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Abstract
The security analysis of real-world protocols involves reduction steps that are con-

ceptually simple but still have to account for many protocol complications found in
standards and implementations. Taking inspiration from universal composability, ab-
stract cryptography, process algebras, and type-based verification frameworks, we pro-
pose a method to simplify large reductions, avoid mistakes in carrying them out, and
obtain concise security statements.

Our method decomposes monolithic games into collections of stateful packages rep-
resenting collections of oracles that call one another using well-defined interfaces. Every
component scheme yields a pair of a real and an ideal package. In security proofs, we
then successively replace each real package with its ideal counterpart, treating the other
packages as the reduction. We build this reduction by applying a number of algebraic
operations on packages justified by their state separation. Our method handles reduc-
tions that emulate the game perfectly, and leaves more complex arguments to existing
game-based proof techniques such as the code-based analysis suggested by Bellare and
Rogaway. It also facilitates computer-aided proofs, inasmuch as the perfect reductions
steps can be automatically discharged by proof assistants.

We illustrate our method on two generic composition proofs: (1) a proof of self-
composition using a hybrid argument; and (2) the composition of keying and keyed
components. For concreteness, we apply them to the KEM-DEM proof of hybrid-
encryption by Cramer and Shoup and to the composition of forward-secure game-based
key exchange protocols with symmetric-key protocols.

1 Introduction
Code-based game-playing by Bellare and Rogaway [BR06] introduces pseudo-code as a
precise tool for cryptographic reasoning. Following in their footsteps, we would like to
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reason about games using code, rather than interactive Turing machines [vLW01]. Our code
uses state variables and function calls, doing away with the details of operating on local
tapes and shared tapes. Function calls enable straightforward code composition, defined
for instance by inlining, and enjoy standard but useful properties, such as associativity. In
the following, we refer to code units A, R and G as code packages. If adversary A calls
reduction R and R calls game G, we may see it either as code A-calling-R that calls code G, or
as code A calling code R-calling-G. This form of associativity is used to define reductions,
e.g., in abstract cryptography and in Rosulek’s book The Joy of Cryptography [Ros18].

As a first example, consider indistinguishability under chosen plaintext attacks, coded
as a game IND-CPAb with secret bit b, and let A be an adversary that interacts with this
game by calling its encryption oracle, which we write A ◦ IND-CPAb. As a construction,
consider a symmetric encryption scheme based on a pseudorandom function (PRF). We
can decompose IND-CPAb into some corresponding wrapper MOD-CPA that calls PRFb, where
b now controls idealization of the PRF. The equality IND-CPAb = MOD-CPA ◦ PRFb can be
checked syntactically (and can be automatically discharged by proof assistants). IND-CPA
security follows from PRF security using MOD-CPA as reduction:

A◦(MOD-CPA) ◦ PRFb
code≡ (A◦ MOD-CPA) ◦ PRFb.

Appendix A presents this example in more detail, including a discussion of our definitional
choices. In particular, we encode all games as decisional games between a real game and
an ideal game, following the tradition of [Can01], [Mau11] and [Bla08].

KEM-DEM.

Our second example, the composition of a key encapsulation mechanism (KEM) with a
one-time deterministic encryption scheme (DEM), involves associativity and interchange,
another form of code rearrangement (defined in Section 2). Cramer and Shoup [CS03] show
that the composition of a KEM and a DEM that are both indistinguishable under chosen
ciphertext attacks (IND-CCA) results in an IND-CCA public-key encryption scheme. We
give a new formulation of their proof. While Cramer and Shoup consider standard IND-
CCA security, we additionally require ciphertexts to be indistinguishable from random ($-
IND-CCA-security, defined in Section 4). As sampling random strings is a key-independent
operation, this makes the ideal game behaviour closer to an ideal functionality.

We first reduce to the security of the KEM, replacing the encapsulated KEM key with
a uniformly random key, then we reduce to the security of the DEM, which requires such
a key. To facilitate these two reductions and analogously to the previous example, we
decompose the PKE-CCA game for public-key encryption into a wrapper MOD-CCA that calls
the games for KEM and DEM security. That is, we use a parallel composition of the KEM
and the DEM game. As the KEM and the DEM share the encapsulated KEM key, we
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Figure 1: Decomposed KEM and DEM games

need to enable state-sharing between both games. We achieve this by also decomposing the
KEM and DEM security games into two packages such that they both contain a so-called
KEY package that stores the shared key.

The KEM Game. Fig. 1a depicts the decomposed $-IND-CCA KEM game using a KEY
package (also see page 14, Def. 16). The formal semantics of the graph-based notation of
package composition is introduced in Section 2.2.

The $-IND-CCA KEM game allows the adversary to make a KEMGEN query to initialize
the game as well as encapsulation queries ENCAP and decapsulation queries DECAP. Upon
receiving an encapsulation query ENCAP, the KEM package makes a SET(k) query to KEY
to store the real encapsulation key k, if the bit b is 0. In turn, if the bit b is 1, the KEM
package makes a GEN query to the KEY package that samples a key uniformly at random.

In standard formulations of KEM security, the adversary not only receives an encapsu-
lation, but also the encapsulated key (or a random key, if b = 1) as an answer to ENCAP. In
our decomposed equivalent formulation, the adversary can access the encapsulated key (or
a random key, if b = 1) via a GET query to the KEY package (also see page 18, Definition 21
for the $-IND-CCA KEM game).

The DEM Game. Fig. 1b depicts the decomposed $-IND-CCA DEM game that also
contains a KEY package. Here, the adversary can ask a GEN query to the KEY package which
induces the KEY package to sample a uniformly random key that the DEM package obtains
via a GET query to the KEY package. Note that in the DEM game, the adversary only has
access to the GEN oracle of the KEY package, but neither to SET nor to GET. Moreover, in
the DEM game, the adversary can make encryption and decryption queries (see page 18,
Definition 22 for the definition of $-IND-CCA security for DEMs).

KEM-DEM security. Recall that we prove that the KEM-DEM construction is a $-
IND-CCA secure public-key encryption scheme. Using the packages KEM, DEM and KEY, we
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now write the $-IND-CCA security game for public-key encryption in a modular way, see
Figure 2. In Appendix D, we prove via inlining, that the modular game in Figure 2a, is
equivalent to the monolithic $-IND-CCA game for public-key encryption with secret bit 0
and that the modular game in Figure 2e, is equivalent to the monolithic $-IND-CCA game
for public-key encryption with secret bit 1.

Thus, we first idealize the KEM package and then idealize the DEM package. Techni-
cally, this works as follows. Starting from the composition in Fig. 2a, we lengthen the edges
of the graph such that the KEM0 and KEY packages are on the right side of a vertical line
(see Fig. 2b). Analogously to the first example, we use associativity (and additional rules,
explained shortly) to reduce to the security of KEM by noticing that the packages on the
left side of the vertical line call the packages on the right side of the vertical line, where
the latter correspond to the KEM security game.

Reasoning on the graph corresponds to reasoning on compositions of packages, defined
via the sequential operator ◦ and the parallel composition operator, see Section 2. The
lengthening of edges corresponds to inserting forwarding packages, denoted identity ID.
The aforementioned interchange rule then allows to formally interpret the vertical line in
the graph as a sequential composition of the packages on the left side of the line with the
packages on the right side. For a graphical depiction of the identity rule and the interchange
rule, see Section 2.2.

After applying the KEM assumption (which modifies KEM0 to KEM1), we contract the
graph which, again, corresponds to applying the interchange rule and then removing IDs, see
Fig. 2c. Via the analogous mechanism, we stretch the graph edges such that the DEM0 and
KEY appear on the right side of a vertical line, see Fig. 2d. We apply the DEM assumption
and then contract the graph to obtain Fig. 2e, as desired.

Contents.

§2 Proof methodology. In this section, we set up the underlying code framework and define
sequential and parallel composition. We specify rules to operate on package compositions
such as the aforementioned associativity, interchange and identity rules. Those rules enable
the graphical interpretation as a call graph which we explain in Section 2.2.
§3 KEY package composition. We introduce keying games (such as the KEM game) and
keyed games (such as the DEM game) which both contain a KEY package, introduced in this
section. In a single key lemma we prove indistinguishability properties of composed keyed
and keying packages. A core argument in the proof of the lemma is that the idealization
of the keying game leads to only calling the GEN oracle. As keyed games rely on uniformly
random keys, we model their security formally by inserting an identity package IDGEN that
only forwards the GEN oracle. Based on Section 2.2, we maintain a coherent mapping to
the graphical notation in which accessible oracles are simply labels on edges.
§4 KEM-DEM. We provide the details of the KEM-DEM construction and proof discussed

4



MOD
CCA

KEM0

DEM0

KEY

PKGEN
PKENC
PKDEC

KEMGEN
ENCAP
DECAP

ENC
DEC

SET

GET

(a) KEM and DEM are both real.

MOD
CCA

KEMb

DEM0

KEY

PKGEN
PKENC
PKDEC

KEMGEN
ENCAP
DECAP

ENC
DEC

GEN
SET

GET

(b) Reduction to KEM

MOD
CCA

KEM1

DEM0

KEY

PKGEN
PKENC
PKDEC

KEMGEN
ENCAP
DECAP

ENC
DEC

GEN

GET

(c) KEM is ideal and DEM is real.

MOD
CCA

KEM1

DEMb

KEY

PKGEN
PKENC
PKDEC

KEMGEN
ENCAP
DECAP

ENC
DEC

GEN

GET

(d) Reduction to DEM.

MOD
CCA

KEM1

DEM1

KEY

PKGEN
PKENC
PKDEC

KEMGEN
ENCAP
DECAP

ENC
DEC

GEN

GET

(e) KEM and DEM are both ideal.

Figure 2: KEM-DEM Proof.

earlier. In particular, the security reduction is a straightforward application of the single
key lemma.
§5 Multi-Instance Packages and Composition. In this section, we generalize to the multi-
instance setting and carry out a multi-instance-to-single-instance composition proof. We
then build on the multi-instance lemma to obtain multi-instance version of the single key
lemma.

Avoiding multi-to-single instance reductions is one of the motivations of composition
frameworks (see below). Hence, we see it as a sanity check that our proof methodology
captures multi-to-single instance reductions. Note that also in the game-based setting,
general multi-instance to single-instance reductions for classes of games have been provided
before (see, e.g., Bellare, Boldyreva and Micali [BBM00]).
§6 Composition of forward-secure key exchange. To showcase our key-composition tech-
niques in the multi-instance setting, we re-prove a composition theorem for forward-secure
game-based key exchange and arbitrary symmetric-key based protocols such as secure chan-
nels. This result was proven in Brzuska, Fischlin, Warinschi, and Williams [BFWW11,
Brz13] and becomes a straightforward application of the multiple keys lemma. Our re-
sults are closely related to composition results very recently shown in the framework of
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CryptoVerif [Bla18].

Limitations and Challenges.

Our method considers distinguishing games for single-stage adversaries [RSS11], that is,
we do not consider games where the adversary is split into separate algorithms whose
communications are restricted. Although suitable extensions might exist (e.g., by extending
adversaries into packages that can call each other), we chose to restrict our current method
to the simpler single-stage setting.

Another apparent restriction is that we encode all security properties via indistinguisha-
bility. Search problems such as strong unforgeability can also be encoded via indistinguisha-
bility. While the encoding might seem surprising when not used to it, at a second thought,
an appropriate encoding of an unforgeability game also simplifies game-hopping: Imagine
that we insert an abort condition whenever a message is accepted by verification that was
not signed by the signer. This step corresponds to idealizing the verification of the signature
scheme so that it only accepts messages that were actually signed before.1

A challenge that all cryptographic works on real-world protocols face is to decompose
a protocol that does not inherently have a modular structure into cryptographic building
blocks. As demonstrated by [KPW13, KMO+15, BFK+14] this can be done even for archaic
protocols such as TLS. Our method is influenced by the insights of the miTLS project to
allow for the necessary flexibility.

Related Techniques.

Our approach is inspired by important conceptual works from cryptography and program-
ming language. In particular, we would like to acknowledge the influences of Canetti’s
universal composability framework (UC) [Can01], Renner’s and Maurer’s work on random
systems and abstract cryptography [Mau02, MR11], process algebras, such as the π-calculus
of Milner, Parrow, and Walker [MPW92], and type-based verification frameworks used, e.g.,
to verify the TLS protocol [BFK+13]. We now discuss these influences in detail.

Cryptographic Proof Frameworks. Composable proofs in the pen-and-paper world
as pioneered by Backes, Pfitzmann, Waidner and by Canetti have a long history full of rich
ideas [BPW04, Can01, KT13, MQU07, HS11, MT13, HS15, Wik16], such as considering
an environment that cannot distinguish a real protocol from an ideal variant with strong
security guarantees.

Likewise, Maurer’s and Renner’s work on random systems, abstract cryptography and
constructive cryptography [Mau02, Mau10, MR11, Mau11] inspired and encouraged our
view that a more abstract and algebraic approach to cryptographic proofs is possible and

1CryptoVerif [Bla08] also encodes authentication properties as indistinguishability.

6



desirable. Several of our concepts have close constructive cryptography analogues: for in-
stance, our use of associativity in this paper is similar to composition-order independence
in Maurer’s frameworks [Mau11]. Sequential and parallel composition also appears in cryp-
tographic algebras. An ambitious expression of the idea is found in [MR11, Section 6.2].
Abstract cryptography has an associativity law and neutral element for sequential composi-
tion and an interchange law for parallel composition. The same line of work [MR11, Mau11]
introduces a distinguishing advantage between composed systems and makes use of trans-
formations that move part of the system being considered into and out of the distinguisher.

Our focus is not on definitions but on writing game-based security proofs. As such we
are also influenced by works on game-based composition, e.g., Brzuska, Fischlin, Warinschi,
and Williams [BFWW11]. We aim to facilitate security proofs for full-fledged standardized
protocols [JKSS12, KPW13, DFGS15, CCD+17]. Such proofs typically involve large reduc-
tions relating a complex monolithic game to diverse cryptographic assumptions through an
intricate simulation of the protocol.

Language-Based Security and Cryptography. Algebraic reasoning is at the core of
process calculi such as the π-calculus by Milner, Parrow and Walker [MPW92]. They focus
on concurrency with non-determinism, which is also adequate for symbolic reasoning about
security protocols. Subsequently, probabilistic process algebras have been used to reason
computationally about protocols, e.g., in the work of Mitchell, Ramanathan, Scedrov, and
Teague [MRST06] and the computational indistinguishability logic (CIL) of Barthe, Crespo,
Lakhnech and Schmidt [BDKL10]. Packages can be seen as an improvement of CIL oracle
systems, with oracle visibility and associativity corresponding to the context rules of CIL.

Monadic composition, a generalisation of function composition to effectful programs,
is an central principle of functional languages such as Haskell, F], and F? [Jon03, SGC12,
SHK+16]. Associativity is also used by Mike Rosulek in his rich undergraduate textbook
draft The Joy of Cryptography to make the cryptographic reduction methodology accessible
to undergraduate students with no background in complexity theory [Ros18]. Our concept
of packages is inspired by module systems in programming languages such as F ], OCaml,
SML (see e.g. Tofte [Tof96]). Our oracles similarly define a public interface for calling
functions that may share private state.

Existing techniques for overcoming the crisis of rigour in provable security as formalised
by Bellare and Rogaway [BR06] and mechanised in Easycrypt [BGHB11] have focused on
the most intricate aspects of proofs. Easycrypt supports a rich module system similar to the
ones found in functional programming languages [BCLS15] (including parametric modules,
i.e. functors), but it has not yet been used to simplify reasoning about large reductions in
standardized protocols.

The closest to our idea of package-based reductions is the modular code structure of
miTLS, an cryptographically verified implementation of TLS coded in F? [FKS11, BFK+13,
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BFK+14, DFK+17]. Fournet, Kohlweiss and Strub [FKS11] show that code-based game
rewriting can be conducted on actual implementation code, one module at a time, with
the rest of the program becoming the reduction for distinguishing the ideal from the real
version of the module. Packages are simpler than F? modules, with interfaces consisting
just of sets of oracle names, whereas F? provides a rich type system for specifying module
interfaces and verifying their implementations.

Our method draws from both formal language techniques and pen-and-paper approaches
for cryptographic proofs. We see facilitating the flow of information between the two
research communities as an important contribution of our work. In this paper, we use
pseudo-code, treating the concrete syntax and semantics of our language as a parameter.
This simplifies our presentation and makes it more accessible to the cryptographic com-
munity. Our method can be instantiated either purely as a pen-and-paper method or via
using a full-fledged programming language, equipped with a formal syntax and operational
semantics. The latter might also allow the development of tools for writing games and
automating their proofs.

2 Proof Methodology
As discussed in the introduction, we suggest to work with pseudo-code instead of Turing
machines as a model of computation and thus, this section will start by providing a definition
of code. We then continue to define functions and function calls (to probabilistic and stateful
functions), also known as oracles and oracle calls in the cryptographic literature. We will
then collect several such functions (oracles) into a package, and when the package itself does
not make any function calls, we call a package closed or a game. We then define sequential
composition of 2 packages, where the first package calls functions (oracles) defined by the
second package. Moreover, we define parallel composition which allows to take the functions
defined by two packages and to take their union.

Then, we move to more advanced packages and algebraic rules that allow to implement
the “moving to the right” operation that we hinted at in the introduction.

2.1 Composing Oracle Definitions

While we advocate to work with pseudo-code, we do not define a particular language, but
rather parametrize our method by a language for writing algorithms, games, and adversaries.
We specify below the properties of the syntax and semantics of any language capable of
instantiating our approach. We first describe our pseudo-code and give a probabilistic
semantics to whole programs, then we explain our use of functions for composing code.

Definition 2 (Pseudo-Code). We assume given sets of values v, . . . , local variables x, y, . . . ,
expressions e, state variables a, T (uppercase denotes tables), . . . , and commands c.
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Values provide support for booleans, numbers, and bitstrings. Expressions provide sup-
port for operations on them. Expressions may use local variables, but not state variables.

Commands include local-variable assignments x ← a and x ← e, sampling from a
distribution x←$D, state updates a ← e and T [x] ← e, sequential compositions c; c′, and
return e for returning the value of e. We write fv(c) for the state variables accessed in c.
We assume given default initial values for all state variables, e.g. T ← ∅.

We write Pr[v ← c] for the probability that command c returns v. (We only consider
programs that always terminate.) We assume this probability is stable under injective re-
namings of local variables and state variables.

For brevity, we often write commands with expressions that depend on the current state,
as a shorthand for using intermediate local variables for reading the state, e.g. we write
T [x]← T [x] + 1 as a shorthand for t← T [x];T [x]← t+ 1.

Definition 3 (Functions). We assume given a set of names f, . . . for functions. We let O
range over function definitions of the form f(x) 7→ c. and write Ω = {fi(xi) 7→ ci}i=1..n for
a set of n function definitions with distinct function names. We write dom(Ω) for the set
of names {f1, . . . , fn} defined in Ω and Σ(Ω) for the set of state variables accessed in their
code.

We extend commands with function calls, written y ← f(e). We write fn(c) for the set
of function names called in c, and similarly define fn(O) and fn(Ω). We say that a term is
closed when this set is empty.

We interpret all function calls by inlining, as follows: given the definition f(x) 7→
c; return e′, the call y ← f(e) is replaced with c; y ← e′ after replacing x with e in the
function body. We write inline(c,Ω) for the code obtained by inlining all calls to the func-
tions f1, . . . fn defined by Ω in the command c. Similarly, we write inline(Ω′,Ω) for the set
of definitions obtained by inlining all calls to functions in Ω into the code of the definitions
of Ω′.

We consider function definitions up to injective renamings of their local variables.

Packages. We now introduce the general definition of packages as collections of oracles
that subsume adversaries, games and reductions. Packages are sets of oracles Ωs defined
above. Intuitively, we will treat the state variables of their oracles as private to the package,
i.e., the rest of the code only get oracle access. Looking ahead to the composition of
packages we endow each package with an output interface consisting of the oracles names
that it defines and an input interface consisting of the oracles names that it queries.

Definition 4 (Packages). A package M is a set of function definitions Ω (its oracles) up to
injective renamings of its state variables Σ(Ω).

We write in(M) = fn(Ω) for its input interface and out(M) = dom(Ω) for its output
interface.
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We disallow internal calls to prevent recursion. Technically, the disallowing of internal
calls is captured (a) by the input interface of a package, since this input provides all oracles
that are called by the oracles in Ω, and (b) by the Def. 5 of sequential composition that
specifies that oracle calls are instantiated by the oracles of another package.

We often consider families of oracles OΠ and packages MΠ parametrized by Π, treating
parameters as symbolic values in their code. We usually omit parameters and refer to oracles
and packages by their name, unless context requires further clarification. In particular, we
write in(MΠ) only if the input interface differs for different parameters; out(M) never depends
on the parameters.

Package composition. We say that M matches the output interface of M′ iff in(M) ⊆
out(M′). When composing two matching packages M ◦ M′, we inline the code of all oracles of
M′ called by oracles in M, as specified in Definition 3.

Definition 5 (Sequential Composition). Given two packages M with oracles Ω and M′ with
oracles Ω′ such that M matches M′ and Σ(Ω)∩Σ(Ω′) = ∅, their sequential composition M ◦ M′

has oracles inline(Ω,Ω′).
Thus, we have out(M ◦ M′) = out(M) and in(M ◦ M′) = in(M′).

When describing a package composition, one cannot use the same package twice, e.g.,
it is not possible to have compositions such as (M ◦ M’ ◦ M). Note that this is a fundamental
restriction, since it is unclear how to define the state of such a composition, since there
would be copies of pointers to the same state (a.k.a. aliases).

Lemma 6 (Associativity). Let M0, M1, M2 such that in(M0) ⊆ out(M1) and in(M1) ⊆ out(M2).
We have (M0 ◦ M1) ◦ M2

code≡ M0 ◦(M1 ◦ M2).

Proof outline. We rename the local variables and state variables of the three packages to
prevent clashes, then unfold the definition of sequential compositions by inlining, and rely
on the associativity of their substitutions of function code for function calls.

We now define parallel composition, which is essentially a disjoint union operator that
takes two packages and builds a new package that implements both of them in parallel. It
is important to note that only the output interfaces of M and M′ need to be disjoint, while
they can potentially share input oracles. This feature allows for parallel composition of
several packages that use the same input interface.

Definition 7 (Parallel Composition). Given two packages M with oracles Ω and M′ with
oracles Ω′ such that out(M) ∩ out(M′) = ∅ and Σ(Ω) ∩ Σ(Ω′) = ∅, their parallel composition
M
M′ (alternatively (M|M′)) has oracles Ω ] Ω′. Thus, out( M

M′ ) = out(M) ] out(M′) and in( M
M′ ) =

in(M) ∪ in(M′).
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(This composition may require preliminary renamings to prevent clashes between the
state variables of M and M′.)

Lemma 8. Parallel composition is commutative and associative.

The proof of these properties directly follows from our definition of packages. Asso-
ciativity enables us to write n-ary parallel compositions of packages. Next, we show that
sequential composition distributes over parallel composition. (The conditions in the lemma
guarantee that the statement is well defined.)

Lemma 9 (Interchange). For all packages M0, M1, M′0, M′1, if out(M0)∩
out(M1) = ∅, out(M′0)∩ out(M′1) = ∅, out(M0) ⊆ in(M′0) and out(M1) ⊆ in(M′1), then

M0
M1
◦ M′0

M′1

code≡ M0 ◦ M′0
M1 ◦ M′1

.

Proof outline. The code equality relies on the property that function-call inlining applies
pointwise to each of the oracle definitions in the 3 sequential compositions above.

Identity packages. Some proofs and definitions make one or more oracles of a package
unavailable to the adversary, which is captured by sequential composition with a package
that forwards a subset of their oracle calls:

Definition 10 (Identity Packages). The identity package IDX for the names X has oracles
{f(x) 7→ r ← f(x); return r}f∈X .

Hence, for X ⊆ out(M), the package IDX ◦ M behaves as M after deleting the definitions
of oracles outside X. In particular, the next lemma gives some identity compositions that
do not affect a package.

Lemma 11 (Identity Rules). For all packages M, M
code≡ IDout(M) ◦ M and M

code≡ M ◦ IDin(M).

Proof outline. By definition of sequential composition and basic properties of substitutions,
we obtain the following from IDout(M) ◦ M:
We substitute ‘f(x) 7→ c; return r’ in ‘f(x) 7→ r ← f(x); return r’ and yield ‘f(x) 7→ c; r ←
r; return r’ which is equivalent to ‘f(x) 7→ c; return r’. Analogously, for M ◦ IDin(M):
We substitute ‘f(x) 7→ r ← f(x); return r’ in ‘r′ ← f(x)’ and yield ‘r ← f(x); r′ ← r’ which
is equivalent to ‘r′ ← f(x)’.

2.2 Graphical Representation of Package Composition

Writing fully-precise package compositions can be tedious. Recall the KEM-DEM proof of
Fig. 2; the step from (a) to (b) corresponds to applying a mix of interchange and identity
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rules:

CCA ◦
(

KEM0

DEM0 ◦ KEY

)
code≡ CCA ◦

(
ID ◦ KEM0

DEM0 ◦ ID
◦ KEY

)
code≡ CCA ◦

((
ID

DEM0 ◦
KEM0

ID

)
◦ KEY

)

Instead of writing such steps explicitly, we propose a graphical representation of pack-
age composition that allows us to reason about compositions “up to” applications of the
interchange, identity and associativity rules.

S
...

A

in(A)
...

out(A)
...

From terms to graphs. Identity packages IDS map to
edges, one for each oracle in the set S. Other packages map
to a node labelled with the package name. Each output or-
acle of the package maps to an incoming edge of the node,
labelled with the oracle name. Similarly, input oracles map
to outgoing edges.

Sequential composition A ◦ B simply consists of merging the
outgoing edges of A with the incoming edges of B with the same label. Note that in this
process, some of the incoming edges of B may be dropped, i.e. A may not use all of the
oracles exported by B.

A B

in(A)
...

out(A)
...

in(B)
...

A

B

in(A)
...
in(A) ∩ in(B)

...
in(B)

out(A)
...

...
out(B)

The parallel composition of A and B is simply the
union of the graphs constructed from A and B. By
definition of parallel composition, out(A)∩out(B) = ∅,
while input oracles may be used both by A and B. We
merge shared input edges (i.e. unconnected outgoing
edges) in the resulting graph to capture this sharing.

From graphs to terms. By inductive application
of the above 3 rules, one can construct a graph repre-
senting any term. However, some information is lost
in the process: most importantly, the order in which
sequential and parallel compositions are applied. For
instance, consider the left-hand side and right-hand
side of the interchange rule. Both terms map to the
same graph. This is by design, as we intend to represent terms modulo interchange. By
drawing explicit boxes around parallel and sequential compositions, it is possible to ensure
that a graph can be interpreted unambiguously as a term. For instance, the figure on the
right shows how to depict the interchange rule on graphs with boxes.
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A

B

C

D

in(A)
...

in(B)
...

out(A)
...

out(B)
...

in(C)
...

in(D)
...

A

B

C

D

in(A)
...

in(B)
...

out(A)
...

out(B)
...

in(C)
...

in(D)
...

2.3 Games and Adversaries

Games A game is a package with an empty input interface. We model security prop-
erties of a cryptographic scheme as indistinguishability between a pair of games, usually
parameterized by a bit b ∈ {0, 1} (which is equivalent to a single game that draws a bit
and then runs one of the two games at random.).

Adversaries. An adversary A is a package with output interface {run} that returns a bit
0 or 1. We model the adversary as a package whose input interface is equal to the set of
names of the oracles of the game that the adversary is meant to interact with.

Next, we define games and adversaries such that their composition A◦ G be a closed
package of the form R = {run() 7→ c; return g}.

Since Definition 2 defines our probabilistic semantics only on commands, we first extend
it to such closed packages, defining Pr[1← R ] as Pr[1← c; return g ]. (The command
c; return g is the ‘top-level’ code g ← run(); return g after inlining the definition of run.)

Definition 12 (Games). A game is a package G such that in(G) = ∅. An adversary against
G is a package A such that in(A) = out(G) and out(A) = {run}. A game pair consists of two
games G0 and G1 that define the same oracles: out(G0) = out(G1). Naturally, a game Gb with
a binary parameter b defines a game pair. We thus use the two notions interchangeably.

We now define distinguishing advantages. Note that we operate in the concrete security
setting as it is more adequate for practice-oriented cryptography and therefore only define
advantages rather than security in line with the critique of Rogaway [Rog06], and Bernstein
and Lange [BL13]. Our ideas can be transferred analogously to the asymptotic setting.

Definition 13 (Distinguishing Advantage). The advantage of an adversary A against a
game pair G is

εG(A) =
∣∣∣Pr

[
1← A◦ G0

]
− Pr

[
1← A◦ G1

]∣∣∣ .
In the rest of the paper, we may refer to the advantage function εG in this definition

by writing G0 εG≈ G1; and we write G0 perf
≡ G1 if εG = 0. For two packages (not only for
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games), M and N, we write M
code≡ N if they provide the same function definitions Ω up to

injective renamings of state variables, after inlining (in case M and/or N was specified as a
composition of packages). Note that if M and N are games, then M

code≡ N implies M
perf
≡ N. As

an example of advantage, we restate below the usual triangular equality for three games
with the same oracles.

Lemma 14 (Triangle Inequality). Let F, G and H be games such that out(F) = out(G) =
out(H). If F

ε1≈ G, G
ε2≈ H, and F

ε3≈ H, then ε3 ≤ ε1 + ε2.

The triangle inequality helps to sum up game-hops. Many game-hops will exploit simple
associativity, as the following lemma illustrates.

Lemma 15 (Reduction). Let G be a game pair and let M be a package such that in(M) ⊆
out(G). Let A be an adversary that matches the output interface of M, then for both b ∈
{0, 1}, the adversary D := A ◦ M satisfies

Pr
[
1← A ◦ (M ◦ Gb)

]
= Pr

[
1← D ◦ Gb

]
.

As a corollary, we obtain A ◦ M ◦ G0 ε(A)
≈ A ◦ M ◦ G1 for ε(A) = εG(A ◦ M).

Proof. The proof follows by associativity of sequential composition, i.e., Lemma 6 yields
A ◦ (M ◦ Gb) code≡ (A ◦ M) ◦ Gb

code≡ D ◦ Gb.

3 KEY Package Composition
Many cryptographic constructions emerge as compositions of two cryptographic building
blocks: The first building block generates the (symmetric) key(s) and the second building
block uses the (symmetric) key(s). In the introduction, we already discussed the popu-
lar composition of key encapsulation mechanisms (KEM) with a deterministic encryption
mechanism (DEM). Likewise, complex protocols such as TLS first execute a key exchange
protocol to generate symmetric keys for a secure channel. In composition proofs, the keying
building block and the keyed building block share the (symmetric) key(s). To capture this
shared state, we introduce a key package KEYλ that holds a single key k of length λ. (We
handle multiple keys in Section 5.)

Definition 16 (Key Package). For λ ∈ N, KEYλ is the package that defines the three oracles
below, i.e., out(KEYλ) = {GEN, SET,GET}.

GEN()

assert k = ⊥
k←$ {0, 1}λ

SET(k′)

assert k = ⊥
k ← k′

GET()

assert k 6= ⊥
return k

14



Hence, this package encapsulates the state variable k, initialized (once) by calling either
GEN or SET, then accessed by calling GET. This usage restriction is captured using asserts,
and all our definitions and theorems apply only to code that never violates assertions.

Definition 17 (Keying Games). A keying game K is a game composed of a core keying
package CK and the key package as follows:

Kb,λ
code≡ CKb,λ

ID{GET}
◦ KEYλ.

where b ∈ {0, 1}, in(CK0,λ) = {SET}, and in(CK1,λ) = {GEN}.

Definition 18 (Keyed Games). A keyed game D is a game composed of a core keyed
package CD and the key package as follows:

Db,λ
code≡

ID{GEN}
CDb,λ

◦ KEYλ.

where b ∈ {0, 1} and in(CDb,λ) = {GET}.

Lemma 19 (Single Key). Keying games K and keyed games D are compatible when they
have the same key length λ and they define disjoint oracles, i.e., out(K) ∩ out(D) = ∅. For
all compatible keying and keyed games, with the notations above, we have

(a) CK0

CD0 ◦ KEYλ
εa≈ CK1

CD1 ◦ KEYλ, (b) CK0

CD0 ◦ KEYλ
εb≈ CK0

CD1 ◦ KEYλ,

where, for all adversaries A,

εa(A) ≤εK
(
A ◦

IDout(CK)
CD0

)
+ εD

(
A ◦ CK1

IDout(CD)

)
,

εb(A) ≤εa(A) + εK

(
A ◦

IDout(CK)
CD1

)
.

Version (b) of the single key lemma is needed when proving theorems in which the ideal
version of the top-level game exposes cryptographic material that depends on the concrete
key, e.g. an encryption of zero.

Proof. Fig. 3 gives the proof outline using graphs: To show (a), we first idealize the core
keying package, switching from SET to GEN (left); and then we idealize the core keyed
package (Fig. 3, right). To show (b), we also de-idealize the core keying package, switching
back form GEN to SET (left).

We give a more detailed proof below, using the algebraic rules of Section 2 to rewrite
packages in order to apply Def. 17 and 18.
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CKb

CD0

KEY

GEN
SET

GET

CK1

CDb

KEY

GEN

GET

Figure 3: Reduction to the keying game (left) and the keyed game (right).

(1) Idealizing the core keying package. The first intermediate goal is to bring the
package into a shape where we can use Def. 17 to change CK0 into CK1. Below, for all
adversaries A, we have ε1(A) = εK

(
A ◦ IDout(CK)

CD0

)
.

CK0

CD0 ◦ KEYλ
code≡

IDout(CK)
CD0 ◦ CK0

ID{GET}
◦ KEYλ (identity & interchange)

ε1≈
IDout(CK)

CD0 ◦ CK1

ID{GET}
◦ KEYλ

code≡ CK1

CD0 ◦ KEYλ

(2) Idealizing the core keyed package. As a second step, we want to use Def. 18
to move from CD0 to CD1 and thus need to make ID{GEN} appear. Note that we can use
ID{GEN} because {GEN} is equal to the input interface of CK1. This was not possible
before idealizing to CK1, since in(CK0) = {SET}. Below, for all adversaries A, we have
ε2(A) = εD

(
A ◦ CK1

IDout(CD)

)
.

CK1

CD0 ◦ KEYλ
code≡ CK1

IDout(CD)
◦

ID{GEN}
CD0 ◦ KEYλ (identity & interchange)

ε2≈ CK1

IDout(CD)
◦

ID{GEN}
CD1 ◦ KEYλ

code≡ CK1

CD1 ◦ KEYλ

(3) De-idealizing the core keying package. Finally, we move back from CK1 to
CK0, taking the inverse steps of idealizing the core keying package. We obtain ε3(A) =
εK
(
A ◦ IDout(CK)

CD1

)
. Below, for all adversaries A, we have ε3(A) = εK

(
A ◦ IDout(CK)

CD1

)
.

CK1

CD1 ◦ KEYλ
code≡

IDout(CK)
CD1 ◦ CK1

ID{GET}
◦ KEYλ (identity & interchange)

ε3≈
IDout(CK)

CD1 ◦ CK0

ID{GET}
◦ KEYλ

code≡ CK0

CD1 ◦ KEYλ
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4 KEM-DEMs
Cramer and Shoup [CS03, §7] show that composing a CCA-secure key encapsulation mecha-
nism (KEM) and a CCA-secure data encapsulation mechanism (DEM) yields a CCA-secure
public-key encryption (PKE). Using the KEY package composition introduced in Section 3,
we give a new formulation of their KEM-DEM proof.

Schemes are function definitions that do not employ state variables. We write Mβ for a
package calling functions of the scheme β in its parameters. Formally, for a package M with
oracles Ω, Mβ denotes the package with oracles inline(Ω, β).

We denote the set of functions defined by a PKE scheme with ciphertext expansion
clen(|m|) by ζ = {kgen, enc, clen, dec}. We denote the set of functions of a DEM scheme
with key length λ and ciphertext expansion clen(|m|) by θ = {λ, enc, clen, dec}, where we
recall that enc is a deterministic, one-time encryption algorithm. We prepend function
names by ζ and θ for disambiguation. We denote a KEM scheme with output key length
λ and encapsulation length elen by η = {kgen, encap, elen, decap, λ}, where kgen produces
a key pair (pk, sk), encap(pk) generates a symmetric key k of length η.λ and a key en-
capsulation c of length η.elen, while decap(sk, c) given sk and an encapsulation c returns
a key k. For all three schemes, we consider perfect correctness. Throughout this section,
we consider a single symmetric-key length λ that corresponds to the length of the sym-
metric key used by the DEM scheme as well as the length of the symmetric key produced
by the encapsulation mechanism η.encap. We now turn to the security notions which are
$-IND-CCA security notions for all three primitives, i.e., we consider ciphertexts that are
indistinguishable from random.

Definition 20 (PKE-CCA Security). Let ζ be a PKE-scheme. We define its $-IND-CCA
advantage εζPKE-CCA, where PKE-CCAb,ζ defines the following oralces, i.e., out(PKE-CCAζ) =
{PKGEN,PKENC,PKDEC}.

PKGEN()

assert sk = ⊥
pk, sk←$ ζ.kgen()
return pk

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
if b = 0 then
c←$ ζ.enc(pk,m)

else
c←$ {0, 1}clen(|m|)

return c

PKDEC(c′)

assert sk 6= ⊥
assert c′ 6= c

m← ζ.dec(sk, c′)
return m

We model the KEM as a keying and the DEM as a keyed package. We will use the KEYλ

package as specified in Def. 16. Note that we additionally require that encapsulations are
indistinguishable from random.
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Definition 21 (KEM-CCA Security). Let η be a KEM. We define its $-IND-CCA advan-
tage εηKEM-CCA using a keying game whose core keying package KEMb,η defines the following
oracles, so that out(KEM-CCAη) = {KEMGEN,ENCAP,DECAP,GET}:

KEMGEN()

assert sk = ⊥
pk, sk ←$ η.kgen()
return pk

ENCAP()

assert pk 6= ⊥
assert c = ⊥
if b = 0 then
k, c←$ η.encap(pk)
SET(k)

else
c←$ {0, 1}elen

GEN()
return c

DECAP(c′)

assert sk 6= ⊥
assert c′ 6= c

k ← η.decap(sk, c′)
return k

Note that the adversary queries GET to obtain the challenge key. Encoding the standard
KEM notion in this way enables the following algebraic reasoning:

KEM-CCA0,η code≡ KEM0,η

ID{GET}
◦ KEYη.λ

εηKEM-CCA≈ KEM1,η

ID{GET}
◦ KEYη.λ

code≡ KEM-CCA1,η

Definition 22 (DEM-CCA Security). Let θ be a DEM. We define its $-IND-CCA advan-
tage εθDEM-CCA using a keying game with output interface out(DEM-CCAθ) = {GEN,ENC,DEC},
where the oracles of the core keyed packages DEMb,θ are defined as follows:

ENC(m)

assert c = ⊥
k ← GET()
if b = 0 then
c← θ.enc(k,m)

else
c←$ {0, 1}clen(|m|)

return c

DEC(c′)

assert c 6= c′

k ← GET()
m← θ.dec(k, c′)
return m

Note that DEM security justifies the following equational reasoning

DEM-CCA0,θ code≡ DEM0,θ

ID{GEN}
◦ KEYθ.λ

εθDEM-CCA≈ DEM1,θ

ID{GEN}
◦ KEYθ.λ

code≡ DEM-CCA1,θ
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4.1 Composition and Proof

We prove that the PKE scheme obtained by composing a KEM-CCA secure KEM and a
DEM-CCA secure DEM is PKE-CCA secure.

Construction 23 (KEM-DEM Construction). Let η be a KEM and θ be a DEM. We define
the PKE scheme ζ with ciphertext expansion ζ.clen(`) = η.elen + θ.clen(`) as follows:

ζ.kgen()

return η.gen()

ζ.enc(pk,m)

k, c1←$ η.encap(pk)
c2 ← θ.enc(k,m)
return c1||c2

ζ.dec(sk, c)

c1||c2 ← c

k ← η.decap(sk, c1)
m← θ.dec(k, c2)
return m

Theorem 24 (PKE Security of the KEM-DEM Construction). Let ζ be the PKE scheme
in Construction 23. For adversaries A, we have that

εζPKE-CCA(A) ≤ εηKEM-CCA

(
A ◦ MOD-CCA ◦

IDout(KEMη)
DEM0,θ

)
+

εθDEM-CCA

(
A ◦ MOD-CCA ◦ KEM1,η

IDout(DEMθ)

)

where the oracles of MOD-CCA are defined in Fig. 4.

In Appendix D, we prove via code comparison that for b ∈ {0, 1}, PKE-CCAb,ζ is perfectly
indistinguishable from MOD-CCA◦ KEMb,η

DEMb,θ ◦KEYλ. Thus, for all adversaries A, we can now apply
the single key lemma, Lemma 19.(a), to the adversary B = A ◦ MOD-CCA, as KEM-CCAη is
a keying game, DEM-CCAθ is a keyed game, and the two are compatible. Note that we do
not de-idealize KEM1,η as PKE-CCA1,ζ requires random ciphertexts. For all adversaries B, we
have

B ◦ KEMη,0

DEMθ,0
◦ KEYλ

ε(B)
≈ B ◦ KEMη,0

DEMθ,1
◦ KEYλ.

and the value ε(B) is less or equal to

εηKEM-CCA

(
B ◦

IDout(KEMη)
DEM0,θ

)
+ εθDEM-CCA

(
B ◦ KEM1,η

IDout(DEMθ)

)
.

5 Multi-Instance Packages and Composition
Definition 25 (Indexed Packages). For a command c with free names fn(c) we denote by
ci the command in which every function name f ∈ fn(c) is replaced by a name fi with the
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PKGEN()

assert pk = ⊥
pk ← KEMGEN()
return pk

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
c1 ← ENCAP()
c2 ← ENC(m)
c← c1||c2

return (c)

PKDEC(c′)

assert pk 6= ⊥
assert c 6= c′

c′
1||c′

2 ← c′

if c′
1 = c1 then
m← DEC(c′

2)
else
k′ ← DECAP(c′

1)
m← θ.dec(k′, c′

2)
return m

Figure 4: MOD-CCA construction.

additional index i. For function definition O = f(x) 7→ c, we denote by Oi− the definition
fi(x) 7→ c and by Oi the definition fi(x) 7→ ci.

Let D be a package with function definitions Ω. We denote by Di− and Di packages with
definitions {Oi−|O ∈ Ω} and {Oi|O ∈ Ω} respectively. This means that in(Di−) = in(D) and
in(Di) = {fi|f ∈ in(D)}.

Definition 26 (Multi-Instance Operator). For a package D and n ∈ N, we define
∏n
i=1 Di− :=

(D1− |...| Dn−) and
∏n
i=1 Di := (D1 |...| Dn).

Note that using a product sign
∏n
i=1 Di to denote multi-instance parallel composition

(D1 |...| Dn) is convenient, since it allows to emphasize the multi-instance notation via a prefix
which is more prominent than merely a special subscript or index, it reduces the number
of brackets per expression, and it allows to avoid dots. While common in arithmetics and,
notably, the π-calculus, product notation might be a bit unusual for cryptographers. Also
note that including indices in oracle names assures that instances of the same package have
disjoint output interfaces which is necessary for their parallel composition. The following
lemma states that the multi-instance operator

∏n
i=1 commutes with parallel composition,

sequential composition and ID.

Lemma 27 (Multi-Instance Interchange). Let M and N be packages such that M matches the
output interface of N. Let P be a packages such that out(M) and out(P) are disjoint. Then,
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for any number n of instances, the following hold:
n∏
i=1

(M ◦ N)i
code≡

n∏
i=1

Mi ◦
n∏
i=1

Ni IDout(
∏n

i=1 Mi)
code≡

n∏
i=1

(IDout(M))i

n∏
i=1

(
M
P

)
i

code≡
∏n
i=1 Mi∏n
i=1 Pi

Mi−
code≡ IDout(M),i− ◦ M

Proof. Firstly, note that the package
∏n
i=1 Mi◦

∏n
i=1 Ni is well-defined, since

∏n
i=1 Mi matches

the input interface of
∏n
i=1 Ni due to Definition 25. Using the interchange rule, we obtain

that it is code equivalent to
∏n
i=1(M ◦ N)i. Note that (

∏n
i=1 Mi|

∏n
i=1 Pi) is well-defined due

to the disjointness condition on the output interfaces. The term is equal to
∏n
i=1

(M
P

)
i
by

associativity of parallel composition. The last two equations follow by inspection of the ID
definitions.

5.1 Multi-Instance Lemma

We introduce a multi-instance lemma that allows us to turn arbitrary games using sym-
metric keys into multi-instance games.

Lemma 28 (Multi-Instance). Let M be a game pair with distinguishing advantage εM. Then
for any number n of instances, adversaries A, and reduction R that samples j←$ {0, . . . , n−
1} and runs  j∏

i=1
M1
i

∣∣∣∣∣∣IDout(M),(j+1)−

∣∣∣∣∣∣
n∏

i=j+2
M0
i


we have that the game pair MIb

code≡
∏n
i=1 Mbi satisfies εMI(A) ≤ n · εM(A ◦R).

In Appendix B we provide a systematic recipe for hybrid arguments and instantiate it
for the proof of this lemma.

5.2 Multiple Keys Lemma

We now combine key composition and multi-instance lemmas. For this purpose, we use
a multi-instance version of the following single-instance package CKEY. In contrast to the
simpler KEY package, CKEY allows for corrupted keys (whence the name CKEY) and, conse-
quently, needs to allow the symmetric-key protocol to check whether keys are honest.

Definition 29 (CKEY Package). For λ ∈ N, CKEY is the package that defines the oracles
below, i.e., out(CKEY) = {GEN,SET,CSET,GET,HON}.
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GEN()

assert k = ⊥
k←$ {0, 1}λ

h← 1

SET(k′)

assert k = ⊥
k ← k′

h← 1

CSET(k′)

assert k = ⊥
k ← k′

h← 0

GET()

assert k 6= ⊥

return k

HON()

assert h 6= ⊥

return h

A corruptible keying game is composed of a core keying package and the multi-instance
version of CKEYλ. The core keying package can set corrupt keys via the CSET oracle. A
corruptible keyed game is single-instance but will be turned into a multi-instance game
later. Its core keyed package can access the honesty status of keys via the HON oracle.

Definition 30 (Corruptible Keying Game). A corruptible keying game K is composed of a
core keying packages CK and the CKEY package as follows:

Kb,λ
code≡ CKb,λ∏n

i=1(ID{GET,HON})i
◦

n∏
i=1

CKEYλi .

where n, λ ∈ N, b ∈ {0, 1}, in(CK0,λ) = {SETi,CSETi}ni=1, and in(CK1,λ) = {GENi,CSETi}ni=1.

Definition 31 (Corruptible Keyed Game). A corruptible keyed game D is composed of a
core keyed package CD and the CKEY package as follows:

Db,λ
code≡

ID{GEN,CSET}
CDb,λ

◦ CKEYλ.

where λ ∈ N, b ∈ {0, 1}, and in(CD0,λ) = in(CD1,λ) = {GET,HON}.

Lemma 32 (Multiple Keys). Keying and keyed games K and D are compatible when they
have the same key length λ and they define disjoint oracles out(K) ∩ out(

∏n
i=1 Di). For all

compatible corruptible keying and keyed games, with the notation above, we have that

CK0∏n
i=1 CD0

i

◦
n∏
i=1

CKEYλi
ε≈ CK0∏n

i=1 CD1
i

◦
n∏
i=1

CKEYλi ,

where for all adversaries A, ε(A) is less or equal to

εK

(
A ◦

IDout(CK)∏n
i=1 CD0

i

)
+ n · εD

A ◦ CK1

IDout(
∏n

i=1 CDi)
◦ R

 + εK

(
A ◦

IDout(CK)∏n
i=1 CD1

i

)
.

where reduction R samples j←$ {0, . . . , n− 1} and implements the package j∏
i=1

M1
i

∣∣∣∣∣∣(IDout(M))(j+1)−

∣∣∣∣∣∣
n∏

i=j+2
M0
i

 ,
where Mb

code≡ ID{GEN,CSET}
CDb ◦ CKEYλ.
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Proof. The proof proceeds analogously to the 3 steps in the proof of Lemma 19.(b)2, i.e., ide-
alizing the corruptible keying game, then the corruptible keyed game and then de-idealizing
the corruptible keying game. For the algebraic proof steps, we use the multi-instance vari-
ants of the identity rule and the interchange rule, as given in Lemma 27.

Multi-instance Lemma. We invoke the multi-instance lemma (Lemma 28) on game pair
M with Mb

code≡ ID{GEN,CSET}
CDb ◦CKEYλ. By applying the lemma, we obtain that for all adversaries

B, we have
εMI(B) ≤ n · εD(B ◦ R), (1)

where MIb
code≡

∏n
i=1 Mbi and reduction R samples j←$ {0, . . . , n − 1} and implements the

package
(∏j

i=1 M1
i

∣∣∣(IDout(M))(j+1)−

∣∣∣∏n
i=j+2 M0

i

)
.

Idealizing the keying core package. For the second part of the proof, the steps that
idealize the corruptible keying game are analogous to the single-instance key composition
proof, and we obtain

CK0∏n
i=1 CD0

i

◦
n∏
i=1

CKEYλi
ε1≈ CK1∏n

i=1 CD0
i

◦
n∏
i=1

CKEYλi ,

where ε1(A) = εK

(
A ◦ IDout(CK)∏n

i=1 CD0
i

)
.

2We could have stated a variant (a) version of these lemma. Key-exchange, however, typically requires
variant (b), e.g., because the MAC used for authentication is not idealized as a random strings in the
top-level security definition.
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Idealizing the multi-instance version of CD0. We discuss ε2 after presenting the trans-
formations.

CK1∏n
i=1 CD0

i

◦
n∏
i=1

CKEYλi

code≡
CK1 ◦

∏n
i=1 ID{GEN,CSET}i

IDout(
∏n

i=1 CDi) ◦
∏n
i=1 CD0

i

◦
n∏
i=1

CKEYλi (identity rule)

code≡ CK1

IDout(
∏n

i=1 CDi)
◦
∏n
i=1(ID{GEN,CSET})i∏n

i=1 CD0
i

◦
n∏
i=1

CKEYλi (interchange rule)

code≡ CK1

IDout(
∏n

i=1 CDi)
◦

n∏
i=1

(ID{GEN,CSET}
CD0 ◦ CKEYλ

)
i

(interchange rule)

ε2≈ CK1

IDout(
∏n

i=1 CDi)
◦

n∏
i=1

(ID{GEN,CSET}
CD1 ◦ CKEYλ

)
i

(2)

We have ε2(A) = εMI

(
A ◦ CK1

IDout(
∏n

i=1 CDi)

)
. Moreover, plugging in Inequality 1, we obtain

ε2(A) ≤ n · εCD

A ◦ CK1

IDout(
∏n

i=1 CDi)
◦ R

 .
De-idealizing the keying core package. In turn to transform Term (2) into CK1∏n

i=1 CD1
i

◦∏n
i=1 CKEYλi , we perform the first 3 transformation steps above in reverse order. We de-

idealizing analogous to Lemma 19.(b) and obtain

CK1∏n
i=1 CD1

i

◦
n∏
i=1

CKEYλi
ε3≈ CK0∏n

i=1 CD1
i

◦
n∏
i=1

CKEYλi ,

where for all adversaries A, we have ε3(A) = εCK

(
A ◦ IDout(CK)∏n

i=1 CD1
i

)
.

6 Composition of Forward-Secure Key Exchange
In this section, we apply the multiple keys lemma (Lemma 32) to forward-secure key ex-
change. We start with a short definition of authenticated key exchange (AKE) protocols
with forward security based on the definition of forward security by Bellare, Rogaway and
Pointcheval [BPR00] adapted from password authentication to the setting with asymmetric
long-term keys. Like them, we use partnering functions as a partnering mechanism. Unlike
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them, we do not encode security against passive adversaries via an Execute query but rather
require the existence of an origin-session, as suggested by Cremers and Feltz [CF15]. Note
that we encode the existence of an origin-session also via partnering functions. Brzuska,
Fischlin, Warinschi and Williams [BFWW11] essentially use the same security definition
as in the present paper, except that they did not encode passivity and used session identi-
fiers instead of partnering functions. We explain our definitional choices at the end of this
section.

Definition 33 (Key Exchange Protocol). A key exchange protocol π consists of a key
generation function π.kgen and a protocol function π.run. π.kgen returns a pair of keys,
i.e., (sk, pk)←$π.kgen. π.run takes as input a state and an incoming message and returns
a state and an outgoing message, i.e., (state′,m′)←$π.run(state,m).

Each party holds several sessions and the function π.run is executed locally on the
session state. We use indices i for sessions and indices u, v for parties. For the ith session
of party u, we denote the state by Π[u, i].state. The state contains at least the following
variables. For a variable a, we denote by Π[u, i].a the variable a stored in Π[u, i].state.

• (pk, sk): the party’s own public-key and corresponding private key

• peer : the public-key of the intended peer for the session

• role: determines whether the session runs as an initiator or responder

• α: protocol status that is either running or accepted.

• k: the symmetric session key derived by the session

Upon initialization of each session, the session state is initialized with pair (pk, sk), the
public-key peer of the intended peer of a session, a value role ∈ {I,R}, α = running and
k = ⊥. The first three variables cannot be changed. The variables α and k can be set only
once. We require that

Π[u, i].α = accepted =⇒ Π[u, i].k 6= ⊥.

The game that we will define soon will run (state′,m′)←$π.run(state,⊥) on the initial state
state and an empty message ⊥. For initiator roles, this first run returns m′ 6= ⊥, and for
responder roles, it outputs m′ = ⊥.

Protocol correctness. For all pairs of sessions which are initialized with (pkI , skI),
pkR, role = I, α = running and k = ⊥ for one session, and (pkR, skR), pkI , role = R,
α = running and k = ⊥ for the other session, the following holds: When the messages
produced by π.run are faithfully transmitted to the other session, then eventually, both
sessions have α = accepted and hold the same key k 6= ⊥.
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Partnering. As a partnering mechanism, we use sound partnering functions, one of the
partnering mechanisms suggested by Bellare and Rogaway [BR95]. Discussing the specifics,
advantages and disadvantages of partnering mechanisms is beyond the scope of this work,
we provide a short discussion as well as a definition and the soundness requirement for
partnering functions in Appendix C. For the sake of the AKE definition presented in this
section, the reader may think of the partnering function f(u, i) as indicating the (first)
session (v, j) which derived the same key as (u, i), has a different role than (u, i), and is the
intended peer of (u, i). On accepted sessions, it is a symmetric function, thus partners of
sessions, if they exist, are unique.

Session key handles. Upon acceptance the SEND oracle returns the index of the CKEY
package from which the session key can be retrieved using GET. This index is an admin-
istrative identifier that is set when the first of two partnered sessions accept. The second
accepting session is then assigned the same identifier as its partner session.
Definition 34 (IND-AKE Security). For a key exchange protocol π = (kgen, run), a
symmetric, monotonic, sound partnering function f , and a number of instances n ∈ N,
we define IND-AKE advantage επ,f,nIND-AKE using a keying game IND-AKEπ,f,n with corrupt-
ible keying package AKEb,π,f whose oracles are defined in Fig. 5 yielding output interface
out(IND-AKEπ,f,n) = {NEWPARTY,NEWSESSION,SEND,CORRUPT,GET}.

Theorem 35 (BR-Secure Key Exchange is Composable). Let π be a key exchange pro-
tocol with partnering function f such that for n, λ ∈ N, their IND-AKE advantage is
επ,f,nIND-AKE. Let D be a corruptible keyed game that is compatible with the corruptible keying
game IND-AKEπ,f,n. Then it holds that

AKE0,π,f∏n
i=1 CD0

i

◦
n∏
i=1

CKEYλi
εBR≈ AKE0,π,f∏n

i=1 CD1
i

◦
n∏
i=1

CKEYλi ,

where

εBR(A) ≤ επ,f,nIND-AKE

(
A ◦

IDout(AKE)∏n
i=1 CD0

i

)
+ n · εCD

A ◦ AKE1,π,f

IDout(
∏n

i=1 CDi)
◦ R


+ επ,f,nIND-AKE

(
A ◦

IDout(AKE)∏n
i=1 CD1

i

)
,

and where reduction R samples j←$ {1, . . . , n} and implements the packagej−1∏
i=1

M0
i

∣∣∣∣∣∣(IDout(M))j−

∣∣∣∣∣∣
n∏

i=j+1
M1
i

 ,
where Mb

code≡ ID{GEN,CSET}
CD0 ◦ CKEYλ.
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NEWSESSION(u, i, r, v)

assert PK[u] 6= ⊥, PK[v] 6= ⊥, Π[u, i] = ⊥
Π[u, i]← (

(pk, sk)← (PK[u], SK[u]),
peer ← v,

role ← r,

α← running,
k ← ⊥)

(Π[u, i],m)←$π.run(Π[u, i],⊥)
return m

SEND(u, i,m)

assert Π[u, i].α = running
(Π[u, i],m′)←$π.run(Π[u, i],m)
if Π[u, i].α 6= accepted then

return (m′,⊥).
if Π[f(u, i)].α = accepted then

return (m′, ID[f(u, i)])
ID[u, i]← cntr
if H[Π[u, i].peer ] = 1 ∨ f(u, i) 6= ⊥ then

if b = 0 then
SETcntr(Π[u, i].k)

else
GENcntr()

else
CSETcntr(Π[u, i].k)

cntr ← cntr + 1
return (m′, ID[u, i])

NEWPARTY(u)

assert PK[u] = ⊥
(SK[u], PK[u))←$π.kgen
H[u]← 1
return PK[u]

CORRUPT(u)

H[u]← 0
return SK[u]

Figure 5: Oracles of the core keying package AKE. cntr is initialized to 0.

Proof. We observe that Theorem 35 is a direct application of the multiple keys lemma
(Lemma 32). Firstly, AKE is a corruptible core keying package as we have that in(AKE0,π,f ) =
{SET,CSET} and in(AKE1,π,f ) = {GEN,CSET}. Also, by definition, D is a corruptible keyed
game that is compatible with the corruptible keying game IND-AKEπ,f,n.

27



Discussion of definitional choices. Forward secrecy usually requires a notion of time
that cryptographic games are not naturally endowed with and that we have no tools to
handle in hand-written proofs. In the miTLS work and also in our notation of key exchange
security, instead, it is decided upon acceptance whether a session shall be idealized or not.
The advantage is that one can check in the moment of acceptance whether the preconditions
for freshness are satisfied, and this check does not require a notion of time. In our encoding,
the CKEY package then stores either a real or a random key, and when the partner of the
session accepts, the partner session inherits these idealization or non-idealization properties.
A downside of this encoding is that it is only suitable for protocols with explicit entity
authentication (See, e.g., Fischlin, Günther, Schmidt andWarinschi [FGSW16]), as in those,
the first accepting session is already idealized. In particular, our model does not capture
two-flow protocols such as HMQV [Kra05].

Using partnering functions instead of session identifiers or key partnering has the ad-
vantage that the at most condition of Match security defined by Brzuska, Fischlin, Smart,
Warinschi and Williams [BFS+13] holds syntactically. Thus, one does not need to make
probabilistic statements that are external to the games. Note that we made another simpli-
cation to the model: Currently, the CKEY module and thus CD does not receive information
about the timing of acceptance. This can be integrated at the cost of a more complex CKEY
module.
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MOD-CPAb.ENC(m)

if b = 0 then
r←$ {0, 1}n

pad ← EVAL(r)

c← m⊕ pad
if b = 1 then
m′←$ {0, 1}n

r←$ {0, 1}n

pad ← EVAL(r)

c← m′ ⊕ pad
return (r, c)

MOD-CPAb.ENC(m)

if b = 0 then
r←$ {0, 1}n

if k = ⊥ then
k ←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad

if b = 1 then
m′←$ {0, 1}n

r←$ {0, 1}n

if k = ⊥ then
k ←$ {0, 1}n

pad ← prf(k, r)
c← m′ ⊕ pad

return (r, c)

MOD-CPAb.ENC(m)

if k = ⊥ then
k ←$ {0, 1}n

if b = 0 then
r←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad

if b = 1 then
m′←$ {0, 1}n

r←$ {0, 1}n

pad ← prf(k, r)
c← m′ ⊕ pad

return (r, c)

IND-CPAb.ENC(m)

if k = ⊥ then
k ←$ {0, 1}n

if b = 0 then
(r, c)←$ ζ.enc(k,m)

if b = 1 then
m′←$ {0, 1}n

(r, c)←$ ζ.enc(k,m′)

return (r, c)

Figure 6: The left-most column shows the modular game MOD-CPA that uses an oracle EVAL.
From the left-most to the second-left column, we inline the code of PRF0.EVAL. From the
second-left to the second-right column, we use Bellare-Rogaway-like code-comparison to see
that the key generation can be moved up, as it is the same in both branches of the program.
We get from the second-right column to the right-most column by considering the code of
our concrete construction ζ.

A Example for the usefulness of associativity
Given a pseudorandom function (PRF), we construct a symmetric encryption scheme that
is indistinguishable under chosen plaintext attacks (IND-CPA). The goal of this example
is to showcase the usefulness of associativity of algorithm composition for the writing of
reductions. We will write the IND-CPA game in a modular way that makes the game-hop
which replaces the PRF with a random function immediate and thereby modularizes the
proof. As is good cryptographic practice, we proceed as follows:

(1) Specification of security goal: IND-CPA secure symmetric encryption.

(2) Specification of cryptographic assumptions: PRF security.
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(3) Construction: We build a symmetric encryption scheme from a PRF.

(4) Reduction: We prove that, if the assumption holds, then our construction satisfies
the security goal. I.e., we build a reduction that simulates the IND-CPA game (in-
stantiated with the construction) given oracle access to the PRF game.

(1) IND-CPA security. In the real-or-ideal formalization of IND-CPA security, the
adversary has adaptive access to an encryption oracle ENC to which they can adaptively
submit a message m. The adversary receives either an encryption of m, or an encryption of
a random string of the same length as m. The adversary then needs to distinguish between
the two distributions.3 Note that we operate in the concrete security setting as it is more
adequate for practice-oriented cryptography and therefore only define advantages rather
than security in line with the critique of Rogaway [Rog06], Bernstein and Lange [BL13].
Our ideas can be transferred analogously to the asymptotic setting.

We denote the interaction of the adversary with the encryption oracle as A◦ENC instead
of the common notation AENC. Moreover, we use the name of the game rather than the
oracle, writing A ◦ IND-CPAb. These convention are inessential on our example, but will be
convenient in more complex settings.

Definition 36 (IND-CPA Security). Let ζ = (ζ.kgen, ζ.enc, ζ.dec) be a symmetric encryp-
tion scheme. The IND-CPA advantage εζIND-CPA(A) of adversary A is

2 ·
∣∣∣Pr

[
1← A ◦ IND-CPA0

]
− Pr

[
1← A ◦ IND-CPA1

]∣∣∣ .
We consider εζIND-CPA as a function of the adversary and write, equivalently,

IND-CPA0 εζIND-CPA≈ IND-CPA1.

The game pair IND-CPA0 and IND-CPA1 is specified in the right-most column of Figure 6.

(2) PRF security. Given a pseudorandom function prf, we define a security game where
the adversary’s task is to distinguish between (a) PRF0 with an EVAL oracle using the
real prf function and (b) PRF1 with an EVAL oracle implementing a random function. For
disambiguation based on the secret bit b, we write PRFb.EVAL for the respective oracles.

Definition 37 (PRF Security). Given a pseudorandom function prf with key length n, we
write εprf

PRF(A) for the advantage of an adversary A distinguishing between PRF0 and PRF1.

3Note that this definition of IND-CPA security is equivalent (by a factor of 2) to the standard left-or-right
IND-CPA security definition. We prefer to use a real-or-ideal definitional style since such definitions tend
to ease composition, as already observed by Canetti [Can01].
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PRF0.EVAL(x)

if k = ⊥ then
k ←$ {0, 1}n

y ← prf(k, x)
return y

PRF1.EVAL(x)

if T [x] = ⊥ then
T [x]←$ {0, 1}n

y ← T [x]
return y

(3) Construction. We construct our sym-
metric encryption scheme ζ = (kgen, enc, dec)
in Figure 7.

(4) Reduction. We reduce the IND-CPA se-
curity of the encryption scheme ζ to the PRF
security of prf. Towards this goal, for both
b ∈ {0, 1}, we provide a modularized description of IND-CPAb by the package MOD-CPAb

(see Figure on the right). The package MOD-CPAb uses an EVAL oracle such that, when
MOD-CPAb is composed with PRF0, the package MOD-CPAb ◦PRF0 is perfectly indistinguishable
from IND-CPAb (See Figure 6 for the code-based perfect indistinguishability proof.).

MOD-CPAb.ENC(m)

if b = 0 then
r←$ {0, 1}n

pad ← EVAL(r)
c← m⊕ pad

if b = 1 then
m′←$ {0, 1}n

r←$ {0, 1}n

pad ← EVAL(r)
c← m′ ⊕ pad

return (r, c)

Let A be an adversary. In the following game-hops, note
that the PRF advantage appears twice, as the games IND-CPA0

and IND-CPA1 both use ζ.enc and thus employ the actual prf
and not a random function. The first and last transforma-
tion follow by perfect indistinguishability (See Figure 6) and
are proven via inlining the code of the corresponding oracles
into MOD-CPAb. The PRF assumption and associativity of al-
gorithm composition cover all other steps, except for the one

ζ.kgen

k ←$ {0, 1}n

return k

ζ.enc(k,m)

r←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad
return (r, c)

ζ.dec(k, (r, c))

pad ← prf(k, r)
m← c⊕ pad
return m

Figure 7: Construction of the IND-CPA secure encryption scheme ζ from the pseudorandom
function prf. For simplicity, we assume that k, r, pad, m, and c all have the same length n.
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labeled statistical gap, on which we focus below.

A ◦ IND-CPA0

perf
≡ A ◦ MOD-CPA0 ◦ PRF0 (Perfect equivalence)

code≡ (A ◦ MOD-CPA0) ◦ PRF0 (Associativity)
ε1(A)
≈ (A ◦ MOD-CPA0) ◦ PRF1 (PRF security, ε1(A) = εPRF(A ◦ MOD-CPA0) )

code≡ A ◦ MOD-CPA0 ◦ PRF1 (Associativity)
ε2(A)
≈ A ◦ MOD-CPA1 ◦ PRF1 (Statistical gap)

code≡ (A ◦ MOD-CPA1) ◦ PRF1 (Associativity)
ε3(A)
≈ (A ◦ MOD-CPA1) ◦ PRF0 (PRF security, ε3(A) = εPRF(A ◦ MOD-CPA1) )

code≡ A ◦ MOD-CPA1 ◦ PRF0 (Associativity)
perf
≡ A ◦ IND-CPA1 (Perfect equivalence)

The statistical gap occurs when the game moves from encrypting the adversary’s message
to encrypting a random message. In both cases, the padding is created via a random
function. However, the ciphertext distributions differ whenever there is a collision on the
randomness r. In that case, the padding is repeated and therefore, if b = 0, the xor of the
two ciphertexts equals the xor of the two messages that the adversary queried. In turn,
if b = 1, then with overwhelming probability, the xor of the two ciphertexts will yield a
uniformly random string. Therefore, we need to perform a bad event analysis to bound the
probability of a collision on r. Let qA be an upper bound on the number of oracle calls by
the adversary; by the birthday bound, the probability of the bad event is at most qA2/2n−1

and thus, ε2(A) ≤ qA2/2n−1.
Our suggested writing style splits reduction proofs into different kinds of steps. Simple

steps such as code equivalence, associativity and using the assumption are carried out
separately and algebraically and allow to make the reduction explicit and precise, first as
MOD-CPA0 then MOD-CPA1. In turn, the statistical gap argument needed a more complex
analysis that can potentially hide subtleties. We thus think that such steps should be
avoided whenever possible. E.g., in the aforementioned example, one could use a second
assumption such as the indistinguishability of real nonces r (that do have collisions) and
ideal nonces (that do not have collisions). The assumption can then be proven without
considering the entire IND-CPA game, and it can be used via an algebraic game-hop.
However, using more than one assumptions in a proof requires parallel composition and
more algebraic rules than associativity. We refer to the main part of the paper for these
techniques.
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B Hybrid Argument Recipe
Hybrid arguments can be used in various contexts and are the standard technique to re-
duce multi-instance games to single-instance games. We here write down a general hybrid
argument recipe.

Lemma 38 (Hybrid Argument Recipe Lemma). Let Game0, Game1, Multi0 and Multi1

be four packages with in(Game0) = in(Game1) = ∅ and out(Game0) = out(Game1) as well as
in(Multi0) = in(Multi1) = ∅ and out(Multi0) = out(Multi1). Let A be an adversary.
Let n be a natural number. Let H0, . . . , Hn be games with out(Hi) = out(Multi1), let Ri be
reduction packages with out(Ri) = out(Multi1) and in(Ri) = out(Game1), and let R be a
package, which samples j←$ {0, . . . , n−1} and then behaves like Rj. Then we need to prove
the following:

Claim 1: It holds that

Multi0 perf
≡ H0 (3)

and Multi1 perf
≡ Hn (4)

Claim 2: For all i ∈ {0, . . . , n− 1} the following holds

Ri ◦ Game0 perf
≡ Hi (5)

and Ri ◦ Game1 perf
≡ Hi+1 (6)

If Claim 1 and Claim 2 hold, then the package R satisfies

εMulti(A) ≤ n · εGame(A ◦R) .

Proof. Let A be an adversary whose input interface matches out(Multi0) and let

εi,i′(A) =
∣∣∣Pr

[
0← A ◦ Hi

]
− Pr

[
1← A ◦ Hi

′ ]∣∣∣
be the distinguishing advantage between hybrids Hi and Hi

′ for A.

1. By definition we have

A ◦ H0 ε0,1(A)
≈ A ◦ H1 ε1,2(A)

≈ · · ·
εn−2,n−1(A)
≈ A ◦ Hn−1 εn−1,n(A)

≈ A ◦ Hn .

From the equation in Claim 1, it follows that ε0,n = εMulti, i.e.,

A ◦ H0 εMulti(A)
≈ A ◦ Hn
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By the triangle inequality of ε≈ we have that

εMulti(A) ≤ ε0,1(A) + · · ·+ εn−1,n(A) =
n−1∑
`=0

εi,i+1(A)

2. Now, we recall the definition of εi,i+1 and plug in Eq. 5 and 6 from Claim 2:

εMulti(A) ≤
n−1∑
i=0

εi,i+1(A)

=
n−1∑
i=0

∣∣∣Pr
[
1← A ◦ Hi

]
− Pr

[
1← A ◦ Hi+1

]∣∣∣
=

n−1∑
i=0

∣∣∣Pr
[
1← A ◦Ri ◦ Game0

]
− Pr

[
1← A ◦Ri ◦ Game1

]∣∣∣

When the value j sampled by R equals i, we have by inlining that Rcode≡ Ri. Thus, εMulti(A)
is smaller or equal to

n−1∑
i=0

∣∣∣Pr
[
1← A ◦R ◦ Game0 | j = i

]
− Pr

[
1← A ◦R ◦ Game1

∣∣∣ j = i
]∣∣∣ (7)

As the sum iterates over all i ∈ {0, . . . , n− 1}, we obtain

n−1∑
i=0

Pr
[
1← A ◦R ◦ Gameb | j = i

]
=

Pr
[
1← A ◦R ◦ Gameb

]
1
n

. (8)

Plugging Eq. 8 into Eq. 7 gives us

εMulti(A) ≤n ·
(
Pr
[
1← A ◦R ◦ Game0

]
− Pr

[
1← A ◦R ◦ Game1

])
=n · εGame(A ◦R) .

We now use the above recipe to provide a proof of Lemma 28. The lemma states that
the game pair MIb

code≡
∏n
i=1 Mbi satisfies εMI(A) ≤ n · εM(A◦R) for reduction R that samples

j←$ {0, . . . , n− 1} and runs  j∏
i=1

M1
i

∣∣∣∣∣∣IDout(M),(j+1)−

∣∣∣∣∣∣
n∏

i=j+2
M0
i


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Proof. We instantiate the hybrid argument recipe lemma as follows

Multib :code≡
n∏
j=1

Mbj ,

Gameb :code≡ Mb.

We define the hybrids Hi for 0 ≤ i ≤ n as follows

Hi :code≡
∏i
j=1 M1

j∏n
j=i+1 M0

j

Observe, that indeed, H0 code≡ Multi0 and Hn
code≡ Multi1, so Claim 1 holds. We now specify

the reduction package Ri for 0 ≤ i ≤ n−1 with in(Ri) = out(M) and out(Ri) = out(
∏n
j=1 M).

It behaves just as hybrid Hi, except for instance i + 1, where Ri forwards the calls to the
oracles provided through its input interface (i.e. M). Formally,

Ri :code≡

 i∏
j=1

M1
j

∣∣∣∣∣∣
(
IDout(M)

)
(i+1)−

∣∣∣∣∣∣
n∏

j=i+2
M0
j


We now need to show that the reductions Ri satisfy Claim 2. We show Eq. 5, then Eq. 6
follows analogously.

Ri ◦ M0 code≡

 i∏
j=1

M1
j

∣∣∣∣∣∣
(
IDout(M)

)
(i+1)−

∣∣∣∣∣∣
n∏

j=i+2
M0
j

 ◦ M0

code≡

 i∏
j=1

M1
j

∣∣∣∣∣∣M0
(i+1)

∣∣∣∣∣∣
n∏

j=i+2
M0
j

 (multi-instance interchange rule)

code≡

 i∏
j=1

M1
j

∣∣∣∣∣∣
n∏

j=i+1
M0
j


code≡ Hi

Therefore, by Lemma 38, R satisfies

ε∏n

j=1 Mj (A) ≤ n · εM(A ◦R),

which concludes the proof of Lemma 28.
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C Partner Mechanisms in Key Exchange
Partnering is needed in key exchange protocols to specify the pairs of sessions that derive the
same key so that security notions for key exchange can exclude trivial winning strategies,
such as revealing the key of a partner session. The original BFWW work showed that for
composition, the reduction needs to know the partnering between sessions. In our model,
we give the partnering information directly to the adversary (since the game returns the
same id for matching sessions) and thus also to the reduction. There are a multitude of
ways to define partnering in key exchange, and partnering in key exchange is an interesting
area of research that is not yet fully clarified. For simplicity, we here follow Bellare and
Rogaway’s formulation of public partnering functions that map sessions merely based on
public transcripts [BR95]. While partnering functions have not been very popular over
the past 15 years, Brzuska and Jacobsen [BJ17, Jac17] recently re-discovered partnering
functions, because properties of partnering functions such as uniqueness can be required
to hold syntactically, while they only hold probabilistically for concepts such as session
identifiers and key equality. These syntactic properties simplify our composition theorem
as we discuss in the end of Section 6. The following definition is a prose variant of the
definition of transcript given by Brzuska and Jacobsen [BJ17, Jac17].

partnering functions are used within key exchange security games and yet, at the same
time, the definition of partnering functions requires part of the game as already defined.
The way out of the circularity is as follows: (1) The partnering function can be defined
syntactically on transcripts, and the transcript are well-defined also without a partnering
function. (2) No probabilistic properties on the partnering function are required, so that
we can consider all powerful adversaries in the consideration of the partnering function.

Definition 39 (Transcript). The public transcript T of a key exchange game consists of all
calls to NEWPARTY, NEWSESSION and SEND by the adversary as well as their answers,
except for the answers of SEND where only the first component of each answer becomes part
of the transcript.

Definition 40 (Partnering Functions). A symmetric and monotonic partnering function
is a function f , parametrized by a transcript T , that maps pairs (U, i) of sessions to other
pairs (V, j) of sessions

1. fT (U, i) = (V, j) =⇒ fT (V, j) = (U, i), (symmetric)

2. fT (U, i) = (V, j) =⇒ fT ′(U, i) = (V, j) for all T ⊆ T ′. (monotonic)

Partnering soundness. For a security analysis based on partnering functions to be
meaningful, the partnering function needs to satisfy certain soundness properties. Briefly,
soundness demands that partners should: (1) end up with the same session key, (2) agree
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upon who they are talking to, (3) have compatible roles, and (4) be unique. However,
since we are limiting our attention to symmetric partnering functions in this paper, the last
requirement follows directly so we omit it.

Definition 41 (Partnering Function Soundness). A partnering function is sound if the
following holds for all transcripts T . If sessions fT ′(U, i) = (V, J) then:

1. π[U, i].α = π[V, j].α = accepted =⇒ π[U, i].k = π[V, j].k 6= ⊥,

2. π[U, i].peer = pk[V ], and π[V, j].peer = pk[U ].

3. (π[U, i].role = I, and π[V, j].role = R) or (π[U, i].role = R, and π[V, j].role = I)

D Perfect Equivalence for MOD-CCA in the Proof of Theo-
rem 24

We prove that for b ∈ {0, 1}, PKE-CCAb,ζ is perfectly equivalent to MOD-CCA ◦ KEMb,η
DEMb,θ ◦ KEYλ

as defined in Section 4. The proof proceeds by inlining all oracle calls in MOD-CCA and
inlining the construction ζ in PKE-CCAb,ζ . See Figure 8 and its caption for the details of the
inlining. Note, that in PKE-CCAb,ζ on the right-most column, we have already inlined the
construction ζ and moved the running of the decapsulation algorithm in the line preceding
the if -statement, as the line is used in both if -branches. As noted in the caption, the
difference in PKDEC between columns 3 and 4 can be resolved by applying the correctness
of η.encap, which implies that the keys k and k′ are identical in both branches, enabling us
to remove the if -statement entirely and thus proving the perfect indistinguishability.
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MOD-CCA ◦ KEMb,η
DEMb,θ ◦ KEYλ PKE-CCAb,ζ

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
c1 ← ENCAP()

c2 ← ENC(m)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
if b = 0 then
k, c1←$ η.encap(pk)
SET(k)

else
c1←$ {0, 1}elen

GEN()
k ← GET()
if b = 0 then
c2←$ θ.enc(k,m)

else
c2←$ {0, 1}θ.clen(|m|)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
if b = 0 then
k, c1←$ η.encap(pk)
SET(k)

else
c1←$ {0, 1}elen

GEN()
k ← GET()
if b = 0 then
c2←$ θ.enc(k,m)

else
c2←$ {0, 1}θ.clen(|m|)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
if b = 0 then
k, c1 ← η.encap(pk)
c2←$ ζ.enc(k,m)

else
c1←$ {0, 1}elen

c2←$ {0, 1}clen(|m|)

c← c1||c2

return c

PKDEC(c′)

assert pk 6= ⊥
assert c 6= c′

c′
1||c′

2 ← c′

if c′
1 = c1 then
m← DEC(c′

2)

else
k′ ← DECAP(c′

1)
m← θ.dec(k′, c′

2)
return m

PKDEC(c’)

assert pk 6= ⊥
assert c 6= c′

c′
1||c′

2 ← c′

if c′
1 = c1 then
m← DEC(c′

2)

else
k′ ← η.decap(sk, c′

1)
m← θ.dec(k′, c′

2)
return m

PKDEC(c’)

assert pk 6= ⊥
assert c 6= c′

c′
1||c′

2 ← c′

if c′
1 = c1 then
k ← GET()
m← θ.dec(k, c′

2)
else
k′ ← η.decap(sk, c′

1)
m← θ.dec(k′, c′

2)
return m

PKDEC(c′)

assert pk 6= ⊥
assert c 6= c′

c′
1||c′

2 ← c′

k ← η.decap(sk, c′
1)

m← θ.dec(k, c′
2)

return m

Figure 8: Col. 1-to-2: ENCAP and DECAP of KEM-CCA0,η, and ENC and DEC of DEM-CCAb,θ

are inlined, highlighted in gray. Col. 2-to-3: Calls to SET and GET do not modify k.
Col. 3-to-4: we compare MOD-CCA to KEM-CCAb,θ. They differ only when c′1 = c1 in the
PKDEC oracle. PKENC can only be called once and thus, MOD-CCA.PKDEC decrypts c′2
with the symmetric key k that was previously encapsulated in the MOD-CCA.PKENC oracle.
By correctness of the KEM we have that k = η.decap(sk, c′1) and η.dec thus uses the same
k in both cases.
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