State Separation for Code-Based Game-Playing Proofs

Chris Brzuska, Antoine Délignat-Lavaud, Cédric Fournet,
Konrad Kohbrok, Markulf Kohlweiss

December 6, 2018
Aalto University

Microsoft Research Cambridge
University of Edinburgh

...in the beginning there was miTLS.

...in the beginning there was miTLS.

e implementation of TLS in F*
e various nice guarantees:

e constant-time code
e memory safe
e functionally correct

...in the beginning there was miTLS.

e implementation of TLS in F*
e various nice guarantees:

e constant-time code
e memory safe
e functionally correct

e ‘“cryptographically verified” - proof in code?

How are they doing that?

Our Contributions

Make it easier to do: Possible applications:

Our Contributions

Make it easier to do: Possible applications:

e modular composed proofs o TLS

Our Contributions

Make it easier to do: Possible applications:
e modular composed proofs e TLS
e key composition e Messaging

Our Contributions

Make it easier to do: Possible applications:
e modular composed proofs e TLS
e key composition e Messaging
e hybrid arguments e Multi-Instance

Our Contributions

Make it easier to do: Possible applications:

e modular composed proofs e TLS

e key composition e Messaging

e hybrid arguments e Multi-Instance

e (partially) machine-checkable proofs e | other proof assistants

Related Work

Universal Composability ([C01])
Abstract- and Constructive Crypto ([MR11],[M11])

“The Joy of Cryptography” (Rosulek)
EasyCrypt ([BGHB11])

Packages - Security Games

IND-CPA2
GEN()
assert k = |

k <+ e.KGen(1")

return ()

ENC(m)

assert k # L
if b =0 then

¢ < e.Enc(k, m)
else
¢ + e.Enc(k,0l™)

return c 5

Packages - Security Games

IND-CPA2
GEN()
assert k = |

k <+ e.KGen(1")

return ()

ENC(m)

assert k # L
if b =0 then

¢ < e.Enc(k, m)
else
¢ + e.Enc(k,0l™)

return c 5
(. J

Packages - Security Games

()

IND-CPA2

GEN()

assert k = L
k < e.KGen(1") e a package contains oracle
return () descriptions and their state

ENC(m)

assert k # L
if b =0 then

¢ < e.Enc(k, m)
else
¢ + e.Enc(k,0l™)

return c 5
(. J

Packages - Security Games

()

IND-CPA2

GEN
ENC | GEN()

B ————
assert k = |

k < e.KGen(1") e a package contains oracle
return () descriptions and their state

e it provides these oracles for
ENC(m) 0
assert k # L
if b =0 then
¢ < e.Enc(k, m)

other algorithms to use

else
¢ + e.Enc(k,0l™)

return c 5
(. J

Packages - Security Games

IND-CPA2

GEN
ENC

e a package contains oracle
descriptions and their state

e it provides these oracles for
other algorithms to use

e packages are composable.

Packages - Reductions

4 R 1\ fPRF? N\
GEN() GEN()
)
GEN GEN()
ENC EVAL(x)
——— ENC(m) - EVAL(X)
A1wp-cea -
y « EVAL(x)
~—

Packages - Reductions

'd R)\ fPRF? N\
GEN() GEN()
GEN GEN()
ENC EVAL(x)
_— ENC(m) - EVAL(X)

-AIND—CPA

y « EVAL(x)

Packages - Reductions

(R 1\ fPRF? A
GEN() GEN()
GEN GEN()
ENC EVAL(x)
Amp-cpa —— ENC(m) "| EVAL(x)

y « EVAL(x)

Packages - Reductions

4 R 1\ (PRF? N\
(‘ GEN() GEN()
GEN GEN()
ENC EVAL(x)
Arnp-cpa = ENC(m) > EVAL(X)
y « EVAL(x)
~—

Packages - Reductions

Vs

N

b
R PRF2

N

GEN GEN()
ENC

EVAL(x)
Ar1np-cea =

Packages - Reductions

Packages - Reductions
GEN
ENC

GEN
A R PRF?

Packages - Reductions
GEN GEN
A R PRF?

Packages - Reductions

GEN GEN

Packages ...

e contain oracle descriptions and state,
e can oracles to other packages,

e and can oracles provided by other packages.

Example |

Reducing IND-CPA. to PRF¢

Proof Goal:
0 €1 (AIND-CPA) 1
IND-CPAY ~ IND-CPAL

Proof Goal:
0 €1 (AIND-CPA) 1
IND-CPAY ~ IND-CPAL
A

Assumption:

Proof Goal:
0) € (Axwp-cpa) 1
IND-CPA, =~ IND-CPA,
A

Assumption:

Concrete Security

Relate €1(-) to ex(-) in two steps:

1. Simulation correctness

2. Applying assumptions

Step 1: Simulation Correctness

®-)

Step 1: Simulation Correctness

To prove: Perfect Indistinguishability

m@- (7
-

Step 2: Applying Assumptions

D-cPA? | = (R) —
0 62(APRF) 1

an

10

Step 2: Applying Assumptions

1ND-cPA? | = (R) — PRFY
paFY) “X (prF?
e () ») f

IND-CPAL| = (R) — Apss

10

General Proof Pattern

IND-CPAY | = — Some notes:
e graphs have precise meaning
WermB)
e an inline notation exists
p-cpal| = (R) — A

11

Example Il

Key Composition

Proof Goal:
0 fl(ASN) 1 o .
= , where SN (security notion) could be PKE-CCA

12

Proof Goal:
o) €1(Asn) 1 . .
= , where SN (security notion) could be PKE-CCA

Common Pattern

® = & ?
L]

where Keying could be KEM-CCA and Keyed could be DEM-CCA.

12

Proof Goal:
e1(Asw)

SN)| & , where SN (security notion) could be PKE-CCA
Common Pattern
Keylngkmg GEN/SET
where Keying could be KEM-CCA and Keyed could be DEM-CCA.

12

Keying Assumption

13

Assumptions

Keying Assumption

~

13

Assumptions

Keying Assumption

~

13

Assumptions

Keying Assumption

~

Keyed Assumption

13

Applying the Assumptions

61(ASN) —

14

Applying the Assumptions

RKeying

61(ASN) —

14

Applying the Assumptions

61(-ASN) = 62((@ — RKeying)

14

Applying the Assumptions

-ASN = €2 (@J RKeylng

14

Applying the Assumptions

61(-ASN) = 62((@ — RKeying)

14

Applying the Assumptions

61(-ASN) = 62((@ — RKeying) + 63([@ — RKeyed)

14

Applying the Assumptions

-ASN = €2 (@J RKeylng + €3 (@J RKeyed

14

Observations & Conclusions

e extension of BR-style “game-hopping” . -
R -PRF,r

e packaging of code and state.

15

Observations & Conclusions

e extension of BR-style “game-hopping” . -
R -PRF,r

e packaging of code and state.

e useful for composed protocols (TLS)

15

Observations & Conclusions

e extension of BR-style “game-hopping” . -
R -PRF,r

e packaging of code and state.
e useful for composed protocols (TLS)

e enables key composition (Messaging)

15

Observations & Conclusions

e extension of BR-style “game-hopping”
e packaging of code and state.

e useful for composed protocols (TLS)

e enables key composition (Messaging)

e less useful for ...

e implications (AE = IND-CCA)
e smaller proofs

15

Work in Progress

e TLS 1.3 Key Schedule (for miTLS)
e Multi-Party Computation (Yao's Garbled Circuits)

e Protocol Design (Secret Handshake 2)

16

