checks occur. First, the enclave region
(and only that region) may only map EPC pages. Second, the
EPCM is consulted to check that the mapping is correct.

If any of these checks fail, a page fault and an AEX occur
as shown in Figure 1. The faulting address and error informa-
tion are saved in the SSA frame, and the page offset portion
of the faulting address is zeroed prior to delivering the fault
to the OS. Thus, the OS fault handler is given the page and
the reason for the fault, but not the exact virtual address.
If all the checks pass, the TLB entry is installed and the

translation proceeds. The PTE is also updated to set the
accessed and dirty bits appropriately, as in regular paging.

The details above illustrate how the SGX protection mech-
anisms fit into the existing x86 architecture. In Autarky, we
seek to change only the same paths as the current SGX im-
plementation; this is a particular challenge for preventing
leaks via accessed and dirty bits, as we will see in §5.1.

2.2 Controlled-channel attacks
Different variants of controlled-channel attacks have been
described to leak enclave page accesses. The original work of
Xu et al. [76] unmapped pages to trigger a page fault when
they were accessed by the enclave before silently restoring
the mapping. In the limit, this provides a page-granularity
trace of every memory access by every enclave instruction.
At its core, a controlled channel consists of two compo-

nents: first, a noise-free side-channel that leaks EPC page ac-
cesses, and, second, a mechanism for the attacker to stealthily
control enclave execution, making the channel deterministic.

The first component is provided by one of the architectural
mechanisms (§2.1) through which the OS may observe an
enclave’s page accesses. For example, the OS may invalidate
the PTE (as in the original attack), reduce its permissions
(e.g., making a code page non-executable) [74], or simply
map the wrong page [68]. All trigger a page fault that the
OS intercepts. Alternatively, it may clear the PTE’s accessed
or dirty bits, and observe when they are set [67, 72].

The second component, control, comes from SGX allowing
the OS to resume (ERESUME) an enclave after an OS-injected
page fault, which hides the attack from enclave software.
Since the attacker knows the program’s expected behav-

ior, she may use the access trace to recover secrets used in
control- or data-dependent accesses. Xu et al. [76] demon-
strated attacks that leaked images, text and characters pro-
cessed by the libjpeg, Hunspell, and FreeType libraries re-
spectively.

3

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

2.3 ORAM
Oblivious RAM [20] obfuscates memory accesses performed
by a client to untrusted storage such that an attacker can-
not learn any information about the actual accesses. Many
ORAM algorithms have been proposed [62, 73, e.g.] that ob-
fuscate program access patterns by dynamically re-shuffling
and re-encrypting the accessed memory regions.
ORAM relies on a trusted memory region to store meta-

data corresponding to the un-shuffled addresses in the un-
trusted storage. For example, PathORAM [62] (a popular
and efficient ORAM algorithm) arranges untrusted storage
as a complete binary tree containing both real (valid client
data) and dummy blocks. It maintains a position map that
maps client data to blocks in the tree, and a stash that stores
fetched blocks.

Recently, ORAM was proposed as a generic mechanism to
mitigate controlled-channel attacks [48, 51, 54]. The key idea
is to invoke ORAM for every normal memory access while
also making oblivious accesses to the ORAM’s ownmetadata.
The latter is achieved by linearly scanning metadata with
the CMOVZ instruction.

Unfortunately, ORAM typically incurs high performance
overheads [51]. With Autarky, however, ORAM implementa-
tions in SGX may run orders of magnitude faster.

3 Threat Model and Out-of-scope Attacks
We consider a typical enclave threat model with a privileged
adversary who controls the OS and/or hypervisor. The ad-
versary manages the enclave’s address space, and has full
access to the page table. We assume that the enclave’s code
is public and free of vulnerabilities [74].
We disregard leaks via microarchitectural side chan-

nels, including cache timing and speculative execution at-
tacks [9, 44, 55, 56, 68–70]. While these may leak enclave
memory accesses (including PTE fetches [67, 72]), they are
orthogonal to our work and we mitigate them to the extent
possible by disabling hyperthreading and using the latest
CPU microcode. We note, however, that the microarchitec-
tural replay attack [61] relies on OS-induced page faults that
Autarky prevents.

We consider restart attacks that require recreating an en-
clave to be out of scope, as there are known ways to defend
against such attacks. For example, the enclave could perform
remote attestation at startup [6, 50], or a local parent enclave
(as in Graphene-SGX’s multi-process mode [65]) could man-
age its children’s lifecycle. In either case, users or trusted
services could detect unusually frequent restarts.

4 Design Considerations
In this section we analyze the limitations of pure software
or clean-slate hardware solutions, and discuss the design
tradeoffs of a practical defense mechanism.

Software-only mitigations are limited. Defending
against controlled-channel attacks on current SGX hardware
is hard because the architecture exposes an enclave’s
page tables and page faults to the OS by design. Enclave
software is left with three options: obfuscate the memory
access trace [8, 59], prevent page faults altogether [58],
or detect excessive enclave exits associated with page
faults while disabling the sibling hyperthread [12, 46].
Unfortunately, all three suffer from high overheads. More
crucially, since benign page faults are indistinguishable
from an attack, these defenses curtail any fault-driven
mechanisms, such as demand paging or lazy allocation.
This hinders their applicability in real systems with limited
EPC memory. Furthermore, all three require recompilation,
preventing the use of existing binaries (supported by enclave
libOSes [6, 50, 65]) or JIT compilers.
We conclude that a practical, general solution to these

attacks will require changes to the SGX architecture.

Hardware solutions require intrusive changes. In clean-
slate designs for hardware-based enclaves, controlled chan-
nels are avoided through separate enclave page tables [1, 15,
37]. Since the enclave has a private page table that the OS
cannot observe or tamper with, the channel does not exist.
However, retrofitting such a design to SGX would require
substantial changes to the x86 implementation with which
SGX is entangled. First, a new mechanism for collaborative
management of encrypted pages between host OS and en-
claves would be required. Second, new protections would
be necessary to prevent an enclave mapping arbitrary host
memory. Finally, performance-critical portions of the MMU
would require substantial changes to support this design.
Furthermore, private page tables may still leak when legit-
imate demand-paging occurs since the swapped-out pages
are still under the OS’s control and are therefore vulnerable.

Security vs. compatibility. When considering design op-
tions, we face an inherent tradeoff between backward com-
patibility and strong, general security.
We assert that any solution in which enclave page map-

pings are visible to the OS cannot provide strong ORAM-like
guarantees for applications that use demand paging, unless
it involves intrusive hardware changes. The reason is simple:
if page mappings are visible to the OS, it can always deter-
mine which enclave pages are mapped. Given knowledge
of application code, this leaks portions of the application’s
working set. We note that this demand paging side channel is
strictly weaker than the controlled channel because the OS
cannot trace arbitrary pages, yet it still compromises secrecy.
We see two solutions to hide page mappings, neither of

which is fully satisfactory: (i) enclave-private page tables that
are difficult to support in SGX as discussed above; and (ii)
ORAM, which breaks the link between addresses and secrets,
but either requires intrusive hardware changes [1] or else
forces software recompilation and is slow [48].With Autarky,

4

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Autarky
paging module

Enclave
(trusted)

...
mov %rax,(0x1000)
...

Page fault
handler

Secure paging policy,
attack prevention

Autarky paging handler
...
mov %rax,(0x1000)
...

Page fault
handler

OS
(untrusted)

AEX ERESUME

#PF

SGX HW
(trusted)

Paging ISAX X

EENTER EEXIT

Figure 2. Autarky enforces invocation of an enclave’s self-
paging handler on each page fault.

we therefore favor a pragmatic solution that is compatible
with the existing SGX design and empowers trusted software
to make this tradeoff, at the expense of either application
changes to achieve security and performance, or weakened
(yet improved) security without any application changes.

Conservative approach to SGX architecture changes.
We justify our approach of minimal architecture changes as
follows. First, we hope that it will facilitate Autarky’s rapid
adoption. Given the slow evolution of SGX [5] and the ur-
gency to eliminate controlled channels, time-to-deployment
matters. Second, it minimizes assumptions about the SGX
implementation, reducing our risk of overlooking broader
side-effects of any changes. Last, it maintains the SGX design
philosophy of embedding trusted execution in x86.

5 Design
SGX gives an OS control over enclave resource management
while monitoring the OS’s actions (e.g., page mappings) to
ensure correctness. The problem is that the basic mecha-
nisms of demand paging and fault handling leak an enclave’s
internal state without its control. Autarky revokes from the
OS control of EPC paging policy, and delegates it to a trusted
self-paging runtime. Figure 2 shows our modifications to the
SGX page fault flow. Hardware now enforces invocation of
the trusted page fault handler, and hides enclave page fault
information and access/dirty bits from the OS.
Thus, Autarky establishes a protocol for cooperation be-

tween the OS and an enclave runtime, much like SGX does to
protect against direct attacks, but instead to close controlled
channels. To enable this new separation of concerns, Autarky
relies on a trusted runtime layer, such as an SDK [27, 43, 49]
or library OS [4, 6, 50, 65, 65], which manages an enclave’s
memory and handles its page faults.

5.1 SGX architecture modifications
5.1.1 New enclave attribute
Following the existing scheme for optional features, we de-
fine a new enclave attribute bit for a self-paging enclave. This
bit is an attested flag for an enclave to enable all the changes
described below. If the OS or CPU does not support it, the

attribute mechanism allows the enclave to either continue
in legacy (insecure) mode, or fail to start.

5.1.2 Closing the channel: hiding faults from the OS
We propose to extend the original SGX exception handling
mechanism as follows. For any enclave-mode page-fault oc-
curring inside the enclave region, the processor already saves
full exception information in the SSA frame and masks the
page offset visible to the host. Our modifiedmechanism hides
the entire address and access type in the page-fault error
code before delivering it to the OS’s exception handler. To
avoid ambiguity, all enclave faults should be reported at some
consistent address within the enclave region; for example,
as a read fault at the enclave’s base address. In this way, the
OS learns only that some enclave fault has occurred.

5.1.3 Removing attacker control: reporting all faults
This change prevents the OS from silently resuming an en-
clave after a fault. We extend the per-thread TCS with a new
pending exception flag and modify the AEX procedure so that
on any page fault, the processor sets the pending exception
flag. We also modify EENTER to clear the flag on entry, and
ERESUME to fail if the flag is set. Thus, the OS is forced to
re-enter the enclave after an exception, at which point the
trusted runtime can reliably determine that an exception
occurred (using the SSA frame), and run the handler.1
This, in turn, allows the enclave’s exception handler to

detect unexpected page faults, to which it may apply a policy.
For example, it may simply ask the OS to restore the faulting
page and continue execution, perhaps applying a heuristic to
detect excessive fault rates. Alternatively, it may implement
secure self-paging, and treat any unexpected page fault as
an attack, in which case it would terminate to prevent leaks.
We describe a range of possible software designs in §5.2.

Eliding AEX. We note that this approach adds overhead to
benign exceptions. For every page fault, the CPU saves the
full context, exits the enclave, and invokes the OS handler,
which can do nothing useful since it lacks knowledge of the
fault, but must return to user-mode and re-enter the enclave.
Therefore, as an optimization, we propose staying in enclave
mode: after saving the exception information in the SSA,
the hardware would immediately simulate a nested enclave
re-entry by incrementing the SSA and jumping to the en-
clave entry point, whereupon the exception handler can run.
This optimization appears practical and elides costly enclave
transitions [4, 47], which besides their high direct cost also
flush TLB, and L1 caches—previous work showed the latency
of invoking an enclave exception handler is more than 6×
that of a signal handler [48]. We evaluate performance both
with and without this optimization, in §7.

1Like an OS, the enclave runtime must take care to avoid nested faults that
would exhaust the SSA stack and render the enclave un-executable.

5

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

Resuming from exceptions. Another source of exception
overhead arises when resuming execution. As previously
observed [6], the handler must EEXIT to a stub that merely
ERESUMEs the original SSA frame, incurring another costly
enclave transition for the sole purpose of restoring context
and popping the SSA stack. This could be avoided with an
in-enclave variant of ERESUME, but we do not assume it.

5.1.4 Blocking the use of accessed and dirty bits
With the changes described above, we have curtailed the OS’s
ability to inject or observe enclave page faults. However, it
may still infer access patterns via PTE accessed and dirty
bits. This is an area where changing hardware carries the
most risk since this functionality is performance-sensitive,
and we cannot afford to degrade the use of these bits for
non-enclave PTEs (or indeed, for non-self-paging enclaves,
since the legacy paging mechanism relies on it).
A straightforward fix would be to prevent updates of ac-

cessed and dirty bits in enclave PTEs. However, this may
prove impractical to implement: it requires that core MMU
paths be modified with SGX-specific logic. For example, the
page table walk would need to skip updating access bits
for addresses within the range of a self-paging enclave, and
TLB entries would need to be flagged as holding enclave
translations to avoid writing back dirty bits.
To simplify the hardware, we therefore propose to add

a check for fetched PTEs, only in enclave mode for a self-
paging enclave, and only after fetching a PTE in the enclave
region (i.e., in conjunction with the EPCM lookup, which is
clearly already SGX-specific): the accessed and dirty bits for
the fetched PTE must already be set; if either is clear, the PTE
is treated as invalid, and a fault occurs. This blocks the OS
use of accessed and dirty bits for self-paging enclaves, and
allows the enclave to detect such leaks in its fault handler.

Our proposal assumes that (a) the fetched PTE’s accessed
and dirty bit state is available at the time of the SGX-specific
checks, and (b) the MMU will never perform writeback of
accessed/dirty bits if they were already set at the time of
the TLB miss. The latter assumption, which is consistent
with, but not guaranteed by, the specification [29, §4.8] is
necessary to prevent a time-of-check to time-of-use attack,
whereby the accessed or dirty bit is set at the time of the
TLB fetch yet later cleared, effectively defeating the defense.

This change may degrade eviction performance for self-
paging enclaves, because access/dirty bits cannot be used to
guide eviction policy (e.g., to implement the common “clock
algorithm”). However, since (as we will see in §5.2) eviction
policy will be devolved from the OS to the enclave runtime,
any impact on core OS paging decisions is minimal. One
option for the enclave runtime is to use a more coarse-grain
frequency-based algorithm that counts the frequency of page
faults for each page, and eventually learns to keep “hot” pages
paged in (similarly to Linux NUMA page migration).

Summary. The combined effect of our architecture changes
is that the OS cannot evict EPC pages nor observe accesses
without enclave cooperation. More precisely, it can still un-
map pages or even evict them using the EWB instruction,
but if the enclave ever attempts to access such a page, it will
detect that it was missing. As a result, the OS is reduced
either to swapping in/out entire enclaves or managing an
enclave’s memory with its consent and cooperation.

5.2 Software design
The SGX changes described in §5.1 suffice to block the at-
tack by simply keeping an entire enclave resident in EPC.
Thus, any fault is regarded as an attack, terminating execu-
tion. Prior software mitigations for the controlled-channel at-
tack [46, 58] take essentially this approach. However, it leads
to severe practical limitations: first, memory requirements
for even one enclave may easily exceed EPC, rendering such
enclaves un-runnable. Second, dynamic memory allocation
would be impractical even for smaller enclaves: in the pres-
ence of multiple dynamically-sized enclaves, the OS would
be unable to balance competing memory demands. Instead,
it could merely swap entire enclaves, which is inefficient.

On the other hand, reimplementing demand paging inside
an enclave runtime risks information leaks to the OS via the
demand paging side channel (discussed earlier in §4). If the
enclave runtime responds to each page fault by mapping the
accessed page, the OS may easily infer it. Likewise, when the
enclave evicts a page, the OS may infer access information.
In fact, the system’s overall security depends on the eviction
and fetching policy implemented by the self-paging runtime.
In this section, we describe three alternative self-paging

policies that minimize such leaks: an efficient software-based
oblivious RAM system (§5.2.2), a new page clusters abstrac-
tion (§5.2.3) that provides a meaningful security guarantee
to applications modified to make use of it, and finally a rate-
limited demand paging mechanism (§5.2.4) that provides a
weaker bounded leakage guarantee for unmodified applica-
tion binaries. We begin by describing the OS interface on
which all three depend to enable enclave page management.

5.2.1 OS interface
We need a flexible mechanism to balance the number of EPC
pages available to each enclave, that adjusts to the available
EPC and memory pressure from other enclaves. This is the
role of the interface between the enclave runtime and the
OS: restricting the use of OS-level paging on sensitive pages,
and supporting self-paging of those pages by the enclave.

Enclave-managed pages. We take a two-level approach to
enclave page management. We partition the set of EPC pages
used by an enclave into those managed by the OS, and those
managed by the enclave. For pages that cannot be exploited
to mount the controlled-channel attack (e.g., a buffer to
which the access pattern is independent of secrets, as in

6

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

a matrix product), the existing OS-level paging mechanism
is more flexible because it permits the OS to evict and fetch
pages at any time without enclave interaction.

Other pages with potentially-sensitive access patterns can-
not be silently evicted by the OS. For these enclave-managed
pages, the trusted runtime tracks the residence status of
each page and treats any unexpected fault on a purportedly-
resident page as an attack to which it responds by termi-
nating the enclave. The sensitivity of a page may change
over the lifetime of the enclave, so the OS must be aware of
which pages it manages. To do so, we add two system calls:
ay_set_os_managed yields management of a set of pages to
the OS and ay_set_enclave_managed claims it for the enclave.
The latter call also returns the current residence status of
each page (i.e., whether it is currently paged out) so that the
enclave can update its state and initiate page-in if desired.

From theOS perspective, the contract on enclave-managed
pages is as follows: each resident enclave-managed page is
effectively pinned in EPC whenever the enclave is runnable.
EPC is a limited resource, and the OS may enforce a limit on
its use to prevent one enclave from monopolizing EPC.
If the OS wishes to reclaim memory dynamically, it has

three options: it may evict any OS-managed page at will, it
can upcall the enclave and ask it to reduce its memory use,
or it can swap out the enclave. The first option is straight-
forward; we discuss the latter two in detail here.
Similar to memory ballooning in virtual machines [71],

memory management upcalls from OS to enclave imply a
series of difficult tradeoffs. First, the enclave must be given
time to reduce its memory allocation. Second, the enclave
runtime must take care that its eviction policy does not
leak sensitive information. Third, the enclave may not co-
operate; for example, it may refuse to evict sensitive pages
to prevent leaks. For these reasons, we did not pursue such
upcalls, deferring their investigation to future work. Their
absence leaves the OS with one final option: evicting enclave-
managed pages. To respect the contract, it can only do so
by suspending the enclave, at which point it can evict all
enclave pages (i.e., swap the entire enclave out), but it must
first restore them all before resuming enclave execution.

Supporting self-paging. As described above, the enclave
may decide to evict or fetch one or more enclave-managed
pages at any point in its execution including, but not limited
to, the page fault handler. This process involves modifying
the page table and allocating/freeing EPC pages, so it ne-
cessitates new system calls: ay_fetch_pages to securely bring
pages into EPC from a backing store, i.e., untrusted memory,
and ay_evict_pages to securely write pages out to the back-
ing store. The calls explicitly support batching to minimize
system calls and enclave crossing overhead: each takes an
array of page base addresses to fetch/evict. Note that the

libc.so
libautarky.

so
Autarky

data

Code pages Data pages

Cluster
A

Cluster
B

Paged-in Paged-out

Figure 3. Sample enclave with page clusters shown as differ-
ent colors. Pages in a cluster are fetched and evicted together.

enclave runtime only manages pages using their virtual ad-
dress; the mapping of virtual to physical EPC frames is under
the control of the OS, and invisible to the enclave.
To prevent the OS from interfering with page contents,

we rely on existing SGX mechanisms: either the privileged
EWB and ELDU paging instructions, or the dynamic memory
management instructions of SGXv2 (both described in §2).
The latter are more flexible, permitting enclave software
to implement custom encryption, avoid writeback of clean
pages, or use an alternative backing store, however, they
incur an extra enclave crossing.We evaluate both approaches
in §7.

5.2.2 Efficient software ORAM
Recall from §2.3 that oblivious RAM [20, 62, 73] provides an
effective and secure way to obfuscate enclave paging activity,
albeit with substantial performance cost [1, 48, 54]. However,
using ORAM for an enclave’s demand-paging backing store
is not sufficient to hide the access pattern: the adversary can
observe changes in page mappings made by the fault handler,
thereby learning the fetched (and hence, accessed) pages.
Instead, CoSMIX [48] proposed instrumenting all mem-

ory accesses to use ORAM, re-shuffling the page contents
regardless of the underlying mappings. Furthermore, CoS-
MIX allows selective annotation of static variables or/and
memory allocations and automatically instruments all the
corresponding accesses to use ORAM. Unfortunately, even
selective instrumentation still incurs high overheads.
Since Autarky preserves confidentiality of the address

trace for enclave-managed pages, it allows caching of re-
cently accessed ORAM pages in a large pre-allocated buffer
acting as an enclave-managed software cache without leaking
the access pattern. Essentially, memory accesses are instru-
mented to perform a cache lookup and invoke the costly
ORAM protocol only in the case of a cache miss. Effectively,
Autarky reduces overheads to the extent that ORAM-based
paging becomes practical (§7.2). Note, fetching (evicting)
page contents to (from) the cache is an oblivious copy oper-
ation. The cache is backed by enclave-managed pages that
can be pinned and therefore eliminate page fault leaks.

5.2.3 Page clusters
ORAM obfuscates accesses to all enclave pages. However,
not all applications require such a strong guarantee. For
example, there is no reason to hide sequential accesses, such
as parsing of an encrypted stream. Even for more complex

7

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

Table 1. Page clusters API

Function Purpose

ay_init_clusters(n, s) Initialize n clusters of size s
ay_release_clusters() Release all resources
ay_add_page(cluster, page) Registers page with cluster
ay_remove_page(cluster, page) De-registers page from cluster
ay_get_cluster_ids(page) Returns all clusters containing page

data structures such as a hash table, it may be necessary to
hide which hash bucket was accessed, but not whether the
table was accessed at all. Allowing developers to express
such requirements in terms of application-level resources is
the goal of a new abstraction we call page clusters, depicted
in Figure 3.

The cluster API is presented in Table 1. It may be used by
a system runtime or by the programs as we explain below.
A page cluster is a consistent set of enclave-managed

pages that are evicted and fetched together. Whenever a
fault occurs, the system deterministically fetches and maps
all the other pages in a cluster together with the faulting
page. Thus, the attacker cannot differentiate which of the
fetched pages caused the fault, even if the same fault occurs
many times. We note that clusters differ from large pages,
since they need not be physically or virtually contiguous,
and can be assembled or broken down dynamically.

Formally, the systemmaintains the following invariant: for
each non-resident page, there is at least one cluster to which it
belongs with all of its pages non-resident. This invariant is triv-
ial to enforce if all the clusters are disjoint. However, pages
can be shared between multiple clusters, which is useful in
particular for code pages, as we explain below. Importantly,
when swapping in such clusters, it is crucial to fetch the
transitive set of all clusters sharing pages with the faulting
cluster and among themselves. Otherwise, there could exist
a situation where all but one page of a cluster are resident in
memory, as they may have been fetched previously due to
sharing. A subsequent fault on this single non-resident page
would uniquely reveal its access.

However, evicting a single cluster that shares pages with
others is safe. The intuition is that either all the pages of
the evicted cluster remain evicted (invariant holds) or they
become resident as part of a fault on any of the pages of any
of the other clusters with which they are shared.
The security guarantees of clusters depend on their con-

struction and the program’s threat model (§5.3). Intuitively,
for programs with a uniform access pattern the larger the
cluster, the lower the probability an attacker may infer which
page was fetched. However, when the access distribution is
skewed, even huge clusters might leak information. In such
cases, the less performant ORAM alternative remains.

Clusters for code pages. Common attacks on code pages
infer secrets by observing control flow as revealed by in-
struction fetches. For example, Xu et al.’s [76] attack on the

FreeType library infers text being rendered from the unique
pattern of code pages executed to render each character. To
prevent this kind of attack, one can place all the code pages
of a library in a single cluster, ensuring that control flow
through the library’s internal code does not leak. Note that if
two libraries use a third, their respective clusters will share
pages and will also be fetched together.

Clusters for libraries and the main program can be created
automatically by a libOS, utilizing a trusted loader. A loader
may also create clusters at the finer granularity of individ-
ual functions for better paging performance, if control flow
between functions is not considered sensitive. In our experi-
ence, libraries used by enclave applications are substantially
smaller than total memory; thus, their code pages can be
clustered and kept resident, or paged with low overhead.

Manual clustering for data pages. Clusters can be a pow-
erful tool for developers to defend against paging side chan-
nels with low overhead. A user may manually construct
clusters with knowledge of application semantics. For exam-
ple, consider an application with multiple hash tables, each
of which fits in memory, but that exceed it when combined. A
user may define a cluster for all of a hash table’s pages. Then,
upon access, all the pages in the cluster would be fetched
and an attacker would learn only that the hash table was
accessed. We demonstrate further examples in §7.3.

Automatic clustering for data pages. Data pages are
harder than code to cluster automatically since their access
semantics depends on the program. We propose an auto-
matic policy that eagerly fills clusters with allocated pages
by extending the libOS page allocator. A user specifies the
desired size of data clusters. Each allocated page is added
to a cluster, up to the maximum size, at which time a new
cluster is created. When enough pages are freed, the libOS
allocator merges clusters to keep them near-full.
Consider for example, a hash table with internal node

chaining for resolving collisions. An attacker may infer
which entries are accessed based on their unique page access
signature, as in the Hunspell attack [76]. Obviously, smaller
entries are more secure since they occupy the same page, and
larger entries that share fewer pages leak more. Clustering
can mitigate such attacks; specifically, the more pages in a
cluster, the lower the probability that an attacker infers the
accessed entry. However, larger clusters impact performance
when paging—we evaluate this tradeoff in §7.

5.2.4 Bounded leakage for unmodified applications
One of our motivations for Autarky is to support unmodified
application binaries using a library OS [6, 65]. However, both
ORAM and page clusters require application changes and/or
recompilation. We describe here a scheme that works with
completely unmodified application binaries whose memory
allocations exceed available EPC (thus requiring paging).

8

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

To achieve this goal without application knowledge, we
must accept some leakage when we handle page faults and
map pages. We use a combination of three techniques: (i) au-
tomatic clusters for code pages (as described in §5.2.3) prevent
leaks of control flow by fetching all code pages of a library as
one; (ii) enclave-managed data pages use traditional demand
paging inside the enclave; and (iii) an optional, application-
specific bound on the maximum permitted page fault rate.
The combination of these techniques allows us to provide
the following guarantees to applications: given a reason-
able minimum EPC size (which may be configured by the
user and checked at enclave startup), the only page accesses
that leak are those to data pages that would have triggered
demand-paging (i.e., cold pages), and to reduce the risk of
an active attacker, the enclave will terminate if the rate of
legitimate page faults exceeds a user-defined threshold.

Ideally, the maximum page-fault rate would be expressed
in terms of enclave runtime, such as CPU cycles. Unfortu-
nately, while the enclave can easily count page faults, it lacks
a reliable time source: the cycle counter is untrusted, and
the real time clock provided by SGX platform services is too
slow to query in a fault handler. Instead, we are restricted to
counting application-specific measures of forward progress
observed by the libOS, such as I/O, memory allocations, and
system calls. For example, a server application may limit
page faults per socket receive call, while a machine learning
task may express its limit in faults per memory allocation.

We note that despite providing only a weak bound on fault
rates, this scheme is substantially better than the similar
software mitigations [46, 58] with fault rate limiting. Not
only is the performance overhead lower (thanks to Autarky
hardware), but the only enclave accesses that leak are via
the demand-paging side channel (legitimate paging). This
channel leaks less than the silent attack on page tables [67,
72], which is not fully eliminated by any known mitigations.

5.3 Security analysis
Within the assumed threat model (§3), Autarky guarantees
that the attacker can infer only accesses to enclave-managed
pages at the time they are fetched or evicted by the fault
handler, in which case the nature of any leak depends on
the self-paging policy. For ORAM, there is no leak; for page
clusters, the faulting page is indistinguishable from others in
the same cluster; for the bounded leakage policy, accesses to
data pages may leak below an application-specific rate limit.
We discuss some potential attacks within these constraints.

Termination/lack-of-faults attacks. The attacker may at-
tempt to unmap one or more enclave-managed pages (or
clear their accessed/dirty bits, which has the same effect).
If later accessed by the enclave, this will cause a spurious
page fault which will be detected by the enclave’s fault han-
dler, resulting in enclave termination. However, the attacker

learns something as a result, leading to what we term the
termination attack, and the lack-of-faults attack.

We assume that when the runtime detects an OS-induced
fault on an enclave-managed page it will terminate. Hence,
the OS learns that a page it unmapped was accessed (because
it knows that an exception occurred), but not which specific
page of those it unmapped triggered the fault.

Conversely, if the enclave does not terminate when pages
are unmapped, the attacker infers that they were never ac-
cessed. Assuming application knowledge, this lack of faults
may be used to infer that a complement set of pages was
indeed accessed. The bandwidth of this attack is comparable
to the termination attack, so we do not see it as significant.

The attacks result in (or run a risk of) enclave termination,
requiring that the enclave be restarted. As described in §3,
we assume that such restarts can be detected by a trusted
party through the use of attestation, and so disregard the
potential accumulation of page traces across repeated runs.

Leakage via legitimate page faults. To mitigate leakage
of page accesses when enclaves exceed their available EPC,
users may construct clusters. Clusters fetch all their pages
in to memory such that an attacker knows that one of the
pages in the cluster was accessed, but not which one. This
means that page access leakage correlates with the cluster
size. Furthermore, clusters may eliminate page faults if they
prefetch pages that may be accessed in the future. If clusters
provide insufficient guarantees, a user may defer to ORAM.

Invoking the enclave’s exception handler. An attacker
cannot arbitrarily invoke the exception handler. It is called
only by the trusted enclave code with fault information from
the SSA. Nested faults can be avoided by pinning all the
handler’s code and data pages in enclave-managed memory.
Thus, any re-entrancy can be regarded as an attack, and we
provision sufficient SSA stack to permit detection thereof.

5.4 Discussion: VM support
In virtualized environments, both the guest OS and hypervi-
sor may observe enclave page faults and mount controlled-
channel attacks. Autarky mitigates the VM-level attack,
which has implications for hypervisor implementations.

SGX [10] allows a hypervisor to virtualize enclave mem-
ory through static partitioning, ballooning [71] or demand
paging [77]. Autarky supports static partitioning similarly
to a bare-metal OS hosting multiple enclaves. Notably, cloud
platforms that statically partition EPC [53] will require no
modification. Ballooning can also be supported with minor
changes: an enlightened guest OS enables cooperative pag-
ing, which allows a hypervisor, guest OS and enclaves to
invoke secure self-paging polices (§5.2.1). We defer the de-
tails of such a mechanism to future work.
However, transparent demand paging by the hypervisor

cannot be supported, since Autarky prevents the VM from
9

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

Enclave
(trusted)

OS
(untrusted)

Autarky paging
module OS-managed pages

Program Autarky runtime Enclave-managed
pages

Exitless system calls

Vanilla SGX paging
module

LibOS allocator

Figure 4. Autarky’s prototype implementation.

observing fault addresses. Enlightenments are required to in-
form the hypervisor of enclave-managed pages, and mediate
handling of faults on OS-managed pages. Recent extensions
to the SGX ISA [10] already give a hypervisor knowledge
of OS details such as the EPC pages belonging to specific
enclaves. While cooperative paging will requires further hy-
pervisor changes, it is ultimately more flexible, and requires
simpler hardware support, than the existing design.

6 Implementation
We prototype Autarky’s software components by modify-
ing the Graphene-SGX libOS [65] (4,470 LoC modified out
of 1.85M total) and Intel SGX driver [26] (913/3,077 LoC).
Figure 4 shows an overview. Since we lack hardware that
includes our architecture changes (§5.1), our prototype re-
mains vulnerable to the controlled-channel attack and serves
only to estimate the performance and usability of our design.

We support two pagingmechanisms: the SGXv1 privileged
instructions (EWB and ELDU), and the dynamic memoryman-
agement instructions of SGXv2. Both uses exitless host calls
to reduce the cost of enclave transitions [4, 47, 75].

When fetching a page with SGXv2, we add a mapping us-
ing the EAUG and EACCEPTCOPY instructions. We use AES-
NI and Intel’s IPP crypto library [25] to decrypt and validate
page contents. Moreover, to improve performance, we over-
lap EAUG with decryption using a temporary buffer. To evict
a page with SGXv2, we first set it to read-only with EMODPR
and EACCEPT. Then we can safely encrypt, sign and write
it while maintaining thread-safety. We finalize the eviction
process with the EMODT, EACCEPT and EREMOVE.

We modify the SGX driver to implement Autarky’s system
calls (as IOCTLs) to prevent the eviction of enclave-managed
pages, and to avoid the use of accessed and dirty bits in the
eviction algorithm for OS-managed pages.
Our runtime extends Graphene: the enclave’s exception

handler is called to resolve each page fault, by verifying that
it is not malicious, and (if needed) evicting pages to free EPC
prior to fetching pages to satisfy security guarantees (e.g.,
those sharing a cluster). We implemented new Graphene
APIs to allow applications to define page clusters. Finally,
we extended Graphene to support exitless calls to reduce the
performance overheads of enclave transitions.

Our ORAM prototype is based on the CoSMIX PathORAM
memory store [48] (1,960 LoC). At a high level, page contents

are stored in a dedicated section of enclave memory. The
CoSMIX compiler instruments application memory accesses
using the PathORAM construction. Since Autarky protects
all enclave-managed pages, we implement a new instrumen-
tation policy that utilizes a large enclave-managed buffer as
a cache for page contents. Our instrumentation first checks
whether the page exists in the cache, and if so, accesses the
memory directly. Otherwise, it obliviously fetches (and evicts
if needed) to/from the cache. To reduce thrashing, we store
page contents securely (encrypted and signed) in untrusted
memory, validating them when they are fetched to the cache.
Finally, we avoid costly linear scans used by CoSMIX to hide
access patterns to PathORAM’s data structures (positionmap
and stash) by marking their pages as enclave-managed.

7 Evaluation
Setup. We use a Dell XPS 13 2-in-1 laptop with 4-core Intel
i7-1065G7 (Ice Lake) CPU, 16GB RAM, and 256MB enclave
reserved memory (≈190MB EPC) running Ubuntu 19.04 (64-
bit), Linux kernel 5.0.0, and CPU microcode version 2E.
The Autarky runtime in Graphene-SGX automatically

marks pages for program code, stack, and self-paging meta-
data as enclave-managed (pinned in EPC). Results do not
include initialization. Each run pre-loads the same set of
pages to enclave memory. We report the mean of 10 runs;
standard deviation is below 5%. The baseline uses a clock
page eviction policy in the SGX driver, Autarky uses FIFO
eviction since page access bits are not available.

Overhead from SGX architecture changes. Our architec-
ture changes (§5.1) do not influence normal operation except
for: (i) on TLB fill, to validate that access/dirty bits are set,
and (ii) on AEX, EENTER and ERESUME to set, clear and check
the pending exception flag respectively.
TLB fill reads the entire PTE including access/dirty bits,

so the only overhead arises from the check itself, and de-
pends on the number of fills. To measure this, we run the
nbench [39] benchmark suite also used to evaluate the T-SGX
defense [58]. Its datasets fit in EPC (no paging).

Pessimistically assuming a 10-cycle overhead on each fill,
the geometric mean slowdown is 0.07% across all 10 bench-
mark applications. This analysis ignores the potential per-
formance benefit of eliding the accessed/dirty bit writeback.
By comparison, T-SGX reports a 1.5× mean slowdown.
Pending exception flag accesses are also cheap. Both

EENTER and ERESUME already read the TCS flags word, and
although AEX does not use the flags, it updates a field on the
same cache line [29]. Therefore, the only change in memory
access is a dirtied cache line that EENTER previously read.
Since AEX and ERESUME alreadymodify that line, the impact
is likely negligible.

To summarize, the overheads imposed by our architecture
changes are insignificant, and we disregard them in the rest

10

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Page fault Page evict

0

10

20

30

Pa
gi

ng
 la

te
nc

y
(×

10
00

 c
yc

le
s)

SGX2SGX1 SGX2SGX1

PF handler invoc. (EENTER+EEXIT)

Enclave preempt. (AEX+ERESUME)
Autarky PF handler overhead

SGX paging (inc. encrypt/decrypt)

Figure 5. Paging performance using SGXv1/v2 instructions

of this evaluation. In particular, we expect Autarky to add
no measurable overhead to page fault-free execution.

7.1 Microbenchmarks
We measure the latency of page fault (fetch) and eviction, av-
eraged over 100k iterations. We evaluate both SGXv1 (driver-
based) and SGXv2 (in-enclave) implementations of these
operations (§6). Since the Intel driver evicts batches of 16
pages to reduce overheads, we use the same batch size in
both versions, and normalize the latency to a single page.

Figure 5 shows the results. We break them down as page
fault preemption (AEX+ERESUME), enclave fault handler
(EENTER+EEXIT), Autarky runtime overheads, and aggregate
cost of SGX paging instructions including en/decryption.

Enclave preemption and fault handler invocation accounts
for 40–50% of the latency. However, the more intrusive ar-
chitecture optimization (§5.1) to elide the AEX entirely can
eliminate these costs. Such a change would make Autarky
secure paging faster than today’s unprotected paging.

Since SGXv1 paging instructions are more efficient for our
purposes, we use them in the rest of the evaluation.

7.2 Secure self-paging policies
ORAM. We use our cached ORAM described in §6 with
a 128MB ORAM page cache (the largest possible without
exceeding EPC). We mark this cache, ORAM data structures,
and code pages as enclave-managed to prevent leaks. We
configure PathORAM’s tree to cover a 1GB range, large
enough to obliviously fetch page contents to the cache. As
a workload we run uthash [22], a popular hash table with
chaining collision resolution, configured with up to 10 items
per bucket, filled with 431MB of data and 256-byte items.
We also compare ORAM with page clusters (next section),
whose security is strictly weaker. Figure 6 shows that cached
ORAM and clustering break even at 10 pages per cluster.

Uncached ORAM. Cached ORAM cannot be implemented
without Autarky, because an OS adversary would observe
EPC accesses. To compare with the cached version, we run
the same experiment without the ORAM cache in EPC, using
a linear scan to access ORAM structures.
The same 431MB input did not complete in 24 hours.

Instead, we performed the experiment using 100 random

1 101 102

Pages per cluster

102

103

104

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

Clusters
Clusters after rehashing
ORAM
ORAM uncached

Figure 6. Effect of cluster size on hash table performance

km
ea

ns
lin

reg

wco
unt

pc
a

sm
at

ch

mmult

bt
ra

ck

ca
nnea

l

sc
luste

r
sw

ap
de

du
p

bs
ch

ole
s
flu

id
x2

64

ge
om

ea
n

1.0

1.1

1.2

1.3

1.4

Sl
ow

do
w

n
w

.r.
t

ba
se

lin
e

0

10

20

30

40

Pa
ge

 fa
ul

t
ra

te
(×

10
00

 fa
ul

ts
/s

)

Slowdown
PF rate

Figure 7. Rate-limited paging for Phoenix and PARSEC

entries without changing either the hash table or the PathO-
RAM tree size. This is the best-case scenario, because con-
tention is unlikely. Nevertheless, Figure 6 shows a 232× slow-
down.

Page clusters. We evaluate automatic protection of large
hash tables. Here we analyze the security-vs-performance
tradeoff for application-agnostic mitigation by modifying
the libOS’s memory allocator. This tradeoff is different for
application-aware protection evaluated later (§7.3). We use
uthash with the same input as in the ORAM experiment.
Autarky partitions memory into fixed-sized clusters by

starting a new cluster when the current one is full. We vary
the cluster size. For uniformly random accesses, the probabil-
ity of an attacker guessing the accessed item given a cluster
size is item_size

cluster_size×paдe_size , or 0.62% for 10 pages.
The experiment is as follows. We populate the hash table,

measure random reads (loads are excluded), trigger rehash-
ing and bucket expansion, and measure performance again.
Since rehashing shortens the bucket chains, the number of
clusters fetched per lookup is reduced as the nodes in the
chain likely belong to different clusters.

Figure 6 shows the results. As expected, the cluster size is
inversely proportional to performance; after rehashing the
performance improves by about 1.5×. An unprotected base-
line is 1.9× faster than 1-page clusters (not shown), which
matches the microbenchmark performance.

Rate-limited paging. This demand-paging policy enforces
a limit on the overall fault rate. This is our least secure pol-
icy, yet it provides similar guarantees to Varys [46], which

11

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

enforces a limit on the rate of asynchronous enclave exits
(caused, in part, by page faults).

We run 14 out of 15 applications in the same Phoenix [52]
and PARSEC [7] benchmark suites used for Varys (vips does
not run in Graphene). To induce page faults, we reduce the
EPC space to about 100MB for better comparison with Varys,
and fine-tune the limit accordingly to prevent false positives.
We use larger inputs than Varys only for stringmatch, word-
count and blackscholes to induce demand paging. We cannot
compare results directly due to a different libOS and hard-
ware, but note that Oleksenko et al. [46] reported a 15%
overhead. Unlike Varys, Autarky does not require recompi-
lation.
Figure 7 shows that this paging policy introduces a 6%

slowdown on average. As expected, the page fault rate (right
Y-axis) correlates with the slowdown. Eliding AEXs via more
intrusive hardware changes would reduce overheads to 2%.

7.3 Protecting real applications
We evaluate Autarky using applications that were shown
to be vulnerable to controlled-channel attacks [76]. We use
these workloads to evaluate self-paging performance, both
by enlightening the applications to use page clusters, and
using automatic clustering in Graphene’s memory alloca-
tor. The published attacks make use of access patterns to
code and data pages. We show how Autarky can efficiently
mitigate these attacks in several usage scenarios. Finally,
we evaluate Memcached [42] with ORAM compared to an
insecure baseline, showing that end-to-end overheads are
acceptable.
We begin with three applications that were shown to be

vulnerable to the attack, demonstrating the simplicity and
the efficiency of Autarky. We report performance in Table 2,
showing the full execution time (Autarky) as measured, as
well as the potential improvement as a result of the proposed
optimization to elide AEX and upcalls.

Image processing with libjpeg. Libjpeg [24] is a library to
decode and encode JPEG images. The published attack fo-
cused on the inverse discrete cosine transform, which uses an
optimization to elide needless state updates, making the page
access pattern dependent on the image. The attack counts
the number of pages accessed (by inducing page faults) and
was shown to reconstruct the image being decoded.

Libjpeg streams over the input image to decode or en-
code it while operating on a temporary buffer. Therefore,
the working set size depends on the buffer’s size and not
the image’s, hence the intermediate state does not exceed
the EPC. Consequently, this attack can be automatically pro-
tected against using Autarky, simply by marking all pages
as enclave-managed. As the working set fits into EPC, the
runtime pins all the pages, and no information leaks.

Allowing OS paging for insensitive pages. Libjpeg is of-
ten used in the first/last stages of image processing pipelines,

where the image is first fully decoded. Therefore, the effec-
tive application memory footprint might exceed the EPC
size, rendering automatic protection unsuitable.

However, if the later pipeline stages access the image in a
data-independent way, e.g., when applying a filter, then its
buffer can be considered non-sensitive, allowing OS paging.
To differentiate between the protected temporary buffers in
libjpeg and unprotected buffers used by the application, we
modified libjpeg to call ay_add_page after each malloc.

We developed a simple test program that uses libjpeg to de-
code an image, inverse its colors and encode it again. We use
a large image (13632 × 10224) that exceeds EPC in decoded
form (398MB). Table 2 shows the end-to-end performance.
The main difference between the unprotected and protected
versions is that page faults in the latter are reported to the en-
clave, only to forward them to the OS. Autarky is 18% slower,
due to the extra enclave transitions. Eliding the upcall and
AEX overheads improves performance over the unprotected
version by 3%. Furthermore, we validate that Autarky does
not incur measurable overhead by running the same work-
load using a small 512 × 512 image that fits into EPC.

Spell checking server. Hunspell [23] is a spell checker
shown to be vulnerable to controlled-channel attacks. It
stores its dictionary in a hash table. The original attack [76]
logged page accesses when populating the hash table. When
a query arrived, the attack matched the page access se-
quences to reveal input words (assuming correct spelling).

Like libjpeg, Hunspell’s resident set can easily fit in EPC:
the total memory used by Graphene to execute Hunspell and
its libraries is 9.3MB. Dictionaries are small. For example,
the en_US dictionary in the original attack contains 49k
entries. Since a typical word is shorter than 10 characters,
the resident set fits easily in EPC. Therefore, Autarky can
automatically mitigate the attack by marking all pages as
enclave-managed, without any performance impact.

Using application-defined clusters. The EPC may be too
small for a spelling server that uses multiple dictionaries.
However, in this case the working set is much smaller than
the total memory used in the application. To mitigate the
attack, the pages of each dictionary can each be a separate
cluster. Thus, accesses within a dictionary are protected, but
the attacker may learn which dictionary is being accessed,
which is less sensitive than learning the words themselves.

We use Hunspell’s included sample program to simulate
such a use case, modifying it to assign the pages of initialized
dictionaries to distinct clusters. The server then reads an
input file and checks spelling for the requested language.
To measure the overall performance, we loaded 15 dic-

tionaries that together exceed EPC and trigger page faults.
Like the original attack [76], we spell check “The Wonderful
Wizard of Oz” (39,588 words). Our performance measure-
ments pessimistically include the time to load dictionaries
and initialize clusters; we load English first to ensure it will

12

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Table 2. End-to-end performance of applications using page clusters

Workload LOC (modified) Page faults Enclave- Unprotected Autarky
managed pages as measured no upcall no upcall/AEX

libjpeg 9c [24] 27,776 (2) 408,500 2,065 38.7MB/s 32.6MB/s (−18%) 36.3MB/s (−6%) 39.8MB/s (3%)
Hunspell 1.7.0 [23] 16,615 (30) 49,501 44,387 16 kwd/s 12.8 kwd/s (−25%) 13.8 kwd/s (−16%) 14.6 kwd/s (−9%)
Freetype 2.9.1 [18] 122,662 (0) 0 2,963 149 kop/s 149 kop/s (1×) 149 kop/s (1×) 149 kop/s (1×)

Uniform Zipf (0.99) Hotspot (0.9) Hotspot (0.99)

5000

10000

15000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s) Baseline Rate Limit 10-Page Cluster ORAM

Figure 8. Memcached with Autarky’s paging policies.

be evicted by the time of the spell check. Table 2 shows the
results. The overheads are dominated by page faults during
dictionary load. The spell check itself performs similarly to
the baseline, since its first fault brings in a single cluster that
contains all pages for that dictionary (US). Note, not all the
dictionary pages are used during the spell check, yet they
are all brought with the cluster, which is the main cost.

FreeType library. FreeType is a font rendering library. The
original attack leaked rendered text by observing control flow
via code fetches. Autarky automatically mitigates it with no
measurable overheads when rendering different characters
by pinning all code pages and libraries in EPC (Table 2).

Memcached. Memcached [42] is a popular key-value store
that was also used by much of the prior work on SGX [4, 38,
47, 48]. Memcached can easily oversubscribe EPC resulting in
paging and potential leakage of sensitive keys. To overcome
this we use our ORAM construction to obliviously access all
data. We evaluate Memcached v1.5.17 using YCSB [13] with
the predefinedworkload C as in priorwork [4, 38]. It performs
100% random GET operations for 1 KB entries. We co-locate
YCSB and Memcached on the same machine, pinning each
to separate CPUs, allowing us to avoid network overheads.
We configure Memcached to hold all data (no misses) with a
single serving thread due to thread-safety limitations of our
ORAM implementation. We load the server with 400MB of
data to trigger paging and report the maximum throughput.
Figure 8 compares the insecure baseline to Autarky with

the different supported paging policies: ORAM, rate-limited
paging and page clusters. To support page clusters, we mod-
ify Memcached’s slab allocation (30 LOC) such that all ac-
cesses to the items in the key-value store are managed by
clusters holding 10 pages. Similarly, we recompile Mem-
cached to use ORAM for all the items stored, with 1GB

PathORAM tree and 128MB software cache. Rate-limited
paging is supported without any change and we fine-tune
the limit to eliminate attacks being reported. We evaluate
four configurations: uniform access, Zipfian with α = 0.99
(hit rate about 90%) and hotspot. In hotspot, we define 1%
of the entries as a hot set with an access probability of 90%
or 99%. As expected, the rate-limited paging performance
impact is the lowest and is mainly due to the added overhead
of enclave transitions for each page fault. We observe a lower
constant overhead for 10-page clusters compared to ORAM
when requests are made with a uniform distribution. In such
cases, using clusters may be more favorable. However, for
more skewed distributions, the performance difference di-
minishes and using ORAM can be even faster. The intuition
is that clusters are less efficient in utilizing the cache since
they bring 10 pages, some of which may not be useful for
the other hot requests. Finally, for the hottest distribution,
ORAM is only 60% slower than the insecure baseline, which
may prove acceptable for some security-sensitive applica-
tions.

8 Related Work
Controlled-channel attacks and their implications were ex-
tensively studied [45, 59, 61, 66, 67, 72, 76]. One common
mitigation approach, on which we build, is to detect spurious
page faults, and terminate the enclave. However, this ap-
proach requires changing or recompiling enclave programs,
is prone to false positives, and restricts legitimate demand
paging. T-SGX and Déjà Vu rely on transactional memory
instructions [12, 58], and Varys modifies the program to add
a co-running thread for detecting enclave preemption [46].
Another proposal [63] introduces a minor change to SGX
to detect page faults. However, it appears unsuitable for
enclaves that would use demand paging or even whose map-
pings exceed TLB capacity as it requires pre-loading TLB
entries for all sensitive pages. To our knowledge, Autarky is
the only controlled channel defense that retains demand pag-
ing with minimal overheads and minor architecture changes.
Intel suggests that developers should hide enclave access

patterns [30]. To this end, prior work proposed obfuscating
page accesses [8, 19, 35, 59], or using oblivious RAM [1, 48,
51, 54]. Autarky also uses ORAM for secure paging. However,
since our architecture changes prevent leaking of access to
mapped EPC pages, it becomes possible to cache ORAM data
in EPC, reducing the overheads significantly.

13

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

Clean-slate enclave designs use private page tables to avoid
controlled channels. For example, Apparition [16] achieves
this through compiler instrumentation of an untrusted ker-
nel, while Sanctum and Keystone rely on hardware exten-
sions [15, 37]. Autarky is compatible with the existing SGX
design using a shared page table maintained by the untrusted
OS.
Other trusted execution environments exist that cannot

support legitimate paging without leaking page access pat-
terns. Notably, the recently-proposed AMD SEV-SNP [3, 33]
architecture secures guest VMs from a potentially malicious
hypervisor. Similarly to SGX’s EPCM structure, it uses a
“reverse map table” to check the correctness of nested page
table translations, and it therefore appears vulnerable to the
same controlled-channel attacks as SGX. We expect that the
overall approach proposed by Autarky will apply equally
well at the VM level, but defer the details to future work.

Komodo [17] supports enclaves on ARM processors using
TrustZone, but lacks support for paging. Autarky’s design for
enclave-private page faults and self-paging enclaves could be
applied to Komodo, ideally without weakening its security
guarantees.
While we prototype with Graphene-SGX [65], Autarky

could be coupled with various enclave runtimes, including
libOSes [4, 6, 50, 60] or other defenses [36, 57]. Vault [64]
extends EPC to all available physical memory, reducing de-
mand paging; Autarky would still help to secure it against
paging side channels.

Prior work showed that self-paging is useful both within
enclaves [47, 48] and outside them [21]. Cooperativememory
resource management across privilege domains was also
studied extensively [e.g., 47, 71]. Using similar approaches to
coordinate memory demands between the OS and multiple
distrusting enclaves is an open research topic.

9 Conclusion
Autarky is a hardware/software co-design to mitigate severe
architectural controlled-channel attacks on SGX enclaves
with minimal hardware changes. Autarky modifies SGX to
revoke control of paging from the OS and delegate it to a
secure self-paging runtime. Our results show that Autarky
mitigates attacks on real applications and secures demand
pagingwith low overhead.We hope that ourworkwill enable
practical controlled channel mitigation on future systems.

Acknowledgments
We thank the anonymous reviewers, Mark Shanahan, Mona
Vij, and our shepherd Neeraj Suri for valuable feedback. We
gratefully acknowledge the support of the Technion Hiroshi
Fujiwara Cybersecurity center.

References
[1] Shaizeen Aga and Satish Narayanasamy. InvisiPage: Oblivious de-

mand paging for secure enclaves. In 46th International Symposium on
Computer Architecture, ISCA ’19, pages 372–384, 2019. ISBN 978-1-
4503-6669-4. doi: 10.1145/3307650.3322265.

[2] ECS Bare Metal Instance. Alibaba Cloud, 2018. URL https://www.
alibabacloud.com/product/ebm. Accessed: 2019-08-08.

[3] AMD SEV-SNP: Strengthening VM isolation with integrity
protection and more. AMD, January 2020. URL https:
//www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark Stillwell, David Goltzsche, David M. Eyers, Rüdiger
Kapitza, Peter R. Pietzuch, and Christof Fetzer. SCONE: Secure Linux
containers with Intel SGX. In 12th USENIX Symposium on Operating
Systems Design and Implementation, pages 689–703, 2016.

[5] Andrew Baumann. Hardware is the new software. In 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, pages 132–137, 2017.
ISBN 978-1-4503-5068-6. doi: 10.1145/3102980.3103002.

[6] Andrew Baumann,Marcus Peinado, and GalenHunt. Shielding applica-
tions from an untrusted cloud with Haven. In 11th USENIX Symposium
on Operating Systems Design and Implementation, pages 267–283, Oc-
tober 2014. ISBN 978-1-931971-16-4. URL https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/baumann.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, pages 72–81, 2008.
ISBN 978-1-60558-282-5. doi: 10.1145/1454115.1454128.

[8] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi.
DR.SGX: Hardening SGX enclaves against cache attacks with data
location randomization. CoRR, abs/1709.09917, September 2017. URL
https://arxiv.org/abs/1709.09917.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17), 2017. URL https://www.usenix.org/
conference/woot17/workshop-program/presentation/brasser.

[10] Somnath Chakrabarti, Rebekah Leslie-Hurd, Mona Vij, Frank McK-
een, Carlos Rozas, Dror Caspi, Ilya Alexandrovich, and Ittai Anati.
Intel Software Guard Extensions (Intel SGX) Architecture for Oversub-
scription of Secure Memory in a Virtualized Environment. 2017. ISBN
9781450352666. doi: 10.1145/3092627.3092634.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H. Lai. SgxPectre attacks: Stealing Intel secrets from SGX
enclaves via speculative execution. CoRR, abs/1802.09085, June 2018.
URL https://arxiv.org/abs/1802.09085.

[12] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian
Zhang. Detecting privileged side-channel attacks in shielded execu-
tion with déjá vu. In 12th ACM Asia Conference on Computer and Com-
munications Security, pages 7–18, 2017. doi: 10.1145/3052973.3053007.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, pages
143–154, 2010. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152.

[14] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology
ePrint Archive, Report 2016/086, February 2017. http://eprint.iacr.org/
2016/086.

[15] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Mini-
mal hardware extensions for strong software isolation. In 25th USENIX
Security Symposium, pages 857–874, 2016.

14

https://doi.org/10.1145/3307650.3322265
https://www.alibabacloud.com/product/ebm
https://www.alibabacloud.com/product/ebm
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1145/3102980.3103002
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://doi.org/10.1145/1454115.1454128
https://arxiv.org/abs/1709.09917
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1145/3092627.3092634
https://arxiv.org/abs/1802.09085
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/1807128.1807152
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086

Autarky: Closing controlled channels with self-paging enclaves EuroSys ’20, April 27–30, 2020, Heraklion, Greece

[16] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sandhya
Dwarkadas. Shielding software from privileged side-channel attacks.
In 27th USENIX Security Symposium, pages 1441–1458, 2018.

[17] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In 26th ACM Symposium on Operating Sys-
tems Principles, pages 287–305, 2017. ISBN 978-1-4503-5085-3. doi:
10.1145/3132747.3132782.

[18] FreeType. The FreeType Project, 2019. URL http://www.freetype.org/.
[19] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. SGX-

LAPD: Thwarting controlled side channel attacks via enclave verifiable
page faults. In 20th International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 357–380. Springer, 2017.

[20] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. J. ACM, 43(3):431–473, 1996. doi:
10.1145/233551.233553.

[21] Steven M. Hand. Self-paging in the Nemesis operating system. In 3rd
USENIX Symposium on Operating Systems Design and Implementation,
pages 73–86, 1999. ISBN 1-880446-39-1. URL https://www.usenix.org/
events/osdi99/hand.html.

[22] Troy D. Hanson and Arthur O’Dwyer. uthash: Hash Table for C Struc-
tures, 2019. URL https://troydhanson.github.io/uthash/.

[23] Hunspell. Hunspell, 2019. URL http://hunspell.github.io/.
[24] libjpeg. Independent JPEG Group, 2019. URL http://libjpeg.sourceforge.

net/.
[25] Integrated Performance Primitives Cryptography. Intel, 2019. URL

https://github.com/intel/ipp-crypto.
[26] SGX Linux Driver. Intel, 2019. URL https://github.com/intel/linux-sgx-

driver.
[27] SGX SDK for Linux. Intel, 2019. URL https://github.com/intel/linux-sgx.
[28] SGX Tutorial at ISCA 2015. Intel Corp., June 2015. Ref. #332680-002

https://software.intel.com/sites/default/files/332680-002.pdf.
[29] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel

Corp., May 2019. Ref. #325462-070US.
[30] Simon Johnson. Intel SGX and side-channels. Intel Developer Zone,

February 2018. URL https://software.intel.com/en-us/articles/intel-
sgx-and-side-channels. Accessed: 2019-07-29.

[31] Simon Johnson. Scaling towards confidential computing. Intel, 2019.
URL https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-
simon.pdf. Keynote presentation at SysTEX 2019.

[32] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.
Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. Application perfor-
mance and flexibility on exokernel systems. In 16th ACM Symposium
on Operating Systems Principles, pages 52–65, 1997. ISBN 0-89791-916-5.
doi: 10.1145/268998.266644.

[33] David Kaplan, Jeremy Powell, and Tom Woller. Amd
memory encryption. White paper, April 2016. URL
https://developer.amd.com/wordpress/media/2013/12/AMD_
Memory_Encryption_Whitepaper_v7-Public.pdf.

[34] Pratheek Karnati. Data-in-use protection on IBM Cloud using Intel
SGX. IBM, May 2018. URL https://www.ibm.com/cloud/blog/data-use-
protection-ibm-cloud-using-intel-sgx.

[35] Deokjin Kim, Daehee Jang, Minjoon Park, Yunjong Jeong, Jonghwan
Kim, Seokjin Choi, and Brent Byunghoon Kang. SGX-LEGO: Fine-
grained SGX controlled-channel attack and its countermeasure. Com-
puters & Security, 82:118–139, 2019.

[36] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. SGXBOUNDS:
memory safety for shielded execution. In EuroSys Conference, pages
205–221, 2017. doi: 10.1145/3064176.3064192.

[37] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and
Krste Asanović. Keystone: A framework for architecting TEEs. CoRR,
abs/1907.10119, July 2019. URL https://arxiv.org/abs/1907.10119.

[38] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch.
Glamdring: Automatic application partitioning for Intel SGX. In 2017
USENIX Annual Technical Conference, pages 285–298, Santa Clara,
CA, 2017. ISBN 978-1-931971-38-6. URL https://www.usenix.org/
conference/atc17/technical-sessions/presentation/lind.

[39] Uwe F. Mayer. BYTE magazine native mode benchmarks. URL https:
//www.math.utah.edu/~mayer/linux/bmark.html. Accessed: 2019-11-
02.

[40] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. In-
novative instructions and software model for isolated execution. In
2nd International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

[41] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon
Johnson, Rebekah Leslie-Hurd, and Carlos V. Rozas. Intel SGX support
for dynamic memory management inside an enclave. In 5th Interna-
tional Workshop on Hardware and Architectural Support for Security
and Privacy, pages 10:1–10:9, 2016.

[42] Memcached. Memcached, 2019. URL http://memcached.org/.
[43] Open Enclave SDK. Microsoft. URL https://openenclave.io/. Accessed:

2019-08-16.
[44] AhmadMoghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:

How SGX amplifies the power of cache attacks. In International Confer-
ence on Cryptographic Hardware and Embedded Systems, pages 69–90.
Springer International Publishing, 2017.

[45] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and
Berk Sunar. CopyCat: Controlled instruction-level attacks on enclaves
for maximal key extraction. CoRR, abs/2002.08437, February 2020. URL
https://arxiv.org/abs/2002.08437.

[46] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. Varys: Protecting SGX enclaves from practical
side-channel attacks. In 2018 USENIX Annual Technical Conference,
pages 227–240, 2018.

[47] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
Eleos: Exitless OS services for SGX enclaves. In EuroSys Conference,
pages 238–253, 2017.

[48] Meni Orenbach, YanMichalevsky, Christof Fetzer, andMark Silberstein.
CoSMIX: A compiler-based system for securememory instrumentation
and execution in enclaves. In 2019 USENIXAnnual Technical Conference,
pages 555–570, July 2019. ISBN 978-1-939133-03-8.

[49] Nelly Porter, Jason Garms, and Sergey Simakov. Introducing Asylo:
an open-source framework for confidential computing, May 2018.
URL https://cloud.google.com/blog/products/gcp/introducing-asylo-
an-open-source-framework-for-confidential-computing. Accessed:
2019-07-30.

[50] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A. Sartakov, and Peter Pietzuch. SGX-LKL: Securing
the host OS interface for trusted execution. CoRR, abs/1908.11143,
August 2019. URL https://arxiv.org/abs/1908.11143.

[51] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX Security
Symposium, pages 431–446, August 2015. ISBN 978-1-931971-232.
URL https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/rane.

[52] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. Evaluating MapReduce for multi-core and
multiprocessor systems. In 13th IEEE International Symposium on
High-Performance Computer Architecture, pages 13–24, 2007. ISBN
1-4244-0804-0. doi: 10.1109/HPCA.2007.346181.

[53] Mark Russinovich. Introducing Azure confidential computing, Septem-
ber 2017. URL https://azure.microsoft.com/blog/introducing-azure-
confidential-computing/. Accessed: 2019-07-30.

15

https://doi.org/10.1145/3132747.3132782
http://www.freetype.org/
https://doi.org/10.1145/233551.233553
https://www.usenix.org/events/osdi99/hand.html
https://www.usenix.org/events/osdi99/hand.html
https://troydhanson.github.io/uthash/
http://hunspell.github.io/
http://libjpeg.sourceforge.net/
http://libjpeg.sourceforge.net/
https://github.com/intel/ipp-crypto
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf
https://doi.org/10.1145/268998.266644
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://doi.org/10.1145/3064176.3064192
https://arxiv.org/abs/1907.10119
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html
http://memcached.org/
https://openenclave.io/
https://arxiv.org/abs/2002.08437
https://cloud.google.com/blog/products/gcp/introducing-asylo-an-open-source-framework-for-confidential-computing
https://cloud.google.com/blog/products/gcp/introducing-asylo-an-open-source-framework-for-confidential-computing
https://arxiv.org/abs/1908.11143
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://doi.org/10.1109/HPCA.2007.346181
https://azure.microsoft.com/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/blog/introducing-azure-confidential-computing/

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Meni Orenbach, Andrew Baumann, and Mark Silberstein

[54] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. ZeroTrace:
Oblivious memory primitives from Intel SGX. In 25th Annual Network
and Distributed System Security Symposium (NDSS), 2018.

[55] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 3–24. Springer In-
ternational Publishing, 2017.

[56] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. CoRR, abs/1905.05726, May 2019.
URL https://arxiv.org/abs/1905.05726.

[57] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. SGX-Shield: Enabling
address space layout randomization for SGX programs. In 24th
Annual Network and Distributed System Security Symposium (NDSS),
2017. URL https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/sgx-shield-enabling-address-space-layout-
randomization-sgx-programs/.

[58] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX:
eradicating controlled-channel attacks against enclave programs. In
24th Annual Network and Distributed System Security Symposium
(NDSS), 2017. URL https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/t-sgx-eradicating-controlled-channel-attacks-
against-enclave-programs/.

[59] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek
Saxena. Preventing page faults from telling your secrets. In 11th ACM
Asia Conference on Computer and Communications Security, pages
317–328, 2016. doi: 10.1145/2897845.2897885.

[60] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply:
Low-TCB Linux applications with SGX enclaves. In 24th Annual
Network and Distributed System Security Symposium (NDSS), February
2017.

[61] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher W. Fletcher. MicroScope: Enabling
microarchitectural replay attacks. In 46th International Symposium
on Computer Architecture, ISCA ’19, pages 318–331, 2019. ISBN 978-1-
4503-6669-4. doi: 10.1145/3307650.3322228.

[62] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely
simple oblivious RAM protocol. In 20th ACM Conference on Computer
and Communications Security, pages 299–310, 2013. ISBN 978-1-4503-
2477-9. doi: 10.1145/2508859.2516660.

[63] Raoul Strackx and Frank Piessens. The Heisenberg defense: Proactively
defending SGX enclaves against page-table-based side-channel attacks.
CoRR, abs/1712.08519, December 2017. URL http://arxiv.org/abs/1712.
08519.

[64] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. VAULT:
Reducing paging overheads in SGX with efficient integrity verification
structures. In 23th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 665–678,
2018. ISBN 978-1-4503-4911-6. doi: 10.1145/3173162.3177155.

[65] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017
USENIX Annual Technical Conference, pages 645–658, 2017. ISBN 978-1-
931971-38-6. URL https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tsai.

[66] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A prac-
tical attack framework for precise enclave execution control. In 2nd
Workshop on System Software for Trusted Execution, SysTEX’17, pages
4:1–4:6, 2017. ISBN 978-1-4503-5097-6. doi: 10.1145/3152701.3152706.

[67] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution. In 26th USENIX Security
Symposium, pages 1041–1056, 2017.

[68] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Breaking virtual memory protection and the SGX
ecosystem with Foreshadow. IEEE Micro, 39(3):66–74, May 2019. ISSN
0272-1732. doi: 10.1109/MM.2019.2910104.

[69] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Ma-
rina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: Hijacking transient execution through
microarchitectural load value injection. In 41th IEEE Symposium
on Security and Privacy (S&P’20), pages 1399–1417, May 2020. doi:
10.1109/SP40000.2020.00089.

[70] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In IEEE Symposium on Security and
Privacy, May 2019.

[71] Carl A. Waldspurger. Memory resource management in VMware ESX
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002. ISSN
0163-5980. doi: 10.1145/844128.844146.

[72] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel haz-
ards in SGX. In 24th ACM Conference on Computer and Communica-
tions Security, pages 2421–2434, 2017. ISBN 978-1-4503-4946-8. doi:
10.1145/3133956.3134038.

[73] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness
of the Goldreich-Ostrovsky lower bound. In 22nd ACM Conference on
Computer and Communications Security, pages 850–861, 2015. ISBN
978-1-4503-3832-5. doi: 10.1145/2810103.2813634.

[74] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza.
AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves.
In European Symposium on Research in Computer Security (ESORICS),
pages 440–457. Springer International Publishing, 2016.

[75] Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles
with HotCalls: A fast interface for SGX secure enclaves. In 44th Inter-
national Symposium on Computer Architecture, ISCA ’17, pages 81–93,
2017. ISBN 978-1-4503-4892-8. doi: 10.1145/3079856.3080208.

[76] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side-channels for untrusted operating
systems. In IEEE Symposium on Security and Privacy, May 2015. doi:
10.1109/SP.2015.45.

[77] Weiming Zhao and Zhenlin Wang. Dynamic memory balancing for
virtual machines. In 5th International Conference on Virtual Execu-
tion Environments, pages 21–30, 2009. ISBN 9781605583754. doi:
10.1145/1508293.1508297.

[78] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and
encrypted distributed analytics platform. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation, pages 283–
298, 2017. URL https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/zheng.

16

https://arxiv.org/abs/1905.05726
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/sgx-shield-enabling-address-space-layout-randomization-sgx-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/sgx-shield-enabling-address-space-layout-randomization-sgx-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/sgx-shield-enabling-address-space-layout-randomization-sgx-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/2508859.2516660
http://arxiv.org/abs/1712.08519
http://arxiv.org/abs/1712.08519
https://doi.org/10.1145/3173162.3177155
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1109/MM.2019.2910104
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/3079856.3080208
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/1508293.1508297
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Controlled-channel attacks
	2.3 ORAM

	3 Threat Model and Out-of-scope Attacks
	4 Design Considerations
	5 Design
	5.1 SGX architecture modifications
	5.2 Software design
	5.3 Security analysis
	5.4 Discussion: VM support

	6 Implementation
	7 Evaluation
	7.1 Microbenchmarks
	7.2 Secure self-paging policies
	7.3 Protecting real applications

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

