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Sophisticated ubiquitous sensing systems are being used to measure motor ability in clinical settings. Intended
to augment clinical decision-making, the interpretability of the machine-learning measurements underneath
becomes critical to their use. We explore how visualization can support the interpretability of machine-
learning measures through the case of Assess MS, a system to support the clinical assessment of Multiple
Sclerosis. A substantial design challenge is to make visible the algorithm’s decision-making process in a way
that allows clinicians to integrate the algorithm’s result into their own decision process. To this end, we
present a series of design iterations that probe the challenges in supporting interpretability in a real-world
system. The key contribution of this article is to illustrate that simply making visible the algorithmic decision-
making process is not helpful in supporting clinicians in their own decision-making process. It disregards that
people and algorithms make decisions in different ways. Instead, we propose that visualisation can provide
context to algorithmic decision-making, rendering observable a range of internal workings of the algorithm
from data quality issues to the web of relationships generated in the machine-learning process.
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1 INTRODUCTION

The recent availability of ubiquitous sensing has made the opportunity to sense movement, and
by extension measure motor ability, a realistic possibility in clinical settings. For example, systems
are being built to assess standing balance in older adults using gyroscopic and force sensors [51], 12
detect and respond to freezing gait in situ for Parkinson’s patients using accelerometry [35], and
analyse gait in multiple sclerosis patients [15]. As these systems become more sophisticated, they
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are using machine-learning algorithms to interpret the sensed data and propose a measurement or
action. Systems intended to augment clinical thinking, the interpretability of the machine-learning
measurements becomes critical to their use.

We use the example of Assess MS to explore how we can enable clinicians to use the results of
machine-learning measurements in their clinical decision-making. Assess MS is a depth-sensing
computer vision system to support the clinical assessment of motor ability in Multiple Sclerosis
(MS) [26, 39]. Using novel machine-learning algorithms, it aims to provide a more consistent and
fine-grained measure of motor ability than currently possible through neurological examination.
The system captures patients doing specified assessment movements with a Kinect under the su-
pervision of a health professional. The depth data is then processed, and the machine-learning
algorithm returns a classification of motor ability based on the well-known clinical scale, the Ex-
panded Disability Status Scale (EDSS) [29].

A substantial design challenge is to make visible the algorithm’s decision-making process in a
way that allows clinicians to integrate the algorithm’s result into their own decision process. As-
suming that it is enough to utilise numbers that correlate with a known clinical framework, over-
looks a large literature on information in medicine that illustrates the myriad of ways in which
data is part of a larger negotiated diagnostic process that requires interpretation of measures pro-
vided [21]. Measurement and context are elided when a clinician carries out an examination, but
when the measurement of motor ability is done by an algorithm and its interpretation by a clini-
cian, an understanding of how the algorithm arrived at its measurement is needed to support this
negotiated interpretation.

Interactive computer vision systems, as exemplified by Assess MS, pose particular challenges to
the interpretability of machine-learning algorithms. While a growing corpus of work focuses on
using visual analytics to support the interpretation of machine-learning results in decision-making
contexts (e.g., Reference [50]), most of this work is inspired by networks, or complex data sets. They
offer little guidance in terms of image data. In our case, we need to relate the algorithmic decision
process to the temporal body. Indeed, previous research has highlighted that computer decision
support on images of the body is very different than working with data points [18], offering few
concrete starting points.

In this article, we present a series of design iterations in which we iteratively explore potential
visualisations for expressing the predicted machine-learning measurement of motor ability pro-
vided by Assess MS for a clinical audience. The key finding of this article is to illustrate that simply
making visible the algorithmic decision-making process is not helpful in supporting clinicians in
their own decision-making process. It disregards that people and algorithms make decisions in
different ways. Instead, we propose that visualisation can provide context to algorithmic decision-
making, rendering observable a range of internal workings of the algorithm from data quality
issues to the web of relationships generated in the machine-learning process.

The specific contributions that this article makes are:

e “Making visible” the algorithm was too naive an approach to be useful for clinical purposes
as people and machines “think” differently.

o Intelligibility may be achieved through providing context to algorithmic decision-making,
such as data quality.

e We highlight a potential new role of curation, in which someone with hybrid computational
and medical expertise is able to inspect a machine-learning model for accuracy, something
a clinician is not skilled, or needs, to do.

e We demonstrate that machine-learning algorithms cannot be designed separately from
the design of the application itself, questioning the “box” metaphor often associated with
machine-learning algorithms.
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2 RELATED LITERATURE
2.1 Machine Learning in Motor Assessment

The application of machine learning to MS is most commonly applied to the automated identifica-
tion of MS lesions within panels of magnetic resonance images (MRI). This large literature includes
examples that: prove the technical capabilities of specific machine-learning algorithms (e.g., Refer-
ence [14]); respond to articulated workflow problems, such as human performance variability (e.g.,
Reference [49]; or address a clearly articulated clinical problem, such as transition to full MS from
the precursor syndrome (e.g., Reference [7]). There is also a small literature on the application of
machine learning specifically to movement analysis in MS [1, 41]. The overarching focus of this
literature is algorithmic development and validation; considerations of how such systems might
be used in clinical practice are restricted to the framing of the technical problem.

The advent of ubiquitous sensing technologies has made the opportunity to measure motor
ability in clinical practice a real possibility [45]. For example, gyroscope data has been used for
machine-learning tremor classification in Parkinson’s disease [9]. This study takes the same ap-
proach as Assess MS using labelled data based on a relevant clinical standardized rating scale.
Computer vision has also been used to assess finger tapping in people with Parkinson’s, by which
features were computed that estimated speed, amplitude, rhythm and fatigue in tapping and then
used to train an algorithm to predict a symptom severity score [24]. Most recently, depth-sensing
has been used to develop gait-indices for MS patients that align to the clinical standardized rating
scale in a clinic setting [15].

While all of these studies were carried out in clinics, there is no discussion how clinicians would
use such a system in clinical practice. It seems assumed that by producing clinically meaningful
scores no further explanation of how those scores were reached is needed. This notion is at odds
with social science literature in this area as discussed below.

2.2 Interpreting Image Data in Medicine

Images of the body are now commonplace in medicine. They are a tool that allows clinicians to
“see” inside the body and perceive what they cannot see with their own eyes. This augmented
“seeing” can be used for a range of purposes, from diagnosing disease to guiding surgical proce-
dures (see Reference [37] for overview). The useful information that may be obtained from medical
images, however, is not self-evident [36]. It relies on skills that clinicians learn through extensive
apprenticeship. Clinicians establish a professional vision that allows them to see pertinent infor-
mation in an image [17]. A medical image is not an objective view of the body [21], but a foggy
window onto the body whose contents must be interpreted within the frame of a larger clinical
picture and technical limitations of the imaging method.

The most relevant study of machine learning to interpret image data is an ethnography of a
mammography screening service carried out in the context of a clinical trial of a computer-aided
detection tool for breast cancer. The tool was intended to support radiologists by using a machine-
learning algorithm to draw attention to specific parts of the image through prompts. This atten-
tion cue was hoped to counteract the effects of variability in concentration and make the visual
search pattern more systematic in a human reader. The intention of this support was to enable a
switch from having two human readers of the mammography images to a computer-reader and a
human-reader [18]. The study raised two salient issues: the use of contextual information in image
interpretation and the ways readers take account of other reader’s opinions.

The ethnography showed that mammography images are interpreted alongside other docu-
ments, such as previous images or the patient’s record. The authors suggest that the decision of
whether a patient has breast cancer is “achieved through the coherent marshalling of ensembles of
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evidence.” They point out that readers not only are skilled in marshalling these ensembles, but they
know how the information was produced. As a result, they can make decisions about how much
they can rely on pieces of information. An algorithm, in contrast, does not have the availability or
capability to integrate a wider set of data in an ad hoc manner. Nor can the algorithm’s classifica-
tion be utilised in such an ensemble, if the generation process of its output is not understood.

Even so, human readers felt the need to generate accounts of the computer’s reading, and ensure
their own thinking addressed the prompts offered. This could lead to elaborate (and potentially in-
correct) assessments of the computer’s reading, for example, suggesting ways that cancer might
be seen in the image when not present. This behaviour, however, mimics the way that human
readers would interact with their colleagues. They would develop a conversation around different
opinions, and negotiate a final decision. This and the previous finding described highlight the im-
portance of making visible the decision-process of machine-learning algorithms so that they can be
incorporated into an interpretive process that relies heavily on colleagues and known information
practices.

This study suggests that some level of interpretability of the machine-learning assessment of
images is needed to allow clinicians: to utilise the classification results within a wider set of data
and knowledge; and to enable explanatory accounts that support collaborative interpretation with
other human colleagues. To usefully include sensor-based assessment in clinical practice, it will
be essential to help a clinician understand the decision-making process of the algorithm in such
a way that they can incorporate the result into their own thinking. It is not enough to provide a
clinically meaningful classification. In the next section, we consider research on interpretability of
machine learning in both clinical and non-clinical settings.

2.3 Interpretability of Machine-learning Algorithms

There is some work in the machine-learning literature that focuses explicitly on the need for in-
telligibility of classification of machine-learning models, particularly in healthcare, e.g., Reference
[6]. This literature demonstrates that there is still a significant trade-off in performance between
models that are considered intelligible (e.g., generalized additive models) and those that are con-
sidered most powerful (e.g., deep neural nets). This is in part because of the univariate nature
of generalized additive models. Some research is closing this gap, but still unable to deal with
large-dimensional data [32]. This trade-off is very pertinent to Assess MS as the small amounts of
medical data being used require more powerful models to gain the calibre of results necessary for
medicine at the potential expense of the interpretability of the model.

The human-computer interaction literature has focused on interpretability of machine learning
mainly in the context of interactive machine learning [2]. Interactive machine learning focuses on
supporting users to incorporate their own judgements into the model through an iterative training
approach of providing training samples or labels to the model and seeing the resulting change in
the model. This has been delineated in applications such as email classification [47], image search
[13], and alarm triage [3]. These works are all predicated on the idea that transparency, or a “white
box” model increases users’ abilities to interact with systems based on machine-learning models
[19].

Studies in this literature have addressed the problem of how best to provide explanations that
achieve this “white box.” Why or why not questions have been one of the key mechanisms explored
for successfully providing feedback to users [28, 31]. Principles for these explanations are laid out
in Reference [27]: Be iterative, be sound, be complete, but do not overwhelm. The authors suggest
that information should be provided in way that allows people to gradually build their mental
models, striking a balance of accuracy of explanation with the amount of information provide.
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In a real-world study, Reference [25] found that explanation fostered trust when an algorithm
violated expectation, but too much information eroded trust.

Work on the explanation of context-aware systems have expanded what might be included in
an algorithmic explanation. Along with Why and Why not questions, Reference [30] adds What,
What if, How to, Inputs, Outputs, and Certainty. The last three highlight aspects specific to sensor
behaviour and include notions of certainty. What has been sensed? What has been computed?
How certain are the computations? These general types of information to provide are a helpful
starting point. They can be nuanced by findings that show that preference to how a system frames
its answers is not uniform [47] and that errors may be judged based on the likelihood of human
error in the same situation [12].

We can see how explanatory accounts play out in medicine more specifically by looking at clin-
ical decision support systems for diagnosis. Reference [5] looks at the over and under reliance
on such systems. They show that fuller explanations substantially increased trust (to the point of
over-reliance), where measures of certainty did not. These authors also found that health profes-
sionals trusted the system most when it provided reasoning similar to their own. In this case, that
was achieved through providing the data used for decision-making. Other participants wanted
explanation to go beyond the data to the pathology. Confidence intervals, however, were hard to
interpret without explicit guidance. Showing the confidence intervals of all possible predictions
was more useful.

The HCI literature on algorithm interpretation is heavily focused on the laboratory environ-
ment. In this article, we want to examine how we might apply some of this learning to a real-world
system. To date, computer decision support systems that use machine learning have struggled to
gain purchase in practice because of unresolved questions about diagnostic accuracy, safety and
feasibility of use in busy clinical settings [40]. Yet, examples such as prospective genetic finger-
marking in cancer research, which use visualisation of very uncertain results to support clinical
decision-making [16] show that machine learning can play a useful role in medicine if contextu-
alized properly.

The work in this section is primarily textual or dealing with categories that are reasonably
discreet. A challenge of the Assess MS is to apply these ideas to image data, and specifically image
data of the body. Visualization is one way that this might be done.

2.4 Visualization

Visualization is one way to support users in exploring and interpreting machine-learning algo-
rithms that they are working with. Mane et al. [34] provide a key example in the health domain,
proposing a visualisation that aggregates a patient’s history with predicted future path for differ-
ent medication scenarios. The prominent design feature of this system was to provide predictions
that could be interpreted in the context of a patient’s data, without offering an explicit “decision.”
The article suggests that by using visualisation rather than a numeric output, context can be pro-
vided in a way that allows the health professional to reason about the prediction. This example has
guided us in the role visualization could usefully take in communicating the Assess MS results, but
we need to look elsewhere to gain inspiration as to how we might apply this to concept to image
data.

The HCI literature has explored how visualization can be used to convey classification bound-
aries to help users refine models about concepts that may not be discrete, such as the weather. In
ManiMatrix, the classification boundaries are provided in square pie-chart type graphs as well as
through color-coded confusion matrices [22]. EnsembleMatrix is similar for multiclass machine-
learning algorithms, using heat map visualisations among others to reveal commonly confused
classifications in the algorithm [48]. While the focus of this work is to enable interactive training,
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it does highlight the importance of visualising classification boundaries to spot outliers or near
boundary decisions.

Other systems focus on facilitating the integration of domain expertise. G-PARE, a visual an-
alytic tool for comparing two uncertain graphs, is a particularly good example. Each uncertain
graph is produced by a machine-learning algorithm that outputs probabilities over node labels. It
provides several different views that allow users to obtain a global overview of the algorithms out-
put, as well as focused views that show subsets of nodes of interest. Users can follow cascades of
misclassifications by comparing the algorithm’s outcome with the ground truth [44]. This example
draws attention to the importance of views of different granularity.

Elzen [10] focuses on how domain experts can explore and adjust decision trees directly. This
author provides an overview of a range of visual examples of decision trees, characterising them
as either node-link diagrams, icicle plots, or a combination of these two. The most relevant finding
of this work is that current visualisations do not integrate the tree visualization (the structure of
the decision tree) with the data visualization (the visualization of class distributions). This distinc-
tion in the role of visualisations may be unhelpful for clinical-decision making, which may need
different perspectives on the measurements and at how they were arrived.

The literature does not provide direct examples of visualization of machine-learning algorithms
that compute over images of the body. Descriptions of rehabilitation systems, however, offer some
perspective on visualisation of sensed health data. In Reference [4], a knee rehabilitation system
provides real-time visualization of knee flexion for each repetition with a summary bar chart of
knee flexion across exercises and the change in flexion over time. In Reference [11], new graph
visualisations are being developed for specific design foci, such as providing detailed step data to
cue social support. Auditory approaches, representing movement with a wave of sound, have also
been successfully tried to support the management of chronic pain [46]. None of these examples
explicitly reference an image of the body.

3 ASSESS MS
3.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which
causes a variety of symptoms, either in combination or alone. These may include numbness or
paralysis, tremor, cognitive difficulties, vision-loss, and reduction in motor strength. While symp-
toms are very diverse, stereotypical symptoms include: intention tremor, the shaking of the hand
when intending to touch a target (e.g., the nose); ataxia, the wobble of head or torso when balanc-
ing; and impaired walking requiring aids for balance and to address paralysis. The common focus
on these symptoms when portraying MS reflects that motor ability loss, as opposed to sensory or
cognitive ability loss, is one of the key non-invasive indicators of disease progression.

The disease course is most frequently characterised by relapses in which the affected person
experiences neurological symptoms followed by extended periods of remission in which symp-
toms may improve. Over time, the disease can enter into a progressive phase in which a steady
deterioration occurs. About 15% of MS patients have on-going deterioration from disease onset
[20]. More tangibly, some patients can lose their lives from the disease within a period of years
while others can live their entire lives affected only by minor sensory loss. The unpredictability of
the disease course is challenging for patients and clinicians alike in making treatment decisions,
making the ability to track MS particularly useful.

The condition is currently assessed with a standardized rating instrument based on clinical ex-
amination, the EDSS [29]. Patients are asked to perform a range of functional exercises, including
stretching out one arm to the side and then touching the nose (Finger Nose Test) or walking on a
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Fig. 1. The Assess MS prototype used by a health professional to capture depth and RGB videos of specific
assessment movements performed by patients in a clinical setting with a Kinect.

pretend tight rope (Tightrope Walking). These exercises cover seven functional groups from sen-
sory abilities (e.g., numbness) to motor and cognitive abilities. Each exercise is given a sub-score,
often on an ordinal scale from 0 (no disability) to 4 (no function); sub-scores are then summarized
into Functional System scores and, together with the ability to walk, are combined to create an
ordinal score, from EDSS 0 to EDSS 10.

Although the EDSS is a widely-used and accepted outcome measure, it suffers from low intra-
and inter-rater reliability making disease tracking difficult [8].

3.2 Assess MS System

Assess MS is a system to support the clinical assessment of Multiple Sclerosis (MS) using depth-
sensing computer vision. Its aim is to provide a consistent quantified metric of motor ability for
patients with MS to enable more reliable tracking of disease progression than currently possible.
The system has four parts: (1) a prototype device for capturing depth and RGB videos of specific
assessment movements performed by patients; (2) an interface for clinicians to label those patient
videos with the relevant ordinal EDSS sub-score as well as rank patients; (3) a supervised machine-
learning pipeline used to classify the severity of motor dysfunction, predicting the EDSS ordinal
sub-score for each assessment movement; and, finally, (4) a visualization interface to present results
to clinicians, the centrepiece of this article.

A prototype device, shown in Figure 1, is used by a health professional to capture depth and
RGB videos of specific assessment movements performed by patients in a clinical setting with a
Kinect; see Reference [38]. The original movement protocol focuses on a set of 11 movements
covering upper body, trunk, and lower body motor ability thought to be clinically indicative of
disease progression. The visualizations in this article draw mainly from the EDSS Finger Nose
test. In this movement, the patient stretches their hand out to the side and touches their nose
three times before placing the hand in their lap. This is done on both the left and right and with
eyes open and closed. Tests that show ataxia, the wobble seen when holding both arms out to the
side or drawing squares in the air in front of the patient are also used.
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The videos are then labelled by clinicians with the appropriate ordinal EDSS sub-score as well as
ranked in relationship to each other to provide the training and test data for algorithm development
and validation; see Reference [43]. For the purposes of the visualizations presented in this article, a
supervised machine-learning approach has been taken to predict the clinician-provided EDSS sub-
score labels from 0 to 4, providing integer classifications for each movement. While algorithmic
development remains on-going, an early version of the algorithm has been published in Reference
[26]. Details critical for understanding the visualizations are presented below.

Customized randomized Forests and novel ensembles of randomized Support Vector Machines
are used to discriminate landmarks in the depth videos that contribute to the classification. Unlike
other applications that assess motor ability [33], the skeleton provided by the Kinect SDK is not
utilised. Rather data reduction is achieved through the calculation of optical flow throughout the
video. The choice of decision trees as opposed to other methods was made ostensibly with the
ability to explain the results. In theory, each evaluative step in the branching decision tree can be
examined, and a descriptive account given of the decision-making process.

The landmarks chosen are random spatial-temporal cubes in the depth video that contain the
optical flow information. In other words, the “features” utilised in this case are numeric values that
approximate (through a series of abstractions) the number of changes in direction of either X- or
Y-oriented movement within a three-dimensional cube of space-time. Classification is performed
by in a series of branching rules, each of which compares either a single feature, or the result of
an arithmetic function involving two features, to some arbitrary numeric threshold. The result of
this calculation determines either the next rule that will be applied or, in the final step, assigns a
categorical label. The features, evaluation rules and their ordering are all learned from data during
a process of training.

The Assess MS prototype is currently being used to collect depth data for training and vali-
dation of the machine-learning algorithms being developed. The Assess MS system has not been
deployed as a predictive tool in clinical consultations. As such, the visualizations proposed here
are in preparation for planned future use in clinical consultations.

4 VERIFYING ALGORITHMIC MODELS

Our first design exploration was to present a set of visualisations developed for verifying the
machine-learning algorithm to our clinical colleagues. While never intended for clinical consump-
tion, it provided a starting point to what aspects of visualisation may or may not be useful. Shown
in Figure 2, it consisted of a heat map of the spatial-temporal cube features used by the algorithm in
its decision process. The yellow boxes are those cube features most important in the decision-tree,
fading out to red as least important. The spatial-temporal cubes are aggregated across patients and
flatten in time onto a single image. A random frame from a single patient video was used as the
background to show how a body may relate to the spatial temporal cubes. The approach is similar
to the heat maps used in Reference [48], differing in that they are imposed on the body rather than
confusion matrix.

This visualisation was shown to five of our clinical collaborators at a two-day quarterly team
meeting. This set of visualisations served its intended purpose in ensuring that the computer was
making decisions based on areas of the image that would be expected, such as the nose area in
the Finger Nose test. It also showed some more surprising results, such as emphasising trunk
movement in the “Drawing Squares” movement rather than hand movement as expected by the
clinicians. In retrospect, this too was understandable, as there was too much unintended variation
in the hand movement to be a substantial feature, but the ataxic symptoms of the trunk (wobble)
could still be noted. Most importantly, it could be verified that the machine was not relying upon
unexpected features, such as height.
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Finger Nose test Drawing Squares test Ataxia test

Fig. 2. Heat map of the spatial-temporal cube features used by the algorithm in its decision-making. The
yellow boxes are those cube features most important in the algorithmic decision-making fading out to light
red as least important.

The clinicians found it very difficult to relate to this set of visualisations even after multiple ex-
planations. Two distinct issues arose, the relationship of: (1) data to the body; and (2) data to time.
The relationship between the spatial-temporal cubes and the body is not obvious in this visualisa-
tion probe. Many of the cubes are off the body, such as next to the waist. From an algorithmic point
of view this makes sense; these boxes would be expected to contain movement when the person
had ataxia symptoms in comparison to no movement when the person was healthy. The interior
of the body is less likely to show differences between patients and healthy volunteers. However,
when a health professional assesses a patient, they look at the body and not where it might go in
space. This is a substantial disconnect that made it difficult for the health professionals to link the
algorithm’s decision process to their own.

The few representations that were on-body, such as the nose area in the Finger Nose Test, did
not provide enough granularity to add to the doctor’s general knowledge. In this case, for example,
every doctor knows that symptoms will appear around the nose. The clinicians asked many ques-
tions trying to understand how the visualisation might further be inspected to give them a view
into the specific characteristics of those symptoms. One clinician said, “Does the height of the box
represent the amplitude of the tremor?” Another asked, “Would the specific configurations of the
boxes be different for each patient so that I could learn to distinguish patterns?” These questions
demonstrated that the clinicians were looking for something that they could interpret, but this
visualisation did not provide it.

A further challenge for clinicians in interpreting this visualisation was the cohort view repre-
sented on the image of a single image. While this is important from a machine-learning point of
view to test the validity of the model generated, it cannot provide the individual differences that
clinicians look at when assessing a patient in person. The confusion generated by overlaying the
visualisation onto a single patient made apparent this disconnect. Clinicians attempted to relate
the boxes to that patient’s body and could not think about a whole cohort at once. That said, three-
dimensional scatter plots used earlier in the project to represent cohort data were well received,
as the clinicians used the distance between patients to understand their relationship to a cohort.

The representation of time, or rather lack of it, was also problematic. Not only did clinicians
want to relate the boxes to the body, but to the body in time. For example, one clinician asked “T
would not expect to see a box at the elbow. Is that at the beginning or the end?” Another clinician
said, “Does the strength of the colour represent the speed of the movement?” Time, however,
can be challenging to represent, particularly in the cohort view applied here. The presentation
of the visualisation to our clinical team members, while never intending to be for their clinical
consumption, was nonetheless, very informative. It highlighted the relationship of data to the body
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Fig. 3. An annotated version of the axis-aligned projection representation presented in Figure 3. Clinicians
could identify three repetitions of the finger nose test demarcated by the grey boxes and the tremor demar-
cated by the black boxes.

and time as important aspects of any visualisation that we would need to provide to help clinicians
integrate algorithmic decision-making into their own thinking.

5 VISUALISING ALGORITHMIC DECISION-MAKING

Our second design exploration focused on making the algorithmic decision-making process vis-
ible to the clinician. Building upon what we had learned in showing clinicians visualisations for
machine-learning verification, we focused on notions of representing time and body. Our initial de-
sign approach was to overlay algorithmic features onto a visualisation that the health professionals
found compelling. The work presented in this section builds up this picture through discussing:
visualisation choice, exploring temporal representation, and exploring bodily representation.

5.1 Visualisation Choice

To choose an appropriate base representation of the patient video, we informally interviewed nine
neurologists and asked them to discuss three potential visualisations. Shown in Figure 3, these
abstracted time and the body in different ways. These are mapped onto the horizontal and vertical
axes, respectively, in Figure 3.

e Visualisation 1 is a video (shown as a static image here) that shows the outline of the
person’s body with the heatmap of the spatial-temporal cubes (as in the visualisation probe)
that cross the body outline through time. This view addresses the relationship of data to
body and time, but does not attempt to abstract either.

e Visualisation 2 uses an axis-aligned projection technique that captures movement in one
dimension only, encoding time and movement into a single image. Each frame of a depth
video is reduced to a 1 by n pixel image, where n represents the height of the image, and the
intensity of each pixel summarises the largest distance in a particular row in the image. This
visualisation provides an abstraction away from the body, but elements of the movement
are still visible in the wave form.

e Visualisation 3 provides a graph of the produced machine-learning classification that re-
lates cerebellar dysfunction and pyramidal dysfunction, two neurological systems. Time of
an individual movement is not shown, but change over time is shown through multiple
points on the graph. This visualisation abstracts the body and takes a view of time separate
from the movements themselves.

Time: The clinicians preferred being able to overview an entire video in a single image, as in
Visualisation 2. It made comparison easier, whereas video had to be held in memory to do the
same. Their interest was also piqued by the idea of tracking a patient over time and relating two
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Fig. 4. Visualizations used to elicit discussion with health professionals. They abstract time (x-axis) and the
body (y-axis) in different ways: Visualisation 1 (lower left), Visualisation 2 (middle), Visualisation 3 (upper
right). Interview findings suggested.

neurological systems together. While the clinicians found this quite novel, they found it hard to
imagine how this potential new way of looking at MS would be of benefit.

Body: The clinicians felt no need to see the body in the videos. If anything, they felt this un-
helpful as it did not augment their existing view of the patient beyond the clinical examination.
Visualisation 2, however, was of interest, because it highlighted specific aspects of the movement
(see Figure 4 for annotated visualization). For example, the clinicians could see the three repetitions
of the arm going in and out in the Finger Nose test as demarcated by the three grey contiguous
boxes over the wavy red section of the image. They could also see the tremor demarcated by the
black boxes around the spikey light blue waves. This alternative form of seeing the tremor, even if
without a measurement of amplitude, provided a starting point to pattern-match and compare to
other patients. The clinicians did not want to entirely abstract away from the body into a graph, as
they were more comfortable with images that related to clinical decision-making as they currently
knew it.
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Fig. 5. Feature-overlaid axis-aligned projections of a patient performing three repetitions of a Finger Nose
movement. It uses the heat-map of features used in the machine decision-making (described in Figure 2) in
a temporal representation.

The findings of the interviews led us to conclude that we should utilise Visualisation 2 as the
starting point for portraying the algorithm’s decision process. It worked well as an intermediate
image that neither portrayed the body, nor abstracted it to a data point. The ability to see time in a
single image was also critical for clinicians to develop the ability to compare visualisations among
patients. The aim in the exploration presented in the next section was to find a way to map the
features in the machine-learning decision-making process onto this visualisation.

5.2 Exploring Time

Figure 5 illustrates the axis-aligned projected image overlaid with a heat map of the features most
important in the machine classification for a single patient. It is similar to Figure 2 but with the
incorporation of time provided by the axis-aligned projection. Three horizontal bands of feature
sampling, smeared over the middle portion of the movement are seen. These correspond to the
upper head, lower face/shoulder, and elbow regions during arm flexion. Of these, only the lower
face fits easily into the clinical conceptual explanation-since it is here that a finger would ap-
proach during the flexion portion of a Finger Nose test. It is unclear, for example, why the top
of the head should be important in the machine classification. Unfortunately, the temporal align-
ment of features is not clearly associated with different phases of movement making a temporal
representation not useful.

The result is that neither the relationship of machine-learning model to body or time is eluci-
dated in this first attempt. The mapping of features onto this visualisation was much more chal-
lenging than we expected. While this is frustrating from the point of view of the original purpose
of the visualisation to explain to a clinical audience how the classification is proceeding, it has
proven useful in uncovering how algorithm design choices might affect the scope for visualisa-
tion. Although feature space-time cubes were dimensioned stochastically, bounds were placed on
each dimension. These were both spatial (a roughly 100 pixel border around the edge of the image
was excluded from sampling) and temporal (the temporal size of a cube could be no less than 20%
and no greater than 40% of the total movement duration).

These heuristic choices made by the algorithm designers ended up having a number of context-
specific consequences. First, certain parts of the movement that a human might consider important
for decision-making are not included at all. The defined dark regions visible in the arm region in
Figure 5 exist because the hand extends spatially into the arbitrary margin from which no sampling
took place. Second, the minimum temporal bound tends to prevent features being isolatable by
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Fig. 6. Heat map of spatial-temporal cube features (similar to Figure 2) represented over time through pro-
viding multiple images. Time is read left to right and then top to bottom. Each row is a repetition of the
Finger Nose movement. This representation highlighted that not all aspects of the machine decision-making
are relevant or in line with clinical decision-making.

specific phases of movement in a way that would assist clinical explication, for example arm flexion
(where intention tremor would be most marked) versus extension. This is because 20% of the video
duration actually approximates the duration of a complete cycle of movement. Third, that the
maximum duration (40% of video duration) encompasses up to two cycles might also tend to mask
patterns of sampling (e.g., the same area sampled in each repetition).

The representation produced in Figure 5 highlights the possibility that there is a minimal penalty
for features that smear across multiple movements—this is an emergent consequence of the nature
of the movement (cyclical, mirrored) and the choice of representation that just sums acceleration
changes over time. Corroborating this, we compared the frequency distribution of random possi-
ble feature durations that were generated at the start of training and on which all features were
based with the frequency distribution of those features that were actually incorporated into trees. If
duration was important for classification, given the representation, then you might expect the fre-
quency distribution to be altered to enrich selection of a certain duration. There was no such effect,
implying that temporality as understood in clinical terms in not incorporated into classification.

5.3 Exploring the Body

As it was difficult to see anything about the body in the axis-aligned projection representation once
features were mapped, we returned to a body image view initially used by the machine-learning
team but added time through providing multiple images and only showing a single person’s data.
Shown in Figure 6, each image, reading from left to right and then top to bottom, provides a heat
map of important features (similar to Figure 2) of equal time slices in the video. This visualisation
raises several issues. Like the verification visualisations, many of the boxes are not on the body.
Indeed, they are on both sides of the body, even though the movement is only performed on one
side. This is an artefact of the training process, which uses Finger Nose tests on both left and right
sides to increase the amount of data.

This example shows that not all of the decision-making aspects of the machine-learning al-
gorithm are relevant to the clinician. Some of the boxes are about the algorithm figuring out
which side the movement is on, rather than about the movement itself. We also see that the third

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 12. Publication date: July 2018.

RIGHTSE LI MN iy



12:14 C. Morrison et al.

repetition is not being used for classification. This most likely stems from the fact that patient
videos are not well aligned by the third repetition due to variation in speed, making them less
useful for classification from a machine point of view. However, this is certainly not the case from
a person’s perspective. That the algorithm makes decisions that are artefacts of the data, but not
relevant to clinicians, poses a challenge for visualization, which needs to remove these artefacts
before clinical presentation.

A further issue stems from sampling visible at the top of the head, which is unexpected from a
clinical point of view. One possibility is that this is a confounding feature based on head tremor,
which is associated with multiple sclerosis but which, according to the rational clinical account,
should not play a role in assessing the performance of a Finger Nose test. Both head tremor and
other forms of motor performance (e.g., intention tremor) would reasonably be expected to be
covariant with disease progression. Uncovering this kind of issue is important to be able to make
claims about the construct validity of the underlying test method and to guard against unexpected
performance in patients with non-standard disease presentations (e.g., minimal head tremor but
substantial upper limb-related dysfunction) who might be poorly represented in training data.

6 CONTEXTUALIZING ALGORITHMIC DECISION-MAKING

Our third design exploration created a visualisation application based on our learnings from the
previous two iterations. We learned from the second iteration that the decision-making process
of the algorithm and the clinician can be quite different. We showed that some of that decision-
making process was irrelevant (e.g., deciding whether a movement was left side or right), and
other bits not well associated to movement (e.g., long features). This demonstrated 