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ABSTRACT
In this work, we take the first step towards understanding whether

the intrinsic randomness of stochastic gradient descent (SGD) can

be leveraged for privacy, for any given dataset and model. In doing

so, we hope to mitigate the trade-off between privacy and util-

ity for models trained with differential-privacy (DP) guarantees.

Our primary contribution is a large-scale empirical analysis of

SGD on convex and non-convex objectives. We evaluate the in-

herent variability in SGD on 4 datasets and calculate the intrinsic

data-dependent ϵi (D) values due to the inherent noise. For logistic

regression, we observe that SGD provides intrinsic ϵi (D) values
between 3.95 and 23.10 across four datasets, dropping to between

1.25 and 4.22 using the tight empirical sensitivity bound. For neural

networks considered, we observe high ϵi (D) values (>40) owing
to their larger parameter count. We propose a method to augment

the intrinsic noise of SGD to achieve the desired target ϵ , which
produces statistically significant improvements in private model

performance (subject to assumptions). Our experiments provide

strong evidence that the intrinsic randomness in SGD should be

considered when designing private learning algorithms.

1 INTRODUCTION
Respecting the privacy of people contributing their data to train

machine learning models is important for the safe use of this tech-

nique [11, 27, 30]. Private variants of learning algorithms have been

proposed to address this need [5, 12, 24, 29, 31]. Unfortunately the

utility of private models typically degrades, limiting their applicabil-

ity. This performance loss often results from the need to add noise

during or after model training, to provide the strong protections

of ϵ-differential-privacy [8]. However, results to date neglect the

fact that learning algorithms are often stochastic. Framing them as

‘fixed’ queries on a dataset neglects an important source of intrinsic
noise. Meanwhile, the randomness in learning algorithms such as

stochastic gradient descent (SGD) is well-known among machine

learning practitioners [10, 14], and has been lauded for affording

superior generalisation to its non-stochastic counterpart [16]. More-

over, the ‘insensitive’ nature of SGD relative to variations in its

input data has been established in terms of uniform stability [13].

The data-dependent nature of this stability has also been charac-

terised [18]. Combining these observations, we speculate that the

variability in the model parameters produced by the stochasticity

of SGD may exceed its sensitivity to perturbations in the specific

input data, affording ‘data-dependent intrinsic’ privacy. In essence,

we ask: “Can the intrinsic, data-dependent stochasticity of SGD help
with the privacy-utility trade-off?”

Our Approach. We consider a scenario where a model is trained

securely, but the final model parameters are released to the public

- for example, a hospital which trains a prediction model on its

own patient data and then shares it with other hospitals or a cloud

provider. The adversary then has access to the fully trained model,

including its architecture, and we assume details of the training

procedure are public (e.g. batch size, number of training iterations,

learning rate), but not the random seed used to initialise the model

parameters and sample inputs from the dataset. We therefore focus

on how SGD introduces randomness in the final weights of a model.

This randomness is introduced from two main sources — (1)

random initialization of the model parameters and (2) random sam-

pling of the input dataset during training. We argue that rather

than viewing this variability as a pitfall of stochastic optimisation,

it can instead be seen as a source of noise that can mask information

about participants in the training data. This prompts us to investi-

gate whether SGD itself can be viewed as a differentially-private

mechanism, with some intrinsic data-dependent ϵ-value, which we

refer to as ϵi (D). To calculate ϵi (D), we propose a novel method

that characterises SGD as a Gaussian mechanism and estimates

the intrinsic randomness for a given dataset, using a large-scale

empirical approach. To the best of our knowledge, ours is the first

work to report the empirical calculation of ϵi (D) values based
on the observed distribution. Finally, we propose an augmented

differentially-private SGD algorithm that takes into account the

intrinsic ϵi (D) to provide better utility. We empirically compute

the ϵi (D) for SGD and the utility improvement for models trained

with both convex and non-convex objectives on 4 different datasets:

MNIST, CIFAR10, Forest Covertype and Adult.

2 PROBLEM & BACKGROUND
We study the variability due to random sampling, and sensitivity

to dataset perturbations of stochastic gradient descent (SGD).

Differential Privacy (DP).. Differential privacy hides the participa-
tion of an individual sample in the dataset [8]. (ϵ, δ )-DP ensures that
for all adjacent datasets S and S ′, the privacy loss of any individual

datapoint is bounded by ϵ with probability at least 1 − δ [9]:

Definition 2.1 ( (ϵ, δ )-Differential Privacy). AmechanismM with

domain I and range O satisfies (ϵ, δ )-differential privacy if for any

two neighbouring datasets S, S ′ ∈ I that differ only in one input

and for a set E ⊆ O, we have: Pr(M(S) ∈ E) ≤ eϵ Pr(M(S ′) ∈ E)+δ

We consider an algorithm whose output is the weights of a

trained model, thus focus on the ℓ2-sensitivity:

Definition 2.2 (ℓ2-Sensitivity (From Def 3.8 in [9]). Let f be a

function mapping from a dataset to a vector in Rd . Let S , S ′ be two
datasets differing in one data point. Then the ℓ2-sensitivity of f is

defined as: ∆2(f ) = maxS ,S ′ ∥ f (S) − f (S ′)∥2
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One method for making a deterministic query f differentially

private is the Gaussian mechanism. This gives a way to compute

the ϵ of a Gaussian-distributed query given δ , its sensitivity ∆2(f ),
and its variance σ 2

.

Theorem 2.3. Gaussian mechanism (From [9]). Let f be a function
that maps a dataset to a vector in Rd . Let ϵ ∈ (0, 1) be arbitrary.
For c2 > 2 ln (1.25/δ ), adding Gaussian noise sampled using the
parameters σ ≥ c∆2(f )/ϵ guarantees (ϵ, δ )-differential privacy.

Stochastic Gradient Descent (SGD). SGD and its derivatives are

the most common optimisation methods for training machine learn-

ing models [3]. Given a loss function L(w, (x,y)) averaged over

a dataset, SGD provides a stochastic approximation of the tra-

ditional gradient descent method by estimating the gradient of

L at random inputs. At step t , on selecting a random sample

(xt ,yt ) the gradient update functionG performs wt+1 = G(wt ) =

wt − η∇wL(wt , (x,y)), where η is the (constant) step-size or learn-

ing rate, andwt are the weights of the model at t . In practice, the

stochastic gradient is estimated using a mini-batch of B samples.

Recently, Wu et al. [31] showed results for the sensitivity of SGD

to the change in a single training example for a convex, L-Lipschitz
and β-smooth loss L. We use this sensitivity bound in our analyses

to compute intrinsic ϵi (D) for convex functions. Let A denote the

SGD algorithm using r as the random seed. The upper bound for

sensitivity for k-passes of SGD with learning rate η is given by

∆̂S = max

r
∥A(r ; S) −A(r ; S ′)∥ ≤ 2kLη (1)

∆̂S gives the maximum difference in the model parameters due to

the presence or absence of a single input sample. When using a

batch size of B as we do, the sensitivity bound can be reduced by a

factor of B i.e., ∆̂S ≤ 2kLη/B. We provide detailed explanation for

this sensitivity and variability of SGD in Appendix A and B. We use

this theoretical sensitivity (∆̂S ) in addition to empirically-computed

sensitivity (∆̂∗S ) estimates in our experiments to compute the ϵi (D)
for models trained using convex loss functions. For the non-convex

models, no known theoretical sensitivity is established and hence

we use only empirical sensitivity values. The details of computing

different sensitivity values and ϵi (D) is mentioned in Appendix C.

Research Questions. We ask the following questions:

1. Does the variability in SGD exceed the sensitivity due
to changes in an individual input sample?
To answer this, we present a large-scale empirical study in Section 4

across several diverse datasets. We build on results from Hardt

et al. [13] and Wu et al. [31] that allow us to bound the (expected)

difference in the model parameters when trained with SGD using a

convex objective function.

2. Can we quantify the intrinsic privacy of SGD, if any?
To quantify the ‘data-dependent intrinsic privacy’ of SGD, we aim

to calculate the intrinsic ϵi (D) values for any given dataset. To

do this, we interpret the posterior distribution returned by SGD

computed with many random seeds as a Gaussian distribution and

estimate its parameters using both theoretical (for convex loss) and

empirical sensitivity bounds.

3. Can the intrinsic privacy of SGD improve utility?
We propose an augmented DP-SGD algorithm based on output

perturbation [2, 5, 29, 31].

3 AUGMENTED DP-SGD
In this section, we show how to account for the data-dependent

intrinsic noise of SGD while adding noise using the output per-

turbation method that ensures differential privacy guarantees [31].

The premise of output perturbation is to train a model in secret,

and then release a noisy version of the final weights. For a desired ϵ ,
δ , and a known sensitivity value (∆̂S , ∆̂

∗
S ) the Gaussian mechanism

(Theorem 2.3) gives us the required level of noise in the output,

which we call σtarget.
In Wu et al. [31], this σtarget defines the variance of the noise

vector sampled and added to the model weights, to produce a (ϵ, δ )-
DP model. In our case, we reduce σtarget to account for the noise

already present in the output of SGD. Since the sum of two inde-

pendent Gaussians with variance σ 2

a and σ 2

b is a Gaussian with

variance σ 2

a + σ
2

b , if the intrinsic noise of SGD is σi (D), to achieve

the desired ϵ we need to augment σi (D) to reach σtarget:

σaugment =
√
σ 2

target
− σi (D)2 (2)

Given the likely degradation of model performance with out-

put noise, accounting for σi (D) is expected to help utility with-

out compromising privacy. The resulting algorithm for augmented

differentially-private SGD is shown in Algorithm 1.

Algorithm 1 Augmented differentially private SGD

1: Given σi (D), ϵtarget, δ , ∆2(f ), model weights wprivate.

2: c ←
√

2log(1.25)/δ + 1 × 10
−5

3: σtarget ← c∆2(f )/ϵtarget
4: if σi (D) < σtarget then

5: σaugment ←

√
σ 2

target
− σi (D)2

6: else
7: σaugment ← 0

8: ρ ∼ N(0, σaugment)

9: w
public

← wprivate + ρ
return w

public

Theorem 3.1. Assuming SGD is a Gaussian mechanism with in-
trinsic noise σi (D), Algorithm 1 is (ϵ, δ )-differentially private.

The proof is a straight-forward application of the fact that the

sum of Gaussians is a Gaussian, and so the construction in Algo-

rithm 1 produces the desired value ofσ to achieve a (ϵ, δ )-differentially
private mechanism as per Theorem 2.3.

4 EVALUATION
To better understand both sensitivity and variability of SGD, we

conduct an extensive empirical study.

Experimental Setup.We run a grid of experiments where we vary

data or (non-exclusively) the random seed. We use variations of

the random seed to explore the intrinsic randomness in SGD, and

variations of the data to explore sensitivity to dataset perturbations.

Variation in Data. To vary the data, we consider ‘neighbouring’

datasets derived from a given data source D (e.g. two variants of

MNIST). A pair of datasets is neighbouring if they differ in exactly

one example. We construct a set of neighbouring datasets using a

similar approach to Hardt et al. [13], by replacing the ith training

example with the first example to create datasets indexed by i .

2
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Dataset Training size Validation size Test size d

CIFAR2 9,000 1,000 2,000 50*

MNIST-binary 10,397 1,155 1,902 50*

Adult 29,305 3,256 16,281 100

Forest 378,783 42,086 74,272 49

Table 1: Statistics for datasets. The dimension of feature vectors is
d . *Images are projected to d = 50 using PCA.

Model Dataset η T E P Hidden size

LogReg CIFAR2 0.5 2000 20000 51 -

MNIST-binary 0.5 1850 19600 51 -

Adult 0.5 3400 25700 101 -

Forest 1.0 8400 20693 50 -

NN CIFAR2 0.5 2500 20000 521 10

MNIST-binary 0.5 4750 9800 521 10

Adult 0.5 1850 11250 817 8

Forest 0.5 3500 11247 511 10

Table 2: Training andmodel hyperparameters. η is the learning rate.
T is the number of training steps (the convergence point). E is the
number of experiments performed, and P is the number of param-
eters in the model.

Variation in Random Seed. To vary the random seed, we simply

run each experiment (on given dataset Si ) multiple times with dif-

ferent seeds provided to the random number generator. The random

seed impacts the training procedure by impacting the initialisation
of the weights, as well as the order of traversal of the dataset. We

also consider a variant of this setting where the initialisation of the

model is fixed. We follow the traditional setting of SGD where a

random permutation (determined by the random seed) is applied to

the training data at the start of each epoch, and batches of examples

are then drawn without replacement.

Benchmark datasets. Focusing on binary classification tasks, we

perform our experiments using four data sources. The sizes and

dimensionality of these datasets are given in Table 1. Each dataset

is normalised such that | |x| | ≤ 1.

• CIFAR2[17]: We convert the (32, 32, 3)-dimensional images in CI-

FAR10 to d = 50 using principal component analysis (PCA) [23],

and restrict to classes 0 and 2 (planes and birds) to form a binary

classification task (hence CIFAR2).
• MNIST-binary[19]: As with CIFAR2 we use 2 classes (3 and 5)

and project to d = 50 with PCA.

• Adult[7]: The task is to predict whether an individual’s income

exceeds $50k/year based on census data from 1994. We one-hot

encode categorical-valued features, dropping the first level.

• Forest[6, 7]: Forest cover type prediction from cartographic

information. We convert this to a binary task by restricting to

classes 1 and 2, which are the most numerous.

Model types. We consider two model classes:

(1) Logistic regression. The objective function for logistic regres-

sion is convex and Lipschitz with constant L = supx | |x| | and
smooth with β = supx∥x∥

2
, giving us L =

√
2.

(2) Neural networks. We consider fully-connected neural networks

with one hidden layer, using a relu nonlinearity and a sigmoid

activation on the output.

We train with a fixed learning rate and select the convergence

point based on the validation performance failing to improve three

times in a row, or by visual assessment of loss curves (see e.g.

Figure 4). We evaluate at the convergence point to avoid study-

ing models which overfit. We performed mild, but not extensive

hyperparameter optimisation as our focus is not on finding the

best-performing model; best hyperparameters are shown in Table 2.

We expect these hyperparameters to also influence the variability

of the weight distribution, but consider them fixed for the purpose

of this investigation.

Data-dependent variability in SGD.We consider two sources

of variability in the learnedmodel: dataset perturbations, and choice

of random seed. We aim to estimate:

(1) Variation due to dataset; ∆S := ∥A(r ; S) −A(r ; S ′)∥
(2) Variation due to seed; ∆V := ∥A(r ; S) −A(r ′; S)∥.

(a) allowing for fixed initialisation (∆fix

V )

(b) and seed-dependent initialisation (∆
vary

V )

(3) Variation in both; ∆S+V := ∥A(r ; S) −A(r ′; S ′)∥

where r and r ′ are two random seeds, S and S ′ are two neighbouring
datasets, and A is the SGD algorithm which outputs a vector of

model weights. We study how the variability due to seed (∆fix

V ,∆
vary

V )

compares to the data sensitivity ∆S . We also test the tightness of the

theoretical bound proposed in [13, 31] (∆̂S ) for convex objectives.
Figure 1 shows the distribution of these quantities across experi-

ments for the four datasets and two model classes considered. We

see that the seed typically has a much larger impact than the data

(∆V > ∆S ), an effect magnified when model initialisation is further

allowed to vary. We also see that the theoretical bound (∆̂S ) is loose,
exceeding the largest observed value of ∆S by a factor between

3.15 and 6.46.

What is the ‘intrinsic’σi (D) and ϵi (D)?We estimate intrinsic

σi (D) and ϵi (D) of SGD for each dataset as follows: We first obtain

an estimate of the sensitivity of SGD for that dataset, using the

theoretical bound ∆̂S where available, or the empirical sensitivity

estimate ∆̂∗S which is simply taken as the max of ∆S . We estimate

the variability due to seed by treating weights as independently

and identically distributed as Gaussians. Similar assumptions are

commonplace on the noise distribution of SGD [20, 28], but we

acknowledge it as requiring further exploration. This assumption

however allows us to apply the logic of the Gaussian mechanism

to estimate ϵi (D) and ϵi (D)
∗
, combining δ = 1/N 2

with the theo-

retical and empirical sensitivity estimates respectively.

The resulting values for each dataset and the two model classes

are shown in Table 3. It is clear that σi (D) and ∆̂∗S differ across

datasets and models. Although neural networks have larger σi (D),
the sensitivity ∆̂∗S is much larger, resulting in very high ϵi (D)

∗
. This

is likely driven by the number of parameters in the model as ∆̂∗S is

the ℓ2-norm of a vector (and σi (D) is not). Table 3 highlights that
our analysis of SGD necessarily depends on the underlying dataset,

motivating further study into data-dependent differentially-private

mechanisms [18, 22].

Howdoes accounting for intrinsic variability improve util-
ity?We have seen that the intrinsic ϵi (D) of SGD can be quantified,

but in many cases is insufficient alone to provide a desirable level

of privacy. In this section, we demonstrate that by accounting for

ϵi (D) (via σi (D)), model performance can be improved over an

existing approach based solely on output perturbation. We focus

here only on logistic regression. As evidenced by Table 3, the neural

3



An Empirical Study on the Intrinsic Privacy of SGD

0.0 0.2 0.4 0.6 0.8 1.0 1.2
|w w'|

0.0

2.5

5.0

7.5

de
ns

ity

CIFAR2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
|w w'|

0

5

10

0.0 0.5 1.0 1.5 2.0
|w w'|

0.0

2.5

5.0

7.5

MNIST-binary Adult

0.0 0.5 1.0
|w w'|

0

2

4

6
Forest

Lo
gi

st
ic

re
gr

es
sio

n
de

ns
ity

|w w'| |w w'| |w w'| |w w'|

N
eu

ra
l

ne
tw

or
k

fix
+ V

vary
S+ V

S

S
fix
V
vary
V

S

Figure 1: Distribution of ∥w −w′ ∥ across pairs of experiments differing in data (∆S ), random seed (∆fix
V , ∆

vary
V ), or both (∆S+V ). The change in

w is dominated by the random seed, as evidenced by ∆V tending to be much larger than ∆S . ∆fix
V refers to the setting where the random seed

is variable, but the initialisation of the model is fixed. The vertical dashed line is the theoretical upper bound of ∆S proposed by [31] (only
available for convex objectives). The first row shows results for logistic regression, and the second is for a fully-connected neural network
with one hidden layer.

CIFAR2 MNIST-binary Adult Forest
δ 1.23x10

−8
9.25x10

−9
1.16x10

−9
6.97x10

−12

Logistic regression

∆̂S 0.314 0.252 0.164 0.063

∆̂∗S 0.057 0.059 0.036 0.020

σi (D) 0.083 0.085 0.108 0.114

ϵi (D) 23.10 18.17 9.77 3.95

ϵi (D)∗ 4.19 4.22 2.13 1.25

Neural networks

∆̂∗S 4.813 7.688 3.891 3.307

σi (D) 0.4433 0.713 0.288 0.554

ϵi (D)∗ 65.922 66.009 87.136 42.939

Table 3: Theoretical sensitivity (∆̂S ), empirical sensitivity (∆̂∗S ), δ
(1/N 2), intrinsic variability σi (D) accounting for variable initiali-
sation, intrinsic ϵi (D), and intrinsic ϵi (D)∗ computed using the em-
pirical bound. For neural networks (last 3 lines), no theoretical sen-
sitivity bound is known.

networks we study do not exhibit practically useful ϵi (D) values.
To study ‘private’ model performance, we compute the target σ of

the Gaussian mechanism to produce a private model using output

perturbation, and modify it for three scenarios:

(1) Noiseless (σ = 0)

(2) ‘SGD as deterministic’ (SGD
d
); the setting in [31]. We estimate

the required σ (σtarget) using the Gaussian mechanism and the

sensitivity ∆̂S of SGD.

(3) ‘SGD with unknown seed’ (SGDr); thinking of SGD as a ran-

domised mechanism, we estimate the required σ using Eqn 2

We also include the settingwhere the sensitivity is computed empiri-

cally to determine σtarget, corresponding to the optimistic bound. As

the performance of each trained model varies, we perform paired t-

tests between the three settings for a fixed model, for 500 randomly-

sampled models for each dataset. In Table 4, we report the utility

for ϵ = 1. We include ϵ = 0.5 in Appendix Table 7. We see that

the ‘augmented DP-SGD’ (SGDr) setting produces a model with

consistently and significantly superior utility to one which does not

take intrinsic randomness into account. Using the empirical bound

∆̂S produces a further improvement in utility, resulting in a setting

where accounting for randomness can close the gap between a pri-

vate and noiseless model by 36.31%. Further work will be required

CIFAR2 MNIST-binary Adult Forest
Noiseless 0.788(4) 0.953(1) 0.8340(7) 0.771(2)

∆2(f ) = ∆̂S
SGD

d
0.719(2) 0.853(2) 0.53(1) 0.75(1)

SGDr +.00002 +.0002 +.0020 +.0013
% of gap 0.03% 0.15% 0.66% 6.46%

∆2(f ) = ∆̂∗S
SGD

d
0.763(4) 0.941(2) 0.810(8) 0.767(6)

SGDr +.0006 +.0007 +.0067 +.0023
% of gap 2.54% 5.25% 36.31% 14.13%

Table 4: We report the (binary) accuracy of private and non-private
models for logistic regression using ϵ = 1. Brackets indicate the
standard deviation in the final digit. Bold face indicates a statisti-
cally significant improvement (paired t-test, p-val < 10

−6). The per-
centage improvement is over the gap between SGDd and the noise-
less performance.

to explore whether SGD can be engineered to produce increased

σi (D) without impacting sensitivity or utility, allowing for further

improvements to private model performance. We present results

on additional analyses in Appendix D.

5 CONCLUSION
Wehave taken the first steps towards examining the data-dependent

inherent randomness in SGD from a privacy perspective. Using a

large-scale experimental study we have quantified the variability

of SGD due to random seed and related this to its data-dependent

sensitivity and the notion of an ‘intrinsic ϵi (D)’ in the sense of

differential privacy. These findings demonstrate that the choice of

random seed has a strictly greater impact on the resulting weights

of the model than perturbations in the data for both convex and

non-convex models considered. By accounting for this variability,

statistically significant performance improvements can be achieved

for low-dimensional models. We have further demonstrated that

existing theoretical bounds on the data-dependent sensitivity of

SGD on convex objectives are loose, and using optimistic empirical

‘bounds’, private model performance can be greatly improved.
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A SENSITIVITY OF SGD FOR CONVEX
FUNCTIONS

Assumptions. LetW ⊆ Rp be the hypothesis space, and L :

W 7→ R the loss function. We assume that ∀u,v ∈ W:

• L is convex; i.e., L(u) ≥ L(v) + ⟨∇(v),u −v⟩
• L is L-Lipschitz i.e., ∥L(u) − L(v)∥ ≤ L∥u −v ∥
• L is β-smooth; i.e., ∥∇L(u) − ∇L(v)∥ ≤ β ∥u −v ∥

We present the results for the sensitivity of SGD due to a change

input datapoint as provided by Wu et al. [31]:

Theorem A.1. From [31]. Let A denote the SGD algorithm using
r as the random seed then the upper bound for sensitivity for k-passes
of SGD is given by, ∆̂S = maxr ∥A(r ; S) −A(r ; S ′)∥ ≤ 2kLη

Here, ∆̂S gives the maximum difference in the model parameters

due to the presence or absence of a single input sample. Their

results rely on the boundedness and expansiveness properties for the
gradient update rule (G) of SGD as proposed by Hardt et al. [13]:

Property 1. (Boundedness of G.) For a loss function that is
L-Lipschitz and learning rate η, the gradient update of SGD is ηL
bounded i.e., supw ∈W ∥G(w) −w ∥ ≤ ηL

Property 2. (Expansiveness of G.) For a loss function that is β-
smooth, and η ≤ 2/β , then the gradient update of SGD is 1-expansive
i.e., supw ,w ′

∥G(w )−G(w ′) ∥
∥w−w ′ ∥ ≤ 1

As this is not the main contribution of our paper, we refer in-

terested readers to the original paper for a formal proof [31]. We

provide here a brief intuition for achieving the bound: For a single

pass of SGD over neighbouring datasets S and S ′ with a fixed ini-
tialization and fixed sampling strategy, the two executions G and

G ′ will differ only at a single step — when the differing sample

gets selected. In that case, from the above boundedness property,

we have that G(w) − G ′(w ′) ≤ 2Lη. For all the other steps, the

samples selected are exactly same and hence the 1-expansiveness

property applies. Therefore, after k-passes of SGD over the dataset,

the difference in the model parameters will have an upper bound

of 2kLη. When trained using a batchsize of B, the sensitivity bound

can be reduced by a factor of B i.e., ∆̂S ≤ 2kLη/B. Henceforth, the
theoretical sensitivity always refers to the one with batchsize B.

B UPPER BOUND ON VARIABILITY DUE TO
THE RANDOMNESS IN SGD

We use the boundedness and expansivity properties of the gradient

update rule to calculate the upper bound for the variability in SGD.

Here, we focus only on the difference in model parameters due

to the stochastic process of selecting samples during training -

including the variability in model initialisation will only increase

the variability, as the difference between model weights at time

T = 0 is non-zero.

We use a similar argument as in prior work for calculating the

bound at each step of SGD. For a single pass of SGD on dataset

S with fixed initialization but different random seeds r and r ′ for
sampling inputs, in the ‘best’ case, every step encounters different

samples. Thus, by boundedness, each step will add at most a 2Lη
deviation between the model parameters. Therefore, after k passes

of SGD through a dataset of size N where each step selects differing

samples, we get a variability bound of:

∆̂V = max

r ,r ′
∥A(r ; S) −A(r ′; S ′)∥ ≤ 2kLNη. (3)

Claim 1. The upper bound of variability due to the randomness in
SGD is strictly greater than of the sensitivity of SGD due to the change
in a single input sample i.e., ∆̂V > ∆̂S

The above claim gives a weak guarantee about the inherent

noise in SGD as it considers the upper bound of the variability. This
assumed a ‘worst’ (or best)-case scenario where different batches

are sampled at every step, comparing between two runs of the

experiment. In reality, there is a chance for two runs of SGD to

sample the same example at the same point during training. To

tighten the bound on ∆̂V , we can try to account for this distribution

over permutations. We consider the upper bound of ∆̂V (which is at

most 2kLNη) to be a random variable itself, and use the Chebyshev

inequality to demonstrate that it is usually larger than the sensitivity

(see Section B.0.1 for proof):

Claim 2. The bound on the variability of SGD is larger than its
sensitivity with high probability.

P
[
|∆̂V − E[∆̂V ]| ≥ kLη(N − 2)

]
≤

4

k(N − 2)2

Since N is typically large, we see that the probability ∆̂V is

sufficiently far from its mean and near ∆̂S is very low.

These results cannot conclusively affirm the privacy-preserving

properties of SGD as they pertain only to upper bounds. The lower
bound is likely zero in general due to collapsed variability after

overfitting (or converging to a unique minimum). Determining

when the lower bound is nontrivial remains an open research ques-

tion, however our empirical results indicate that the lower bound

also tends to exceed the data-dependent sensitivity (discussed in

Section 4).

B.0.1 Proof of Claim 2. For Claim 2, we need the expected value

and variance of ∆̂V . The bounds stated previously rely on the fact

that every iteration of SGD with mis-matching samples introduce a

term of 2Lη to the (maximum) difference in outputs. For the upper

bound, we assumed that every sample is mis-matching, that is we

compare runs of SGD where one is a perfect derangement of the

training-set traversal order of the other. In reality, between two runs

with different random seeds, the same example may be encountered

at the same time-point; this would constitute a permutation of the

training data with a fixed point. If we assume that Xi is the number

of fixed points of the training data in epoch i (relative to a fixed

reference permutation), the number of mis-matches is therefore
N − Xi , and the bound on the difference of weights is

∆̂V =
k∑
i

2Lη(N − Xi ). (4)

The probability distribution of Xi is

P(Xi = j) =
DN , j

N !

, (5)

where N is the number of training examples, and DN , j is a rencon-

tres number giving the number of permutations of length N with j
fixed points. For large N , the distribution of rencontres numbers
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approaches a Poisson distribution with rate parameter λ = 1[4],

and so both the expected value and variance ofXi are 1: This allows
us to use standard properties of expectation and variance, and the

fact that the permutation (and thus Xi ) selected at each epoch is

independent.

E[∆̂V ] =
k∑
i

2Lη(N − E[Xi ]) = 2kLη(N − 1) (6)

V[∆̂V ] =
k∑
i
V[2Lη(N − Xi )] = (2Lη)

2k (7)

We then use the Chebyshev inequality to bound the probability

that ∆̂V is far from its mean E[∆̂V ]. Doing so is interesting because
we can prove that ∆̂V is unlikely to be near ∆̂S . If we define t =
|E[∆̂V ] − ∆̂S |/2 = kLη(N − 2) then by Chebyshev inequality:

Claim 2. The bound on the variability of SGD is larger than its
sensitivity with high probability.

P
[
|∆̂V − E[∆̂V ]| ≥ kLη(N − 2)

]
≤

4

k(N − 2)2

C ESTIMATING ϵI (D) FOR SGD
We think of SGD as a procedure for sampling model weights from

some distribution, and aim to understand the parameters of this

distribution to characterise its intrinsic privacy with respect to

a dataset it is run on. While theoretically characterising SGD as

a sampling mechanism is a subject of ongoing research [20], in

this section, we propose an algorithm for empirically estimating

the potential privacy properties of SGD. We outline and motivate

the steps of the algorithm in what follows, and summarize the

procedure in Algorithm 2.

Computing ϵi (D). We aim to compute what we call the ‘data-

dependent intrinsic’ ϵ of SGD - ϵi (D).
1
To do this, we start by

assuming that the noise of SGD is normally distributed. This is

a common albeit restrictive assumption [20, 28]. We empirically

test the assumption across our datasets in Section D.4 and do not

find it to be strongly violated, however we consider weakening this

assumption an important future step.

If A is the SGD algorithm, and S is a training dataset of size N
(for example, MNIST), we therefore assume A(S) = w̄S +wρ , where

w̄S is deterministic and dataset-dependent andwρ ∼ N(0, Iσi (D)
2)

is the intrinsic random noise induced by the stochasticity of SGD.

Based on Theorem 2.3 in Section 2, we then characterize SGD as

a Gaussian mechanism with parameters c2 > 2 ln (1.25/δ ) and
σi (D) ≥ c∆2(f )/ϵi (D). The value of δ is arbitrary, but we set it to

δ = 1/N 2
following convention [9].

Assuming we know σi (D), δ , and ∆2(f ), we calculate ϵi (D) as:

ϵi (D) =

√
2 log 1.25/δ∆2(f )

σi (D)
(8)

For ϵi (D) > 1, Theorem 2.3 does not hold. In this case we interpret

ϵi (D) as a way to capture the relationship between the sensitivity

∆2(f ) and variability σi (D) of SGD on a given dataset given δ .

1
Although the notation does not capture it, we assume an implicit model-dependence

of ϵi (D) throughout.

Algorithm 2 Estimating ϵi empirically

1: Given neighbouring datasets S = {Sa }
|S |
a , random seeds R = {ri }Ri ,

SGD algorithm A with batch size B , fixed learning rate η, number of

epochs k , δ , Lipschitz constant L.
2: for all Sa ∈ S do
3: for all r ∈ R do
4: wr ,a ← A(Sa ; r ) ▷ Run SGD on Sa with seed r

5: procedure Compute sensitivity
6: for r ∈ R do
7: for Sa , Sb ∈ S do
8: ∆rabS ← ∥wr ,a −wr ,b ∥ ▷ Pairwise sensitivity

9: ∆̂S ← 2kLη/B ▷ Theoretical bound

10: ∆̂∗S ← maxr ,a,b ∆rabS ▷ Empirical bound

11: procedure Compute variance
12: for all Sa ∈ S do
13: w̄a ←

1

R
∑
r wr ,a

14: σa ← stddev

(
flatten

(
wr ,a − w̄a

) )
15: σi ← min

|S |
a σa

16: procedure Compute epsilon
17: c ←

√
2log(1.25)/δ + 1 × 10

−5

18: ϵi ← c ∆̂S /σi ▷ Get values for Sensitivity & Variance

19: ϵ ∗i ← c ∆̂∗S /σi ▷ Using empirical bound

return ϵi , ϵ ∗i

Computing Sensitivity. As per definition 2.2, the sensitivity of

SGD is given by the largest ℓ2-norm change in model weights

obtained from neighbouring datasets. We can empirically compute

(an estimate of) this value for both convex and non-convex models.

Details of the set-up of this empirical study are provided in Section 4.

First, we can compute a ‘pairwise’ sensitivity between models

trained with the same seed (r ) on neighbouring datasets (Si , Sj ):

∆
r i j
S = ∥A(Si , r ) −A(Sj , r )∥ (9)

Taking the maximum of ∆
r i j
S we obtain the ‘global’ (dataset-

specific) sensitivity, which we estimate empirically using a subset

of i, j, r , as ∆̂∗S :

∆̂∗S = maxi , j ,r ∥A(Si , r ) −A(Sj , r )∥ (10)

We assume we have access to a public dataset from which this value

can be estimated.

If we consider the pairwise sensitivity, we obtain a distribution
of ϵi (D) values which would be obtained by considering subsets
of permissible neighbouring datasets. This variant of sensitivity

computation is similar to the notion of smooth sensitivity for a

given dataset instance which is emerging as a promising approach

for designing better differentially-private mechanisms [22].

Lastly, for convex models, we can also take the (bound on the)

theoretical sensitivity of SGD ∆̂S estimated by Hardt et al. [13], Wu

et al. [31] and described in Section 2. There is no corresponding

theoretical sensitivity bound for the non-convexmodels. We discuss

the implication of these sensitivity values (∆̂∗S ,∆
r i j
S , ∆̂S ) in our

evaluation.

Computing Variance. For computing variance, the object of cen-

tral interest is σi (D), which is the (assumed diagonal) covariance

ofwρ - the ‘noise’ added to the final weights by the stochasticity in

SGD. We can obtain samples of wρ by running SGD with different
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Figure 2: Distribution of
feature values in three
variants of MNIST-binary
using either PCA pre-
processing, Gaussian
random projections (GRP),
or cropping to the cen-
tral (10 × 10) square and
flattening (Crop).

random seeds and subtracting the data-dependent mean value w̄S .

Estimating σi (D) then amounts to computing the standard devia-

tion of the (flattened) estimated wρ .
2
In practice, a separate σi (D)

can be estimated for each dataset S , and we take the minimum
observed value, although we find it to be broadly independent of

S (see Section D.4). As for ∆̂∗S , we assume for the purpose of this

work that the user has access to a public dataset whose distribution

is sufficiently similar to the private dataset, such that σi (D) can be

estimated. This is similar to the setting of fine-tuning in Wu et al.

[31], where the private dataset is used predominantly to fine-tune

a model already trained on a similar, but public dataset.

D FURTHER ANALYSES
In this section we augment our main findings of Section 4 with

further analyses. To better understand the impact of data prepro-

cessing we explore three variants of MNIST-binary (Section D.1),

and investigate how the number of training steps T influences

both sensitivity and variability in Section D.2. In Section D.3 we

report results for a convolutional neural network on the full MNIST
dataset. Finally, we explore the validity of our assumptions and

experimental design in Section D.4.

D.1 Effect of preprocessing dataset
As we have seen, there is variation in the values of σi (D) and
ϵi (D) across datasets. To further explore the data-dependence of
our findings, we performed variants of the experiment within a

dataset (MNIST-binary), where we apply different dimensionality

reduction methods before applying the logistic regression model:

(1) (PCA) Principal component analysis, as in [1], to d = 50

(2) (GRP) Gaussian random projections, as in [31], to d = 50

(3) (Crop) Cropping to the 10 × 10 central square of the image and

flattening (d = 100)

In all cases, we still scale | |x| | ≤ 1.

Figure 2 shows how this preprocessing changes the underlying

dataset statistics. For Crop, the data remains sparse ( 46% of feature

values are zero), while PCA and GRP produce dense symmetrical

distributions with differing levels of kurtosis.

In Figure 3 we show the training curves aggregated across ex-

periments from each of these settings using the fixed learning rate

of η = 0.5. We also tested other learning rates, but they did not

strongly impact the findings and so for simplicity we fix η across

2
We found that other choices for estimating an aggregate σi (D), such as computing

a per-weight σi (D)k and then averaging, or estimating the variance of the norm of

the weights, produced largely consistent results. It is likely that a superior method for

estimating σi (D) exists, which we leave as a question for future work.
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Figure 3: A comparison
of training set loss (bi-
nary cross-entropy) and
accuracy as a function of
training steps for the three
preprocessing approaches
tested on MNIST-binary.
The selected convergence
point (T = 1850) is indi-
cated by a vertical dashed
line.

PCA GRP Crop

# experiments 19600 14796 5000

Accuracy (noiseless) 0.953(1) 0.907(2) 0.917(1)

SGD
d
(ϵ = 1) 0.941(2) 0.900(4) 0.908(2)

SGDr (ϵ = 1) +0.0007 +0.0006 +0.0011
∆̂S 0.2523 0.2523 0.2523

∆̂∗S 0.0586 0.0473 0.0448

σi (D) 0.0850 0.0989 0.1152

ϵi (D) 18.17 15.61 13.41

ϵi (D)
∗

4.22 2.92 2.38

Table 5: Comparison of the accuracy, empirical sensitivity (∆̂∗S , in-
trinsic variability (σi (D)) and intrinsic ϵi (D) and ϵi (D)∗ for the
MNIST-binary variants on logistic regression. The theoretical sen-
sitivity ∆̂S is identical. We use the empirical sensitivity bound to
produce the models SGDd and SGDr, following Algorithm 1 in the
latter case.

the experiments. As we see, PCA converges more quickly to a better-

performing model, so we used this setting in all other analyses on

MNIST-binary.
For simplicity, we compare all settings at t = 1850 steps (this

is the convergence point selected for PCA used elsewhere in the

paper). In Table 5 we compare the empirical sensitivity, σi (D),
and resulting ‘intrinsic ϵi (D)’ for the three settings, as well as the
noiseless performance of the three models (which can also be seen

in Figure 3). In all cases, δ = 1/N 2
. Since the learning rate, Lipschitz

constant, and number of iterations is the same for all settings, the

theoretical bound ∆̂S is identical.

We see the largest utility improvement from augmented SGD for

the Crop setting, owing to its low ϵi (D) value driven by a relatively

higher σi (D) and lower ∆̂∗S . However, as the base performance of

this model is worse, the resulting private model remains inferior

to PCA. This suggests that a practitioner should focus on obtaining

the highest-performing model rather than attempting to optimise

for σi (D). However, presence of the variability suggests that modi-

fications to the data distribution can influence σi (D), and further

investigation will be required to characterise this relationship.
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Figure 4: We show how empirical sensitivity and intrinsic variabil-
ity (bothwith andwithout a fixed initialmodel) depend on the num-
ber of training steps. Results shown are for MNIST-binary for both lo-
gistic regression and neural networks. Appendix D.6 shows results
on the other datasets, but they are qualitatively the same. The the-
oretical sensitivity exhibits a stepwise increase as it increments per
epoch. For the neural network, we only report empirical sensitivity.
‘fixed init’ and ‘variable init’ indicate whether the initialisation of
the model was fixed, or allowed to vary with the seed.

D.2 Dependence on training time
As highlighted by [20], training ‘faster’ (i.e. converging earlier)

produces superior generalisation through smaller sensitivity. This

is reflected by the linear dependence on the number of training steps

on the theoretical bound ∆̂S . However, the relationship between

the empirical sensitivity, as well as the intrinsic variability, and the

number of training steps is not known. We use our experimental

set-up to explore this dependence.

In Figure 4 we plot ∆̂S (if available), estimated ∆̂∗S , and σi (D)
against the number of training steps T , for CIFAR2 and the two

model classes. Results on the other datasets are included in Appen-

dix Section D.6, but are qualitatively similar.

We can make the following observations:

• For logistic regression, empirical sensitivity ∆̂∗S grows with T ,
but with a slope much lower than predicted by theory, reflecting

again that the theoretical bound is not tight. On neural networks,

similarly ∆̂∗S grows with T . This reflects the tendency towards

overfitting, and would likely be mitigated with weight decay.

• The behaviour of σi (D) for convex models reflects convergence

towards the unique minimum of the objective - given random

initialisation, σi (D) is initially large. It then decays as models

‘forget’ their initialisations and converge towards the minimum.

Conversely, with a fixed initialisation the cross-model variability

is low, and eventually converges to a steady value corresponding

to oscillation around the optimum, with magnitude influenced

by the learning rate.

• For the neural networks, we instead see that σi (D) tends to
increase over time regardless of initialisation, indicating that

models are converging to increasingly distant locations in pa-

rameter space.

Overall we see that there is a tension between ∆̂∗S and σi (D) for
selecting T - for neural networks a large value of T would provide

large σi (D), but as ∆̂
∗
S grows more rapidly, the settings we examine

would be better served selecting a lower T .

D.3 Multi-class classification
To check if our findings so far are specific to binary classification

or ‘simple’ models, we additionally explore a convolutional neural

network (CNN) on the full 10-class classification problem of MNIST.
In this case, we keep the training examples in their original (28×28)

shape and do not enforce ∥x∥ ≤ 1, simply scaling pixel values by

255. As we consider all 10 classes, we use the original dataset with

10000 test examples and 60000 training examples. From these 60000

we use 6000 as the validation set and the remaining 54000 to train

the model.

For the CNNwe attempt replicate the cuda-convnetmodel used

in [13]. This is a CNNwith three convolutional layers each followed

by a (max) pooling operation, and no dropout. Each convolutional

layer uses 8 filters, and the kernel sizes are (3× 3), (2× 2) and (2× 2)

respectively. The pool sizes are all (2 × 2). The output of the final

pool is flattened and fed to a fully connected layer mapping it to

a hidden size of 10 with relu nonlinearity, which is then mapped

to a 10-dimensional softmax output to perform classification. The

resulting model has 1448 parameters, and we run 3200 experiments

testing a grid of 40 dataset instances and 40 random seeds with

fixed and variable model initialisation.

Using a batch size of 32 and a learning rate of 0.1, this architecture

achieves an accuracy of 93± 2% after 1000 training steps, which we

take as the convergence point.

Figure 5 shows the distribution of ∆S and ∆V for this setting.

Figure 5: Distribution of differences in model weights from pairs
of experiments, for a CNN on MNIST. For each experiment pair, we
vary the dataset (∆S ), the random seed (∆V ), or both (∆S+V ). While
varying the random seed, the initialisation of the model is either
fixed (∆fix

V ) or varies with the seed (∆vary
V ).

We see a similar story to results on other neural networks (second

row of Figure 1) suggesting there is nothing unique about fully-

connected feed-forward networks not shared by CNNs here. The

interesting difference is the sharpness of the ∆
vary

V distribution. It

is virtually identical to what would result from taking pairwise

distances between random Gaussian vectors of the same dimension

and scale as the learned CNN weights, suggesting a multitude of

minima and no obvious ‘clustering’ of models.

D.4 Empirical validity of findings
Here we test the validity of assumptions and the consistency of the

estimates produced by our empirical analysis.
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D.4.1 Is the noise in SGD Gaussian? In designing Algorithm 2,

we assumed that the noise in the weights of SGD follows a normal

distribution with diagonal covariance. In this section we test the

assumption that the marginals of the weight distribution are nor-

mally distributed, that is that wa ∼ N(µa,σ
2

a ) for each a. This is a
necessary but not sufficient condition for the joint to be normal,

and thus a weaker assumption. We compare the marginals ofwa by

conducting a the Shapiro-Wilk statistical test of normality [25]. The

distribution of resulting p-values of this test are shown in Figure 6,

which aggregates over weights and using multiple dataset variants.
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Figure 6: The marginal distribution of most model parameters is
consistent with a normal distribution, shown by the distribution of
p-values from Shapiro-Wilk [25] test of normality. The density is
over each parameter from each model across 50 experiments. Verti-
cal lines indicate the ‘standard’ p = 0.05 cutoff, as well as thresholds
corrected for multiple hypothesis testing, using the Bonferroni cor-
rection p = 0.05/M , where M is the number of hypotheses, in our
case this is the number of model parameters times the number of
experiments, so M = 50P .

Small p-values indicate the hypothesis that the distribution is

normal can be rejected. The thresholds for rejection are marked by

two vertical lines - the line at p = 0.05 reflects a standard threshold

for such a statistical test, however as we are performing many tests

we also indicate the corrected threshold at p = 0.05/(Pnm ) (Bonfer-
roni correction, using the number of parameters (P ) and the number

of models whose weights we examined (nm )). This correction is

applied to avoid spurious rejections of the null hypothesis while

performing multiple tests. As we can see, the majority of weights

would not be rejected at p = 0.05, and very few would be rejected

at the corrected threshold. This indicates that the distribution of

most weights is marginally consistent with a normal distribution.

In the event that a weight is not normally distributed, this rules

out the possibility of the joint distribution being multivariate nor-

mal. In such cases, our assumption that the posterior of SGD is

normal is violated. In theory, the probability the these underlying

assumptions are violated could be incorporated into δ , resulting in

probabilistic differential privacy [21]. We leave this accounting to

future work, and here retain the caveat that our empirical results

do not constitute a privacy guarantee for SGD in any case, as our

assumptions are overly strong in practice.

D.4.2 Did we run enough experiments? We have explored only

a subset of the possible combinations of dataset perturbations and

random seeds for each of our data sources, which may introduce un-

certainty in our estimates of ∆̂∗S and σi (D). To test this, in Figure 7

101 102 103

number of dataset comparisons

0.00

0.02

0.04

0.06

es
tim

at
ed

 se
ns

iti
vi

ty

MNIST-binary (logistic regression)

0 20 40 60 80
number of random seeds

0.05

0.06

0.07

0.08

0.09

es
tim

at
ed

 
i(

)

MNIST-binary (logistic regression)

Figure 7: We show how increasing the number of experiments used
impact the estimates of empirical sensitivity ∆̂∗S (left) and variabil-
ity σi (D) (right). Dashed horizontal lines show the values of ∆̂∗S and
σi (D) used across results in this paper.

CIFAR2 MNIST-binary Adult Forest

Logistic regression

# datasets 100 100 75 75

min 0.08267214 0.0849974 0.10835 0.11426

max 0.08267215 0.0849979 0.10836 0.11428

Neural networks

# datasets 100 50 75 75

min 0.44331 0.71272 0.28796 0.5544

max 0.44339 0.71273 0.28797 0.5545

Table 6: The estimate of σi (D) is highly stable across dataset
instances {Si } for both logistic regression and neural networks
across all four datasets. We report the minimum and maximum ob-
served variability estimated fromeach dataset instance acrossmany
dataset instances, retaining digits until the first difference.

we visualise how the estimates of ∆̂∗S and σi (D) change as we use
more data (that is, include more experiments) for MNIST-binary.
Other models and datasets are included in Appendix D.7.

As we can see, as the number of experiments used to estimate

the values increases, our estimates tend towards a fixed value, sug-

gesting that more experiments would not substantially alter the

findings. We see that we are likely under-estimating the sensitiv-

ity (∆̂∗S ) slightly, which is a natural consequence of it being the

maximum of an unknown distribution.

In Table 6 we demonstrate that the value of σi (D) does not de-
pend strongly on the dataset instance used to estimate it. Combined

with the observation that the σi (D) estimate appears to converge

after approximately 40 seeds (this is true across all our datasets and

models), it appears that running more pairwise experiment compar-

isons becomes important to better estimate ∆̂∗S , whose estimates

are less stable.

D.5 Utility at ϵ = 0.5

Table 7 replicates Table 4, using ϵ = 0.5. In this more restrictive

privacy setting, we see a more obvious degradation in model per-

formance, and gains from the intrinsic noise are more slight. The

largest gains tend to be made when the private model is relatively

close in performance to the noiseless setting, as any reduction in

the added noise has proportionally a greater effect.
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CIFAR2 MNIST- Adult Forest
binary

∆2(f ) = ∆̂S
SGD

d
0.691(2) 0.789(3) 0.277(3) 0.71(1)

SGDr +.00001 +.00002 +.0001 +.0005
% of gap 0.01% 0.01% 0.03% 0.82%

∆2(f ) = ∆̂∗S
SGD

d
0.752(3) 0.912(2) 0.75(1) 0.759(8)

SGDr +.0002 +.0004 +.0038 +.0015
% of gap 0.43% 0.98% 4.70% 7.17%

Table 7: We report the (binary) accuracy of private and non-private
(‘gold standard’) models on the four datasets for logistic regression
using ϵ = 0.5. SGDd is the setting in [31] where SGD is treated as
deterministic and noise is added to the weights per the Gaussian
mechanism. SGDr is the settingwe propose, where the intrinsic vari-
ability (σi (D)) is used to decrease the magnitude of added noise. Re-
ported are averages across 500 trained models, with brackets show-
ing the standard deviation in the final digit. Bold face indicates a
statistically significant improvement (paired t-test, p-val < 10

−6).
The percentage improvement is over the gap between SGDd and
the noiseless performance, indicating how much ‘missing’ perfor-
mance in the private model can be regained by accounting for the
intrinsic noise. For Adult using the theoretical bound, the accuracy
(highlighted in italics) is equivalent to the positive label prevalence,
so all utility has been lost.

D.6 Dependence on number of training steps
for other datasets

Figure 8 replicates Figure 4 for the other three datasets. We see a

qualitatively similar story - logistic regression models (first row)

approach a fixed σi (D) owing to their convergence to the neigh-

bourhood of the unique minimum. The empirical sensitivity of the

logistic regression models either increases very slowly or appears

approximately constant (Forest), which may reflect the underlying

sensitivity of the optimum. Conversely, for the neural networks we

see a steadily increasing empirical sensitivity, which may reflect

the tendency for the norm of the model weights to increase during

training.

D.7 Consistency of estimates for other datasets
Figure 9 replicates Figure 9 for neural networks including the multi-

class CNN (from Section D.3), and the remaining datasets. We see

broadly the same trend - the estimate of σi (D) tends to ‘converge’

after approximately 40 seeds, while the sensitivity estimate (note

the log scale on the x-axis) is less stable. This is likely because σi (D)
appears to be largely unaffected by the dataset instance (See Table 6)

and so only depends on the number of seeds, while the sensitivity

is influenced by both seed and the pair of dataset instances (see

Equation 9).
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Figure 8: Results on the relationship between sensitivity, seed-dependent variability σi (D), and steps of SGD T , for the remaining three
datasets. As before, σi (D) tends to increase withT for neural networks, while σi (D) either decays or rises to an approximately constant value
for logistic regression.
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Figure 9: Demonstration of how the estimated values of ∆̂∗S and σi (D) depend on the number of experiments used for estimation, for all
datasets and models not included in Figure 7. These results indicate that although we have only run a small fraction of the possible experi-
ments, we would not expect our estimates to change greatly with more experiments. Note that the x-axis for sensitivity estimates (in gold) is
using a log scale. Horizontal dashed lines indicate the values for ∆̂∗S and σi (D) used for analyses throughout the paper.
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