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ABSTRACT

With the growing use of DevOps tools and frameworks, there is an
increased need for tools and techniques that support more than code.
The current state-of-the-art in static developer assistance for tools
like Docker is limited to shallow syntactic validation. We identify
three core challenges in the realm of learning from, understanding,
and supporting developers writing DevOps artifacts: (i) nested
languages in DevOps artifacts, (ii) rule mining, and (iii) the lack
of semantic rule-based analysis. To address these challenges we
introduce a toolset, binnacle, that enabled us to ingest 900,000
GitHub repositories.

Focusing on Docker, we extracted approximately 178,000 unique
Dockerfiles, and also identified a Gold Set of Dockerfiles written by
Docker experts. We addressed challenge (i) by reducing the number
of effectively uninterpretable nodes in our ASTs by over 80% via
a technique we call phased parsing. To address challenge (ii), we
introduced a novel rule-mining technique capable of recovering
two-thirds of the rules in a benchmark we curated. Through this
automated mining, we were able to recover 16 new rules that were
not found during manual rule collection. To address challenge (iii),
we manually collected a set of rules for Dockerfiles from commits to
the files in the Gold Set. These rules encapsulate best practices, avoid
docker build failures, and improve image size and build latency.
We created an analyzer that used these rules, and found that, on
average, Dockerfiles on GitHub violated the rules five times more
frequently than the Dockerfiles in our Gold Set. We also found
that industrial Dockerfiles fared no better than those sourced from
GitHub.

The learned rules and analyzer in binnacle can be used to aid
developers in the IDE when creating Dockerfiles, and in a post-hoc
fashion to identify issues in, and to improve, existing Dockerfiles.

CCS CONCEPTS

« Software and its engineering — Empirical software valida-
tion; General programming languages; « Theory of computation
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1 INTRODUCTION

With the continued growth and rapid iteration of software, an
increasing amount of attention is being placed on services and
infrastructure to enable developers to test, deploy, and scale their
applications quickly. This situation has given rise to the practice of
DevOps, a blend of the words Development and Operations, which
seeks to build a bridge between both practices, including deploy-
ing, managing, and supporting a software system [23]. Bass et al.
define DevOps as, the “set of practices intended to reduce the time
between committing a change to a system and the change being
placed into normal production, while ensuring high quality” [11].
DevOps activities include building, testing, packaging, releasing,
configuring, and monitoring software. To aid developers in these
processes, tools such as TravisCI [9], CircleCI [1], Docker [2], and
Kubernetes [6], have become an integral part of the daily workflow
of thousands of developers. Much has been written about DevOps
(see, for example, [16] and [22]) and various practices of DevOps
have been studied extensively [20, 27, 31, 31-33, 40].

DevOps tools exist in a heterogenous and rapidly evolving land-
scape. As software systems continue to grow in scale and complex-
ity, so do DevOps tools. Part of this increase in complexity can be
seen in the input formats of DevOps tools: many tools, like Docker
[1], Jenkins [4], and Terraform [8], have custom DSLs to describe
their input formats. We refer to such input files as DevOps artifacts.

Historically, DevOps artifacts have been somewhat neglected
in terms of industrial and academic research (though they have
received interest in recent years [28]). They are not “traditional”
code, and therefore out of the reach of various efforts in automatic
mining and analysis, but at the same time, these artifacts are com-
plex. Our discussions with developers tasked with working on these
artifacts indicate that they learn just enough to “get the job done”
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Phillips et al. found that there is little perceived benefit in becom-
ing an expert, because developers working on builds told them “if
you are good, no one ever knows about it [26]” However, there
is a strong interest in tools to assist the development of DevOps
artifacts: even with its relatively shallow syntactic support, the VS
Code Docker extension has over 3.7 million unique installations
[24]. Unfortunately, the availability of such a tool has not translated
into the adoption of best practices. We find that, on average, Dock-
erfiles on GitHub have nearly five times as many rule violations
as those written by Docker experts. These rule violations, which
we describe in more detail in §4, range from true bugs (such as
simply forgetting the -y flag when using apt-get install which
causes the build to hang) to violations of community established
best practices (such as forgetting to use apk add’s —no-cache flag).
The goal of our work is as follows:

We seek to address the need for more effective semantics-aware
tooling in the realm of DevOps artifacts, with the ultimate goal of
reducing the gap in quality between artifacts written by experts
and artifacts found in open-source repositories.

We have observed that best practices for tools like Docker have
arisen, but engineers are often unaware of these practices, and there-
fore unable to follow them. Failing to follow these best practices
can cause longer build times and larger Docker images at best, and
eventual broken builds at worst. To ameliorate this problem, we in-
troduce binnacle: the first toolset for semantics-aware rule mining
from, and rule enforcement in, Dockerfiles. We selected Dockerfiles
as the initial type of artifact because it is the most prevalent De-
vOps artifact in industry (some 79% of IT companies use it [27]), has
become the de-facto container technology in OSS [15, 38], and it
has a characteristic that we observe in many other types of DevOps
artifacts, namely, fragments of shell code are embedded within its
declarative structure.

Because many developers are comfortable with the Bash shell
in an interactive context, they may be unaware of the differences
and assumptions of shell code in the context of DevOps tools. For
example, many bash tools use a caching mechanism for efficiency.
Relying on and not removing the cache can lead to wasted space,
outdated packages or data, and in some cases, broken builds. Conse-
quently, one must always invoke apt-get update before installing
packages, and one should also delete the cache after installation.
Default options for commands may need to be overridden often
in a Docker setting. For instance, users almost always want to in-
stall recommended dependencies. However, using recommended
dependencies (which may change over time in the external envi-
ronment of apt package lists) can silently break future Dockerfile
builds and, in the near term, create a likely wastage of space, as
well as the possibility of implicit dependencies (hence the need to
use the —no-recommends option). Thus, a developer who may be
considered a Bash or Linux expert can still run afoul of Docker
Bash pitfalls.

To create the binnacle toolset, we had to address three chal-
lenges associated with DevOps artifacts: (C1) the challenge of nested
languages (e.g., arbitrary shell code is embedded in various parts
of the artifact), (C2) the challenge of rule encoding and automated
rule mining, and (C3) the challenge of static rule enforcement. As

J. Henkel, C. Bird, S. Lahiri, and T. Reps

Metadata
Store

Dockerfilel
Corpus

Query Filters

Repository
————

Stars: >= 10 Ingestor
Created after: 01-01-2007
Created before: 06-01-2019

File Filters

File
Downloader

——
(d|D)ockerfile.*

Setup and Collect

Eq Phased :“ > |Rule Miner
Parser

Learn Rules

Rule
Violations

Rule
Enforcement
Engine

Phased
Parser

Dockerfile
Corpus

Fig. 1: An overview of the binnacle toolset.

a prerequisite to our analysis and experimentation, we also col-
lected approximately 900,000 GitHub repositories, and from these
repositories, captured approximately 219,000 Dockerfiles (of which
178,000 are unique). Within this large corpus of Dockerfiles, we
identified a subset written by Docker experts: this Gold Set is a
collection of high-quality Dockerfiles that our techniques use as an
oracle for Docker best practices.!

To address (C1), we introduced a novel technique for generating
structured representations of DevOps artifacts in the presence of
nested languages, which we call phased parsing. By observing that
there are a relatively small number of commonly used command-
line tools—and that each of these tools has easily accessible docu-
mentation (via manual/help pages)—we were able to enrich our De-
vOps ASTs and reduce the percentage of effectively uninterpretable
leaves (defined in §3.1) in the ASTs by over 80%.

For the challenge of rule encoding and rule mining (C2), we took
a three-pronged approach:

(1) We introduced Tree Association Rules (TARs), and created a

corpus of Gold Rules manually extracted from changes made
to Dockerfiles by Docker experts (§3.2).

(2) We built an automated rule miner based on frequent sub-tree
mining (§3.4).

(3) We performed a study of the quality of the automatically
mined rules using the the Gold Rules as our ground-truth
benchmark (§4.2).

In seminal work by Sidhu et al. [30], they attempted to learn rules
to aid developers in creating DevOps artifacts, specifically TrRavIs
ClI files. They concluded that their “vision of a tool that provides
suggestions to build CI specifications based on popular sequences
of phases and commands cannot be realized.” In our work, we adopt
their vision, and show that it is indeed achievable. There is a simple
explanation for why our results differ from theirs. In our work,

Data avaliable at: https://github.com/jjhenkel/binnacle-icse2020
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we use our phased parser to go two levels deep in a hierarchy of
nested languages, whereas Sidhu et al. only considered one level of
nested languages. Moreover, when we mine rules, we mine them
starting with the deepest level of language nesting. Thus, our rules
are mined from the results of a layer of parsing that Sidhu et al. did
not perform, and they are mined only from that layer.

Finally, to address (C3), the challenge of static rule enforcement,
we implemented a static enforcement engine that takes, as input,
Tree Association Rules (TARs). We find that Dockerfiles on GitHub
are nearly five times worse (with respect to rule violations) when
compared to Dockerfiles written by experts, and that Dockerfiles
collected from industry sources are no better. This gap in quality is
precisely what the binnacle toolset seeks to address.

In summary, we make four core contributions:

(1) A dataset of 178,000 unique Dockerfiles, processed by our
phased parser, harvested from every public GitHub repository
with 10 or more stars,% and a toolset, called binnacle, capable
of ingesting and storing DevOps artifacts.

(2) A technique for addressing the nested languages in DevOps
artifacts that we call phased parsing.

(3) An automatic rule miner, based on frequent sub-tree min-
ing, that produces rules encoded as Tree Association Rules
(TARs).

(4) A static rule-enforcement engine that takes, as input, a Dock-
erfile and a set of TARs and produces a listing of rule viola-
tions.

For the purpose of evaluation, we provide experimental results
against Dockerfiles, but, in general, the techniques we describe in
this work are applicable to any DevOps artifact with nested shell
(e.g., Travis CI and CirciLE CI). The only additional component
that binnacle requires to operate on a new artifact type is a top-
level parser capable of identifying any instances of embedded shell.
Given such a top-level parser, the rest of the binnacle toolset can
be applied to learn rules and detect violations.

Our aim is to provide help to developers in various activities.
As such, binnacle’s rule engine can be used to aid developers
when writing/modifying DevOps artifacts in an IDE, to inspect pull
requests, or to improve existing artifacts already checked in and in
use.

2 DATA ACQUISITION

A prerequisite to analyzing and learning from DevOps artifacts
is gathering a large sample of representative data. There are two
challenges we must address with respect to data acquisition: (D1)
the challenge of gathering enough data to do interesting analysis,
and (D2) the challenge of gathering high-quality data from which
we can mine rules. To address the first challenge, we created the
binnacle toolset: a dockerized distributed system capable of in-
gesting a large number of DevOps artifacts from a configurable
selection of GitHub repositories. binnacle uses a combination of
Docker and Apache Kafka to enable dynamic scaling of resources
when ingesting a large number of artifacts. Fig. 1 gives an overview
of the three primary tools provided by the binnacle toolset: a tool
for data acquisition, which we discuss in this section, a tool for

2We selected repositories created after January 1st, 2007 and before June 1st, 2019.
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rule learning (discussed further in §3.4), and a tool for static rule
enforcement (discussed further in §3.5).

Although the architecture of binnacle is interesting in its own
right, we refer the reader to the binnacle GitHub repository for
more details.? For the remainder of this section, we instead de-
scribe the data we collected using binnacle, and our approach to
challenge (D2): the need for high-quality data.

Using binnacle, we ingested every public repository on GitHub
with ten or more stars. This process yielded approximately 900,000
GitHub repositories. For each of these 900,000 repositories, we gath-
ered a listing of all the files present in each repository. This listing
of files was generated by looking at the HEAD of the default branch
for each repository. Together, the metadata and file listings for each
repository were stored in a database. We ran a script against this
database to identify the files that were likely Dockerfiles using a per-
missive filename-based filter. This process identified approximately
240,000 likely Dockerfiles. Of those 240,000 likely Dockerfiles, only
219,000 were successfully downloaded and parsed as Dockerfiles.
Of the 219,000 remaining files, approximately 178,000 were unique
based on their SHA1 hash. It is this set, of approximately 178,000
Dockerfiles, that we will refer to as our corpus of Dockerfiles.

Although both the number of repositories we ingested and the
number of Dockerfiles we collected were large, we still had not
addressed challenge (D2): high-quality data. To find high-quality
data, we looked within our Dockerfile corpus and extracted every
Dockerfile that originally came from the docker-library/ GitHub
organization. This organization is run by Docker, and houses a
set of official Dockerfiles written by and maintained by Docker
experts. There are approximately 400 such files in our Dockerfile
corpus. We will refer to this smaller subset of Dockerfiles as the Gold
Set. Because these files are Dockerfiles created and maintained by
Docker’s own experts, they presumably represent a higher standard
of quality than those produced by non-experts. This set provides
us with a solution to challenge (D2)—the Gold Set can be used
as an oracle for good Dockerfile hygiene. In addition to the Gold
Set, we also collected approximately 5,000 Dockerfiles from several
industrial repositories, with the hope that these files would also be
a source of high-quality data.

3 APPROACH

The binnacle toolset, shown in Fig. 1, can be used to ingest large
amounts of data from GitHub. This capability is of general use to
anyone looking to analyze GitHub data. In this section, we describe
the three core contributions of our work: phased parsing, rule
mining, and rule enforcement. Each of these contributions is backed
by a corresponding tool in the binnacle toolset: (i) phased parsing
is enabled by binnacle’s phased parser (shown in the Learn Rules
and Enforce Rules sections of Fig. 1); (ii) rule mining is enabled by
binnacle’s novel frequent-sub-tree-based rule miner (shown in the
Learn Rules section of Fig. 1); and rule enforcement is provided by
binnacle’s static rule-enforcement engine (shown in the Enforce
Rules section of Fig. 1). Each of these three tools and contributions
was inspired by one of the three challenges we identified in the
realm of learning from and understating DevOps artifacts (nested
languages, prior work that identifies rule mining as unachievable

Shttps://github.com/jjhenkel/binnacle-icse2020
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FROM ubuntu:latest

RUN apt-get update && \
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DOCKER-FILE

apt-get install -qqy DOCKER-FILE [DOCKER-FROM| ~ [DOCKER-RUN]|  [DOCKER-RUN |
RUN ./scripts/custom. sh [DOCKER-FROM]  [DOCKER-RUN]  [DOCKER-RUN | ‘
X ‘ ubuntu ‘ ‘ latest ‘ ‘ BASH-AND ‘
(a) An example Dockerfile
[ubuntu] [latest] [BASH-AND]
DOCKER-FILE \ BASH—C‘OMMAND | [BASH-COMMAND |
| [BasH-cowarD] [BasH-comaro [APT-GET-UPDATE ] [APT-GET-INSTALL |
[DOCKER-FROM|  [DOCKER-RUN]  [DOCKER-RUN] ‘

‘apt—get update‘ ‘apt—get install -qqy .4.‘

[FLAG-YES mUIET | [PACKAGES]

ubuntu latest ./scripts/custom.sh

‘apt—get update && apt-get install -qqy ... ‘

(b) Phase I: Top-level parsing is performed

(c) Phase Il: Embedded bash is parsed

(d) Phase Ill: The AST is enriched with the re-
sults of parsing the top-50 commands

Fig. 2: An example Dockerfile at each of the three phases of our phased-parsing technique (gray nodes are effectively uninterpretable (EU))

[30], and static rule enforcement). Together, these contributions
combine to create the binnacle toolset: the first structure-aware
automatic rule miner and enforcement engine for Dockerfiles (and
DevOps artifacts, in general).

3.1 Phased Parsing

One challenging aspect of DevOps artifacts in general (and Dock-
erfiles in particular) is the prevalence of nested languages. Many
DevOps artifacts have a top-level syntax that is simple and declar-
ative (JSON, Yaml, and XML are popular choices). This top-level
syntax, albeit simple, usually allows for some form of embedded
scripting. Most commonly, these embedded scripts are bash. Further
complicating matters is the fact that bash scripts usually reference
common command-line tools, such as apt-get and git. Some pop-
ular command-line tools, like python and php, may even allow for
further nesting of languages. Other tools, like GNU’s find, allow
for more bash to be embedded as an argument to the command.
This complex nesting of different languages creates a challenge:
how do we represent DevOps artifacts in a structured way?
Previous approaches to understanding and analyzing DevOps
artifacts have either ignored the problem of nested languages, or
only addressed one level of nesting (the embedded shell within the
top-level format) [17, 30]. We address the challenge of structured
representations in a new way: we employ phased parsing to pro-
gressively enrich the AST created by an initial top-level parse. Fig. 2
gives an example of phased parsing—note how, in Fig. 2(b), we have
a shallow representation given to us by a simple top-level parse
of the example Dockerfile. After this first phase, almost all of the
interesting information is wrapped up in leaf nodes that are string
literals. We call such nodes effectively uninterpretable (EU) because
we have no way of reasoning about their contents. These literal
nodes, which have further interesting structure, are shown in gray.
After the second phase, shown in Fig. 2(c), we have enriched the
structured representation from Phase I by parsing the embedded
bash. This second phase of parsing further refines the AST con-
structed for the example, but, somewhat counterintuitively, this
refinement also introduces even more literal nodes with undiscov-
ered structure. Finally, the third phase of parsing enriches the AST
by parsing the options “languages” of popular command-line tools

(see Fig. 2(d)). By parsing within these command-line languages,
we create a representation of DevOps artifacts that contains more
structured information than competing approaches.

To create our phased parser we leverage the following observa-
tions:

(1) There are a small number of commonly used command-line
tools. Supporting the top-50 most frequently used tools al-
lows us to cover over 80% of command-line-tool invocations
in our corpus.

(2) Popular command-line tools have documented options. This
documentation is easily accessible via manual pages or some

form of embedded help.

Because of observation (1), we can focus our attention on the
most popular command-line tools, which makes the problem of
phased parsing tractable. Instead of somehow supporting all pos-
sible embedded command-line-tool invocations, we can, instead,
provide support for the top-N commands (where N is determined
by the amount of effort we are willing to expend). To make this
process uniform and simple, we created a parser generator that
takes, as input, a declarative schema for the options language of the
command-line tool of interest. From this schema, the parser gener-
ator outputs a parser that can be used to enrich the ASTs during
Phase III of parsing. The use of a parser generator was inspired by
observation (2): the information available in manual pages and em-
bedded help, although free-form English text, closely corresponds to
the schema we provide our parser generator. This correspondence
is intentional. To support more command-line tools, one merely
needs to identify appropriate documentation and transliterate it
into the schema format we support. In practice, creating the schema
for a typical command-line tool took us between 15 and 30 min-
utes. Although the parser generator is an integral and interesting
piece of infrastructure, we forego a detailed description of the input
schema the generator requires and the process of transliterating
manual pages; instead, we now present the rule-encoding scheme
that binnacle uses both for rule enforcement and rule mining.

3.2 Tree Association Rules (TARs)

The second challenge the binnacle toolset seeks to address (rule
encoding) is motivated by the need for both automated rule mining
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Table 1: Detailed breakdown of the Gold Rules. (All rules are listed; the rules that passed confidence/support filtering, described in §3.5, are shaded.)

Rule Name Bash ) Immediate Violation Future Violation Gold Set Gold Set
Best-practice? Consequences Consequences Support  Confidence
pipUseCacheDir No Space wastage Increased attack surface 15 46.67%
npmCacheCleanUseForce No Space wastage Increased attack surface 14 57.14%
mkdirUsrSrcThenRemove Yes Space wastage Increased attack surface 129 68.99%
rmRecurisveAfterMktempD Yes Space wastage Increased attack surface 632 77.22%
curlUseFlagF No None Easier to add future bugs 72 77.78%
tarSomethingRmTheSomething  Yes Space wastage Increased attack surface 209 88.52%
apkAddUseNoCache No Space wastage Increased attack surface 250 89.20%
aptGetlnstallUseNoRec No Space wastage Build failure 525 90.67%
curlUseHttpsUrl Yes Insecure Insecure 57 92.98%
gpgUseBatchFlag No Build reliability Build reliability 455 94.51%
sha256sumEchoOneSpace Yes Build failure N/A 132 95.45%
gpgUseHaPools No Build reliability Build reliability 205 97.07%
configureUseBuildFlag No None Easier to add future bugs 128 98.44%
wgetUseHttpsUrl Yes Insecure Insecure 290 98.97%
aptGetInstallRmAptLists No Space wastage Increased attack surface 525 99.43%
aptGetlInstallUseY No Build failure N/A 525 100.00%
aptGetUpdatePrecedesInstall No Build failure N/A 525 100.00%
gpgVerifyAscRmAsc Yes Space wastage Increased attack surface 172 100.00%
npmCacheCleanAfterInstall No Space wastage Increased attack surface 12 100.00%
gemUpdateSystemRmRootGem  No Space wastage Increased attack surface 11 100.00%
gemUpdateNoDocument No Space wastage Increased attack surface 11 100.00%
yumlInstallForceYes No Build failure N/A 3 100.00%
yumlInstallRmVarCacheYum No Space wastage Increased attack surface 3 100.00%
PRECEDES

(APT-GET-INSTALL)
(APT-GET-UPDATE)

(a) Intuitively, this rule states that an apt-get install must be pre-
ceded (in the same layer of the Dockerfile) by an apt-get update.

Forrows
(APT-GET-INSTALL)

(RM (RM-F-RECURSIVE) (RM-PATH (ABS-APT-LISTS)))

(b) Intuitively, this rule states that a certain directory must be removed
(in the same layer of the Dockerfile) following an apt-get install.

CHILD-OF
(APT-GET-INSTALL [*1)

(FLAG-NO-RECOMMENDS)

(c) Here, the user must select where, in the antecedent subtree, to bind
a region to search for the consequent. This binding is represented by
the [*] marker.

Fig. 3: Three example Tree Association Rules (TARs). Each TAR has, above
the bar, an antecedent subtree encoded as an S-expression and, below the
bar, a consequent subtree encoded in the same way.

and static rule enforcement. In both applications, there needs to be a
consistent and powerful encoding of expressive rules with straight-
forward syntax and clear semantics. As part of developing this en-
coding, we curated a set of Gold Rules and wrote a rule-enforcement
engine capable of detecting violations of these rules. We describe
this enforcement engine in greater detail in §3.5. To create the set
of Gold Rules, we returned to the data in our Gold Set of Dockerfiles.

These Dockerfiles were obtained from the docker-library/ orga-
nization on GitHub. We manually reviewed merged pull requests to
the repositories in this organization. From the merged pull requests,
if we thought that a change was applying a best practice or a fix, we
manually formulated, as English prose, a description of the change.
This process gave us approximately 50 examples of concrete changes
made by Docker experts, paired with descriptions of the general
pattern being applied.

From these concrete examples, we devised 23 rules. A summary
of these rules is given in Table 1. Most examples that we saw could
be framed as association rules of some form. As an example, a
rule may dictate that using apt-get install requires a
preceding apt-get update. Rules of this form can be phrased in
terms of an antecedent and consequent. The only wrinkle in this
simple approach is that both the antecedent and the consequent
are sub-trees of the tree representation of Dockerfiles. To deal with
tree-structured data, we specify two pieces of information that
helps restrict where the consequent can occur in the tree, relative
to the antecedent:

(1) Its location: the consequent can either (i) precede the an-
tecedent, (ii) follow the antecedent, or (iii) be a child of the
antecedent in the tree.

—
)
~

Its scope: the consequent can either be (i) in the same piece
of embedded shell as the antecedent (intra-directive), or (ii)
it can be allowed to exist in a separate piece of embedded
shell (inter-directive). Although we can encode and enforce
inter-directive rules, our miner is only capable of returning
intra-directive rules (as explained in §3.4). Therefore, all of
the rules we show have an intra-directive scope.
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FLAG-YES :FLAG*NO*RECOMMENDS\ PACKAGES

FLAG-YES| [FLAG-QUIET| [PACKAGES]

(a) Four sub-tree instances with root APT-GET-INSTALL. binnacle uses a frequent sub-tree miner, with a support threshold of
75%, to identify frequently occurring sub-trees. We have highlighted two such possible frequent sub-trees in gray and dashed
outlines, respectively.

APT-GET-INSTALL

‘ [FLAG-YES|

APT-GET-INSTALL

! |
Ry 3

[PACKAGES |

(b) The two frequently occuring sub-trees extracted from the
example input corpus in Fig. 4(a); these trees become likely
consequents.
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APT-GET-INSTALL '

|
e e ]

CHILD-OF
(APT-GET-INSTALL [*1)

CHILD-OF
(APT-GET-INSTALL [*])

(FLAG-YES) (PACKAGES (PACKAGE))

(FLAG-NO-RECOMMENDS)

(c) Tree Association Rules created automatically from the likely
consequents in Fig. 4(b). The antecedent denotes the set of all
sub-trees with the indicated root node-type.

Fig. 4: A depiction of rule mining in binnacle via frequent sub-tree mining.

From an antecedent, a consequent, and these two pieces of lo-
calizing information, we can form a complete rule against which
the enriched ASTs created by the phased parser can be checked.
We call these Tree Association Rules (TARs). Three example TARs
are given in Fig. 3. We are not the first to propose Tree Association
Rules; Mazuran et al. [25] proposed TARs in the context of extract-
ing knowledge from XML documents. The key difference is that
their TARs require that the consequent be a child of the antecedent
in the tree, while we allow for the consequent to occur outside of
the antecedent, either preceding it or succeeding it. Although we
allow for this more general definition of TARs, our miner is only
capable of mining local TARs—that is, TARs in the style of Mazuran
et al. [25]; however, our static rule-enforcement engine has no such
limitation.

Rule impacts. For each of the Gold rules, Table 1 provides the
consequences of a rule violation and a judgement as to whether a
given rule is unique to Dockerfiles or more aligned with general
Bash best-practices. In general, we note that rule violations have
varying consequences, including space wastage, container bloat
(and consequent increased attack surface), and instances of outright
build failure. Additionally, two-thirds of the Gold rules are unique
to using Bash in the context of a Dockerfile.

ABS—URL-HTTPS “https://
ABS—-URL-HTTP “http ://
ABS-PATH-REL

ALY+
ABS—-URL

(a) Example named regular expressions

CURL-URL

[httos: r/examle.con | [ ABS-URL-HTTPS | [ ABS-URL |

(b) Before abstraction (c) After abstraction

Fig. 5: An example of the abstraction process.

3.3 Abstraction

binnacle’s rule miner and static rule-enforcement engine both
employ an abstraction process. The abstraction process is comple-
mentary to phased parsing—there may still be information within
literal values even when those literals are not from some well-
defined sub-language. During the abstraction process, for each tree
in the input corpus, every literal value residing in the tree is re-
moved, fed to an abstraction subroutine, and replaced by either zero,
one, or several abstract nodes (these abstract nodes are produced
by the abstraction subroutine). The abstraction subroutine simply
applies a user-defined list of named regular expressions to the input
literal value. For every matched regular expression, the abstraction
subroutine returns an abstract node whose type is set to the name
of the matched expression. For example, one abstraction we use
attempts to detect URLs; another detects if the literal value is a Unix
path and, if so, whether it is relative or absolute. The abstraction
process is depicted in Fig. 5. The reason for these abstractions is
to help both binnacle’s rule-learning and static-rule-enforcement
phases by giving these tools the vocabulary necessary to reason
about properties of interest.

3.4 Rule Mining

The binnacle toolset approaches rule mining by, first, focusing
on a specific class of rules that are more amenable to automatic
recovery: rules that are local. We define a local Tree Association
Rule (TAR) as one in which the consequent sub-tree exists within
the antecedent sub-tree. This matches the same definition of TARs
introduced by Mazuran et al. [25]. Based on this definition, we
note that local TARs must be intra-directive (scope) and must be
child-of (location). Three examples of local TARs (each of which our
rule miner is able to discover automatically) are given in Figs. 3(c)
and 4(c). In general, the task of finding arbitrary TARs from a corpus
of hundreds of thousands of trees is computationally infeasible. By
focusing on local TARs, the task of automatic mining becomes
tractable.

To identify local TARs binnacle collects, for each node type of
interest, the set of all sub-trees with roots of the given type (e.g.,



Learning from, Understanding, and Supporting DevOps Artifacts for Docker

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

DOCKER-FILE DOCKER-FILE DOCKER-FILE
[DOCKER-FROM| [ DOCKER-RUN | [ DOCKER-RUN | 1 [Docker-FRoM] | [DOCKER-RUN] [ DOCKER-RUN | [DOCKER-FROM] [ DOCKER-RUN | [ DOCKER-RUN |
buntu| [latest] [BASH-AND buntu| [latest| [BASH-AND buntu| [latest] [BASH-AND
[ubuntu] [latest] | | [ubuntu]| [latest] | | woon] 4 [ubuntu] [latest] | |

[BASH-COMMAND | [BASH-COMMAND | [ BASH-COMMAND |

2 [BASH-COMMAND| ~ [BASH-COMMAND| [ BASH-COMMAND |

2 [BASH-COMMAND | [BASH-COMMAND | [ BASH-COMMAND |

APT-GET-UPDATE IAPT—GET—INSTALLI

[FLAG-YES] [FLAG-QUIET| [PACKAGES|

(a) Stage I: The enforcement engine attempts to
match the TAR’s antecedent (shown in the out-
lined box above). A match is found when the
subtree in a TAR’s antecedent can be aligned
with any subtree in the input tree. All three
rules given in Fig. 3 have antecedents that
match the above tree.

APT-GET-UPDATE | [APT-GET-INSTALL 5
3

[FLAG-YES| [FLAG-QUIET| [PACKAGES]

(b) Stage Il: If the enforcement engine matches
the TAR’s antecedent, then, depending on the
location and scope of the TAR, the enforcement
engine will bind one of the five shaded regions
above. For the rule given in Fig. 3(a) (intra-
directive preceding), region (2) is matched. For
the rule in Fig. 3(b) (intra-directive following),
region (5) is matched. The darker shaded re-
gions (1, 4) are the inter-directive variants of

APT-GET-UPDATE &

APT-GET-INSTALL
3 =
PRCLo000000Ca0 1

'

FLAG-NO-RECOMMENDS 1| FLAG-YES || FLAG-QUIET | [ PACKAGES |

(c) Stage 11l: The enforcement engine searches
for the consequent in the bound region. For
the rule in Fig. 3(a), the blue shaded region
is bound and the consequent (shown with a
dashed black outline) is matched; therefore,
the rule in Fig. 3(a) has been validated. Con-
versely, for the rule in Fig. 3(c), the green region
is bound and there are no matches for the con-
sequent of this rule (represented by the dashed

regions (2, 5).

red box); therefore, the rule in Fig. 3(c) has been
violated.

Fig. 6: binnacle’s rule engine applied to an example Dockerfile

all sub-trees with APT-GET as the root). On this set of sub-trees,
binnacle employs frequent sub-tree mining [13] to recover a set of
likely consequents. Specifically, binnacle uses the CMTREEMINER
algorithm [14] to identify frequent maximal, induced, ordered sub-
trees. Induced indicates that all “child-of” relationships in the sub-
tree exist in the original tree (as opposed to the more permissive
“descendent-of” relationship, which defines an embedded sub-tree).
Ordered signifies that order of the child nodes in the sub-tree matters
(as opposed to unordered sub-trees). A frequent sub-tree is Maximal
for a given support threshold if there is no super-tree of the sub-tree
with occurrence frequency above the support threshold (though
there may be sub-trees of the given sub-tree that have a higher
occurrence frequency). For more details on frequent sub-trees, see
Chi et al. [13].

binnacle returns rules in which the antecedent is the root node
of a sub-tree (where the type of the root node matches the input
node-type) and the consequent is a sub-tree identified by the fre-
quent sub-tree miner.

An example of the rule-mining process is given in Fig. 4. In the
first stage of rule mining, all sub-trees with the same root node-type
(APT-GET-INSTALL) are grouped together and collected. For each
group of sub-trees with the same root node-type, binnacle employs
frequent sub-tree mining to find likely consequents. In our example,
two frequently occurring sub-trees (in gray and dashed outlines,
respectively) are given in Fig. 4(b). Finally, binnacle creates local
TARs by using the root node as the antecedent and each of the
frequent sub-trees as a consequent, as shown in Fig. 4(c). One TAR
is created for each identified frequent sub-tree.

3.5 Static Rule Enforcement

Currently, the state-of-the-art in static Dockerfile support for de-
velopers is the VSCode Docker extension [7] and the Hadolint

Dockerfile-linting tool [3]. The VSCode extension provides high-
lighting and basic linting, whereas Hadolint employs a shell parser
(ShellCheck [5]—the same shell parser we use) to parse embedded
bash, similar to our tool’s second phase of parsing. The capabilities
of these tools represent steps in the right direction but, ultimately,
they do not offer enough in the way of deep semantic support.
Hadolint does not support parsing of the arguments of individual
commands as binnacle does in its third phase of parsing. Instead,
Hadolint resorts to fuzzy string matching and regular expressions
to detect simple rule violations.

binnacle’s static rule-enforcement engine takes, as input, a
Dockerfile and a set of TARs. binnacle’s rule engine runs, for each
rule, three stages of processing on the input corpus:

(1) Stage I: The Dockerfile is parsed into a tree representation,
and the enforcement engine attempts to match the TAR’s
antecedent (by aligning it with a sub-tree in the input tree).
If no matches are found, the engine continues processing
with the next TAR. If a match is found, then the enforcement
engine continues to Stage II. This process is depicted in
Fig. 6(a).

Stage II: Depending on the scope and location of the given
TAR, the enforcement engine binds a region of the input tree.
This region is where, in Stage III, the enforcement engine
will look for a sub-tree with which the consequent can be
aligned. Fig. 6(b) depicts this process, and highlights the
various possible binding regions in the example input tree.

Stage III: Given a TAR with a matched antecedent and a
bound region of the input tree, the enforcement engine at-
tempts to align the consequent of the TAR with a sub-tree
within the bound region. If the engine is able to find such an
alignment, then the rule has been satisfied. If not, the rule has
been violated. Fig. 6(c) depicts this process and both possible
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Fig. 7: Density histograms showing the distributions of our three metrics (M1,M2, and M3). The green shaded box in each plot
highlights the interquartile range for each distribution (the middle 50%).

outcomes: for the rule in Fig. 3(a), the matched antecedent
is shown with a thick black outline, the bound region is
shown in blue, and the matched consequent is shown with
a dashed black outline. In contrast, for the rule in Fig. 3(c),
the matched antecedent is the same as above, the bound
region is shown in green; however, the tree is missing the
consequent, represented by the dashed red sub-tree.

The implementation of binnacle’s enforcement engine utilizes
a simple declarative encoding for the TARs. To reduce the bias in
the manually extracted Gold Rules (introduced in §3.2), we used
binnacle’s static rule-enforcement engine and the Gold Set of
Dockerfiles (introduced in §2) to gather statistics that we used to
filter the Gold Rules. For each of the 23 rules (encoded as Tree Asso-
ciation Rules), we made the following measurements: (i) the support
of the rule, which is the number of times the rule’s antecedent is
matched, (ii) the confidence of the rule, which is the percentage
of occurrences of the rule’s consequent that match successfully,
given that the rule’s antecedent matched successfully, and (iii) the
violation rate of the rule, which is the percentage of occurrences of
the antecedent where the consequent is not matched. Note that our
definitions of support and confidence are the same as that used in
traditional association rule mining [10]. We validated our Gold Rules
by keeping only those rules with support greater than or equal to 50
and confidence greater than or equal to 75% on the Gold Set. These
support and confidence measurements are given in Table 1. By
doing this filtering, we increase the selectivity of our Gold Rules set,
and reduce the bias of our manual selection process. Of the original
23 rules in our Gold Rules, 16 pass the minimum-support threshold
and, of those 16 rules, 15 pass the minimum-confidence threshold.
Henceforth, we use the term Gold Rules to refer to the 15 rules that
passed quantitative filtering. These 15 rules are highlighted, in gray,
in Table 1.

Together, binnacle’s phased parser, rule miner, and static rule-
enforcement engine enable both rule learning and the enforcement
of learned rules. Fig. 1 depicts how these tools interact to provide
the aforementioned features. Taken together, the binnacle toolset
fills the need for structure-aware analysis of DevOps artifacts and

provides a foundation for continued research into improving the
state-of-the-art in learning from, understanding, and analyzing
DevOps artifacts.

4 EVALUATION

In this section, for each of the three core components of the binnacle
toolset’s learning and enforcement tools, we measure and analyze

quantitative results relating to the efficacy of the techniques behind

these tools. All experiments were performed on a 12-core worksta-
tion (with 32GB of RAM) running Windows 10 and a recent version

of Docker.

4.1 Results: Phased Parsing

To understand the impacts of phased parsing, we need a metric for
quantifying the amount of useful information present in our DevOps
artifacts (represented as trees) after each stage of parsing. The
metric we use is the fraction of leaves in our trees that are effectively
uninterpretable (EU). We define a leaf as effectively uninterpretable
(EU) if it is, after the current stage of parsing, a string literal that
could be further refined by parsing the string with respect to the
grammar of an additional embedded language. (We will also count
nodes explicitly marked as unknown by our parser as being EU.)
For example, after the first phase of parsing (the top-level parse), a
Dockerfile will have nodes in its parse tree that represent embedded
bash—these nodes are EU at this stage because they have further
structure that can be discovered given a bash parser; however, after
the first stage of parsing, these leaves are simply treated as literal
values, and therefore marked EU.

We took three measurements over the corpus of 178,000 unique
Dockerfiles introduced in §2: (M1) the distribution of the fraction
of leaves that are EU after the first phase of parsing, (M2) the
distribution of the fraction of leaves that are EU after the second
phase of parsing, and (M3) the distribution of the fraction of leaves
that are EU after the second phase of parsing and unresolved during
the third phase of parsing.

4For (M3) we make a relative measurement: the reason for using a different metric is
to accommodate the large number of new leaf nodes that the third phase of parsing
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CHILD-OF
(SED [*1)

CHILD-OF

(CP [*D)

(FLAG-NO-CACHE)
(a) A Gold rule

(ABS-URL-PROTOCOL-HTTPS)
(b) A Semantic rule

(CP-PATH) (CP-PATH) (FLAG-IN-PLACE)

(c) A Syntactic rule (d) An Ungeneralizable rule

Fig. 8: Four examples of actual rules recovered by binnacle’s automated miner. Through abstraction, interesting semantic

rules, such as using HTTPS URLs with curl, are captured.

Density histograms that depict the three distributions are given
in Fig. 7. As shown in Fig. 7, after the first phase of parsing, the
trees in our corpus have, on average, 19.3% EU leaves. This number
quantifies the difficulty of reasoning over DevOps artifacts without
more sophisticated parsing. Furthermore, the nodes in the tree
most likely to play a role in rules happen to be the EU nodes at this
stage. (This aspect is something that our quantitative metric does
not take into account and hence over-estimates the utility of the
representation available after Phase I and Phase II.)

Counterintuitively, the second phase of parsing makes the situa-
tion worse: on average, 33.2% of leaves in second-phase trees are EU.
Competing tools, like Hadolint, work over DevOps artifacts with
a similar representation. In practice, competing tools must either
stay at what we consider a Phase I representation (just a top-level
parse) or utilize something similar to our Phase II representations.
Such tools are faced with the high fraction of EU leaves present in
a Phase I AST. Tools using Phase II representations, like Hadolint,
are forced to employ regular expressions or other fuzzy matching
techniques as part of their analysis.

Finally, we use our parser generator and the generated parsers
for the top-50 commands to perform a third phase of parsing. The
plot in Fig. 7(c) shows the M3 distribution obtained after performing
the third parsing phase on our corpus of Dockerfiles. At this stage,
almost all of the EU nodes are gone—on average, only 3.7% of leaves
that were EU at Phase Il remain EU in Phase III. In fact, over 65% of
trees in Phase I had all EU leaves resolved after the third phase of
parsing. These results provide concrete evidence of the efficacy of
our phased-parsing technique, and, in contrast to what is possible
with existing tools, the Phase III structured representations are
easily amenable to static analysis and rule mining.

4.2 Results: Rule Mining

We applied binnacle’s rule miner to the Gold Set of Dockerfiles
defined in §2. We chose the Gold Set as our corpus for rule learning
because it presumably contains Dockerfiles of high quality. As de-
scribed in §3.4, binnacle’s rule miner takes, as input, a corpus of
trees and a set of node types. We chose to mine for patterns using
any new node type introduced by the third phase of parsing. We se-
lected these node types because (i) they represent new information
gained in the third phase of our phased-parsing process, and (ii) all
rules in our manually collected Gold Rules set used nodes created
in this phase. Rules involving these new nodes (which come from
the most deeply nested languages in our artifacts) were invisible to
prior work.

introduces. Without this adjustment, one could argue that our measurements are biased
because the absolute fraction of EU leaves would be low due to the sheer number of
new leaves introduced by the third parsing phase. To avoid this bias, we measure the
fraction of previously EU leaves that remain unresolved, as opposed to the absolute
fraction of EU leaves that remain after the third phase of parsing (which is quite small
due to the large number of new leaves introduced in the third phase).

To evaluate binnacle’s rule miner, we used the Gold Rules (in-
troduced in §3.2). From the original 23 Gold Rules we removed 8
rules that did not pass a set of quantitative filters—this filtering is
described more in §3.5. Of the remaining 15 Gold Rules, there are 9
rules that are local (as defined in §3.4). In principal, these 9 rules are
all extractable by our rule miner. Furthermore, it is conceivable that
there exist interesting and useful rules, outside of the Gold Rules,
that did not appear in the dockerfile changes that we examined in
our manual extraction process. To assess binnacle’s rule miner we
asked the following three questions:

¢ (Q1) How many rules are we able to extract from the data
automatically?

¢ (Q2) How many of these rules match one of the 9 local Gold
Rules? (Equivalently, what is our recall on the set of local
Gold Rules?)

¢ (Q3) How many new rules do we find, and, if we find new
rules (outside of our local Gold Rules), what can we say about
them (e.g., are the new rules useful, correct, general, etc.)?

For (Q1), we found that binnacle’s automated rule miner returns
a total of 26 rules. binnacle’s automated rule miner is selective
enough to produce a small number of output rules—this selectivity
has the benefit of allowing for easy manual review.

To provide a point of comparison, we also ran a traditional asso-
ciation rule miner over sequences of tokens in our Phase III ASTs
(we generated these sequences via a pre-order traversal). The as-
sociation rule miner returned thousands of possible association
rules. The number of rules could be reduced, by setting very high
confidence thresholds, but in doing so, interesting rules could be
missed.

For (Q2), we found that two thirds (6 of 9) local Gold Rules were
recovered by binnacle’s rule miner. Because binnancle’s rule
miner is based on frequent sub-tree mining, it is only capable of
returning rules that, when checked against the corpus they were
mined from, have a minimum confidence equal to the minimum
support supplied to the frequent sub-tree miner.

In addition to measuring recall on the local Gold Rules, we also
examined the rules encoded in Hadolint to identify all of its rules
that were local. Because Hadolint has a weaker representation of
Dockerfiles, we are not able to translate many of its rules into local
TARs. However, there were three rules that fit the definition of
local TARs. Furthermore, binnacle’s automated miner was able
to recover each of those three rules (one rule requires the use of
apt-get install’s -y flag, another requires the use of apt-get
install’s —-no-install-recommends flag, and the third requires
the use of apk add’s —-no-cache flag).

To classify the rules returned by our automated miner, we as-
signed one of the following four classifications to each of the 26
rules returned:
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e Syntactic: these are rules that enforce simple properties—for
example, a rule encoding the fact that the cp command takes
two paths as arguments (see Fig. 8(c)).

e Semantic: these are rules that encode more than just syntax.
For example, a rule that says the URL passed to the curl
utility must include the https:// prefix (see Fig. 8(b)).

e Gold: these are rules that match, or supersede, one of the
rules in our collection of Gold Rules (see Fig. 8(a)).

e Ungeneralizable: these are rules that are correct on the cor-
pus from which they were mined, but, upon further inspec-
tion, seem unlikely to generalize. For example, a rule that
asserts that the sed utility is always used with the -in-place
flag is ungeneralizable (see Fig. 8(d)).

To answer (Q3), we assigned one of the above classifications to
each of the automatically mined rules. We found that, out of 26
rules, 12 were syntactic, 4 were semantic, 6 were gold, and 4 were
ungeneralizable. Fig. 8 depicts a rule that was mined automatically
in each of the four classes. Surprisingly, binnacle’s automated
miner discovered 16 new rules (12 syntactic, 4 semantic) that we
missed in our manual extraction. Of the newly discovered rules,
one could argue that only the semantic rules are interesting (and,
therefore, one might expect a human to implicitly filter out syntactic
rules during manual mining). We would argue that even these
syntactic rules are of value. The lack of basic validation in tools
like VS Code’s Docker extension creates a use case for these kind
of basic structural constraints. Furthermore, the 4 novel semantic
rules include things such as: (i) the use of the -L flag with curl,
following redirects, which introduces resilience to resources that
may have moved, (ii) the use of the -p flag with mkdir, which
creates nested directories when required, and (iii) the common
practice of preferring soft links over hard links by using 1n’s -s
flag. With (Q3), we have demonstrated the feasibility of automated
mining for Dockerfiles—we hope that these efforts inspire further
work into mining from Dockerfiles and DevOps artifacts in general.

4.3 Results: Rule Enforcement

Using the 15 Gold Rules, we measured the average violation rate
of the Gold Rules with respect to the Gold Dockerfiles (§2). The
average violation rate is the arithmetic mean of the violation rates
of each of the 15 Gold Rules with respect to the Gold Dockerfiles.
This measurement serves as a kind of baseline—it gives us a sense
of how “good” Dockerfiles written by experts are with respect to
the Gold Rules. The average violation rate we measured was 6.65%,
which, unsurprisingly, is quite low. We also measured the average
violation rate of the Gold Rules with respect to our overall corpus.
We hypothesized that Dockerfiles “in the wild” would fare worse,
with respect to violations, than those written by experts. This hy-
pothesis was supported by our findings: the average violation rate
was 33.15%. We had expected an increase in the violation rate, but
were surprised by the magnitude of the increase. These results high-
light the dire state of static DevOps support: Dockerfiles authored
by non-experts are nearly five times worse when compared to those
authored by experts. Bridging this gap is one of the overarching
goals of the binnacle ecosystem.

We also obtained a set of approximately 5,000 Dockerfiles from
the source-code repositories of an industrial source, and assessed
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their quality by checking them against our Gold Rules. To our sur-
prise, the violation rate was no lower for these industrial Docker-
files. This result provides evidence that the quality of Dockerfiles
suffers in industry as well, and that there is a need for tools such
as binnacle to aid industrial developers.

5 RELATED WORK

Our paper is most closely related to the work of Sidhu et al. [30],
who explored reuse in CI specifications in the specific context of
Travis CI, and concluded that there was not enough reuse to de-
velop a “tool that provides suggestions to build CI specifications
based on popular sequences of phases and commands.” We dif-
fer in the DevOps artifact targeted (Dockerfiles versus Travis CI
files), representation of the configuration file, and the rule-mining
approach.

In a related piece of work, Gallaba and McIntosh [17] analyzed
the use of Travis CI across nearly 10,000 repositories in GitHub,
and identified best practices based on documentation, linting tools,
blog posts, and stack-overflow questions. They used their list of
best practices to deduce four anti-patterns, and developed HANSEL,
a tool to identify anti-patterns in Travis CI config files, and GRETEL,
a tool to automatically correct them. Similar to our second phase
of parsing, they used a bash parser (BASHLEX) to gain a partial
understanding of the shell code in config files.

Zhang et al. [39] examined the impact of changes to Docker-
files on build time and quality issues (via the Docker linting tool
Hadolint). They found that fewer and larger Docker layers results
in lower latency and fewer quality issues in general, and that the
architecture and trajectory of Docker files (how the size of the file
changes over time) impact both latency and quality. Many of the
rules in our Gold Set, and those learned by binnacle, would result
in lower latency and smaller images if the rules were followed.

Xu et al. [34] described a specific kind of problem in Docker
image creation that they call the “Temporary File Smell” Tempo-
rary files are often created but not deleted in Docker images. They
present two approaches for identifying such temporary files. In
this paper, we also observed that removing temporary files is a
best-practice employed by Dockerfile experts and both our manual
Gold Set and our learned rules contained rules that address this.

Zhang et al. [38] explored the different methods of continuous
deployment (CD) that use containerized deployment. While they
found that developers see many benefits when using CD, adopting
CD also poses many challenges. One common way of addressing
them is through containerization, typically using Docker. Their
findings also reinforce the need for developer assistance for DevOps:
they concluded that “Bad experiences or frustration with a specific
CI tool can turn developers away from CI as a practice.”

Our work falls under broader umbrella of “infrastructure-as-
code”. This area has received increasing attention recently [28]. As
examples, Sharma et al. examined quality issues, so-called smells, in
software-configuration files [29], and Jiang et al. examined the cou-
pling between infrastructure-as-code files and “traditional” source-
code files.

There have been a number of studies that mine Docker artifacts
as we do. Xu and Marinov [35] mined container-image repositories
such as DockerHub, and discussed the challenges and opportunities
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that arise from such mining. Zerouali et al. [37] studied vulnerabili-
ties in Docker images based on the versions of packages installed
in them. Guidotti et al. [18] attempted to use Docker-image meta-
data to determine if certain combinations of image attributes led
to increased popularity in terms of stars and pulls. Cito et al. [15]
conducted an empirical study of the Docker ecosystem on GitHub
by mining over 70,000 Docker files, and examining how they evolve,
the types of quality issues that arise in them, and problems when
building them.

A number of tools related to Dockerfiles have been developed in
recent years as well.

Brogi et al. [12] found that searching for Docker images is cur-
rently a difficult problem and limited to simple keyword matching.
They developed DOoCKERFINDER, a tool that allows multi-attribute
search, including attributes such as image size, software distribu-
tion, or popularity.

Yin et al. [36] posited that tag support in Docker repositories
would improve reusability of Docker images by mitigating the
discovery problem. They addressed this issue by building STAR, a
tool that uses latent dirichlet allocation to automatically recommend
tags.

Docker files may need to be updated when the requirements of
the build environment or execution environment changes. Hassan
et al. [19] developed RUDSEA, a tool that can recommend updates
to Dockerfiles based on analyzing changes in assumptions about
the software environment and identifying their impacts.

To tackle the challenge of creating the right execution environ-
ment for python code snippets (e.g., from Gists or StackOverflow)
Horton and Parnin [21] developed DOCKERIZEME, a tool which
infers python package dependencies and automatically generates a
Dockerfile that will build an execution environment for pieces of
python code.

6 THREATS TO VALIDITY

We created tools and techniques that are general in their ability to
operate over DevOps artifacts with embedded shell, but we focused
our evaluation on Dockerfiles. It is possible that our findings do not
translate directly to other classes of DevOps artifacts. We ingested
a large amount of data for analysis, and, as part of that process,
we used very permissive filtering. It is possible that our corpus
of Dockerfiles contains files that are not Dockerfiles, duplicates,
or other forms of noise. It is also possible that there are bugs in
the infrastructure used to collect repositories and Dockerfiles. To
mitigate these risks we kept a log of the data we collected, and
verified some coarse statistics through other sources (e.g., we used
GitHub’s API to download data and then cross-checked our on-disk
data against GitHub’s public infrastructure for web-based search).
Through these cross-checks we were able to verify that, for the
over 900,000 repositories we ingested, greater than 99% completed
the ingestion process successfully. Furthermore, of the approxi-
mately 240,000 likely Dockerfiles we identified, 91% (219,000) made
it through downloading, parsing, and validation. Of this set of files,
approximately 81% (178,000) were unique based on their SHA1 hash.
Of the files rejected during processing (downloading, parsing, and
validation), most were either malformed Dockerfiles or files with
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names matching our .*dockerfile. * filter that were not actual
Dockerfiles (e.g., docker-compose. yml files).

We identified a Gold Set of Dockerfiles and used these files as the
ideal standard for the Dockerfiles in our larger corpus. It is possible
that developers do not want to achieve the same level of quality
as the files in our Gold Set. It is also possible that the Gold Set is
too small and too specific to be of real value. It is conceivable, but
unlikely, that the Gold Set is not representative of good practice.
Even if that were the case, our finding still holds that there is a
significant difference between certain characteristics of Dockerfiles
written by (presumed) Docker experts and those written by garden-
variety GitHub users. We acknowledge that the average violation
rate of our Gold Rules is only a proxy for quality—but, given the
data and tools currently available, it is a reasonable and, crucially,
measurable choice of metric. For rule mining, we created, manually,
a set of Gold Rules against which we benchmarked our automated
mining. Because the results of automated mining did not agree
with three of the manually extracted rules, there is evidence that
the manual process did have some bias. We sought to mitigate this
issue through the use of quantitative filtering; after filtering, we
retained only 65% of our original Gold Rules.

7 CONCLUSION

Thus far, we have identified the ecosystem of DevOps tools and arti-
facts as an ecosystem in need of greater support both academically
and industrially. We found that, on average, Dockerfiles on GitHub
are nearly five times worse, with respect to violations of our Gold
Rules, compared to Dockerfiles written by experts. Furthermore, we
found that industrial Dockerfiles are no better. Through automated
rule mining and static rule enforcement, we created tools to help
bridge this gap in quality. Without increased developer assistance,
the vast disparity between the quality of DevOps artifacts authored
by experts and non-experts is likely to continue to grow.

There are a number of pieces of follow-on work that we hope to
pursue. We envision the binnacle tool, the data we have collected,
and the analysis we have done on Dockerfiles as a foundation on
which new tools and new analysis can be carried out. To that end, we
plan to continue to evolve the binnacle ecosystem by expanding
to more DevOps artifacts (Travis, CircleCI, etc.). Additionally, the
encoding of rules we utilize has the advantage of implicitly encoding
a repair (or, at least, part of a repair—localizing the insertion point
for the implicit repair may be a challenge). Furthermore, the kinds
of rules that we mine are limited to local rules. We believe that
more rules may be within the reach of automated mining. Finally,
we hope to integrate binnacle’s mined rules and analysis engine
into language servers and IDE plugins to provide an avenue for
collecting real feedback that can be used to improve the assistance
we provide to DevOps developers.
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