
Intelligent Virtual Machine Provisioning in Cloud Computing
Chuan Luo1 , Bo Qiao1 , Xin Chen1 , Pu Zhao1 , Randolph Yao2 ,

Hongyu Zhang3 , Wei Wu4 , Andrew Zhou5 and Qingwei Lin1,∗

1Microsoft Research, China
2Microsoft Azure, United States

3The University of Newcastle, Australia
4University of Technology Sydney, Australia

5Microsoft Office, China
{chuan.luo, boqiao, v-xich15, puzhao, ranyao, azhou, qlin}@microsoft.com,

hongyu.zhang@newcastle.edu.au, william.third.wu@gmail.com

Abstract
Virtual machine (VM) provisioning is a common
and critical problem in cloud computing. In indus-
trial cloud platforms, there are a huge number of
VMs provisioned per day. Due to the complexity
and resource constraints, it needs to be carefully op-
timized to make cloud platforms effectively utilize
the resources. Moreover, in practice, provisioning
a VM from scratch requires fairly long time, which
would degrade the customer experience. Hence,
it is advisable to provision VMs ahead for up-
coming demands. In this work, we formulate the
practical scenario as the predictive VM provision-
ing (PreVMP) problem, where upcoming demands
are unknown and need to be predicted in advance,
and then the VM provisioning plan is optimized
based on the predicted demands. Further, we pro-
pose Uncertainty-Aware Heuristic Search (UAHS)
for solving the PreVMP problem. UAHS first mod-
els the prediction uncertainty, and then utilizes the
prediction uncertainty in optimization. Moreover,
UAHS leverages Bayesian optimization to interact
prediction and optimization to improve its practi-
cal performance. Extensive experiments show that
UAHS performs much better than state-of-the-art
competitors on two public datasets and an indus-
trial dataset. UAHS has been successfully applied
in Microsoft Azure and brought practical benefits
in real-world applications.

1 Introduction
Recently, cloud computing has emerged as a new comput-
ing paradigm that offers a variety of services [Wang et al.,
2015]. Virtual machine (VM) provisioning is a common and
critical problem in cloud computing. In practice, a huge num-
ber of VMs are provisioned per day in industrial cloud plat-
forms, and the cloud platform may not efficiently utilize the
resources by merely adopting any simple provisioning plan.

∗Corresponding author.

However, due to its complicated resource constraints, the VM
provisioning problem is computationally hard and urgently
calls for effective solutions [Hbaieb et al., 2017].

In current industrial practice, when a customer requests for
a VM, the VM is provisioned from scratch, which usually
costs much time [Mao and Humphrey, 2012]. The long de-
lay in VM provisioning significantly degrades the customer
experience [Zhang et al., 2014]. However, most steps in VM
provisioning are independent to a particular request, which
can be done before request. Hence, it is advisable to provi-
sion VMs ahead, and to serve requests with provisioned VMs.

In this work, we formulate the industrial scenario described
above as the predictive VM provisioning (PreVMP) problem,
where upcoming demands for various VM types are unknown
and need to be predicted in advance, and then the VM provi-
sioning plan is optimized using the predicted demands. The
PreVMP problem can be treated as a problem of prediction
with optimization [Wilder et al., 2019]. Since the optimiza-
tion objective of PreVMP contains unknown parameters (i.e.,
real demands), conventional optimization methods are not
able to handle such a problem.

We propose Uncertainty-Aware Heuristic Search (UAHS),
which is a novel approach for solving PreVMP. In particu-
lar, UAHS not only predicts future demands for all VM types,
but also models the prediction uncertainty for all VM types.
Then UAHS utilizes the predicted demands and the modeled
prediction uncertainty to optimize the VM provisioning plan.
Moreover, UAHS leverages Bayesian optimization to effec-
tively interact prediction and optimization, in order to im-
prove its performance. In this way, UAHS solves PreVMP
by combining prediction and optimization in an integral way.

Extensive experiments on two public datasets and an indus-
trial dataset demonstrate that UAHS can perform much better
than existing state-of-the-art methods. Furthermore, we have
successfully applied UAHS in Microsoft Azure, which is an
industrial public cloud platform, and observed that the me-
dian of the VM provisioning time has been reduced by around
42% after the deployment of UAHS.

Our main contributions in this work are as follows:

• We formulate the industrial scenario as the PreVMP
problem, which shows benefits in practice.



• We propose UAHS, a novel approach for PreVMP. UAHS
models and utilizes the prediction uncertainty to conduct
optimization. Also, UAHS leverages Bayesian optimiza-
tion to effectively interact prediction and optimization.
• Extensive experiments on two public datasets and an in-

dustrial dataset indicate the effectiveness of UAHS. Fur-
thermore, UAHS has been applied in Microsoft Azure
and brought practical benefits in real-world applications.

2 Problem Formulation
In this section, we formally formulate the problem of predic-
tive virtual machine provisioning (PreVMP) as follows.
Definitions about virtual machines. Given a set of n vir-
tual machine types V = {v1, . . . , vn}, each virtual machine
(VM) type contains three attributes, i.e., vi = (αi, βi, γi),
where αi, βi and γi are the amount of CPU cores, mem-
ory and storage of VM type vi, respectively. We have the
historical demands for all n VM types D = {dti | i ∈
{1, . . . , n}, t ∈ {1, . . . , T}}, where t denotes a time stamp,
and dti is a non-negative integer and denotes the demand of
VM type vi accumulated within the time period [t − 1, t].
Also, we use the notation Di to denote the historical demand
for VM type vi, i.e., Di = {d1i , . . . , dTi }, which is an equally
spaced time series; we use the notation Dt to denote the set
of all VM types’ demands in the time period [t − 1, t], i.e.,
Dt = {dt1, . . . , dtn}. We use Y ∗ = {y∗1 , . . . , y∗n} to de-
note the real demands for all VM types in the time period
[T, T +1], where y∗i is a non-negative integer and denotes the
real demand for VM type vi in the time period [T, T + 1];
hence, Y ∗ is unknown before the time stamp T + 1.
Definitions about physical machines. At any time stamp
t, based on the cloud platform status, the cloud platform can
provide a set of mt physical machines P t = {pt1, . . . , ptm}
to provision VMs. In this work, we use notations m, P
and pj to represent mT , PT and pTj (the physical machine
related status information at time stamp T ), respectively.
Each physical machine (PM) contains three attributes, i.e.,
pj = (Cj ,Mj , Sj), where Cj , Mj and Sj denote the avail-
able resource of CPU cores, memory, and storage of PM pj ,
respectively. A VM must be provisioned on a PM with suffi-
cient resource: For each PM pj , the VMs provisioned on pj
must satisfy the resource constraints that the total amount of
CPU cores, memory, and storage requested by all VMs provi-
sioned on PM pj cannot exceed Cj , Mj and Sj , respectively.
Necessary notations. The notation A denotes a set of
n · m integer decision variables, i.e., A = {ai,j | i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}}, where ai,j denotes the number
of VMs with VM type vi to be provisioned on PM pj . Also,
the notation X = {x1, . . . , xn} denotes a set of n decision
variables, where xi denotes the number of VMs with VM type
vi to be provisioned, i.e., xi =

∑m
j=1 ai,j . A provisioning

plan is an assignment to A; a plan is feasible if all resource
constraints are satisfied. For VM type vi, the amount of the
utilized CPU cores is calculated as hi = min{xi, y∗i } · αi.
For all VM types, the overall amount of utilized CPU cores
is h =

∑n
i=1 hi, and the overall CPU core utilization ratio is

r = h/(
∑m

j=1 Cj).

Problem formulation. At time stamp T , given a set of n
VM types V and its historical demands D, as well as, a set of
m PMs P , the problem of predictive virtual machine pro-
visioning (PreVMP) is to find a feasible provisioning plan,
which maximizes the overall CPU core utilization ratio r,
since core-level based provisioning can achieve good perfor-
mance for the cloud platform [Zhao et al., 2018]. Maximizing
the overall CPU core utilization ratio r is equivalent to maxi-
mizing the overall amount of utilized CPU cores h, since the
denominator (i.e.,

∑m
j=1 Cj) is a constant. We give the for-

mal formulation as follows.

maximize h =
∑n

i=1 min{xi, y∗i } · αi

s.t.
∑n

i=1ai,j · αi ≤ Cj , j ∈ J∑n
i=1ai,j · βi ≤Mj , j ∈ J∑n
i=1ai,j · γi ≤ Sj , j ∈ J

ai,j ≥ 0, (i, j) ∈ I × J
ai,j is an integer, (i, j) ∈ I × J

(1)

where xi =
∑m

j=1 ai,j , I = {1, . . . , n} and J = {1, . . . ,m}.
Regarding Equation 1, recall that, for i ∈ I , y∗i (i.e., the real
demand for VM type vi in the time period [T, T +1]) remains
unknown at time stamp T .

Remarks. In theory, the predictive VM provisioning prob-
lem is a computationally hard problem; even if Y ∗ was
known, the deterministic VM provisioning problem is NP-
hard [Hbaieb et al., 2017; Zhao et al., 2018].

3 Related Work
The deterministic VM provisioning (VMP) problem aims to
find a feasible provisioning plan that can optimize the alloca-
tions of VMs to PMs under resource constraints. A number
of methods have been proposed to solve deterministic VMP
[Hbaieb et al., 2017; Zhao et al., 2018], and the Ant Colony
Optimization (ACO) algorithm [Zhao et al., 2018] exhibits
state-of-the-art performance. However, these methods are
only applicable when the real VM demands are known.

For PreVMP, cloud platforms need to provision VMs ac-
cording to the upcoming demands, which unfortunately are
previously unknown. Hence, the PreVMP problem can be
treated as a problem of prediction with optimization (Pre-
diction+Optimization) [Wilder et al., 2019]. A straightfor-
ward two-stage method first predicts unknown parameters
and then directly conducts optimization based on the pre-
dicted results. An improved two-stage method called Semi-
direct [Demirović et al., 2019a] is proposed by modifying the
loss function according to the characteristics of the optimiza-
tion problem. Unfortunately, such two-stage methods assume
that the predicted results are accurate, but in practice the pre-
diction errors are inevitable [Wilder et al., 2019].

Recently, a few methods are proposed to deal with several
restricted variants of the Prediction+Optimization problem:
1) the optimization problem is a ranking problem [Demirović
et al., 2019b]; 2) the optimization problem needs to be solv-
able by dynamic programming [Demirović et al., 2020]; 3)
the optimization objective is linear [Elmachtoub and Grigas,



PM Status

D Predict

Optimize
Real 

Demand

rAverage Util. Ratio

Prediction Component

Optimization Component

Start with 
default Conf

New Conf

New Sample
(Conf, r)

Surrogate 
Model

Conf. Selection

Historical 
Demands 𝐷෡, 𝑦ොDemand 

Prediction
Probability 
Distribution

Evaluate

P
D

PD

(Conf, r)

Conf

Figure 1: Top-level design of UAHS. The iteration process is termi-
nated when the number of iterations reaches the limit max_iter .

2017; Mandi et al., 2020]. Unfortunately, the PreVMP prob-
lem does not satisfy any of those restrictions, so such methods
are not applicable to the PreVMP problem.

Besides, a recent method called Decision-NN [Wilder et
al., 2019] based on neural network is proposed, and integrates
prediction with optimization by directly using the gradient of
the optimization objective function in the training phase of a
machine learning model. To obtain the gradient of the dis-
crete optimization objective function, a continuous relaxation
mechanism is employed during the training phase. However,
the continuous relaxation mechanism makes the discrete opti-
mization objective function derivable but might incur inferior
performance.

4 Uncertainty-Aware Heuristic Search
In this section, we first introduce the top-level design of
UAHS, and then describe each key component of UAHS.

4.1 Top-level Design of UAHS
We first present the top-level design of UAHS, which consists
of three key components: 1) configuration selection compo-
nent, 2) prediction component, and 3) optimization compo-
nent. We illustrate the top-level design of UAHS in Figure 1.
UAHS works in an iterative framework.

Configuration selection component. This component se-
lects a promising configuration1 Conf (i.e., settings of in-
ternal configurable parameters) for the prediction component
and the optimization component, through a surrogate model
which relates the effect of configurations on performance.

Prediction component. This component is a configurable
component, and is specified by the selected configuration
Conf . For each VM type, it first utilizes the sliding window
based time series analysis approach [Box et al., 2015] to split
the time series (i.e., historical demand data) into a set of sub-
time series; then it predicts the future VM demand for each
sub-time series of each VM type, denoted by d̂ti, and models
the distribution of prediction uncertainty for each VM type,
denoted by εi.

1For the first iteration, since the surrogate model is not built, the
default configuration is selected.

Algorithm 1: Algorithm for searching configuration
Input: prob: probability balancing exploitation and

exploration;
Output: Conf : selected configuration;

1 CS ← a set of randomly sampled configurations;
2 if with probability prob then
3 Conf ← the configuration with the largest EI

evaluated by the surrogate model from CS using
the BMS sampling method;

4 else
5 Conf ← the configuration with the largest

variance evaluated by the surrogate model from
CS using the BMS sampling method;

6 return Conf ;

Optimization component. For each time period [t−1, t], it
takes the predicted VM demands accumulated within [t−1, t]
for all VM types, denoted by D̂t = {d̂t1, . . . , d̂tn}, and the dis-
tributions of prediction uncertainty for all VM types, denoted
by PD = {ε1, . . . , εn}, as inputs; then it conducts optimiza-
tion via heuristic search, subject to resource constraints re-
garding the PM status queried at time stamp t − 1, denoted
by P t−1, to produce a provisioning plan. Once the plan is
obtained, then the average utilization ratio r across all provi-
sioning plans along with the selected configuration Conf is
treated as a new sample, denoted by (Conf , r), to refine the
surrogate model in the configuration selection component.

Remarks. During the iteration process of UAHS, the opti-
mal configuration is recorded whenever it is found. UAHS
conducts the iteration process until the number of iterations
exceeds the limit max_iter , which is a hyper-parameter.
Once the iteration process of UAHS is terminated, for each
VM type, the prediction component configured with the opti-
mal configuration is called to predict the (unknown) real de-
mands, and models the distribution of prediction uncertainty.
Then the predicted demands for all VM types, denoted by
D̂T+1, and the distributions of prediction uncertainty for all
VM types, denoted by PD , are handed to the optimization
component. Finally, the optimization component configured
with the optimal configuration, which takes D̂T+1 and PD as
inputs, produces the final provisioning plan.

4.2 Configuration Selection Component
Bayesian optimization (BO) [Mockus, 1989] shows effective-
ness in algorithm configuration [Hutter et al., 2011]. Hence,
we adopt BO in the configuration selection component. The
main idea of BO is to build and maintain a surrogate model
which relates the effect of configurations on performance, and
then to use that surrogate model to iteratively select promis-
ing configurations. UAHS utilizes Gaussian process (GP)
[Shahriari et al., 2016] as its surrogate model. Given a config-
uration, GP can evaluate its potential benefits using expected
improvement (EI) [Jones et al., 1998] and can evaluate its di-
versification property using variance [Shahriari et al., 2016].

As discussed in Section 4.1, a new sample (i.e., the pair of
the selected configuration and its performance) is obtained in



each iteration. GP can be updated using the samples obtained
in previous iterations. Then we need to address how to search
promising configurations using GP.

The algorithm underlying UAHS for searching promising
configurations is outlined in Algorithm 1, and works between
the exploitation mode and the exploration mode. In the ex-
ploitation mode, our algorithm focuses on known good parts
of the configuration space; in the exploration mode, our al-
gorithm tends to gather more information in the unknown
parts. Since it is critical to make trade-off between exploita-
tion and exploration [Hutter et al., 2011; Cai et al., 2016;
Luo et al., 2017], our algorithm utilizes a hyper-parameter
prob to balance exploitation and exploration. Initially, our
algorithm constructs a candidate set CS consisting of config-
urations, and each configuration in CS is randomly sampled
from the configuration space. Then, with probability prob,
our algorithm selects the configuration with the largest EI
evaluated by GP from CS using a sampling method called
Best from Multiple Selections (BMS) [Cai, 2015]; otherwise
(with probability 1 − prob), it selects the configuration with
the largest variance evaluated by GP from CS using the BMS
sampling method. The BMS sampling method was proposed
in the FastVC algorithm for solving the problem of minimum
vertex cover, and is able to select a high-quality candidate
with theoretical guarantee [Cai, 2015].

4.3 Prediction Component
Before introducing the prediction component, we first define
a necessary operator f tl as follows: Given a VM type vi and
its historical demand Di = {d1i , . . . , dTi }, the operator f tl
can be applied to Di, and f tl (Di) denotes a sub-time series
of Di, with the first time index of t and the length of l, i.e.,
f tl (Di) = {dti, d

t+1
i , . . . , dt+l−1

i }.
As discussed in Section 4.1, the prediction component is

configurable, and its parameters can be specified by the se-
lected configuration Conf . In the prediction component,
UAHS needs to process the historical data for all VM types.
For each VM type vi, UAHS calls the function Predict, which
takes the selected configuration Conf and vi’s historical data
Di as inputs. The function Predict is shown in Algorithm 2.

For the function Predict, UAHS first utilizes the sliding
window based time series analysis approach [Box et al.,
2015] to split the time series (i.e., historical demand data)
into a set of T − l + 2 sub-time series, denoted by {f tl (Di) |
1 ≤ t ≤ T − l + 1} ∪ {fT−l+2

l−1 (Di)}, where l denotes the
length of each sub-time series2 and is an internal configurable
parameter. For each sub-time series f tl (Di) of each VM type,
the last demand dt+l−1

i is treated as the label, and all other
previous demands f tl (Di)\dt+l−1

i are regarded as the train-
ing set; then UAHS uses a predictor, which is trained on the
training set, to predict the last demand, resulting in the pre-
dicted value of the last demand d̂t+l−1

i ; after that, the predic-
tion error of predictor for sub-time series f tl (Di), denoted by
et+l−1
i , can be calculated by dt+l−1

i − d̂t+l−1
i . After the pre-

diction errors of predictor for all sub-time series are obtained,

2Except the last sub-time series, the length of the last sub-time
series is l − 1, since y∗

i is unknown.

Algorithm 2: Function Predict
Input: Conf : selected configuration;

Di: historical demand data for VM type vi;
Output: D̂i: predicted demand data for VM type vi;

εi: distribution of prediction uncertainty;
1 specify l and predictor’s parameters by Conf ;
2 for t← 1 to T − l + 1 do
3 d̂t+l−1

i ← use predictor trained on f tl (Di)\dt+l−1
i

to predict the demand at t+ l − 1;
4 et+l−1

i ← dt+l−1
i − d̂t+l−1

i ;

5 ŷi ← use predictor trained on fT−l+2
l−1 (Di) to predict

the real demand;
6 D̂i ← {d̂li, d̂

l+1
i , . . . , d̂Ti , ŷi};

7 εi ← fit the distribution by GMM using
{eli, e

l+1
i , . . . , eTi };

8 return D̂i, εi;

we can fit the distribution of prediction uncertainty, denoted
by εi, through Gaussian mixture model (GMM) [McLachlan
and Peel, 2000] using all obtained prediction errors, since it
is well recognized that GMM can reasonably approximate a
wide class of distributions [Verbeek et al., 2003].

UAHS treats predictor as a black-box tool, and predictor
can be instantiated with any time series forecasting method.3

4.4 Optimization Component
As introduced in Section 4.1, for each time period [t − 1, t],
the optimization component solves the corresponding VM
provisioning problem within [t− 1, t]. The details of the op-
timization component are described as follows.

For time period [t − 1, t], given 1) the predicted VM de-
mands accumulated within [t−1, t] for all VM types, denoted
by D̂t = {d̂t1, . . . , d̂tn}, 2) the distributions of prediction un-
certainty for all VM types, denoted by PD = {ε1, . . . , εn},
and 3) the PM status P t−1 queried at time stamp t−1, the task
is to solve the corresponding optimization problem listed in
Equation 1. However, the original problem in Equation 1 does
not consider prediction uncertainty; directly solving the orig-
inal problem might result in inferior practical performance,
because for time series forecasting methods, the prediction er-
rors are inevitable [Wilder et al., 2019]. Since UAHS utilizes
probability distributions to model the prediction uncertainty,
a novel idea is to leverage the distributions of prediction un-
certainty during the optimization process.

As discussed before, for each VM type vi, the prediction
uncertainty can be expressed as a random variable ui with
the distribution εi. We can assume the (unknown) vi’s real de-
mand y∗i = d̂ti+ui, which can be seen as a random variable.4

3In this work, UAHS instantiates predictor using a time series
decomposition based forecasting approach [Hyndman and Athana-
sopoulos, 2013] for its efficiency.

4Since y∗
i can only be non-negative integer, we treat the y∗

i as
a discrete random variable, whose cumulative distribution function
(CDF) equals to the continuous version.



Algorithm 3: Function Optimize
Input: Conf : selected configuration;

D̂t: predicted VM demands accumulated with
[t− 1, t] for all VM types;
PD : distributions of prediction uncertainty for
all VM types;
P t−1: PM status queried at time stamp t− 1;

Output: At: provisioning plan for time period
[t− 1, t];

1 specify the trade-off probability b by Conf ;
2 ai,j ← 0 for all possible pairs of (i, j);
3 FT ← the set of all feasible tuples (vi, pj);
4 while FT 6= ∅ do
5 CV ← {vi | ∃ pj ∈ P, (vi, pj) ∈ FT};
6 if with probability b then
7 v∗ ← random VM type vi ∈ CV ;
8 else
9 v∗ ← VM type vi ∈ CV with the largest

score;
10 CP ← {pj | (v∗, pj) ∈ FT};
11 p∗ ← PM pj ∈ CP with the largest utility;
12 ai,j ← ai,j + 1 where vi = v∗ and pj = p∗;
13 remove any infeasible tuples (vi, pj) from FT ;

14 At ← {ai,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}};
15 return At;

Recall that the overall amount of the utilized CPU cores is
h =

∑n
i=1 min{xi, y∗i } · αi; hence, h can also be regarded

as a random variable which depends on Y ∗ = {y∗1 , . . . , y∗n}.
Intuitively, the expected value of h, i.e., E(h), represents the
average amount of utilized CPU cores, across many indepen-
dent realizations of real demands Y ∗. Therefore, the opti-
mization problem is to maximize E(h) =

∑n
i=1 E(hi).

Given a provisioning plan A and the PM status P t−1

queried at time stamp t − 1, if a VM with VM type vi can
be provisioned on a PM pj without violating any resource
constraints in Equation 1, then the tuple (vi, pj) is feasible;
otherwise, the tuple (vi, pj) is infeasible. The feasible tuple
can be evaluated by two metrics (i.e., score and utility), for
assessing the qualities of the related VM type and the related
PM, respectively. We introduce the metrics as below.

Given a provisioning plan A and its corresponding objec-
tive h, if we provision a new VM with VM type vi, resulting
in a new objective h′, the score of vi is the increment to the
objective i.e., E(h′)− E(h), and how to calculate score of vi
is described in Lemma 1.

Lemma 1. Given a provisioning plan A and VM type vi,
the score of vi can be calculated as score(vi) = (1 −
CDF y∗

i
(xi)) · αi.

Proof. We denote the notations h and h′ as the objectives
before and after adding a new VM with VM type vi to pro-
visioning plan A, respectively. Also, we denote the notations
hi and h′i as the amounts of the utilized CPU cores for VM
type vi before and after adding a new VM with VM type vi
to provisioning plan A, respectively.

Since adding a new VM with VM type vi would only im-
pact the amount of the utilized CPU cores for VM type vi, so
it is easy to obtain E(h′)−E(h) = E(h′i)−E(hi). The score
of vi can be calculated as follows.

score(vi) = E(h′)− E(h) = E(h′i)− E(hi)
=

∑+∞
k=0 min{xi + 1, k} · αi · P (y∗i = k)

−
∑+∞

k=0 min{xi, k} · αi · P (y∗i = k)

=
∑+∞

k=xi+1P (y
∗
i = k) · αi

= P (y∗i ≥ xi + 1) · αi

= (1− P (y∗i ≤ xi)) · αi

= (1− CDF y∗
i
(xi)) · αi

For any PM pj , the utility of pj measures the remain-
ing resource capacity [Hbaieb et al., 2017], and is calcu-
lated as utility(pj ) = CRj · MRj · SRj , where CRj =
(
∑n

i=1 ai,j ·αi)/Cj , MRj = (
∑n

i=1 ai,j ·βi)/Mj and SRj =
(
∑n

i=1 ai,j · γi)/Sj . Actually, CRj , MRj and SRj represent
the utility status of CPU cores, memory and storage on PM
pj , respectively. The reason why UAHS prefers to select a PM
with larger utility is based on the intuition that in the optimal
provisioning plan all PMs tend to be fully utilized in practice
[Hbaieb et al., 2017].

To make our function Optimize efficient, inspired by the
high efficiency of the two-mode heuristic search framework
[Hoos and Stützle, 2004; Cai et al., 2013; Luo et al., 2015;
Luo et al., 2019], we design a new two-mode heuristic search
algorithm to optimize the provisioning plan. The function
Optimize introduces a trade-off probability b (which is an
internal configurable parameter) to effectively balance the
greediness and the randomness, in order to better escape local
optima during the search process.

The function Optimize underlying UAHS is listed in Algo-
rithm 3. In the beginning, the set of all feasible tuples FT
is initialized. Then the function Optimize conducts the op-
timization process iteratively. In each iteration, the function
Optimize switches between the random mode and the greedy
mode, in order to select a tuple (v∗, p∗) from FT , where v∗
and p∗ denote the VM type and the PM chosen in this it-
eration, respectively. Regarding choosing the VM type v∗,
with probability b, the function Optimize works in the ran-
dom mode, i.e., selecting a VM type randomly as v∗; other-
wise (with probability 1− b), the function Optimize works in
the greedy mode, i.e., selecting the VM type with the largest
score as v∗. Regarding choosing the PM p∗, the function Op-
timize selects the PM with the largest utility as p∗. Then the
provisioning plan is updated accordingly. At the end of each
iteration, those infeasible tuples would be removed from FT .
The iteration process is terminated once FT becomes empty.
Once the iteration process terminates, the current provision-
ing plan is reported as the output of the function Optimize.

5 Experiments
To study the performance of UAHS, we conduct extensive ex-
periments on two public datasets and an industrial dataset to
compare UAHS against 8 state-of-the-art competitors.



Competitors
Azure-2017 Azure-2019 Industrial
avg. r± SD avg. r± SD avg. r± SD

time time time

LR+ACO 0.684± 0.184 0.692± 0.118 0.724± 0.055
1177.7 5204.5 3353.5

TSDec+ACO 0.711± 0.162 0.686± 0.140 0.701± 0.066
1260.8 4722.7 3458.8

AutoARIMA+ACO 0.771± 0.146 0.760± 0.121 0.746± 0.043
3161.2 9637.8 12208.4

LSTM+ACO 0.763±0.101 0.735±0.113 0.729±0.032
9166.5 20362.3 19549.3

UCM+ACO 0.723± 0.148 0.752± 0.118 0.736± 0.046
1162.6 4976.6 2810.5

Prophet+ACO 0.762± 0.139 0.696± 0.154 0.738± 0.040
1431.7 4696.0 3272.6

Decision-NN 0.792± 0.106 0.762± 0.128 0.759± 0.032
970.9 4504.9 3193.2

Semi-direct 0.788± 0.118 0.764± 0.087 0.745± 0.058
1139.6 3946.2 3590.3

UAHS-alt1 0.791± 0.144 0.784± 0.124 0.776± 0.049
6.7 11.0 10.5

UAHS-alt2 0.764± 0.122 0.723± 0.116 0.719± 0.052
355.2 517.3 542.6

UAHS 0.833± 0.092 0.821± 0.084 0.813± 0.044
336.5 548.0 523.7

Table 1: Results of UAHS, UAHS-alt1, UAHS-alt2 and their com-
petitors on all datasets.

5.1 Datasets
In order to evaluate the performance of UAHS, we utilize
two public datasets5 [Cortez et al., 2017] collected from
Microsoft Azure, dubbed Azure-2017 and Azure-2019.
After obtaining the Azure-2017 and Azure-2019 datasets,
we pre-process, filter and aggregate those two datasets in or-
der to make them applicable in our experiments. After pre-
processing, filtering and aggregating those two datasets, the
Azure-2017 dataset has 110 different VM types and contains
a representative trace of VM workload of Microsoft Azure
across 30 consecutive days in 2017; the Azure-2019 dataset
has 150 different VM types and includes a similar trace of
Microsoft Azure across 30 consecutive days in 2019. For
each processed dataset of Azure-2017 and Azure-2019, the
demand for each VM type is recorded every 4 hours, so it has
42 time stamps per week and 180 time stamps in total across
the 30 days. In order to capture the weekly characteristics, we
construct 42 instances by taking all sub-time series in length
of 139 (i.e., 180− 42+ 1) time stamps using the sliding win-
dow based time series analysis approach [Box et al., 2015],
each of which has the demand on the last time stamp as la-
bel. Since both the Azure-2017 and Azure-2019 datasets
lack the PM status, for each instance in the Azure-2017 and
Azure-2019 datasets, the PM status is generated syntheti-
cally to simulate a practical setup.

Besides those two public datasets described above (i.e.,
the Azure-2017 and Azure-2019 datasets), we additionally
adopt an industrial dataset called Industrial, which is gath-
ered from Microsoft Azure, to evaluate the practical perfor-
mance of UAHS. The Industrial dataset records a recent
trace of VM workloads on the cloud platform with a subset
of VM types. In order to be aligned with the Azure-2017 and
Azure-2019 datasets, the Industrial dataset is processed
similarly to construct 42 instances.

5https://github.com/Azure/AzurePublicDataset

max_iter
Azure-2017 Azure-2019 Industrial
avg. r± SD avg. r± SD avg. r± SD

time time time

1 0.791± 0.144 0.784± 0.124 0.776± 0.049
6.7 11.0 10.5

10 0.811± 0.106 0.810± 0.109 0.781± 0.045
67.2 109.6 104.8

25 0.826±0.094 0.815±0.094 0.799±0.050
168.2 274.0 261.9

50 0.833± 0.092 0.821± 0.084 0.813± 0.044
336.5 548.0 523.7

100 0.836± 0.081 0.825± 0.083 0.810± 0.054
673.0 1096.0 1047.5

150 0.839± 0.081 0.826± 0.082 0.814± 0.054
1009.5 1644.0 1571.3

200 0.835± 0.086 0.830± 0.079 0.816± 0.055
1346.0 2192.0 2095.1

Table 2: Results of UAHS with different hyper-parameter settings of
max_iter on all datasets.

5.2 Competitors
UAHS is compared against 8 state-of-the-art competitors,
including 6 straightforward two-stage methods, Decision-
NN [Wilder et al., 2019] and Semi-direct [Demirović et al.,
2019a]. For all competitors, the ACO algorithm [Zhao et al.,
2018] is adopted as the optimization algorithm, since ACO
exhibits the state-of-the-art performance in solving the deter-
ministic VM provisioning problem [Zhao et al., 2018].

We integrate ACO with 6 effective time series forecast-
ing methods, including linear regression (LR) [Hyndman
and Athanasopoulos, 2013], time series decomposition based
forecasting approach (TSDec) [Hyndman and Athanasopou-
los, 2013], automatic autoregressive integrated moving aver-
age (AutoARIMA) [Hyndman and Athanasopoulos, 2013],
long short-term memory (LSTM) [Luo et al., 2019], un-
observed component model (UCM) [Durbin and Koopman,
2012] and Prophet [Taylor and Letham, 2018], to construct
6 straightforward two-stage methods, dubbed LR+ACO,
TSDec+ACO, AutoARIMA+ACO, LSTM+ACO, UCM+ACO
and Prophet+ACO, respectively. As introduced in Sec-
tion 3, Decision-NN [Wilder et al., 2019] and Semi-direct
[Demirović et al., 2019a] are two state-of-the-art methods for
solving the problem of prediction with optimization and can
be applicable to the PreVMP problem.

5.3 Experimental Setup
In this work, all experiments were conducted on a machine
with Intel Xeon E5-2673 CPU and 256 GB memory, run-
ning GNU/Linux. For UAHS, the hyper-parameter settings
of max_iter and prob are set to 50 and 0.9, respectively. The
effects of different hyper-parameter settings of max_iter and
prob are discussed in Section 5.4. For each method on each
dataset, we report the average utilization ratio (‘avg. r’), the
standard deviation of the utilization ratios across all instances
(‘SD’), and the average run time (‘time’) in second. For each
dataset, we use boldface to indicate the best results.

5.4 Experimental Results
Comparisons against state-of-the-art competitors. The
comparative results of UAHS and its 8 state-of-the-art com-
petitors on all 3 datasets are presented in Table 1. It is clear

https://github.com/Azure/AzurePublicDataset


prob
Azure-2017 Azure-2019 Industrial

avg. r± SD avg. r± SD avg. r± SD
time time time

0.1 0.827± 0.091 0.821± 0.088 0.809± 0.047
334.9 558.6 520.9

0.2 0.832± 0.086 0.820± 0.077 0.805± 0.041
335.2 563.7 531.8

0.3 0.830± 0.079 0.822± 0.090 0.808± 0.052
338.7 570.0 522.7

0.4 0.812± 0.085 0.821± 0.090 0.810± 0.053
324.6 549.2 530.6

0.5 0.820± 0.084 0.818± 0.095 0.804± 0.047
338.7 553.1 532.8

0.6 0.833± 0.092 0.811± 0.108 0.803± 0.045
314.3 569.6 532.8

0.7 0.827± 0.100 0.825± 0.081 0.801± 0.049
338.9 566.1 532.3

0.8 0.826± 0.089 0.815± 0.094 0.804± 0.051
336.1 547.8 521.2

0.9 0.833± 0.092 0.821± 0.084 0.813± 0.044
336.5 548.0 523.7

1.0 0.837± 0.087 0.823± 0.084 0.799± 0.059
339.0 553.0 529.7

Table 3: Results of UAHS with different hyper-parameter settings of
prob on all datasets.

that UAHS stands out as the best method in terms of aver-
age utilization ratio and average run time. In particular, on
all 3 datasets UAHS achieves the utilization ratio more than
0.8, while the figures for its all competitors are less than 0.8.
When we focus on the metric of average run time, UAHS runs
much faster than its all competitors. The results in Table 1 in-
dicate both the effectiveness and the efficiency of UAHS.
Effectiveness of Bayesian optimization. To evaluate the
effectiveness of Bayesian optimization underlying UAHS, we
modify UAHS by removing the Bayesian optimization pro-
cess, resulting in an alternative version called UAHS-alt1.
The comparative results of UAHS and UAHS-alt1 are reported
in Table 1. The results present that UAHS achieves higher
average utilization ratio than UAHS-alt1, demonstrating the
effectiveness of Bayesian optimization underlying UAHS.
Effectiveness of prediction uncertainty modeling. To as-
sess the effectiveness of prediction uncertainty modeling, we
develop another alternative version of UAHS which works
without prediction uncertainty modeling, dubbed UAHS-alt2.
The comparative results of UAHS and UAHS-alt2 are shown
in Table 1, and UAHS performs much better than UAHS-alt2
in terms of average utilization ratio, indicating the effective-
ness of prediction uncertainty modeling underlying UAHS.
Robustness of UAHS. The results of UAHS with different
hyper-parameter settings of max_iter and prob are reported
in Tables 2 and 3, respectively. Table 2 presents that UAHS
achieves better performance with relatively larger max_iter .
Besides, Table 3 demonstrates that UAHS exhibits stable per-
formance with different hyper-parameter settings of prob.
The results in Tables 2 and 3 provide clear evidence that
UAHS shows robustness and can achieve state-of-the-art per-
formance with different hyper-parameter settings.

6 Applications in Practice
Pre-Provisioning Service (PPS) in Microsoft Azure brings
VM deployment reliability and latency benefits by creating

pre-provisioned VMs. In practice, we have successfully ap-
plied our UAHS approach to PPS in Microsoft Azure and sig-
nificantly improved the performance of the VM provision-
ing on the cloud platform. PPS obtains demand predictions
from UAHS through an intermediary service system called
Resource Central [Cortez et al., 2017]. In original VM pro-
visioning process, it could cost fairly long time to provision
a VM from scratch before the VM is accessible. With UAHS,
the original VM provisioning process could be done in re-
duced time via the utilization of pre-provisioned VMs. Based
on the data collected from the cloud platform before and af-
ter the deployment of UAHS, about 93% of customer requests
that prediction is targeted for are successfully served by pre-
provisioned VMs. Moreover, the median of the VM provi-
sioning time has been reduced by around 42%, indicating that
UAHS can bring practical benefits in real-world applications.
Furthermore, part of UAHS has been successfully applied in
Microsoft Office, like the projects of B2 Autopilot Container
Allocation and AZSC Packing, and considerable performance
improvements are obtained.

7 Conclusions
In cloud computing, virtual machine (VM) provisioning is a
common and critical problem and it is advisable to provision
VMs ahead for customer experience. In this work, we for-
mulated the predictive VM provisioning (PreVMP) problem,
and proposed a novel approach, dubbed Uncertainty-Aware
Heuristics Search (UAHS), for solving the PreVMP problem.
UAHS models and utilizes the prediction uncertainty to con-
duct optimization. Moreover, UAHS leverages Bayesian op-
timization to interact the prediction component and the op-
timization component, to achieve performance improvement.
Extensive experiments on two public datasets and an indus-
trial dataset show that UAHS performs much better than state-
of-the-art competitors. Furthermore, UAHS has been success-
fully applied in Microsoft Azure and brought practical bene-
fits in real-world applications.

Acknowledgements
We would like to thank Dongmei Zhang, Girish Bablani,
Yingnong Dang, Gil Lapid Shafriri, Murali Chintalapati,
Saravanakumar Rajmohan, Jim Kleewein, Sushant Rewaskar,
Thomas Moscibroda and Marcus Fontoura for their great
support and sponsorship. We would also like to thank
Daud Howlader, Anusha Kowdeed, Chandramouleswaran
Ravichandran and Bowen Xu for the collaboration on the
prediction work from Pre-Provisioning Service in Microsoft
Azure, and to thank Raphael Ghelman and Eli Cortez for ser-
vicing the prediction in the Resource Central service system
in Microsoft Azure.

References
[Box et al., 2015] George E. P. Box, Gwilym M. Jenkins,

Gregory C. Reinsel, and Greta M. Ljung. Time Series
Analysis: Forecasting and Control. Wiley, 2015.

[Cai et al., 2013] Shaowei Cai, Kaile Su, Chuan Luo, and
Abdul Sattar. NuMVC: An efficient local search algorithm



for minimum vertex cover. Journal of Artificial Intelli-
gence Research, 46:687–716, 2013.

[Cai et al., 2016] Shaowei Cai, Chuan Luo, Jinkun Lin, and
Kaile Su. New local search methods for partial MaxSAT.
Artificial Intelligence, 240:1–18, 2016.

[Cai, 2015] Shaowei Cai. Balance between complexity and
quality: Local search for minimum vertex cover in massive
graphs. In Proceedings of IJCAI 2015, pages 747–753,
2015.

[Cortez et al., 2017] Eli Cortez, Anand Bonde, Alexandre
Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo
Bianchini. Resource central: Understanding and predict-
ing workloads for improved resource management in large
cloud platforms. In Proceedings of SOSP 2017, pages
153–167, 2017.

[Demirović et al., 2019a] Emir Demirović, Peter J. Stuckey,
James Bailey, Jeffrey Chan, Chris Leckie, Kotagiri Ra-
mamohanarao, and Tias Guns. An investigation into pre-
diction + optimisation for the knapsack problem. In Pro-
ceedings of CPAIOR 2019, pages 241–257, 2019.

[Demirović et al., 2019b] Emir Demirović, Peter J. Stuckey,
James Bailey, Jeffrey Chan, Christopher Leckie, Kotagiri
Ramamohanarao, and Tias Guns. Predict+optimise with
ranking objectives: Exhaustively learning linear functions.
In Proceedings of IJCAI 2019, pages 1078–1085, 2019.

[Demirović et al., 2020] Emir Demirović, Peter J. Stuckey,
James Bailey, Jeffrey Chan, Christopher Leckie, Kotagiri
Ramamohanarao, and Tias Guns. Dynamic programming
for predict+optimise. In Proceedings of AAAI 2020, 2020.

[Durbin and Koopman, 2012] James Durbin and Siem Jan
Koopman. Time Series Analysis by State Space Methods.
Oxford University Press, 2012.

[Elmachtoub and Grigas, 2017] Adam N. Elmachtoub and
Paul Grigas. Smart “Predict, then optimize”. CoRR,
abs/1710.08005, 2017.

[Hbaieb et al., 2017] Ameni Hbaieb, Mahdi Khemakhem,
and Maher Ben Jemaa. Using decomposition and lo-
cal search to solve large-scale virtual machine placement
problems with disk anti-colocation constraints. In Pro-
ceedings of AICCSA 2017, pages 688–695, 2017.

[Hoos and Stützle, 2004] Holger H. Hoos and Thomas Stüt-
zle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

[Hutter et al., 2011] Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Proceedings
of LION 2011, pages 507–523, 2011.

[Hyndman and Athanasopoulos, 2013] Rob J. Hyndman and
George Athanasopoulos. Forecasting: Principles and
Practice. OTexts, 2013.

[Jones et al., 1998] Donald R. Jones, Matthias Schonlau, and
William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization,
13(4):455–492, 1998.

[Luo et al., 2015] Chuan Luo, Shaowei Cai, Wei Wu, Zhong
Jie, and Kaile Su. CCLS: An efficient local search algo-
rithm for weighted maximum satisfiability. IEEE Transac-
tions on Computers, 64(7):1830–1843, 2015.

[Luo et al., 2017] Chuan Luo, Shaowei Cai, Kaile Su, and
Wenxuan Huang. CCEHC: An efficient local search algo-
rithm for weighted partial maximum satisfiability. Artifi-
cial Intelligence, 243:26–44, 2017.

[Luo et al., 2019] Chuan Luo, Holger H. Hoos, Shaowei Cai,
Qingwei Lin, Hongyu Zhang, and Dongmei Zhang. Local
search with efficient automatic configuration for minimum
vertex cover. In Proceedings of IJCAI 2019, pages 1297–
1304, 2019.

[Mandi et al., 2020] Jaynta Mandi, Emir Demirović, Peter. J
Stuckey, and Tias Guns. Smart predict-and-optimize for
hard combinatorial optimization problems. In Proceedings
of AAAI 2020, 2020.

[Mao and Humphrey, 2012] Ming Mao and Marty
Humphrey. A performance study on the VM startup
time in the cloud. In Proceedings of IEEE CLOUD 2012,
pages 423–430, 2012.

[McLachlan and Peel, 2000] Geoffrey McLachlan and
David Peel. Finite Mixture Models. Wiley, 2000.

[Mockus, 1989] Jonas Mockus. Bayesian Approach to
Global Optimization: Theory and Applications. Kluwer
Academic Publishers, 1989.

[Shahriari et al., 2016] Bobak Shahriari, Kevin Swersky,
Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of Bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148–175, 2016.

[Taylor and Letham, 2018] Sean J. Taylor and Benjamin
Letham. Forecasting at scale. The American Statistician,
72(1):37–45, 2018.

[Verbeek et al., 2003] Jakob J. Verbeek, Nikos A. Vlassis,
and Ben J. A. Kröse. Efficient greedy learning of Gaus-
sian mixture models. Neural Computation, 15(2):469–
485, 2003.

[Wang et al., 2015] Changjun Wang, Weidong Ma, Tao Qin,
Xujin Chen, Xiaodong Hu, and Tie-Yan Liu. Selling re-
served instances in cloud computing. In Proceedings of
IJCAI 2015, pages 224–231, 2015.

[Wilder et al., 2019] Bryan Wilder, Bistra Dilkina, and
Milind Tambe. Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization.
In Proceedings of AAAI 2019, pages 1658–1665, 2019.

[Zhang et al., 2014] Zhaoning Zhang, Ziyang Li, Kui Wu,
Dongsheng Li, Huiba Li, Yuxing Peng, and Xicheng Lu.
VMThunder: Fast provisioning of large-scale virtual ma-
chine clusters. IEEE Transactions on Parallel and Dis-
tributed Systems, 25(12):3328–3338, 2014.

[Zhao et al., 2018] Hui Zhao, Jing Wang, Feng Liu, Quan
Wang, Weizhan Zhang, and Qinghua Zheng. Power-aware
and performance-guaranteed virtual machine placement in
the cloud. IEEE Transactions on Parallel and Distributed
Systems, 29(6):1385–1400, 2018.


	Introduction
	Problem Formulation
	Related Work
	Uncertainty-Aware Heuristic Search
	Top-level Design of UAHS
	Configuration Selection Component
	Prediction Component
	Optimization Component

	Experiments
	Datasets
	Competitors
	Experimental Setup
	Experimental Results

	Applications in Practice
	Conclusions

