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e ‘“cryptographically verified” - proof in code?
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Our Contributions

Make it easier to do: Possible applications:

e modular composed proofs e TLS

e key composition e Messaging

e hybrid arguments e Multi-Instance

e (partially) machine-checkable proofs e | other proof assistants



Related Work

Universal Composability ([C01])
Abstract- and Constructive Crypto ([MR11],[M11])

“The Joy of Cryptography” (Rosulek)
EasyCrypt ([BGHB11])
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Packages - Security Games

IND-CPA2

GEN
ENC

e a package contains oracle
descriptions and their state

e it provides these oracles for
other algorithms to use

e packages are composable.
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Packages - Reductions

GEN GEN

Packages ...

e contain oracle descriptions and state,
e can oracles to other packages,

e and can oracles provided by other packages.



Example |

Reducing IND-CPA. to PRF¢
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Proof Goal:
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Assumption:

Concrete Security

Relate €1(-) to ex(-) in two steps:

1. Simulation correctness

2. Applying assumptions
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To prove: Perfect Indistinguishability
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Step 2: Applying Assumptions
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Step 2: Applying Assumptions
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General Proof Pattern

IND-CPAY | = — Some notes:
e graphs have precise meaning
WermB)
e an inline notation exists
p-cpal| = (R) — A
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Example Il

Key Composition
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Keying Assumption
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Assumptions

Keying Assumption

~

Keyed Assumption
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Applying the Assumptions
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Applying the Assumptions
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Applying the Assumptions

-ASN = €2 (@J RKeylng + €3 (@J RKeyed
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Observations & Conclusions

e extension of BR-style “game-hopping”
e packaging of code and state.

e useful for composed protocols (TLS)

e enables key composition (Messaging)

e less useful for ...

e implications (AE = IND-CCA)
e smaller proofs
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Work in Progress

e TLS 1.3 Key Schedule (for miTLS)
e Multi-Party Computation (Yao's Garbled Circuits)

e Protocol Design (Secret Handshake 2)
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