Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial
Case Study

Chungha Sung
University of Southern California
Los Angeles, CA, USA

Shuvendu K. Lahiri
Mike Kaufman
Pallavi Choudhury

Chao Wang

University of Southern California
Los Angeles, CA, USA

Microsoft Corporation
Redmond, WA, USA

ABSTRACT

Divergent forks are a common practice in open-source soft-
ware development to perform long-term, independent and
diverging development on top of a popular source reposi-
tory. However, keeping such divergent downstream forks in
sync with the upstream source evolution poses engineering
challenges in terms of frequent merge conflicts. In this paper,
we conduct the first industrial case study of the implications
of frequent merges from upstream and the resulting merge
conflicts, in the context of Microsoft Edge development. The
study consists of two parts. First, we describe the nature of
merge conflicts that arise due to merges from upstream and
classify them into textual conflicts, build breaks, and test
failures. Second, we investigate the feasibility of automati-
cally fixing a class of merge conflicts related to build breaks
that consume a significant amount of developer time to root-
cause and fix. Towards this end, we have implemented a tool
MrgBIdBrkFixer and evaluate it on three months of real Mi-
crosoft Edge Beta development data, and report encouraging
results.

ACM Reference Format:

Chungha Sung, Shuvendu K. Lahiri, Mike Kaufman, Pallavi Choud-
hury, and Chao Wang. 2020. Towards Understanding and Fixing
Upstream Merge Induced Conflicts in Divergent Forks: An Indus-
trial Case Study. In Software Engineering in Practice (ICSE-SEIP °20),
May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3377813.3381362

The first author was an intern at Microsoft for the course of the study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ICSE-SEIP °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7123-0/20/05...$15.00
https://doi.org/10.1145/3377813.3381362

1 INTRODUCTION

During software development, a fork occurs when software
code is copied and used as the starting point of an inde-
pendent development, thus creating a distinct and separate
piece of software. While some forks are created to allow
developers to work independently on authoring and testing
changes (e.g., new features, refactorings, and bug fixes) to be
eventually merged back to the “master” branch, other forks
are created to carry out long-term, independent, diverging
development on top of the original source code. In the latter
case, we call the fork a divergent fork.

Unlike a branch that is often short-lived, a divergent fork
may live permanently along side the original project. How-
ever, flow of information between the original and forked
repositories is asymmetric. While most divergent forks need
to continuously integrate changes from the original reposi-
tory, e.g., to keep up with important security patches, changes
from the forked repositories seldom flow back into the origi-
nal repository. To signify this asymmetric nature, we refer
to the original repository as the upstream and the forked
repository as the downstream.

Divergent forks are a common practice in open-source
development, e.g., to provide customized products by adapt-
ing an open-source project. Leveraging an upstream soft-
ware that defines or adheres to some standards (e.g., An-
droid) allows the downstream software to offer better appli-
cation compatibility. As an example, web browsers such as
Opera, Samsung Internet, and Microsoft Edge build upon the
Chromium engine; similarly, customized versions of the An-
droid mobile operating system are offered by various smart-
phone vendors, together with their own applications.

Although popular and convenient, a divergent fork may in-
cur significant overhead. One challenge is to keep the down-
stream synchronized with important updates in the upstream.
As the upstream software evolves due to API changes and
security patches, the downstream needs to be updated ac-
cordingly. That is, the downstream needs to perform a merge
from the upstream. Unfortunately, such a merge may fail
due to syntactic conflicts or semantic conflicts that can lead

https://doi.org/10.1145/3377813.3381362
https://doi.org/10.1145/3377813.3381362

ICSE-SEIP ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 1: The Chromium version used by Chromium-
based web browsers as of October 3, 2019.

‘ Browser Name ‘ Version H Browser Name ‘ Version ‘

Microsoft Edge 78 Avast 77
Brave 77 Vivaldi 77
Colibri 76 Iron 76
Epic 75 Opera 73
Samsung Internet 71 Blisk 70

LG WebOS (TV)

. 53
web engine

to build breaks and test failures [2, 6, 19, 22, 23]. Manually
resolving these conflicts is labor intensive.

Table 1 shows the Chromium versions used in various
Chromium-forked web browsers as of October 2019. At the
time, the latest branch version of Chromium was 78 but
most browsers lagged behind by at least one or two versions.
Given that supporting frequent merges from the upstream
is expensive, we speculate that most vendors either chose to
update less frequently, or budget additional developer time
to perform such merges frequently.

While merge conflicts are not unique to divergent forks [2,
6, 19, 22], the complexity and cost of root-causing and fixing
the asymmetric upstream merge induced conflicts is signifi-
cantly higher, for three reasons: (1) Changes in the upstream
often occur without knowledge of the downstream develop-
ment. (2) Root-causing the upstream commit responsible for
merge conflict in general, and build break in particular, is
non-trivial when the commit history of the upstream con-
sists of several thousand commits. (3) A merge induced build
break may also be caused by changes in the downstream,
often made many commits earlier. This makes it difficult to
find the right developer to assign the fix, e.g., if the developer
has left the project.

In this work, we study the problem of upstream merge in-
duced conflicts in the context of Microsoft Edge development.
Microsoft recently adopted the open-source Chromium project
in the development of the Edge browser in order to increase
compatibility and reduce fragmentation for web develop-
ers [16]. In the remainder of this paper, we may refer to
Chromium as the upstream and Edge as the downstream.
Our case study has three main contributions.

e We systematically investigate the downstream com-
mits performed by Edge developers to merge from
Chromium during a three-month period, and create a
taxonomy of the merge conflicts.

o We systematically investigate the repairs that develop-
ers have to make manually to resolve these conflicts.
We identify a particular sub-class of merge conflicts,
named Structural fixes in C++ files, which incurs sub-
stantial time for developers to root-cause and fix.

e We investigate the feasibility of generating repairs au-
tomatically. Toward this end, we develop and evaluate

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang

a repair tool, named MrgBIdBrkFixer, for Structural
fixes in C++ files.

In the remainder of this section, we explain Structural fixes
in C++ files and MrgBldBrkFixer in more detail.

Structural fixes in C++ files. Consider a method Foo
that was defined and used in the upstream when the down-
stream was created. Then, the downstream created some
new call-sites for Foo. At some point during the upstream
development, however, Foo was renamed to Bar, a new pa-
rameter was added, and then all the call-sites were properly
changed. While merging such a change into the downstream
does not cause syntactic conflicts (since the downstream
may not change these files), compilation will fail and cause
a build break. During our case study, we observe many such
conflicts. Furthermore, the root-cause is often not obvious
to downstream developers. Often times, developers have to
manually inspect the upstream commits (which can be a
few thousands, as shown in Section 2), analyze the change
impact, and then create a suitable patch, e.g., renaming the
method and the default value of the additional parameter.

MrgBIldBrkFixer. We would like to know how much the
repair of merge conflicts can be automated. Toward this end,
we develop a prototype tool for repairing the sub-class of
Structural fixes in C++ files errors. The tool relies on differenc-
ing the Abstract Syntax Trees (ASTs) of the two programs [7]
to identify the changes in the upstream for a given symbol
(say Foo in the above example) and then creates a patch that
can be applied to the downstream. To improve the scalability
and accuracy of the tool, we propose techniques for soundly
pruning the irrelevant upstream commits. Using real devel-
opment data of Microsoft Edge collected in a three-month
period, we perform a feasibility study of MrgBldBrkFixer.
The result shows that 40% of the build breaks targeted by
MrgBIdBrkFixer can be repaired automatically.

The remainder of the paper is organized as follows: First,
we present our study of the upstream merge induced conflicts
in Edge development in Section 2, and our detailed analysis
of Structural fixes in C++ files in Section 2.4. Next, we present
MrgBldBrkFixer in Section 3, followed by our feasibility
study results of MrgBIdBrkFixer in Section 3.3. We review
the related work in Section 5, and then give our conclusions
in Section 6.

2 STUDY OF UPSTREAM
MERGE-INDUCED CONFLICTS IN EDGE

In this section, we study the upstream merge-induced con-
flicts in the context of Microsoft Edge development, a re-
cent divergent fork of Chromium. We first describe the Edge
branch structure related to such upstream merges in Sec-
tion 2.1. Next, we present the data for the merges during a

Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial Case Study

Upstream commits merged
O

Upstream

)

Integration
(n

Stabilization

(s)

Downstream

(D)

Figure 1: The branch structure of Microsoft Edge.

three-month period from April 2019 to June 2019. We manu-
ally investigated the data and classify the nature of conflicts
based on the commits that fixed the conflicts.

2.1 Branch Structure of Microsoft Edge

Figure 1 gives an overview of (somewhat simplified) branch
structure in Microsoft Edge. Each horizontal line represents
one of the four branches: Upstream (U), Integration (I), Sta-
bilization (S) and Downstream (D). Circles in each branch
indicate commits created by developers and an arrow points
from a child commit to its parent commit. Here the D branch
denotes the master branch of Edge, and the U denotes the
Chromium master. The “fork” indicates the creation of the D
branch as a divergent fork of U, and both branches evolve
independently.

At each merge, the downstream pulls the changes from
the upstream in a two-phase process through the I and S
branches. First, textual (syntactic) conflicts are resolved in the
I branch after pulling the changes from the recent versions
of the upstream and downstream. After resolving the textual
conflicts, any build errors (including compiler errors) or test
failures are resolved in the S branch. Finally, the source code
is merged back to D master, where one cycle of merge is
completed. We omit the details of finalizing the merge cycle
as they are irrelevant to our focus in this paper.

2.2 Commit Data

2.2.1 Breakup by month. Table 2 shows the summary sta-
tistics of the data by each month. The first row shows the
number of merges from U each month. Each merge repre-
sents a merge process to pull the upstream changes after
resolving all the conflicts. It means each merge includes one
cycle of resolutions for textual-level conflicts, build breaks
and test failures (if any). The second row is the number of
commits of U that are merged into D, which is shown as
orange-colored region, as an example, in Figure 1. The third
row shows the number of commits in I, for fixing any textual-
level conflict that prevents the textual merge. The last row is
the number of commits in S, corresponding to the resolutions
of build breaks and test failures.

ICSE-SEIP °20, May 23-29, 2020, Seoul, Republic of Korea

Table 2: The summary of data.

Contents Numbers for Each Month
April 2019 | May 2019 [June 2019

The # of merges 11 8 11
The # of upstream commits merged 8,138 9,581 8,031
The # of commits in
integration branch of downstream 286 560 337
The # of commits in
stabilization branch of downstream 325 357 353

In total, there are 30 merges over three months, and more
than 25,000 upstream commits that merged to downstream
over this period. For each month, an average of around 390
(respectively, 345) commits are made to resolve textual-level
conflicts (respectively, resolve build breaks and test failures).

2.2.2 Breakup by merge. Figure 2 provides statistics about
the upstream payload of each merge in terms of the number
of days, commits and files updated. Each merge consumes
only a few days (between 2 and 7 days) of upstream changes.
Within this short period of time, the number of upstream
commits ranges from 266 to more than 1500, updating several
thousand files. For example, the five-number summary of
the commits is: Min(266), Q1(514), Median(881.5), Q3(1145)
and Max(1547). It implies that (1) Chromium evolves rapidly
by making many code changes, and (2) the downstream fork
can easily lag behind without frequent merges.

8 1800 9000
8000

7000

6000

5000

4000

3000

Jo-eee] 000 X (cwpe—o—r

2000

o N
bR R
N B [}
o (=] [=]
o o o
Je—e-eq0/ o Moo o0ge-e-e-0—]

1 200 1000

o] (o] o]

(a) # of days (b) # of commits (c) # of files updated

Figure 2: Statistical information of the upstream
merged for each merge process.

2.3 Classification of Fix Commits

We carefully classify the fix comments, which are the down-
stream commits that resolve the upstream merge induced
conflicts. Table 3 shows a taxonomy of the resolved con-
flicts, together with some patterns that we find. In the three
months, there are 2,218 commits to resolve all the merge
induced conflicts. Recall that we consider three types of
conflicts: textual conflict, build break and test failure. The
percentage of each category is shown in the last column of
the table: The number of fix commits for textual conflict is
1183, for build breaks is 815, and for test failures is 220. We
describe each type in more detail in the next few paragraphs.

ICSE-SEIP ’20, May 23-29, 2020, Seoul, Republic of Korea

2.3.1 Textual conflict resolution. Textual conflict occurs when
the default textual merge algorithm (e.g., Git merge) for the
version control system cannot create a merged file from the
upstream and downstream change-sets of a file. These tex-
tual conflicts are resolved by developers to obtain a merged
file. Recall that such fixes happen in the I branch of Edge;
the data show that 53% of its fix commits are used to resolve
textual conflicts. Although textual conflicts are frequent, we
do not further focus on them in this particular study because
the nature of these conflicts and their resolution (e.g., using
structured merge tools [10]) have been well-studied.

2.3.2 Build break resolution. A build break occurs when
the build script fails to generate the executables. Some of
the build breaks are due to failures in parsing files, while
others are due to the inability to resolve a symbol during
compilation. Based on the three-month data, we have studied
how build breaks are resolved and identified three categories:
(i) Fixes of ill-formed files, (ii) Build script file fixes and (iii)
Structural fixes in C++ files. In total, 36% of the downstream
fix commits are related to build breaks.

The category Fixes of ill-formed files refers to fixes needed
to correct various syntax errors. Most commits in this cat-
egory have messages such as “Fixing a bad merge” or “Re-
verting changes due to a bad merge”. Many of these fixes
undo or modify the changes made earlier during the textual
conflict resolution. These fixes can be further divided into
sub-classes. One sub-class, called stylelint errors, results from
automatic enforcement of coding conventions using style
linters. Another sub-class, called parse errors, involves the
fixes of broken brackets and parenthesis. In addition to the
50 fixes that all into the above two sub-classes, there are 108
fixes that cannot be accurately characterized. The reason is
because many of them happen when the entire code (e.g.,
class or function) is over-written by some old code during
the textual conflict resolution.

The category Build script file fixes refers to changes made
in the build script files. Large source code systems are com-

102
103

104

52
53

54

piled using various scripts/systems written in Python, JavaScript,

NinjaBuild or CSV — we label them as script files. Such files
undergo changes when the structure of the directory or flags
defined in the source code are changed. In the three months,
there are 259 fix commits related to the build scripts.
Finally, the category Structural fixes in C++ files refers
to changes to the structural elements of the source code
files. Since C++ is the main language used for Microsoft
Edge development, we focus on errors in these C++ files.
Often times, the errors are compiler errors due to failed
resolution of symbols. We call them Structural Build Fixes
because the fixes perform some structural code changes such
as changes to function calls, types and namespaces. In the
three months, there are 398 fix commits in this category.
We also find some patterns. For example, when a directory
structure is changed, the header include statement needs to

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang

Table 3: Distribution of fixes during merges.

[Conflict [Details [# of commits | % |
Textual Textual-level conflict resolution 1183 53.3
Fixes of ill-formed files 158
- Stylelint fixes (31)
. - Parse error fixes (19)
Build Break - Uncategorized (108) 367
Build script file fixes (s, .gn, .json, etc.) 259
Structural fixes in C++ files 398
. Macro fixes in unit test 169
Test Failure Flag file fixes = 9.9
Total 2218

- IN_PROC_BROWSER_TEST_F (OmniboxViewViewsTest, PastAndGoAcce){

+ IN_PROC_BROWSER_TEST_F (OmniboxViewViewsTest,

+ TEST_DISABLED_TRIAGE (PasteAndGoAccelerator, 22305207)) {
OmniboxViewx view = NULL;

Figure 3: Example change to disable macro in unit test.

{"enable-service-worker-long-running-message", true},
+ {"enable-sharing-device-registration", false}
{"enable-show-autofill-signatures", true},

Figure 4: Example change to adding flag in flag file.

be updated accordingly. Also, some API usages need to be
updated due to changes of the API definitions in upstream.

2.3.3 Test failure resolution. Once the project builds success-
fully, e.g., after the build break resolution, there may still be
failures during the execution of unit and integration tests.
Fixes in this category fall in two sub-categories. The first sub-
category is Macro fixes in unit test. For example, as the down-
stream is customized from the upstream, it may not need all
the features. Therefore, some unit tests from the upstream
need to be disabled. An example code change found in during
our case study is shown in Figure 3. Since the test macro
IN_PROC_BROWSER_TEST_F with OmniboxViewViewsTest is
no longer needed, the downstream developers disabled it in
line 103. As usual, - indicates that the line is removed and +
indicates that the line is added. In the three months, there are
in total 169 commits related to updating/adding/disabling
unit tests.

The second sub-category is Flag file fixes, which resets
certain flags (typically maintained in a special flags file) that
cause test failures in the downstream. Figure 4 shows an ex-
ample flag enable-sharing-device-registration, which
was introduced by the upstream, and the downstream devel-
opers disabled it by resetting the flag due to test failures. In
total, there are 51 fix commits related to flags similar to the
above example.

2.4 Structural Build Fixes in C++ Files

In this section, we focus on a specific sub-category Structural
fixes in C++ files of build breaks that are induced when the

Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial Case Study

merge is performed (see Table 3). Most fixes in this category
share a common pattern that we describe informally as fol-
lows: Consider a structure element S (e.g., a field in a class,
function or a namespace) with a given signature (identified
by its name and type) that is defined in the upstream with
uses in both the upstream and downstream. At some point
in time, an upstream commit changes the signature of S and
updates all the uses of S in the upstream code. When such a
commit is merged into the downstream, the uses of S intro-
duced by the downstream code can no longer be resolved.

Figure 6a illustrates this situation using a fix commit
found in Microsoft Edge (the downstream) to fix a build
break on May 6th. The build break complains about the
selected_index function being undefined. In the fix com-
mit, the downstream developers updated the function call
selected_index into GetSelectedIndex. Figure 6b shows
the corresponding upstream commit that induces this build
break: the upstream commit made on May 2nd changed the
function name from selected_index to GetSelectedIndex,
and redirected all its call sites in upstream code.

We focus on this class of merge induced conflicts because,
among all classes of fix commits, developers found it to be
the most laborious to identify the root-cause and prepare
the fix for the downstream code. We attribute this to the
following reasons:

e A developer needs to scan the (possibly thousands
of) upstream commits merged to identify the relevant
changes that induce the build break. This includes not
just understanding how the definition is changed, but
also how the uses are changed. For example, if the
upstream introduces a new parameter to a function
and sets it to null at all but one of the call sites, the
most likely patch downstream is to pass null as an
additional parameter.

Unlike other merge conflicts, these build breaks can
manifest even in the absence of any downstream changes
since the last merge. Consider the case when the com-
piler cannot resolve the use of a symbol S introduced in
the downstream several hundred merges back (which
may span across months to years), but updated in the
latest upstream commits. The developer who intro-
duced the use in the downstream may not have all the
context, or may not even be available. Therefore, even
finding the right person to investigate the fix is not
easy.

The situation is accurately captured in a quote from a senior
manager in the Microsoft Edge development team:

“For each upstream induced build break, it takes at
least 30 minutes to hours for developers to resolve.
The main burden for the developers is they need
to look up the history of upstream changes.”

24
25
26

27

ICSE-SEIP °20, May 23-29, 2020, Seoul, Republic of Korea

Furthermore, we believe that many of the merge con-
flicts in the other categories can be addressed by tools avail-
able (e.g., structure-aware textual merge conflict resolution
tools [1, 10]) and partially automated with custom knowl-
edge of patterns (e.g., in the case of flags involved in test
failures). In fact, at the time of this study, the Microsoft Edge
team has regular expression based fixes for many commonly-
known patterns. In contrast, as we have illustrated in this
section, the causes of structural build breaks in C++ files can
be quite varied and therefore require a deeper, AST-aware
analysis.

In the remainder of this section, we shall identify various
common sub-categories of the structural build breaks in C++
files. Table 4 shows a list of resolution cases in the down-
stream, divided into eight groups by common example causes
from the upstream: Include Statement Update, Entire Func-
tion Definition/Call Update, Function Name Update, Function
Type/Specifier Update, Function Parameter/Argument Update,
Function Parameter/Argument’s Type Update, Class/Names-
pace/Enum Reference Update, and Uncategorized. While the
example causes from the upstream are provided to help un-
derstand the breaks, they are not meant to be exhaustive.
Also, we report the number of commits for each group in the
last column. Some commits are counted in multiple groups,
as one commit may have several fixes. Since the classification
is inherently manual, there exists a set of commits for which
we could not find the exact patterns with possible causes;
therefore, it is classified as Uncategorized (Group 8). In the
remainder of this section, we present examples of five cases
for some groups in the table due to space limitation.

2.4.1 Include Statement Update. As an example of Group 1,
Figure 5 shows a fix commit to fix a build break on May 15th.
The include statement for a header in line 26 is updated with
a new header path. The reason is the directory chrome_elf
was moved to outside of chrome directory in upstream, so
downstream source code referring the directory had to be
updated.

#include
- #include
+ #include
#include

"base/win/win_util.h"
"chrome/chrome_elf/chrome_elf_main.h"
"chrome_elf/chrome_elf_main.h"
"chrome/install_static/install_util.h"

Figure 5: Header statement resolution in downstream
on May 15th (commit: df9e775a).

2.4.2 Function Name Update. We have already described
this particular example in Figure 6, which shows the the
fix commit in the downstream with a possible cause in the
upstream. It is classified as Group 3 in the table.

2.4.3 Function Parameter/Argument’s Type Update. As an ex-
ample of Group 6, Figure 7b shows an upstream cause where
the signature of a “virtual” method SubscribeFromWorker

166
167
168

169
170

102
103
104

105

43
44
45
46

47

75
76
77
78
79

ICSE-SEIP ’20, May 23-29, 2020, Seoul, Republic of Korea

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang

Table 4: List of resolution cases in upstream induced build break.

Group | Type of Resolution/Fixes in Downstream Possible (Example) Causes from Upstream # of commits
1 Include Statement Update - File/Directory Name/Structure is updated 62
Entire Function Definition/Call Update) Funct}on deﬁmgon (W#h body) is added/removed .
2 . - Function definition (with body) moved to different class/section 35
(e.g., function body move/add/removal) . .
(e.g., public — private)
5 Function Name Update - Function name is upda'ted - Entire function is removed 56
(e.g., function deprecation)
. . - Function definition type is updated
4 Function Type/Specifier Update - Function definition specifier is added/removed 1o
5 Function Parameter/Argument Update - Function definition parameter is added/removed/reordered 44
(e.g., parameter/argument add/remove/reorder)
. , - Function definition parameter’s type is updated
6 iunctlt;:aiiier;?ztrerl/;;reg;n:ené iTc}ilftE:e;J pdate | _ Function definition parameter’s specifier/modifier is added/removed 56
& P & ype up - Hierarchy/Name of Class/Namespace/Enum definition is updated
7 Class/Namespace/Enum Reference Update - Hierarchy/Name of Class/Namespace/Enum definition is updated 53
(e.g., field type update)
8 Uncategorized 120

views: :Combobox* combobox = GetLanguageCombobox() ;

if (model_->GetTargetlLanguageIndex() == combobox->selected_index() {

if (model_->GetTargetlLanguageIndex() == combobox->GetSelectedIndex() {
return;

3

+

(a) Downstream commit on May 6th (commit: 7abf5¢10).

void ModelChanged();
- int selected_index() const { return selected_index_; }
int GetSelectedIndex() const { return selected_index_; }
void SetSelectedIndex(int index);

+

(b) Upstream commit on May 2nd (commit: 0b079bf5).

Figure 6: Function name change in downstream with
upstream cause.

void SubscribeFromWorker(const GURL& requesting_origin,
int64_t service_worker_registration_id,
const PushSubscriptionOptions& options,
= const RegisterCallback& callback) override;
+ RegisterCallback callback) override;

(a) Downstream commit on May 6th (commit: 582db1e8).

virtual void SubscribeFromWorker(const GURL& requesting_origin,
int64_t service_worker_registration_id,
const PushSubscriptionOptions& options,
= const RegisterCallback& callback)
i RegisterCallback callback)

(b) Upstream commit on May 2nd (commit: b534bf78).

Figure 7: Function parameter’s specifier/modifier re-
moval in downstream with upstream cause.

in a base class is updated by removing the specifier and
modifier of the 4th parameter. Uses of this method include
methods in the inherited classes as well, some of which may
have been introduced in the downstream.

Figure 7a shows the corresponding fix commit in the down-
stream that changes the signature of one such method in a
derived class, which was not visible to the upstream. Note
that the complete set of fixes should also include changing

the argument that is passed at the call sites (not shown in
this figure).

46 -
47 | - base::TaskScheduler: :GetInstance()->FlushForTesting();
+ base: :ThreadPool: :GetInstance()->FlushForTesting();

(a) Downstream commit on April 17th (commit: 9327111c).

37 .
38 - class BASE_EXPORT TaskScheduler: public TaskExecutor {
+ class BASE_EXPORT TaskScheduler: public TaskExecutor {
39 public:

(b) Upstream commit on April 15th (commit: 52fa3aed).

Figure 8: Class name change in downstream with up-
stream cause.

2.4.4 Class Reference Update. As an example of Group 7,
Figure 8a shows a fix commit for an unresolved reference
of a class name TaskScheduler. The fix renames the class
from TaskScheduler to ThreadPool, as a response to an
upstream commit 8b that introduced such a change in the
first place.

2.4.5 Enum Reference Update. As another example of Group
7, Figure 9a shows the downstream fix commit that changes
the name of an enum class, due to the change of the upstream
shown in Figure 9b.

3 TOWARDS AUTOMATIC FIXES FOR
UPSTREAM-INDUCED BUILD BREAKS

To evaluate the feasibility of automated fixes of merge in-
duced build breaks, we develop a prototype tool named Mrg-
BldBrkFixer. Our focus is on an important sub-class of fixes,
called renaming fixes, where the build breaks can be resolved
by either (i) renaming a function, class, namespace or enum,
or (ii) renaming the types of a function’s parameters or the
return value. While no exhaustive, these fixes already cover
a significant number of build breaks in Groups 3, 4, 6 and 7
of Table 4.

73
74
75

Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial Case Study

base: :ThreadPool: :GetInstance()->Start(
{{kBackgroundMaxThreads, kSuggestedReclaimTime},
{kForegroundMaxThreads, kSuggestedReclaimTime},
base: :ThreadPool: : InitParams: : SharedWorkerPoolEnvironment: :COM_MTA});
= base: :ThreadPool: : InitParams: : CommonThreadPoolEnvironment: : COM_MTA});

(a) Downstream commit on May 7th (commit: cc7f9934).

struct BASE_EXPORT InitParams {
- enum class SharedWorkerPoolEnvironment {
+ enum class CommonThreadPoolEnvironment {

(b) Upstream commit on April 30th (commit: 3e289810).

Figure 9: Enum name change in downstream with up-
stream cause.

Range of Upstream

Upst Fil ASTs
Commits (C) pstream Fles

Dravi Vo 1
i Prew_uus A | i
" version : } —
’ Vo e
i A i i
. Currgnt R =
| version | N

(

Upstream
Commit
Pruning

Build Break
Error (e)

Downstream
Files (f) ASTs

{ Files to |—1 ! =
! be fixed ; “’3 ;

Figure 10: Overview of the automated patching.

Figure 10 presents the overview. The input consists of (i) a
set of upstream commits, C, that constitutes the merge, and
(ii) a build break error, €, in a downstream C++ file f. The
output is the patched downstream file f” aimed to resolve
the build break. Internally, there are four steps:

(1) Identify the symbol ¢ in f that is responsible for the
build break error €.

(2) Prune the upstream commits in C to remove the ones
not relevant to o, to obtain C’ C C.

(3) Analyze changes to definitions and uses (Defs and
Uses) in the files modified in C’, to infer a set of possible
renaming patches, denoted II.

(4) For each patch x € II, apply x to the AST node (in f)
that contains o, to obtain f”.

We explain the patch generation process in more detail
in Section 3.1, while deferring the discussion of “pruning
upstream commits” to Section 3.2.

3.1 Patch Generation

In a nutshell, our patch generation algorithm searches for
changes to the definitions and uses of ¢ in the set C’ of
upstream commits. The notion of “use” depends on the nature
of the symbol, e.g., whether it is a function, class, namespace,
or enum. In addition to considering references to a symbol
(e.g., function call for a function, or class reference for a
class), we consider implicit usages due to the presence of

ICSE-SEIP °20, May 23-29, 2020, Seoul, Republic of Korea

inheritance. For a virtual function F inside a class J, we
consider any override function F in a class V that derives
from K as a potential usage of F in J.

Let A be a set of diff-regions obtained when comparing
the files before and after the commits in C. Let each § € A be
a diff region that consists of a pair (57, 5") of enclosing AST
nodes before and after a change. We associate a region in a
file with the smallest AST node that encloses the region; and
we associate a dummy AST node null for an empty region.
Let Ay C A (respectively, A, C A) be the subset of diffs that
contains changes to the definitions (respectively, uses) of o.
Let Ay = Ay U A,

3.1.1 Function changes. Let us first consider the case when
the symbol o represents a function. Since o is a function, we
look for any diff region § € A, that contains a change to
the function signature. This includes regions that change (i)
the function name, (ii) the return type, or (iii) the types of
function parameters.

For ease of comprehension, we define three predicates.
For any diff node 6, let sNameChange(J) return TRUE if § is
a change of a function name, let IsParTypeChange;(d) return
TRUE if § is a change of the i th parameter of a function, and
let IsRet TypeChange(d) return TRUE if § is a change of the
return type of a function.

Given Ay and A, we generate the set II of candidate
patches as follows. We initialize IT to the empty set. Then,
for each (84, 6,) € Ag X A, we update II as follows:

(1) If sNameChange(8,) and IsNameChange(,,), then add
(RENAMENAME, 0, §,,*) to I1.
(2) If 8, changes a function definition that overrides ¢
defined in 647, then
(a) add (RENAMERETTYPE, 0, §,*) to IT if
IsRet TypeChange(d,) and IsRet TypeChange(5,,).
(b) add (RENAMEPARAMTYPE;, 0, 8, ") to IT if
IsParTypeChange;(d4) and IsParTypeChange;(d,).

Note that we cannot simply use changes in the definition
A4 nodes to generate the patches. For example, for the case
when an entire function definition is deleted and the function
uses are renamed (i.e., due to function deprecation), we need
to inspect the changes of uses in upstream §,* to infer the
patch.

3.1.2 Enum, Class and Namespace changes. We also consider
the cases when the name of an enum, a class, or a namespace
changes. Such changes may denote either direct renaming
of the type, or changing the hierarchy in which the entity is
defined. For this case, our algorithm for generating a patch
is similar to the case of renaming the function name; due to
the space limit, we omit the details.

3.2 Upstream Commit Pruning

The patch generation algorithm needs to construct the AST
for each of the files modified in the upstream commits C

ICSE-SEIP ’20, May 23-29, 2020, Seoul, Republic of Korea

Range of upstream commits (C)
Upstream

)

Integration
U]

Stabilization
(O]

Downstream

(D)

s
‘ Last Known Good (LKG) ‘

Figure 11: Components of upstream commit pruning

and then inspect the diff-regions. As shown in Figure 2, the
number of modified files in the upstream for each merge
process can be thousands (2,000~8,000). The presence of such
a large number of files can reduces both the scalability and
the accuracy of the algorithm. While their scalability impact
is obvious, the accuracy impact is due to the introduction
of spurious patches, e.g., when we use techniques that do
not yield the most qualified type for each symbol due to
the best-effort construction of AST using srcML [3]. While
future prototypes can leverage high-fidelity ASTs, e.g., the
ones constructed by the CLANG compiler, it will be at the
cost of a longer build time.

To alleviate this problem, we developed an Upstream Com-
mit Pruning procedure, shown in Figure 10. Given a build
break, and a set of upstream commits C (orange-colored
region in Figure 11, the procedure does the following:

(1) Find the symbol o responsible for the build break (such
as selected_index in Figure 6a).

(2) Find the file f that contains the definition of o, using
the last known good (LKG) build (dashed-red circle
in the figure) in the downstream by navigating the
def-use chain of the symbol. The LKG commit can
be obtained by searching for the first ancestor in the
downstream starting from the build break commit in
the stabilization branch.

(3) Find the subset of commits C’ C C that modify f.

It is easy to see that any change to the definition of ¢ has to
be included in one of the commits C’. We additionally assume
that the upstream also updates the uses of ¢ in the same
commit; this is a reasonable assumption because developers
would at least compile the code before submitting a commit.
This assumption has been confirmed empirically using the
real data set.

3.3 Evaluation Setup

In this section, we present the feasibility study by using Mrg-
BldBrkFixer on the historical fix commits in Microsoft Edge,
as discussed in Section 2.4. The prototype tool is written in
Java while using srcML [3] to create the AST and GumTreeD-
iff [7] to perform AST-diff. All the steps outlined in previous
subsections are implemented, except for the extraction of the

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang

symbol ¢ from the build error message ¢, and the search of
the file containing the definition of ¢. (Currently, we do it by
manually loading the project in Visual Studio and navigating
to the definition).

Out of the 398 Structural fixes in C++ files in our three
months of fix commits (Table 3), we use only the commits
from Group 3, 4, 6 and 7 in Table 4, because our current proto-
type only produces fixes related to renaming. In other words,
it does not yet handle fixes categorized as Include statement
(Group 1), or fixes that require adding/removing/reordering
parameters (Group 5). Moreover, for Group 6 and 7, our pro-
totype obtains partial fixes, since some of these fixes require
more complex analysis (e.g., relating the type of actual pa-
rameters at a call site with the type of formal parameter, or
hierarchy change for enum/class/namespace).

Thus, we obtained a total of 164 candidate commits for our
experimental evaluation. Our experiments were conducted
in Microsoft Windows 10 Enterprise edition on a computer
with an Intel i7 2.6 GHz CPU and 32 GB of RAM.

We considered the following research questions:

e How many of these manually resolved commits can
actually be automated?
e How effective is the upstream commit pruning tech-
nique that we propose?
We answer these two questions in the remainder of this
section.

3.4 Evaluation Results
Table 5: Auto-patch rate by groups in Table 4

Group Number Fixed Ratio

Group 3 38/56 (67.8%)
Group 4 4/10 (40%)

Group 6 12/56 (21.4%)
Group 7 13/53 (24.5%)

3.4.1 Resolution Generation. MrgBldBrkFixer successfully
generated the patches for 64 out of 164 resolution commits
without false positives, almost 40% of the resolution commits
for the categories that we target. Some of these patches are
partial fixes because a commit may contain multiple resolu-
tions, some of which may not be covered by our prototype
(e.g., groups in Table 4 that we do not handle). Out of the
64 patches, our fixes fully cover the developer resolution for
41 commits, and partially cover for 23 commits. On average,
each fix updates 2.5 downstream files since the same symbol
o may be renamed in multiple files. Our patch generation
algorithm consumed, on average, 1.72 commits after apply-
ing the upstream commit pruning technique, and 48.25 files
(including non C++ files).

MrgBldBrkFixer took 70.90 seconds on average to generate
and apply the patches to downstream files. Given that devel-
opers often spend 30 minutes or more to fix each build break,
this means our prototype tool can substantially improve the

Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial Case Study

productivity of developers who are trying to root-cause and
fix the merge-related build breaks.

Table 5 shows the ratio of automatically fixed commits by
the groups in Table 4. We can conclude that many cases of
Function Name Update (Group 3) can be automated, the cases
where our prototype is most effective, fixing almost 68% of
cases. There are various reasons why our method could not
generate a fix for all instances in a group. Many of them are
due to limitations of our current prototype implementation,
as opposed to any fundamental challenges. For example,
we current do not support complex fixes such as hierarchy
changes of functions, classes, enums and namespaces.

We also witnessed srcML-based GumTreeDiff sometimes
produces diff regions that do not accurately captures the
changes [5]. As an example, consider two functions whose
names are changed as follows: Fool — Foo2, and Bar1 —
Bar2. However, diff results may show the following changes:
Fool — Bar2, Bar1 — Foo2. In addition, since srcML con-
structs a best-effort AST from the source code, it misses fully
qualified semantic information such as class hierarchy. We
plan to overcome some of the problems by integrating our
tool with CLANG and making the diffing algorithm more
semantics-aware.

Finally, we found one interesting class of fixes where fo-
cusing on the set of upstream commits since the previous
merge (orange-colored region in Figure 11) does not suffice
for patch generation; one needs to look at additional up-
stream commiits prior to the last merge. We found cases of
function deprecation fixes where upstream developers first
changed only the function call sites of f with a different
function ¢ in a prior commit, and it did not cause any down-
stream conflict. However, the current merge removed the
function definition (possibly as part of a cleanup) that caused
a downstream build break at a call site of f. In this case, one
needs to search for the upstream commit that removed the
last reference of f in the upstream in order to synthesize a
patch, which our current algorithm misses.

45
4 °
35

3

25

2 ——
15
1

o E——

0

Figure 12: # of commits selected out of 1000 commits
by upstream commit pruning

3.4.2 Impact of Upstream Commit Pruning. Figure 12 shows
the reduction in the number of commits obtained by our
upstream commit pruning technique. The graph shows the
number of commits selected as relevant commits out of a
normalized 1,000 upstream commits in a merge. Recall that
the number of upstream commits typically range from 500
to more than 2,500 commits per merge (Figure 2).

ICSE-SEIP °20, May 23-29, 2020, Seoul, Republic of Korea

This result illustrates that the pruning technique is able to
achieve substantial reduction (almost 1000 fold on average)
in the number of commits considered for our patch gener-
ation algorithm, which improves the scalability as well as
the accuracy. We also manually inspected the reduced set
of commits and fixes performed by the developers, to con-
firm that pruning did not unsoundly remove commits that
contain the root-cause of a build break.

4 THREATS TO VALIDITY

In this work we studied the nature of merge conflicts that
arise in a divergent fork such as Microsoft Edge. Our findings
may not be representative of other divergent forks, as it may
depend on how frequently merges are performed and the
nature of changes that may be cherry-picked by developers
(e.g., security patches only). However, we believe that most
of the patterns of conflicts identified in this work arise in
the setting of other divergent forks as well. Since we only
studied three months of merge data, there is a small chance
that the pattern of conflicts may evolve over time for Edge.
However, as per the third author, who has expert knowledge
of the Edge development, these conflicts are representative
of conflicts in production since June 2019.

5 RELATED WORK

The effort to understand and resolve conflicts in cooperative
merges within a project has been done in various contexts
such as mining merge conflicts [2, 15, 26] or early detec-
tion of conflicts [2, 8, 17]. For more semantic conflicts (i.e.
build breaks, test failures), several detection [23] and reso-
lution approaches were proposed for preserving semantic
relation of a program [6, 9, 21, 25]. In contrast to the nature
of asymmetric merge relations in a divergent fork, all of the
works focus on symmetric merges where the payload of each
merge is relatively small. Our focus is to study the conflicts
in asymmetric merges of divergent forks and investigate the
feasibility of automatic fixes by utilizing the asymmetric flow.
Also, API migration [4, 11, 13, 24] and applying same code
change patterns [18] are not applicable to divergent forks.
Constructing change patterns from a large number of com-
mit history is not practical since divergent forks evolve in-
dependently, especially when upstream code evolves rapidly
without providing documentations for detailed changes. Our
approach combines upstream commit pruning and semantic
rule generation to overcome the challenges.

The work closest to ours is by Mahmoudi et al. [12], who
perform an empirical study of code changes of LineageOS
as a response to upgrading the version of Android. They
analyzed textual-level changes, and postulate some changes
could be applied automatically; however, the work does not
provide any algorithms or implementations for such fixes. In
contrast, our work shows the actual fix patterns across the
history of several merges, and provides the first implemen-
tation that is capable of generating patches in a real-world

ICSE-SEIP ’20, May 23-29, 2020, Seoul, Republic of Korea

production setting. Similarly, our work shares the underlying
motivation of prior works on generalizing from a program
edit to apply to other similar locations [14, 20]; however
such approaches do not understand semantics of asymmetric
merge and do not scale to the changes in our setting.

6 CONCLUSIONS

We have presented the first industrial case study of upstream
merge induced conflicts in a divergent fork, namely the Mi-
crosoft Edge. We identified a class of conflicts, namely those
requiring structural fixes in source files, that require sub-
stantial manual effort to root-cause and fix due to the scale
of upstream commits that have to be considered. We pro-
vided a simple analysis based on constructing a patch for
such conflicts by analyzing the changes upstream through
an AST-aware diff. Our preliminary results are encouraging
in that we are able to generate patches for almost 40% of the
cases we consider as candidates.

We are currently working on extending the prototype tool
to target more fixes. First, we plan to deal with the addi-
tion and removal of function parameters, by inspecting the
arguments used at the upstream call sites. We also see exam-
ples where a lightweight data-flow analysis may help infer
new arguments to a call when the type of a parameter has
changed. Furthermore, we can extend the current algorithm
to deal with updates of header file paths in include state-
ments that appear frequently. Finally, we plan to eventually
integrate our tool into the production merge resolution sys-
tem of Edge development, and perform a user study of the
effectiveness of the patch generation.

Acknowledgments. We thank Mark Marron, Hitesh Kan-
wathirtha, Nachi Nagappan, Jessica Wolk, and Madan Musu-
vathi for several insightful discussions around the problem.

REFERENCES

[1] S. Apel,]J. Liebig, B. Brandl, C. Lengauer, and C. Kistner. 2011.
Semistructured Merge: Rethinking Merge in Revision Control Systems.
In ACM SIGSOFT Symposium on Foundations of Software Engineering.
190-200.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2011. Proactive De-
tection of Collaboration Conflicts. In ACM SIGSOFT Symposium on
Foundations of Software Engineering. 168—178.

[3] M. L. Collard and J. I. Maletic. 2016. srcML 1.0: Explore, Analyze, and
Manipulate Source Code. In IEEE International Conference on Software
Maintenance and Evolution. 649-649.

[4] B. Dagenais and M. P. Robillard. 2008. Recommending Adaptive
Changes for Framework Evolution. In International Conference on
Software Engineering. 481-490.

[5] G.delaTorre, R. Robbes, and A. Bergel. 2018. Imprecisions Diagnostic
in Source Code Deltas. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). 492-502.

[6] C.R.B.de Souza, D. Redmiles, and P. Dourish. 2003. "Breaking the
Code", Moving Between Private and Public Work in Collaborative
Software Development. In International ACM SIGGROUP Conference
on Supporting Group Work. 105-114.

10

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang

[7] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. 2014.
Fine-grained and accurate source code differencing. In IEEE/ACM In-
ternational Conference On Automated Software Engineering. 313-324.

[8] M. L. Guimardes and A. R. Silva. 2012. Improving Early Detection

of Software Merge Conlflicts. In International Conference on Software

Engineering. 342-352.

S. Horwitz, J. Prins, and T. Reps. 1989. Integrating Noninterfering

Versions of Programs. ACM Trans. Program. Lang. Syst. 11, 3 (1989),

345-387.

O. Lefenich, S. Apel, and C. Lengauer. 2015. Balancing precision and

performance in structured merge. Automated Software Engineering 22,

3 (2015), 367-397.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, M. Di Penta, R.

Oliveto, and D. Poshyvanyk. 2013. API Change and Fault Proneness: A

Threat to the Success of Android Apps. In ACM SIGSOFT Symposium

on Foundations of Software Engineering. 477-487.

M. Mahmoudi and S. Nadi. 2018. The Android Update Problem: An

Empirical Study. In International Conference on Mining Software Repos-

itories. 220-230.

T. McDonnell, B. Ray, and M. Kim. 2013. An Empirical Study of API

Stability and Adoption in the Android Ecosystem. In IEEE International

Conference on Software Maintenance. 70-79.

N. Meng, M. Kim, and K. S. McKinley. 2011. Systematic editing: gener-

ating program transformations from an example. In ACM SIGPLAN

Conference on Programming Language Design and Implementation. 329—

342.

T. Mens. 2002. A State-of-the-Art Survey on Software Merging. I[EEE

Trans. Softw. Eng. 28, 5 (May 2002), 449-462.

Microsoft. 2018. Microsoft Edge: Making the web better through

more open source collaboration. https://blogs.windows.com/

windowsexperience/2018/12/06/.

H. V. Nguyen, M. H. Nguyen, S. C. Dang, C. Kistner, and T. N Nguyen.

2015. Detecting semantic merge conflicts with variability-aware exe-

cution. In ACM SIGSOFT Symposium on Foundations of Software Engi-

neering. 926-929.

Y. Padioleau, R. R. Hansen, J. L Lawall, and G. Muller. 2006. Semantic

patches for documenting and automating collateral evolutions in Linux

device drivers. In Proceedings of the 3rd workshop on Programming
languages and operating systems: linguistic support for modern operating
systems. 10—es.

D. E. Perry, H. P. Siy, and L. G. Votta. 2001. Parallel Changes in Large-

scale Software Development: An Observational Case Study. ACM

Trans. Softw. Eng. Methodol. 10, 3 (July 2001).

R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.

Suzuki, and B. Hartmann. 2017. Learning Syntactic Program Trans-

formations from Examples. In International Conference on Software

Engineering. 404-415.

D. Shao, S. Khurshid, and D. E Perry. 2009. SCA: a semantic conflict

analyzer for parallel changes. In Proceedings of the the 7th joint meeting

of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering. ACM, 291-292.

L. Silva. 2019. Detecting, Understanding and Resolving Build and

Test Conflicts. In International Conference on Software Engineering:

Companion Proceedings. 192-193.

M. Sousa, L Dillig, and S. K. Lahiri. 2018. Verified Three-way Program

Merge. Proc. ACM Program. Lang. 2 (2018), 165:1-165:29.

Z. Xing and E. Stroulia. 2007. API-Evolution Support with Diff-

CatchUp. IEEE Trans. Softw. Eng. 33, 12 (Dec. 2007).

W. Yang, S. Horwitz, and T. Reps. 1992. A Program Integration Al-

gorithm That Accommodates Semantics-preserving Transformations.

ACM Trans. Softw. Eng. Methodol. 1, 3 (1992), 310-354.

[26] T. Zimmermann. 2007. Mining Workspace Updates in CVS. In Interna-

tional Workshop on Mining Software Repositories. 11-11.

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

https://blogs.windows.com/windowsexperience/2018/12/06/
https://blogs.windows.com/windowsexperience/2018/12/06/

	Abstract
	1 Introduction
	2 Study of Upstream Merge-Induced Conflicts in Edge
	2.1 Branch Structure of Microsoft Edge
	2.2 Commit Data
	2.3 Classification of Fix Commits
	2.4 Structural Build Fixes in C++ Files

	3 Towards Automatic Fixes for Upstream-Induced Build Breaks
	3.1 Patch Generation
	3.2 Upstream Commit Pruning
	3.3 Evaluation Setup
	3.4 Evaluation Results

	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

