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Sophisticated ubiquitous sensing systems are being used to measure motor ability in clinical settings. Intended

to augment clinical decision-making, the interpretability of the machine-learning measurements underneath

becomes critical to their use. We explore how visualization can support the interpretability of machine-

learning measures through the case of Assess MS, a system to support the clinical assessment of Multiple

Sclerosis. A substantial design challenge is to make visible the algorithm’s decision-making process in a way

that allows clinicians to integrate the algorithm’s result into their own decision process. To this end, we

present a series of design iterations that probe the challenges in supporting interpretability in a real-world

system. The key contribution of this article is to illustrate that simply making visible the algorithmic decision-

making process is not helpful in supporting clinicians in their own decision-making process. It disregards that

people and algorithms make decisions in different ways. Instead, we propose that visualisation can provide

context to algorithmic decision-making, rendering observable a range of internal workings of the algorithm

from data quality issues to the web of relationships generated in the machine-learning process.
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1 INTRODUCTION

The recent availability of ubiquitous sensing has made the opportunity to sense movement, and
by extension measure motor ability, a realistic possibility in clinical settings. For example, systems
are being built to assess standing balance in older adults using gyroscopic and force sensors [51],
detect and respond to freezing gait in situ for Parkinson’s patients using accelerometry [35], and
analyse gait in multiple sclerosis patients [15]. As these systems become more sophisticated, they
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are using machine-learning algorithms to interpret the sensed data and propose a measurement or
action. Systems intended to augment clinical thinking, the interpretability of the machine-learning
measurements becomes critical to their use.

We use the example of Assess MS to explore how we can enable clinicians to use the results of
machine-learning measurements in their clinical decision-making. Assess MS is a depth-sensing
computer vision system to support the clinical assessment of motor ability in Multiple Sclerosis
(MS) [26, 39]. Using novel machine-learning algorithms, it aims to provide a more consistent and
fine-grained measure of motor ability than currently possible through neurological examination.
The system captures patients doing specified assessment movements with a Kinect under the su-
pervision of a health professional. The depth data is then processed, and the machine-learning
algorithm returns a classification of motor ability based on the well-known clinical scale, the Ex-
panded Disability Status Scale (EDSS) [29].

A substantial design challenge is to make visible the algorithm’s decision-making process in a
way that allows clinicians to integrate the algorithm’s result into their own decision process. As-
suming that it is enough to utilise numbers that correlate with a known clinical framework, over-
looks a large literature on information in medicine that illustrates the myriad of ways in which
data is part of a larger negotiated diagnostic process that requires interpretation of measures pro-
vided [21]. Measurement and context are elided when a clinician carries out an examination, but
when the measurement of motor ability is done by an algorithm and its interpretation by a clini-
cian, an understanding of how the algorithm arrived at its measurement is needed to support this
negotiated interpretation.

Interactive computer vision systems, as exemplified by Assess MS, pose particular challenges to
the interpretability of machine-learning algorithms. While a growing corpus of work focuses on
using visual analytics to support the interpretation of machine-learning results in decision-making
contexts (e.g., Reference [50]), most of this work is inspired by networks, or complex data sets. They
offer little guidance in terms of image data. In our case, we need to relate the algorithmic decision
process to the temporal body. Indeed, previous research has highlighted that computer decision
support on images of the body is very different than working with data points [18], offering few
concrete starting points.

In this article, we present a series of design iterations in which we iteratively explore potential
visualisations for expressing the predicted machine-learning measurement of motor ability pro-
vided by Assess MS for a clinical audience. The key finding of this article is to illustrate that simply
making visible the algorithmic decision-making process is not helpful in supporting clinicians in
their own decision-making process. It disregards that people and algorithms make decisions in
different ways. Instead, we propose that visualisation can provide context to algorithmic decision-
making, rendering observable a range of internal workings of the algorithm from data quality
issues to the web of relationships generated in the machine-learning process.

The specific contributions that this article makes are:

• “Making visible” the algorithm was too naïve an approach to be useful for clinical purposes
as people and machines “think” differently.

• Intelligibility may be achieved through providing context to algorithmic decision-making,
such as data quality.

• We highlight a potential new role of curation, in which someone with hybrid computational
and medical expertise is able to inspect a machine-learning model for accuracy, something
a clinician is not skilled, or needs, to do.

• We demonstrate that machine-learning algorithms cannot be designed separately from
the design of the application itself, questioning the “box” metaphor often associated with
machine-learning algorithms.
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2 RELATED LITERATURE

2.1 Machine Learning in Motor Assessment

The application of machine learning to MS is most commonly applied to the automated identifica-
tion of MS lesions within panels of magnetic resonance images (MRI). This large literature includes
examples that: prove the technical capabilities of specific machine-learning algorithms (e.g., Refer-
ence [14]); respond to articulated workflow problems, such as human performance variability (e.g.,
Reference [49]; or address a clearly articulated clinical problem, such as transition to full MS from
the precursor syndrome (e.g., Reference [7]). There is also a small literature on the application of
machine learning specifically to movement analysis in MS [1, 41]. The overarching focus of this
literature is algorithmic development and validation; considerations of how such systems might
be used in clinical practice are restricted to the framing of the technical problem.

The advent of ubiquitous sensing technologies has made the opportunity to measure motor
ability in clinical practice a real possibility [45]. For example, gyroscope data has been used for
machine-learning tremor classification in Parkinson’s disease [9]. This study takes the same ap-
proach as Assess MS using labelled data based on a relevant clinical standardized rating scale.
Computer vision has also been used to assess finger tapping in people with Parkinson’s, by which
features were computed that estimated speed, amplitude, rhythm and fatigue in tapping and then
used to train an algorithm to predict a symptom severity score [24]. Most recently, depth-sensing
has been used to develop gait-indices for MS patients that align to the clinical standardized rating
scale in a clinic setting [15].

While all of these studies were carried out in clinics, there is no discussion how clinicians would
use such a system in clinical practice. It seems assumed that by producing clinically meaningful
scores no further explanation of how those scores were reached is needed. This notion is at odds
with social science literature in this area as discussed below.

2.2 Interpreting Image Data in Medicine

Images of the body are now commonplace in medicine. They are a tool that allows clinicians to
“see” inside the body and perceive what they cannot see with their own eyes. This augmented
“seeing” can be used for a range of purposes, from diagnosing disease to guiding surgical proce-
dures (see Reference [37] for overview). The useful information that may be obtained from medical
images, however, is not self-evident [36]. It relies on skills that clinicians learn through extensive
apprenticeship. Clinicians establish a professional vision that allows them to see pertinent infor-
mation in an image [17]. A medical image is not an objective view of the body [21], but a foggy
window onto the body whose contents must be interpreted within the frame of a larger clinical
picture and technical limitations of the imaging method.

The most relevant study of machine learning to interpret image data is an ethnography of a
mammography screening service carried out in the context of a clinical trial of a computer-aided
detection tool for breast cancer. The tool was intended to support radiologists by using a machine-
learning algorithm to draw attention to specific parts of the image through prompts. This atten-
tion cue was hoped to counteract the effects of variability in concentration and make the visual
search pattern more systematic in a human reader. The intention of this support was to enable a
switch from having two human readers of the mammography images to a computer-reader and a
human-reader [18]. The study raised two salient issues: the use of contextual information in image
interpretation and the ways readers take account of other reader’s opinions.

The ethnography showed that mammography images are interpreted alongside other docu-
ments, such as previous images or the patient’s record. The authors suggest that the decision of
whether a patient has breast cancer is “achieved through the coherent marshalling of ensembles of
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evidence.” They point out that readers not only are skilled in marshalling these ensembles, but they
know how the information was produced. As a result, they can make decisions about how much
they can rely on pieces of information. An algorithm, in contrast, does not have the availability or
capability to integrate a wider set of data in an ad hoc manner. Nor can the algorithm’s classifica-
tion be utilised in such an ensemble, if the generation process of its output is not understood.

Even so, human readers felt the need to generate accounts of the computer’s reading, and ensure
their own thinking addressed the prompts offered. This could lead to elaborate (and potentially in-
correct) assessments of the computer’s reading, for example, suggesting ways that cancer might
be seen in the image when not present. This behaviour, however, mimics the way that human
readers would interact with their colleagues. They would develop a conversation around different
opinions, and negotiate a final decision. This and the previous finding described highlight the im-
portance of making visible the decision-process of machine-learning algorithms so that they can be
incorporated into an interpretive process that relies heavily on colleagues and known information
practices.

This study suggests that some level of interpretability of the machine-learning assessment of
images is needed to allow clinicians: to utilise the classification results within a wider set of data
and knowledge; and to enable explanatory accounts that support collaborative interpretation with
other human colleagues. To usefully include sensor-based assessment in clinical practice, it will
be essential to help a clinician understand the decision-making process of the algorithm in such
a way that they can incorporate the result into their own thinking. It is not enough to provide a
clinically meaningful classification. In the next section, we consider research on interpretability of
machine learning in both clinical and non-clinical settings.

2.3 Interpretability of Machine-learning Algorithms

There is some work in the machine-learning literature that focuses explicitly on the need for in-
telligibility of classification of machine-learning models, particularly in healthcare, e.g., Reference
[6]. This literature demonstrates that there is still a significant trade-off in performance between
models that are considered intelligible (e.g., generalized additive models) and those that are con-
sidered most powerful (e.g., deep neural nets). This is in part because of the univariate nature
of generalized additive models. Some research is closing this gap, but still unable to deal with
large-dimensional data [32]. This trade-off is very pertinent to Assess MS as the small amounts of
medical data being used require more powerful models to gain the calibre of results necessary for
medicine at the potential expense of the interpretability of the model.

The human-computer interaction literature has focused on interpretability of machine learning
mainly in the context of interactive machine learning [2]. Interactive machine learning focuses on
supporting users to incorporate their own judgements into the model through an iterative training
approach of providing training samples or labels to the model and seeing the resulting change in
the model. This has been delineated in applications such as email classification [47], image search
[13], and alarm triage [3]. These works are all predicated on the idea that transparency, or a “white
box” model increases users’ abilities to interact with systems based on machine-learning models
[19].

Studies in this literature have addressed the problem of how best to provide explanations that
achieve this “white box.” Why or why not questions have been one of the key mechanisms explored
for successfully providing feedback to users [28, 31]. Principles for these explanations are laid out
in Reference [27]: Be iterative, be sound, be complete, but do not overwhelm. The authors suggest
that information should be provided in way that allows people to gradually build their mental
models, striking a balance of accuracy of explanation with the amount of information provide.
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In a real-world study, Reference [25] found that explanation fostered trust when an algorithm
violated expectation, but too much information eroded trust.

Work on the explanation of context-aware systems have expanded what might be included in
an algorithmic explanation. Along with Why and Why not questions, Reference [30] adds What,
What if, How to, Inputs, Outputs, and Certainty. The last three highlight aspects specific to sensor
behaviour and include notions of certainty. What has been sensed? What has been computed?
How certain are the computations? These general types of information to provide are a helpful
starting point. They can be nuanced by findings that show that preference to how a system frames
its answers is not uniform [47] and that errors may be judged based on the likelihood of human
error in the same situation [12].

We can see how explanatory accounts play out in medicine more specifically by looking at clin-
ical decision support systems for diagnosis. Reference [5] looks at the over and under reliance
on such systems. They show that fuller explanations substantially increased trust (to the point of
over-reliance), where measures of certainty did not. These authors also found that health profes-
sionals trusted the system most when it provided reasoning similar to their own. In this case, that
was achieved through providing the data used for decision-making. Other participants wanted
explanation to go beyond the data to the pathology. Confidence intervals, however, were hard to
interpret without explicit guidance. Showing the confidence intervals of all possible predictions
was more useful.

The HCI literature on algorithm interpretation is heavily focused on the laboratory environ-
ment. In this article, we want to examine how we might apply some of this learning to a real-world
system. To date, computer decision support systems that use machine learning have struggled to
gain purchase in practice because of unresolved questions about diagnostic accuracy, safety and
feasibility of use in busy clinical settings [40]. Yet, examples such as prospective genetic finger-
marking in cancer research, which use visualisation of very uncertain results to support clinical
decision-making [16] show that machine learning can play a useful role in medicine if contextu-
alized properly.

The work in this section is primarily textual or dealing with categories that are reasonably
discreet. A challenge of the Assess MS is to apply these ideas to image data, and specifically image
data of the body. Visualization is one way that this might be done.

2.4 Visualization

Visualization is one way to support users in exploring and interpreting machine-learning algo-
rithms that they are working with. Mane et al. [34] provide a key example in the health domain,
proposing a visualisation that aggregates a patient’s history with predicted future path for differ-
ent medication scenarios. The prominent design feature of this system was to provide predictions
that could be interpreted in the context of a patient’s data, without offering an explicit “decision.”
The article suggests that by using visualisation rather than a numeric output, context can be pro-
vided in a way that allows the health professional to reason about the prediction. This example has
guided us in the role visualization could usefully take in communicating the Assess MS results, but
we need to look elsewhere to gain inspiration as to how we might apply this to concept to image
data.

The HCI literature has explored how visualization can be used to convey classification bound-
aries to help users refine models about concepts that may not be discrete, such as the weather. In
ManiMatrix, the classification boundaries are provided in square pie-chart type graphs as well as
through color-coded confusion matrices [22]. EnsembleMatrix is similar for multiclass machine-
learning algorithms, using heat map visualisations among others to reveal commonly confused
classifications in the algorithm [48]. While the focus of this work is to enable interactive training,
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it does highlight the importance of visualising classification boundaries to spot outliers or near
boundary decisions.

Other systems focus on facilitating the integration of domain expertise. G-PARE, a visual an-
alytic tool for comparing two uncertain graphs, is a particularly good example. Each uncertain
graph is produced by a machine-learning algorithm that outputs probabilities over node labels. It
provides several different views that allow users to obtain a global overview of the algorithms out-
put, as well as focused views that show subsets of nodes of interest. Users can follow cascades of
misclassifications by comparing the algorithm’s outcome with the ground truth [44]. This example
draws attention to the importance of views of different granularity.

Elzen [10] focuses on how domain experts can explore and adjust decision trees directly. This
author provides an overview of a range of visual examples of decision trees, characterising them
as either node-link diagrams, icicle plots, or a combination of these two. The most relevant finding
of this work is that current visualisations do not integrate the tree visualization (the structure of
the decision tree) with the data visualization (the visualization of class distributions). This distinc-
tion in the role of visualisations may be unhelpful for clinical-decision making, which may need
different perspectives on the measurements and at how they were arrived.

The literature does not provide direct examples of visualization of machine-learning algorithms
that compute over images of the body. Descriptions of rehabilitation systems, however, offer some
perspective on visualisation of sensed health data. In Reference [4], a knee rehabilitation system
provides real-time visualization of knee flexion for each repetition with a summary bar chart of
knee flexion across exercises and the change in flexion over time. In Reference [11], new graph
visualisations are being developed for specific design foci, such as providing detailed step data to
cue social support. Auditory approaches, representing movement with a wave of sound, have also
been successfully tried to support the management of chronic pain [46]. None of these examples
explicitly reference an image of the body.

3 ASSESS MS

3.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which
causes a variety of symptoms, either in combination or alone. These may include numbness or
paralysis, tremor, cognitive difficulties, vision-loss, and reduction in motor strength. While symp-
toms are very diverse, stereotypical symptoms include: intention tremor, the shaking of the hand
when intending to touch a target (e.g., the nose); ataxia, the wobble of head or torso when balanc-
ing; and impaired walking requiring aids for balance and to address paralysis. The common focus
on these symptoms when portraying MS reflects that motor ability loss, as opposed to sensory or
cognitive ability loss, is one of the key non-invasive indicators of disease progression.

The disease course is most frequently characterised by relapses in which the affected person
experiences neurological symptoms followed by extended periods of remission in which symp-
toms may improve. Over time, the disease can enter into a progressive phase in which a steady
deterioration occurs. About 15% of MS patients have on-going deterioration from disease onset
[20]. More tangibly, some patients can lose their lives from the disease within a period of years
while others can live their entire lives affected only by minor sensory loss. The unpredictability of
the disease course is challenging for patients and clinicians alike in making treatment decisions,
making the ability to track MS particularly useful.

The condition is currently assessed with a standardized rating instrument based on clinical ex-
amination, the EDSS [29]. Patients are asked to perform a range of functional exercises, including
stretching out one arm to the side and then touching the nose (Finger Nose Test) or walking on a
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Fig. 1. The Assess MS prototype used by a health professional to capture depth and RGB videos of specific
assessment movements performed by patients in a clinical setting with a Kinect.

pretend tight rope (Tightrope Walking). These exercises cover seven functional groups from sen-
sory abilities (e.g., numbness) to motor and cognitive abilities. Each exercise is given a sub-score,
often on an ordinal scale from 0 (no disability) to 4 (no function); sub-scores are then summarized
into Functional System scores and, together with the ability to walk, are combined to create an
ordinal score, from EDSS 0 to EDSS 10.

Although the EDSS is a widely-used and accepted outcome measure, it suffers from low intra-
and inter-rater reliability making disease tracking difficult [8].

3.2 Assess MS System

Assess MS is a system to support the clinical assessment of Multiple Sclerosis (MS) using depth-
sensing computer vision. Its aim is to provide a consistent quantified metric of motor ability for
patients with MS to enable more reliable tracking of disease progression than currently possible.
The system has four parts: (1) a prototype device for capturing depth and RGB videos of specific
assessment movements performed by patients; (2) an interface for clinicians to label those patient
videos with the relevant ordinal EDSS sub-score as well as rank patients; (3) a supervised machine-
learning pipeline used to classify the severity of motor dysfunction, predicting the EDSS ordinal
sub-score for each assessment movement; and, finally, (4) a visualization interface to present results
to clinicians, the centrepiece of this article.

A prototype device, shown in Figure 1, is used by a health professional to capture depth and
RGB videos of specific assessment movements performed by patients in a clinical setting with a
Kinect; see Reference [38]. The original movement protocol focuses on a set of 11 movements
covering upper body, trunk, and lower body motor ability thought to be clinically indicative of
disease progression. The visualizations in this article draw mainly from the EDSS Finger Nose
test. In this movement, the patient stretches their hand out to the side and touches their nose
three times before placing the hand in their lap. This is done on both the left and right and with
eyes open and closed. Tests that show ataxia, the wobble seen when holding both arms out to the
side or drawing squares in the air in front of the patient are also used.
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The videos are then labelled by clinicians with the appropriate ordinal EDSS sub-score as well as
ranked in relationship to each other to provide the training and test data for algorithm development
and validation; see Reference [43]. For the purposes of the visualizations presented in this article, a
supervised machine-learning approach has been taken to predict the clinician-provided EDSS sub-
score labels from 0 to 4, providing integer classifications for each movement. While algorithmic
development remains on-going, an early version of the algorithm has been published in Reference
[26]. Details critical for understanding the visualizations are presented below.

Customized randomized Forests and novel ensembles of randomized Support Vector Machines
are used to discriminate landmarks in the depth videos that contribute to the classification. Unlike
other applications that assess motor ability [33], the skeleton provided by the Kinect SDK is not
utilised. Rather data reduction is achieved through the calculation of optical flow throughout the
video. The choice of decision trees as opposed to other methods was made ostensibly with the
ability to explain the results. In theory, each evaluative step in the branching decision tree can be
examined, and a descriptive account given of the decision-making process.

The landmarks chosen are random spatial-temporal cubes in the depth video that contain the
optical flow information. In other words, the “features” utilised in this case are numeric values that
approximate (through a series of abstractions) the number of changes in direction of either X- or
Y-oriented movement within a three-dimensional cube of space-time. Classification is performed
by in a series of branching rules, each of which compares either a single feature, or the result of
an arithmetic function involving two features, to some arbitrary numeric threshold. The result of
this calculation determines either the next rule that will be applied or, in the final step, assigns a
categorical label. The features, evaluation rules and their ordering are all learned from data during
a process of training.

The Assess MS prototype is currently being used to collect depth data for training and vali-
dation of the machine-learning algorithms being developed. The Assess MS system has not been
deployed as a predictive tool in clinical consultations. As such, the visualizations proposed here
are in preparation for planned future use in clinical consultations.

4 VERIFYING ALGORITHMIC MODELS

Our first design exploration was to present a set of visualisations developed for verifying the
machine-learning algorithm to our clinical colleagues. While never intended for clinical consump-
tion, it provided a starting point to what aspects of visualisation may or may not be useful. Shown
in Figure 2, it consisted of a heat map of the spatial-temporal cube features used by the algorithm in
its decision process. The yellow boxes are those cube features most important in the decision-tree,
fading out to red as least important. The spatial-temporal cubes are aggregated across patients and
flatten in time onto a single image. A random frame from a single patient video was used as the
background to show how a body may relate to the spatial temporal cubes. The approach is similar
to the heat maps used in Reference [48], differing in that they are imposed on the body rather than
confusion matrix.

This visualisation was shown to five of our clinical collaborators at a two-day quarterly team
meeting. This set of visualisations served its intended purpose in ensuring that the computer was
making decisions based on areas of the image that would be expected, such as the nose area in
the Finger Nose test. It also showed some more surprising results, such as emphasising trunk
movement in the “Drawing Squares” movement rather than hand movement as expected by the
clinicians. In retrospect, this too was understandable, as there was too much unintended variation
in the hand movement to be a substantial feature, but the ataxic symptoms of the trunk (wobble)
could still be noted. Most importantly, it could be verified that the machine was not relying upon
unexpected features, such as height.
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Fig. 2. Heat map of the spatial-temporal cube features used by the algorithm in its decision-making. The
yellow boxes are those cube features most important in the algorithmic decision-making fading out to light
red as least important.

The clinicians found it very difficult to relate to this set of visualisations even after multiple ex-
planations. Two distinct issues arose, the relationship of: (1) data to the body; and (2) data to time.
The relationship between the spatial-temporal cubes and the body is not obvious in this visualisa-
tion probe. Many of the cubes are off the body, such as next to the waist. From an algorithmic point
of view this makes sense; these boxes would be expected to contain movement when the person
had ataxia symptoms in comparison to no movement when the person was healthy. The interior
of the body is less likely to show differences between patients and healthy volunteers. However,
when a health professional assesses a patient, they look at the body and not where it might go in
space. This is a substantial disconnect that made it difficult for the health professionals to link the
algorithm’s decision process to their own.

The few representations that were on-body, such as the nose area in the Finger Nose Test, did
not provide enough granularity to add to the doctor’s general knowledge. In this case, for example,
every doctor knows that symptoms will appear around the nose. The clinicians asked many ques-
tions trying to understand how the visualisation might further be inspected to give them a view
into the specific characteristics of those symptoms. One clinician said, “Does the height of the box
represent the amplitude of the tremor?” Another asked, “Would the specific configurations of the
boxes be different for each patient so that I could learn to distinguish patterns?” These questions
demonstrated that the clinicians were looking for something that they could interpret, but this
visualisation did not provide it.

A further challenge for clinicians in interpreting this visualisation was the cohort view repre-
sented on the image of a single image. While this is important from a machine-learning point of
view to test the validity of the model generated, it cannot provide the individual differences that
clinicians look at when assessing a patient in person. The confusion generated by overlaying the
visualisation onto a single patient made apparent this disconnect. Clinicians attempted to relate
the boxes to that patient’s body and could not think about a whole cohort at once. That said, three-
dimensional scatter plots used earlier in the project to represent cohort data were well received,
as the clinicians used the distance between patients to understand their relationship to a cohort.

The representation of time, or rather lack of it, was also problematic. Not only did clinicians
want to relate the boxes to the body, but to the body in time. For example, one clinician asked “I
would not expect to see a box at the elbow. Is that at the beginning or the end?” Another clinician
said, “Does the strength of the colour represent the speed of the movement?” Time, however,
can be challenging to represent, particularly in the cohort view applied here. The presentation
of the visualisation to our clinical team members, while never intending to be for their clinical
consumption, was nonetheless, very informative. It highlighted the relationship of data to the body
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Fig. 3. An annotated version of the axis-aligned projection representation presented in Figure 3. Clinicians
could identify three repetitions of the finger nose test demarcated by the grey boxes and the tremor demar-
cated by the black boxes.

and time as important aspects of any visualisation that we would need to provide to help clinicians
integrate algorithmic decision-making into their own thinking.

5 VISUALISING ALGORITHMIC DECISION-MAKING

Our second design exploration focused on making the algorithmic decision-making process vis-
ible to the clinician. Building upon what we had learned in showing clinicians visualisations for
machine-learning verification, we focused on notions of representing time and body. Our initial de-
sign approach was to overlay algorithmic features onto a visualisation that the health professionals
found compelling. The work presented in this section builds up this picture through discussing:
visualisation choice, exploring temporal representation, and exploring bodily representation.

5.1 Visualisation Choice

To choose an appropriate base representation of the patient video, we informally interviewed nine
neurologists and asked them to discuss three potential visualisations. Shown in Figure 3, these
abstracted time and the body in different ways. These are mapped onto the horizontal and vertical
axes, respectively, in Figure 3.

• Visualisation 1 is a video (shown as a static image here) that shows the outline of the
person’s body with the heatmap of the spatial-temporal cubes (as in the visualisation probe)
that cross the body outline through time. This view addresses the relationship of data to
body and time, but does not attempt to abstract either.

• Visualisation 2 uses an axis-aligned projection technique that captures movement in one
dimension only, encoding time and movement into a single image. Each frame of a depth
video is reduced to a 1 by n pixel image, where n represents the height of the image, and the
intensity of each pixel summarises the largest distance in a particular row in the image. This
visualisation provides an abstraction away from the body, but elements of the movement
are still visible in the wave form.

• Visualisation 3 provides a graph of the produced machine-learning classification that re-
lates cerebellar dysfunction and pyramidal dysfunction, two neurological systems. Time of
an individual movement is not shown, but change over time is shown through multiple
points on the graph. This visualisation abstracts the body and takes a view of time separate
from the movements themselves.

Time: The clinicians preferred being able to overview an entire video in a single image, as in
Visualisation 2. It made comparison easier, whereas video had to be held in memory to do the
same. Their interest was also piqued by the idea of tracking a patient over time and relating two

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 12. Publication date: July 2018.



Visualizing Motor Ability Measures in MS 12:11

Fig. 4. Visualizations used to elicit discussion with health professionals. They abstract time (x-axis) and the
body (y-axis) in different ways: Visualisation 1 (lower left), Visualisation 2 (middle), Visualisation 3 (upper
right). Interview findings suggested.

neurological systems together. While the clinicians found this quite novel, they found it hard to
imagine how this potential new way of looking at MS would be of benefit.

Body: The clinicians felt no need to see the body in the videos. If anything, they felt this un-
helpful as it did not augment their existing view of the patient beyond the clinical examination.
Visualisation 2, however, was of interest, because it highlighted specific aspects of the movement
(see Figure 4 for annotated visualization). For example, the clinicians could see the three repetitions
of the arm going in and out in the Finger Nose test as demarcated by the three grey contiguous
boxes over the wavy red section of the image. They could also see the tremor demarcated by the
black boxes around the spikey light blue waves. This alternative form of seeing the tremor, even if
without a measurement of amplitude, provided a starting point to pattern-match and compare to
other patients. The clinicians did not want to entirely abstract away from the body into a graph, as
they were more comfortable with images that related to clinical decision-making as they currently
knew it.
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Fig. 5. Feature-overlaid axis-aligned projections of a patient performing three repetitions of a Finger Nose
movement. It uses the heat-map of features used in the machine decision-making (described in Figure 2) in
a temporal representation.

The findings of the interviews led us to conclude that we should utilise Visualisation 2 as the
starting point for portraying the algorithm’s decision process. It worked well as an intermediate
image that neither portrayed the body, nor abstracted it to a data point. The ability to see time in a
single image was also critical for clinicians to develop the ability to compare visualisations among
patients. The aim in the exploration presented in the next section was to find a way to map the
features in the machine-learning decision-making process onto this visualisation.

5.2 Exploring Time

Figure 5 illustrates the axis-aligned projected image overlaid with a heat map of the features most
important in the machine classification for a single patient. It is similar to Figure 2 but with the
incorporation of time provided by the axis-aligned projection. Three horizontal bands of feature
sampling, smeared over the middle portion of the movement are seen. These correspond to the
upper head, lower face/shoulder, and elbow regions during arm flexion. Of these, only the lower
face fits easily into the clinical conceptual explanation–since it is here that a finger would ap-
proach during the flexion portion of a Finger Nose test. It is unclear, for example, why the top
of the head should be important in the machine classification. Unfortunately, the temporal align-
ment of features is not clearly associated with different phases of movement making a temporal
representation not useful.

The result is that neither the relationship of machine-learning model to body or time is eluci-
dated in this first attempt. The mapping of features onto this visualisation was much more chal-
lenging than we expected. While this is frustrating from the point of view of the original purpose
of the visualisation to explain to a clinical audience how the classification is proceeding, it has
proven useful in uncovering how algorithm design choices might affect the scope for visualisa-
tion. Although feature space-time cubes were dimensioned stochastically, bounds were placed on
each dimension. These were both spatial (a roughly 100 pixel border around the edge of the image
was excluded from sampling) and temporal (the temporal size of a cube could be no less than 20%
and no greater than 40% of the total movement duration).

These heuristic choices made by the algorithm designers ended up having a number of context-
specific consequences. First, certain parts of the movement that a human might consider important
for decision-making are not included at all. The defined dark regions visible in the arm region in
Figure 5 exist because the hand extends spatially into the arbitrary margin from which no sampling
took place. Second, the minimum temporal bound tends to prevent features being isolatable by
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Fig. 6. Heat map of spatial-temporal cube features (similar to Figure 2) represented over time through pro-
viding multiple images. Time is read left to right and then top to bottom. Each row is a repetition of the
Finger Nose movement. This representation highlighted that not all aspects of the machine decision-making
are relevant or in line with clinical decision-making.

specific phases of movement in a way that would assist clinical explication, for example arm flexion
(where intention tremor would be most marked) versus extension. This is because 20% of the video
duration actually approximates the duration of a complete cycle of movement. Third, that the
maximum duration (40% of video duration) encompasses up to two cycles might also tend to mask
patterns of sampling (e.g., the same area sampled in each repetition).

The representation produced in Figure 5 highlights the possibility that there is a minimal penalty
for features that smear across multiple movements–this is an emergent consequence of the nature
of the movement (cyclical, mirrored) and the choice of representation that just sums acceleration
changes over time. Corroborating this, we compared the frequency distribution of random possi-
ble feature durations that were generated at the start of training and on which all features were
based with the frequency distribution of those features that were actually incorporated into trees. If
duration was important for classification, given the representation, then you might expect the fre-
quency distribution to be altered to enrich selection of a certain duration. There was no such effect,
implying that temporality as understood in clinical terms in not incorporated into classification.

5.3 Exploring the Body

As it was difficult to see anything about the body in the axis-aligned projection representation once
features were mapped, we returned to a body image view initially used by the machine-learning
team but added time through providing multiple images and only showing a single person’s data.
Shown in Figure 6, each image, reading from left to right and then top to bottom, provides a heat
map of important features (similar to Figure 2) of equal time slices in the video. This visualisation
raises several issues. Like the verification visualisations, many of the boxes are not on the body.
Indeed, they are on both sides of the body, even though the movement is only performed on one
side. This is an artefact of the training process, which uses Finger Nose tests on both left and right
sides to increase the amount of data.

This example shows that not all of the decision-making aspects of the machine-learning al-
gorithm are relevant to the clinician. Some of the boxes are about the algorithm figuring out
which side the movement is on, rather than about the movement itself. We also see that the third
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repetition is not being used for classification. This most likely stems from the fact that patient
videos are not well aligned by the third repetition due to variation in speed, making them less
useful for classification from a machine point of view. However, this is certainly not the case from
a person’s perspective. That the algorithm makes decisions that are artefacts of the data, but not
relevant to clinicians, poses a challenge for visualization, which needs to remove these artefacts
before clinical presentation.

A further issue stems from sampling visible at the top of the head, which is unexpected from a
clinical point of view. One possibility is that this is a confounding feature based on head tremor,
which is associated with multiple sclerosis but which, according to the rational clinical account,
should not play a role in assessing the performance of a Finger Nose test. Both head tremor and
other forms of motor performance (e.g., intention tremor) would reasonably be expected to be
covariant with disease progression. Uncovering this kind of issue is important to be able to make
claims about the construct validity of the underlying test method and to guard against unexpected
performance in patients with non-standard disease presentations (e.g., minimal head tremor but
substantial upper limb-related dysfunction) who might be poorly represented in training data.

6 CONTEXTUALIZING ALGORITHMIC DECISION-MAKING

Our third design exploration created a visualisation application based on our learnings from the
previous two iterations. We learned from the second iteration that the decision-making process
of the algorithm and the clinician can be quite different. We showed that some of that decision-
making process was irrelevant (e.g., deciding whether a movement was left side or right), and
other bits not well associated to movement (e.g., long features). This demonstrated that supporting
a clinician’s decision-making using the Assess MS results by simply making visible the algorithmic
decision-making is unhelpful. In this section, we consider ways to contextualise the algorithm clas-
sification for clinical use as an alternative mechanism to support interpretability.

We chose to take an approach articulated as meta-models of machine cognition [42]. The argu-
ment here, proposed in the context of developing systems for end-user programming, is that most
aspects of the machine’s model will be unintelligible, even if relevant. However, there are certain
aspects of the model that will be particularly important to a person interacting with it. It is these
aspects of the model that we must make visible rather than concentrating on the inner workings
of the algorithm. While not an exhaustive list, the author highlights the following.

• Confidence: How sure is the model that a given output is correct?
• Command: How well does the model know the domain?
• Complexity: Did the model do a simple or complex thing to arrive at the output?

While the Assess MS application is not directly interactive in the same way, the notion of a
meta-model that provides visibility into key aspects of the model that can support clinical-decision
making, in contrast to attempting to communicate the process itself, is something that we decided
to instantiate. We did this in two steps. First, we held a workshop with our clinical partners to
understand the information that they might potentially use in their decision-making. Second, we
designed and built a visualisation application that portrays aspects of context we thought would
be most useful.

6.1 Workshop

6.1.1 Method. We utilised the user-centred design technique, Design Studio (Kelani), to en-
courage our clinical collaborators to rapidly sketch their ideas as a way to discuss and clarify re-
quirements. Our 12 participants used a set of visuals that capture different views of the body and
time to “sketch” out their ideal interface for receiving results from Assess MS. In groups of four,
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individuals first created their own sketch, followed by the negotiation of a small group “sketch.” To
facilitate discussion, the groups were divided by seniority and were provided with the same clin-
ical scenario, which included the examination being done by a nurse and the results interpreted
by a doctor. Each group had a note-taker who recorded the session. Our focus was as much on the
discussion generated as the artefacts produced in the hour long session.

The visual elements, shown in Figure 7, were chosen to convey distinct visualisation choices.
The first visualisation set is an RGB video of the patient performing the movement or two videos
provided side-by-side to enable comparison between different time points. The second set show
abstracted movement patterns of a patient, portrayed both on and off the body image. In the third,
two different graph representations are provided that show change over time. The final set are
why/why not explanations of the machine-learning result in both a textual and visual form. We
also gave our participants the choice of designing for a tablet screen or a large monitor to see the
role of size and portability in their choices.

Each representation was chosen for a specific reason. Video interpretation relies on clinicians’
existing skills. Abstractions of movement enable comparison and pattern-matching. Graphs can
capture the statistical relationships created between patients while doing the machine learning,
offering insight not previously available. Last, we provided why/why not explanations as one of
the key approaches used in other domains to explain machine-learning algorithms to users. We
chose both textual and visual explanations as we have examples of textual approaches in other
domains, but our problem domain relies on the visual.

The “sketches” created by the participants were labelled with their names and collated into the
working groups and then collected. Analysis of the workshop consisted of two parts. The choices of
the visual elements on each sketch were tabulated. Notes were made on position and on seniority of
clinician. These results were then contextualized with commentary recorded during the workshop
sessions. The lead researcher worked with the note-takers to understand and discuss key themes
in each group. Findings were presented to and discussed among the project team.

6.1.2 Findings. Video of the patient remained the most salient visual tool for the clinicians and
appeared in all sketches. In part this was a matter of trust: “We need to have the raw data, because
we [the doctors] are better than the computer.” Trust could also be akin to understanding, as the
system produces finer-grained measures in future: “If they have a 2.5, then how does it look in
reality. . . The video increases confidence in what it means.” But there were also real concerns
around how to best integrate clinical knowledge with the machine: “Just to see. Is there something
you know about the patient that changes the way you see?” The clinicians particularly liked the
comparative videos that allowed them to see the patient at multiple time points as it augmented
rather than ignored their own abilities.

Other visual elements also were employed to support sense-making, including abstract repre-
sentation of movement and why/why not explanations. Most participants had at least one of these,
but these did not figure prominently in the group sketches. One senior clinician argued that: “When
I clearly see a difference, and it says no difference, I want to know why not.” More junior doctors were
content with a number and did not want any expression of uncertainty. While there was a general
sense that clinicians wanted to know what the algorithm was doing, this had lower priority than
elements that they could already easily relate to, such as the videos. It is not clear whether the
abstract representations were not important enough to make it into the final sketches or whether
they are just too far from current clinical practice.

Graphing change over time was also key for many of the health professionals. While there was
no agreement on the exact representation or even what such a graph would tell them, there was
a clear desire to gain a prognostic view of the patient in relationship to the patient cohort. The
clinicians spent a lot of time debating how uncertainty of a machine-learning algorithm should be
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Fig. 7. Distinct visualization choices used during the Design Studio workshop with the Assess MS team.
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presented in a temporal view. Junior clinicians did not want an uncertainty portrayed. They said:
“It’s too much information.” “In the end, we just want to have a number.” Senior clinicians were
more open to seeing levels of algorithmic certainty. One said: “I would like to have a graph of the
values at different time points and their variability. . . The most interesting thing would not be the
interpretation, but the facts over time so that I could write my interpretation.”

All clinicians agreed that any temporal view, such as a graph, should include treatment decisions,
something they have been accustomed to with the use of digital clinical information systems.

There was a clear preference for video, over all of the other visual elements presented. Video
enables the health professionals to use their highly tuned professional vision, extending it to in-
clude temporal change and higher granularity. Yet, there seemed to be an openness to options that
give them alternative information about the patient over time and in a cohort as well as poten-
tially more abstract views on the movement. The unfamiliarity with these visual methods made
it difficult for them to more active participate in their design. This suggested that visualizations
created by designers are needed to be used in every day practice of the clinicians for some period
before a more solid view could be taken on how exactly what information would augment their
decision-making process.

6.2 Application Design

Our final step was to build an application for visualising results from Assess MS as an exploration
of how we embody a meta-model of the machine learning alongside the preferences clinicians
had expressed in regard to the visualization options presented to them. It explicitly considers
which aspects of the machine-learning model need to be made visible to support clinical decision-
making. We draw upon the three categories proposed in the original meta-models of cognition
paper discussed above—confidence, command, and complexity—and we consider what those might
look like in the Assess MS context. This was built as a Windows 10 application and contains three
main screens:

Patient Overview, Algorithmic Interpretation, and Cohort Comparison. We describe each of
these below. We finish the section with a theoretical evaluation done in conjunction with our
clinical team as the application was used only with simulated data.

6.2.1 Patient Overview Screen. The patient overview screen, as shown in Figure 8(a), displays
the predicted measurements given for each assessment movement over multiple time points. The
movement is identified on the left followed by a string of scores in grey circles, which are spaced to
indicate temporality of assessment. One can scroll back and forth as well as zoom in/out to change
the temporal view. The last line on this graph includes critical events, such as a medication change
or relapse, that align to particular measurements. An alternative graph view that highlights change
of score in multiple tests is also available (see Figure 8(b)).

Clicking on any time point brings up the associated video and this can be compared to a video
from any other time point. These are shown at the top of the screen. Underneath each video is
a static abstract representation of the movement (the wavy line to the right of the video play
button). It has been included to enable an at-a-glance comparison between movement profiles in
the videos, something highlighted as critical to pattern-matching approaches utilised in clinical
decision-making in earlier design iterations. By scrubbing through the video, one can track the
movement seen in the video at the specific time point in the static representation indicated by the
white bar to enable direct comparison between the two static representations.

The static representation would need to be developed specifically for each movement. In par-
ticular, it needs to include a specific visual language that provides temporal context to the static
representation. For example, in the Finger Nose movement, lines could be inserted over the static
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Fig. 8a. Overview screen visualization application for clinicians.

representation to demarcate points in the movement for which the arm is fully extended and when
the nose is touched. This enables the clinician to see the temporal elements of tremor as the hand
approaches the target for example, making comparison of these static representations possible
even if not temporally aligned. With time, we would expect clinicians to learn the association
between this representation and common patterns in patients, drawing on their honed skills as
pattern matchers.
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Fig. 8b. Alternate overview screen of visualization application for clinicians.

A key aspect of this screen is to indicate potential problems with data quality that suggest a
clinician should use caution when relying upon the numeric result. This indicator is shown in
the form of a red exclamation mark on the data point. Clicking on the video brings up a general
description of the data quality issue. More details can be brought up by clicking on the exclamation
point, which brings up a page that lists the specific problems. This page also includes a greater
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depth of information of how the score was reached. For example, it will contain the individual
scores of each Finger Nose movement, which are assessed separately and then amalgamated. The
data quality indicator is activated for three reasons: (1) difficulties pre-processing the data, (2) the
comparative training data is small, (3) or the algorithmic confidence is low.

6.2.2 Algorithmic Interpretation Screen. The algorithmic interpretation screen places the pa-
tient within the training data, as shown in Figure 9. Placement on the x-axis is determined by
EDSS sub-score in conjunction with the rank data of patients. Utilising the rank that contributes
to the refinement of the EDSS sub-score (see Reference [43]), the screen is the ability to illustrate
where a patient is in the spectrum for a given score. Are they just a 2 or nearly a 3? This is an indi-
cator of change as a patient may have just shifted over the line from 1 to 2 or their level of motor
ability may have changed dramatically with the same score change. As in the patient overview
screen, videos of patients in the cohort can be compared.

The y-axis represents a similarity distance metric to other patient nodes in the training data.
The way this distance metric is determined depends to some extend on the algorithm. The current
Assess MS algorithm is a variation of a decision forest. In this case, we can calculate similarity
between all nodes by looking at how many times patients end up in the same leaf node across the
entire forest. This metric can provide a sense of why a particular score may have been given. For
example, patients in the Finger Nose movement, may exhibit signs of dysmetria (cannot accurately
touch the nose) or tremor (when approaching the nose). These receive the same score, but require
different treatment options. They will appear as different clusters in this visualisation, even though
they have gotten the same score.

There are some limitations to this screen that we discovered when trying to build it. As the
training data is cross-sectional (static), it is only possible to compare how a patient progresses
in relationship to the training data. It is not possible to compare how motor function changes in
one patient versus another. It is also only possible to review the result of one test at a time. For
this reason, there is a play button that allows one to track a patient through the training set over
time for the particular movement chosen. That said, we feel that the approach of trying to exploit
the relationships that form between data points during the machine-learning process has much
to offer to the understanding of context. The next screen, cohort comparison, is a speculation on
how to visualize this progression if longitudinal patient data were available.

6.2.3 Cohort Comparison Screen. The cohort comparison screen, as shown in Figure 10, as-
sumes that at some point in future it will be possible to incorporate data from other patients and
not just those who took part in forming the training database. This is particularly important as the
training database has only cross-sectional data, reducing the opportunities of understanding tem-
porality that could come with longitudinal data. On this screen, the trajectory of one of a patient’s
scores is shown in the context of other patient trajectories of the same score. At the top, instead of
showing video, a graph of predicted measurements from all assessment movements of a particular
patient (and a comparison patient) are shown. This provides a temporal view of change over time
that video does not.

We might imagine that this screen enables a clinician to find patients with a similar trajectory
and review medication or other critical events. This might need to be done over several pages to
look at different scores. Indeed, they may find a whole cohort of similar patients, revealing inter-
esting sub-types of the disease. While such possibilities require substantial new infrastructure for
sharing medical data that address privacy concerns, it does help us imagine how the relationships
established in a machine-learning system might fruitfully contribute to decision-making in ways
other than just providing a consistent score. Such uses of machine learning are already at play in
areas such as cancer genomic treatment.
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Fig. 9. Algorithmic interpretation screen of visualization application for clinicians.

6.3 Application Analysis

6.3.1 Design Analysis. The main aim of the design explorations embodied in this application
design was to understand how we might make visible particularly relevant aspects of the machine-
learning model without attempting to explain the entire model. We drew inspiration from the
concept of meta-models of machine learning presented by Reference [42]. This article presents
three questions that suggest different approaches to revealing the model, which are repeated here.
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Fig. 10. Cohort comparison screen of visualization application for clinicians.

• Confidence: How sure is the model that a given output is correct?
• Command: How well does the model know the domain?
• Complexity: Did the model do a simple or complex thing to arrive at the output?

In the following paragraphs we draw out how we achieved these in this application, highlighting
the design lessons for visualising relevant aspects of a machine-learning model.
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On the Patient Overview screen (Figure 8), issues with data quality are highlighted as a way
to communicate confidence and command. Difficulties in pre-processing data are can lead to an
incorrect or low confidence machine classification. Other issues include: the patient being unlike
those seen in the training set; movements performed incorrectly by the patient; or potentially,
the patient is too disabled to complete the movement as the system expects. Highlighting these
indicate issues of confidence of the model. In places where training data may be sparse, as with
those with high levels of disability, command could be low. We did not elicit questions from the
third question: complexity. In all our cases, the complexity of decision-making was the same.

While an exclamation in a red circle may not seem like visualizing the algorithm, the exam-
ple here suggests that in minimal design language we can make visible important aspects of the
machine-learning model that are interpretable and potentially directly relevant to clinical decision-
making.

On the Algorithmic Interpretation screen (Figure 9), confidence and command are visually rep-
resented in placing the patient in relationship to the training data set. How confident the classifi-
cation of a predicted measurement of 1 can be interpreted by how close the circle is to the 1 mark
or the 2 mark. Similarly, the number or tightness of a cluster indicates command. Interestingly,
this visualisation is not technically revealing how the algorithm is working but does provide ad-
ditional context for clinical interpretation. It makes tangible what is otherwise either hidden (the
ranking as opposed to the classification of patients) or disguised in words (the training set is not
well populated). We would argue that this visualisation provides a more tangible way to assess
how the algorithm is working.

The Algorithmic Interpretation screen is perhaps not fully explained by the questions in the
meta-model of cognition approach. It further embodies an approach of trying to exploit the rela-
tionships that form between data points during the machine-learning process. The Cohort Com-
parison screen (Figure 10) is an even stronger attempt at such. This design exploration has sug-
gested another perspective on visibility; one in which we can provide another view of the patient
through exploiting relationships that form in the machine processing of the data without neces-
sarily needing to interpret them. We could think of visibility as adding a dimension to the ways
that clinicians think about and explore patient data rather than explaining algorithmic decision-
making.

6.3.2 Domain Expert Evaluation. We were keen to get feedback on whether the approach of
only presenting relevant aspects of the model, in contrast to the approach taken in iterations 1
and 2 in which we attempted to elucidate the whole model, would be compelling to clinicians in
their decision-making. Unfortunately, it was not possible to evaluate the application with patient
data in a clinical setting as the Assess MS system has not yet been deployed as a complete system
and won’t be deployed until a clinical validation study is complete and appropriate FDA approvals
have been sought. This is many years out. As such, we have considered how we might elicit useful
feedback from our clinical team without them having the experience of such a system in practice.

The first step was to gain a domain expert evaluation by presenting the design back to the 12
people who participated in the workshop. This was done with data simulated from cross-sectional
actor data to give a sense of what the application might do if longitudinal patient data was available.
First, an introduction was done on a projected screen; then, in small groups, team members had an
opportunity to try the app on a tablet computer; finally, one researcher facilitated a focus group.
Each group was reminded of the patient scenario used in the first workshop and it was suggested
that they walk through what data they might look at in this case. Our clinical colleagues found it
immensely difficult to imagine what the flow of such a situation would be without having actual
data. Instead, they focused on specific features and described how they would use these.
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Everyone liked the video comparison, the feature that was also the most popular in the de-
sign workshop. The ability to see the past was a new opportunity to clinicians that made them
feel that they could do a better job in their current assessment. Comparison is much easier than
classification for a person. Those more senior were particularly taken with the idea of the cohort
comparison screen and that they might be able to determine sub-types of the disease. There re-
mained a scepticism among some that such patterns were actually in the data. While there was
often talk of need to share the visualisations with patients and that their key role would be for the
patient, no concrete examples were given as to what this might look like.

The facilitator brought people’s attention to the specific design considerations that were in-
tended to bring aspects of the model relevant to decision-making. First, it was asked what people
thought the red exclamation points meant as nobody had commented on them. Dutifully explored,
one clinician said, “It’s good to realise that the machine can be wrong too.” Although through con-
versation our clinical colleagues came to understand why those indicators might be useful, they
were happy to take the warning at face value and simply watch the video to make their own as-
sessment. The focus on the videos was so strong that little emphasis was put on the predicted
measurements at all, despite them being the original reason for the system.

The facilitator then oriented the discussion towards the Algorithmic Interpretation screen. The
clinicians were immediately attracted to the ability to see whether a patient was in between a
classification. They also liked the ability to play time as a video to see when big jumps occurred.
As with the video, this offered them something that they could not do on their own. Some felt that
the similarity metric was useful but would be more useful if it contained patients that they knew
to give clues as to what treatments might be most beneficial. This suggestion further illustrates a
strong desire of clinicians to augment their current skills through the data. One clinician captured
this sentiment in a particularly revealing way, “If this application causes me to ask better questions
of myself when I’m making a decision, then it has done a good job.”

This workshop was in many ways revealing, if unexpectedly so. It was very challenging for
the clinicians, despite their involvement in the project, to imagine a future in which a machine-
learning algorithm predicted movement ability. That said, it was clear that having features in the
application that built on their current skills, such as video and more fine-grained scores (even
if visual rather than actual classifications) gave the clinicians an entry point to the system that
would enable them to become more familiar with the possibilities of what a machine-learning
system might offer their clinical practice in future, such as understanding of where a patient fits
within a cohort or sub-type.

We might expect from clinical reactions that it could take some time to fully appreciate why they
may want to understand how the models are working. Perhaps a predicted movement classification
that disagreed with their own might prompt further inquiry into the workings of the machine.
What we did see is that the data reliability indicator was broadly understood and did not distract
as some of the earlier design iterations did. We would suggest that this is a positive start. The visual
nature of the Algorithmic Interpretation screen seemed to draw attention more readily than the
data quality indicators, but potentially it communicated less discrete information.

Perhaps the most compelling insight that we had as researchers was to think differently about
what design is trying to achieve in making visible relevant parts of the model. While we had
given up the notion of making all aspects of the model visible, we were still very focused on
making relevant aspects of the model visible within the larger context of other useful features in
the application. Commentary from our clinical colleagues helped us reframe the potential role of
design. They noted that encouraging clinicians to ask questions of the data, not just be able to
interpret machine predictions was equally valuable. This fits nicely with some of the explorations
that we did to utilise data produced in the machine-learning process (as opposed to the end result).
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Visibility, while it certainly must contain relevant aspects of the model, can also be thought of more
broadly as stimulating thinking through the artefacts of the machine process.

7 DISCUSSION

This article presents a series of design iterations that explore the best way to communicate visually
sensed data for measuring motor ability for Multiple Sclerosis with Assess MS. The first iteration
probes the relationship between the temporal body and data. The second iteration aims to make
visible the algorithmic decision-making process. Found unhelpful, the third iteration offers a way
to provide context to the algorithmic decision-making process instead without explicitly revealing
algorithmic decision-making. These design explorations have tested a number of implicit assump-
tions that we, and we would expect many others, have about how we might productively support
people to work in concert with applications that rely on machine learning. In particular, we examine
what it might mean to “make visible” an algorithm in the spirit of white box algorithms.

The literature is clear that some level of interpretability of machine-learning algorithms benefit
interactive applications. We responded to this by attempting to reveal the decision-making pro-
cess. We showed that the algorithm made decisions that were irrelevant to users, such as whether
a movement was being done with the left or the right hand. We also showed that how it made its
decision depended on the data in ways that differed from how a person might make a decision. For
example, in one instance the decision-making data happened mainly on the second of three rep-
etitions of movements because, we suspect, video alignment is best at this point. A person would
use the additive understanding acquired with each repetition. This design exploration illustrated
that just “making visible” the algorithm was too naïve an approach to be useful for clinical purposes
as people and machines “think” differently.

Our design explorations did suggest, however, that there are times when it is necessary to check
precisely the algorithmic decision-process to determine the construct validity of a clinical measure.
In the case of Assess MS, for example, we showed that the head was playing a key part in deci-
sions about upper body dysmetria. While head tremor is frequently co-present with symptoms
of disymetria, it is not necessarily indicative of it. This finding raises the point that in some do-
mains, health being one, that there may be a need for curator–a person with both computing and
domain knowledge that can inspect the models produced by machine learning. In cases like Assess
MS, in which the features are not human interpretable, appropriate visualisations will be needed
to support the curator role that differ from those used by clinicians.

That an algorithm could not just be “made visible,” posed a challenge as to how visualisation
could enable the use of algorithmic decisions in the clinical reasoning process. We decided to pro-
vide context instead. This was first instantiated as an indication of the data quality and second
as the relationships between data points that revealed important aspects of the algorithmic deci-
sion. Our proposed interface, for example, showed that visualisation made obvious whether scores
changes were a small jump over the boundary line or a big change. We might say that the relation-
ships embodied in the statistical processes of machine learning is the medium of machine “thought”
that clinicians need access to, rather than the process of classification.

Our interactions with our clinical colleagues continued to emphasise the importance of build-
ing on their existing visual pattern-matching skills, with a focus to augment clinician’s current
capabilities. This is best exemplified by the decision to maintain video in the final design iteration
rather than replace it with a static, comparable visualisation. Instead, we linked the two to support
the benefits of both. We then focused on augmenting current clinical skills through providing videos
from different time points. This uses the clinicians’ skills for assessing movement, while provid-
ing them a resource not previously available. As systems like Assess MS move into widespread
deployment, it will enable researchers to move from these ideas to evaluable statements.
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Finally, our study addressed the “box” metaphor associated with machine-learning algorithms,
which suggests that these algorithms are self-contained and can be inserted into applications with-
out need of opening. Our design explorations illustrate that a machine-learning algorithm embed-
ded in an interactive application is anything but a self-contained box. In the case of Assess MS, the
features were chosen to gain the best level of machine accuracy, a substantial challenge when the
movement differences are subtle and the level of noise in the data high. That said, these features,
spatial-temporal cubes of pixels in a depth video, are not human interpretable, making visualisa-
tion highly problematic. So too did seemingly mundane choices, such as feature parameters, which
lacking a penalty on length made it impossible to pinpoint aspects of the movement that showed
disability. This finding demonstrates that machine-learning algorithms cannot be designed separately
from the design of the application itself.

8 CONCLUSION

Ubiquitous sensing applications driven by machine-learning algorithms are becoming increasingly
common in our world. This is particularly true in medicine, where there have been large numbers
of explorations into their usage for sensing motor and cognitive ability. The now interactive nature
of such applications means it is essential, particularly in domains such as medicine, that we find
mechanisms to enable domain experts to assess the results of a machine-learning algorithm to
integrate it into their wider decision-making process.

Addressing the interplay between human experience and machine-learning algorithm is tricky.
Work has been done to try and create machine-learning algorithms that have results that are
human interpretable [6]. Yet, it is difficult to get the full power of machine learning with such
approaches, particularly given the advances in deep learning. Our work suggests that visualisation
might help bridge this gap. In the case of Assess MS, we show that this cannot be done naively
by making visible the algorithmic process itself as human and machine decision-making differ.
Rather, a nuanced view of the context of the machine-learning result can be an alternative.
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