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Abstract—A significant number of IoT devices are being
deployed in the wild, mostly in remote locations and in untrusted
conditions. This could include monitoring an electronic perimeter
fence or a critical infrastructure such as telecom and power
grids. Such applications rely on the fidelity of data reported
from the IoT devices, and hence it is imperative to identify
the trustworthiness of the remote device before taking decisions.
Existing approaches use a secret key usually stored in volatile or
non-volatile memory for creating an encrypted digital signature.
However, these techniques are vulnerable to malicious attacks
and have significant computation and energy overhead. This
paper presents a novel device-specific identifier, IoT-ID that
captures the device characteristics and can be used towards
device identification. IoT-ID is based on physically unclonable
functions (PUFs), that exploit variations in the manufacturing
process to derive a unique fingerprint for integrated circuits.
In this work, we design novel PUFs for Commercially Off the
Shelf (COTS) components such as clock oscillators and ADC,
to derive IoT-ID for a device. Hitherto, system component
PUFs are invasive and rely on additional dedicated hardware
circuitry to create a unique fingerprint. A highlight of our PUFs
is doing away with special hardware. IoT-ID is non-invasive
and can be invoked using simple software APIs running on
COTS components. IoT-ID has the following key properties
viz., constructability, real-time, uniqueness, and reproducibility,
making them robust device-specific identifiers.

We present detailed experimental results from our live deploy-
ment of 50 IoT devices running over a month. Our edge machine
learning algorithm has 100% accuracy in uniquely identifying the
50 devices in our deployment and can run locally on the resource-
constrained IoT device. We show the scalability of IoT-ID with
the help of numerical analysis on 1000s of IoT devices.

Index Terms—Device ID, Fingerprinting, PUFs, Edge ML

I. INTRODUCTION

With the advent of Internet of Things (IoT), billions of

tiny connected devices are being deployed in various domains

spanning home applications, city-wide monitoring, healthcare

and military applications [1]. These IoT devices are generally

deployed in-the-wild, mostly in remote locations and untrusted

conditions [2]. Due to these characteristics, they are potentially

exposed to a number of malicious physical attacks. For exam-

ple, one could replace a device with another cloned device or

replace a sensor, say temperature sensor with another one or

with a moisture sensor, all leading to a potentially catastrophic

event [3].

One of the key challenges hindering successful large-scale

IoT deployments is device dependability [4]. Device depend-

ability aims to identify the trustworthiness and reliability of

the remote IoT device, for example, how to determine if

the remote IoT device transmitting the data is the same one

as deployed? Device dependability is an essential property

of IoT devices especially in safety-critical applications such

as intrusion detection, and infrastructure monitoring such as

telecom and power grids, where decisions are taken solely

based on the trust of the IoT device and the data it is

transmitting. In reality, they can easily be cloned or modified

with counterfeit electronics or attacked all leading to false

device identities.

Thus it is imperative to identify the device before trusting

the sensed data for deriving insights and taking decisions.

Device identification today relies on identifiers such as digital

signatures or hash-based message authentication codes [5].

These techniques require a secret key, which is usually stored

in volatile or non-volatile memory, and are vulnerable to

attacks [6]. Furthermore, generating robust secret keys has

significant energy and compute overhead, and suffer from key-

recovery attacks, making them impractical [7].

Due to these challenges, physically unclonable functions

(PUFs) have emerged as a promising alternative, which exploit

manufacturing and fabrication process variations to generate

a unique, device-specific key or an identifier [8] [9]. This

identifier can then be used for device identification and au-

thentication. Recent works have exploited PUF towards the

identification of individual Integrated circuits (ICs) [10] [11],

where a key is generated using the PUF for the corresponding

system components such as radio module, SRAM, and ring

oscillator (RO). This key/identifier is almost impossible to

duplicate, even if the circuit is cloned, as the process variation

in the manufacturing process ensures that the PUF cannot be

exactly cloned.

Current PUF-based identification techniques have several

inherent limitations and cannot be directly applied to IoT

device identification. First, the majority of the works require
additional dedicated circuitry to be embedded in the silicon

during the fabrication of the ICs to create a PUF [12] [13]. For

example, Microsoft recently developed a novel and secure IoT

device called Azure Sphere [14], which has a hardware root

of trust component and an additional silica to generate device-

specific PUF. However, current IoT devices deployed rely

mostly upon commercially available off-the-shelf components,

where additional circuitry cannot be added due to intrusiveness

and cost. Second, current PUFs were developed for specific



system components, which may not exist in a typical IoT

device. Hence there is a need to generate PUFs for system

components that are broadly available across numerous IoT

devices and can be used to identify the complete device

as opposed to individual components. Finally, existing PUF-
based solutions are invasive, where the component must be

rebooted (especially for SRAM PUFs [10]) before generating a

PUF, thus altering the running state of the device, necessitating

the design of non-invasive PUFs.

In this paper, we address the above challenges by de-

veloping a novel identifier, called the IoT-ID. Specifically,

we focus on creating a device-specific identifier that is non-

invasive and works on off-the-shelf components without any

additional hardware. To this end, we leverage the inherent

process variation in manufacturing of the component to derive

a PUF. PUF acts as the basic building block and IoT-ID is

constructed by combining features from PUFs of multiple IoT

system components. The overall objective is to demonstrate the

characteristics of IoT-ID and show that it can be used as an

identifier for individual IoT devices and also for instances of

the same device-type. Furthermore, IoT-ID can now be used

as a primitive for generating secret key for device identification

and authentication. In the remainder of the paper, we focus on

how to design unique, non-invasive, robust PUFs that can be

used as a device-specific identifier.

IoT-ID is extremely robust and secure, as it is practi-

cally impossible to replicate the same physical characteristics

of a device. Furthermore, IoT-ID has the following key

properties: constructability, real-time, uniqueness and repro-
ducibility, that enables the generation of robust device-specific

identifiers (see Section III). We have devised an edge ma-

chine learning (ML) algorithm to accurately identify a device

using the IoT-ID. The ML model is trained on identifiers

obtained from individual devices and this ML model can run

on a resource-constrained IoT device such as Arduino [15]

(Section. V).

We have evaluated the efficacy of IoT-ID in a live real-

world deployment with 50 IoT devices for over a period of

one month. The IoT devices in our deployment are from differ-

ent manufacturers and are exposed to realistic environmental

conditions with temperature variations between 15°C to 45°C
and voltage variations between 2.7V-3.3V. While we show

that operating temperature and voltage variations affect the

PUF characteristics, our ML model trained on device-specific

IoT-ID can still identify the IoT device instance with 100%

accuracy (Section. VI-D). To the best of our knowledge, this is

a first study to explore non-invasive device identification with

50 devices in real-world conditions.

Finally, as the number of devices increases in a deployment,

the likelihood of two devices having similar IoT-ID also

increases. This is due to the fact that IoT-ID is derived

based on PUFs that rely on variations in the manufacturing

process of system components, and inherently these variations

are bounded. Today to derive a universal device-identifier one

has to add additional hardware, as in the case of Microsoft

Azure Sphere [14]. The objective of IoT-ID is to derive a

Fig. 1: Overview of device-specific IoT-ID creation.

robust device-specific identifier without additional hardware,

which is distinguishable at least in a typical mid to large-scale

IoT deployments with 100-1000s of IoT devices. To show the

scalability of IoT-ID, we present numerical analysis for 100-

1000s of IoT devices.

Through this work, we make the following contributions:

• We introduce a novel device-specific identifier, called the

IoT-ID that exploits physical variations in the manufac-

turing process to fingerprint IoT devices.

• We describe novel ways to generate physically unclonable

functions (PUFs) for off-the-shelf components without

any additional hardware, along with theoretical analysis

and simulations on PUF generation.

• We present an edge ML algorithm that runs on a resource-

constrained device to identify the device accurately using

IoT-ID.

• We demonstrate the efficacy of the proposed techniques

on 50 IoT devices in real-world conditions from our live

deployment running over a month, along with numerical

analysis to show the scalability of our technique in large-

scale IoT deployments.

II. BACKGROUND & SYSTEM OVERVIEW

We present a brief overview of IoT devices, and then

provide background on physically unclonable function (PUF).

A. IoT Device Description

The core components of a typical IoT device are (i) Micro-

controller and its circuitry such as Clock oscillators, ADCs,

GPIOs, Memory, (ii) Sensors, (iii) Communication module for

collaboration between devices, and (iv) Power source.

A significant number of IoT devices are deployed in remote

locations and untrusted conditions, consequently opening the

doors to counterfeiting and malicious attacks. Therefore, it

is important to uniquely identify the microcontroller, sensors

attached to it and the communication module. Currently, there

already exists fingerprinting techniques for sensor identifica-

tion [16] and RF communication module identification [17].

The scope of this work is limited to overall IoT device

identification without any additional hardware. We aim to

uniquely identify commercially available off the shelf (COTS)

device types and also instances of the same device type. For

example, Arduino A1 and Nordic nRF52832 N1 should have

unique device-specific IoT-ID and further, Arduino A1 and

Arduino A2 should also have unique identifiers.



B. What is a PUF?

Physically Unclonable Functions (PUFs) give each inte-

grated circuit (IC) a unique “fingerprint”. They leverage

inevitable variability in the physical device manufacturing

process, for example, in transistors, the variations in length

and width of transistors result in subtle differences in the

behavior [8]. A device fabricated from the same process, same

lot and same die will vary from its neighbors. This leads to

variations in leakage current, threshold voltage, propagation

delay, etc. As a result, one transistor will not be identical to

another transistor. Recent works have exploited PUF towards

the identification of ICs [11] [18], where a key is generated

using the PUF for the corresponding system component such

as radio module, SRAM, and ring oscillator (RO). This key is

almost impossible to duplicate, even if the circuit is cloned,

as the variation in the manufacturing process ensures that the

PUF cannot be exactly cloned.

There are two major challenges in current PUF-based fin-

gerprinting systems:

1. Need for additional hardware circuitry. Majority of the

works introduce an additional dedicated circuitry in the silicon

during the IC manufacturing process to create a PUF [12],

[13], [18], [19]. For example, an RO-PUF [19] is designed

with an additional ring oscillator circuitry to create a unique

fingerprint. Here, each IC with this ring oscillator will have

slightly different clock frequency due to manufacturing varia-

tions. These frequencies are compared to create PUF.

2. Invasive mechanisms to create a PUF. The startup values

in an SRAM is an example of invasive PUF [10]. It has

been observed that for a specific instance of SRAM, few

memory cells in SRAM have the same values every time it is

powered up. However, the location of these memory cells and

the startup values differ from one instance to another. Thus,

SRAM based PUF requires the device to be turned on/off to

generate the PUF.

III. IoT-ID- DEVICE-SPECIFIC IDENTIFIER

Existing PUF-based approaches fall short of creating a

device-specific identifier for an IoT device. In this section, we

discuss the IoT-ID generation based on novel non-invasive

PUFs for two off-the-shelf device components viz. Clock

Oscillator and Analog to Digital Converter (ADC).

A. IoT-ID Overview

A typical IoT node comprises of various system components

such as clock oscillator, ADC, etc. The IoT-ID for a device

is constructed by combining PUFs from clock oscillator and

ADC as shown in Figure 1. Combining PUFs from multiple

components enables IoT-ID to be robust and act as a device-

specific identifier.

We now describe the key properties required to build a

robust and scalable device-specific identifier:

(i) Constructability: An identifier exists that can be con-

structed by exploiting the variation in the physical manufac-

turing process of the system components.

(ii) Real-time: An identifier can be generated in real-time

to identify the device in-the-wild.

(iii) Uniqueness: A unique identifier exists that can be

constructed across all IoT devices in a deployment.

(iv) Reproducibility: Each time the identifier is generated

for a given device, there is some variation due to operating

conditions. We determine reproducibility by confirming if the

variation of the identifier from the PUF of system components

is within an intra-device threshold, and hence device is still

uniquely identifiable.

We now present the details of the proposed novel PUFs

for two device components viz., clock oscillator and ADC.

Typically these components are internal to the microcontroller.

The device-ID generated using these components represents

the microcontroller, which is the most important component

of the system.

B. Clock oscillator PUF

Every microcontroller needs a clock source as it determines

the speed with which the microcontroller operates. Internal

or external clock oscillators are used as the clock source for

the microcontroller. Most of the present-day controllers such

as Atmega2560 [20], CC3200 from Texas instruments [21],

nRF52832 from Nordic [22] etc., used in IoT devices have

at least two internal independent clock sources. Typically the

high frequency clock is used for clocking the microcontroller

and works in MHz range, whereas the low frequency clock is

used for watchdog timer and works in kHz range.

Due to variations in the manufacturing process of clock

oscillators, the number of clock cycles counted for a specific

time period with one clock oscillator varies from another

within a tolerance value. For example, consider two clocks

clock1 running at 32.768kHz and clock2 running at 16MHz.

clock1 is used to generate an interrupt every 1 second and in

this period, we count the number of clock cycles of clock2.

The expected number of clock cycles count of clock2, in this

case, should be 16000000, however, due to process variations

in clock1 and clock2, this count varies for each clock oscillator

instance. Unlike the external crystal clock which is accurate,

typical internal clock oscillators might have tolerance values

up to ±10% [20]. Thus leading to variations in clock count.

For a certain time period ‘t’, if M is the number of clock

cycles counted by clock1 and N is the number of clock cycles

counted by clock2, then,

M ∗ clock1 = N ∗ clock2 ⇒ N = M ∗ clock1/clock2 (1)

The number of clock cycles counted, i.e., ‘N’ by the clock

varies for each instance of clock oscillator, owing to the

physical process variations. We exploit this behavior to create
a PUF for clock oscillator. Specifically, we aggregate the clock

cycle count values of clock2 (with 16 MHz) for 2048 cycles of

clock1 (equivalent to 62.5ms duration with 32.768 kHz clock)

to arrive at the total clock cycle count (clockcount), i.e.,

clockcount =
times∑

1

N (2)



(a) Instance 1 -clockcount with
Mean=1011K, SD=404.37

(b) Instance 2 -clockcount with
Mean=1006K, SD=457.48

Fig. 2: Histogram of clockcount for two identical instances.

where N is the number of clock cycles counted and times is the

number of times the cycle count is aggregated. By aggregating

the clock cycles we ensure the difference between clockcount
of one oscillator instance is different from another and also

increases the robustness of the PUF.

Figure 2 shows the histogram of clock counts (from an

experiment) for 10000 iterations across two identical IoT

devices, I1 and I2 from the same manufacturer. The mean

clock count for I1 is 1011.62K and for I2 is 1006.269K (as

shown by the vertical dotted line). It can be seen that the

mean cycle count for the two devices are quite distinct with a

tight standard deviation. Thus clockcount feature described in

Equation 2 can be used as a clock oscillator PUF.

C. Analog-to-digital converter (ADC) PUF

Every microcontroller in an IoT device includes an internal

analog-to-digital converter (ADC). ADCs generally support

both single and differential modes, where the former measures

the voltage difference between one pin and the ground, and

the latter measures the voltage difference between two analog

input pins [23]. The difference between the expected output

and the actual output of an ADC for a given input voltage is

defined as ADC error. This error occurs due to process and

mismatch variations during the manufacturing of ADCs and

includes gain errors, non-linearity errors, etc. The key insight
here is that, we can program the ADC pins in software so
that we can provide a reference input and derive the ADC
errors without any modification to the hardware. This makes
it seamless to compute the errors even when the IoT device
is connected to a sensor and is deployed. We use this ADC

error present in single and differential modes to create a PUF

for an ADC.

1) Single mode output: In single ended mode, the ADC

measures the voltage difference between the input voltage

(Vin) and ground. The expected output (ADCsingle) is defined

as,

ADCsingle =
times∑

1

{
Vin

Vref
∗ 2res

}
(3)

where, times is the number of times ADCsingle value is

accumulated per iteration, res indicates the supported ADC

resolution, for example, 8, 10 or 12 bits. Typically, Vref

is connected to either internal or external reference, or to

the device power supply in an IoT device. Vin is generally

connected to an external sensor. In order to derive the ADC

(a) Instance 1 -ADCsingle

with Mean=2698.99, SD=3.02
(b) Instance 2 -ADCsingle

with Mean=2742.92, SD=3.16

(c) Instance 1 -ADCdiff

with Mean=-15.43, SD=3.27
(d) Instance 2 -ADCdiff

with Mean=-0.42, SD=3.35

Fig. 3: Histograms of ADC values of single ended and

differential modes for two identical instances.

error, we set the register value so that Vin and Vref are selected

from internal voltage sources. For example, if Vref is 3V

and Vin is set to 2V via software, then the expected output

(ADCsingle) of a 12-bit ADC would be 2731. We accumulate

the output value for 100 times and use it as a feature for an

ADC PUF. This ensures the expected output value of a single

mode ADC used for PUF is robust.

Figure 3a and 3b show the histograms of ADCsingle (from

an experiment) over 10000 iterations for two device instances

of ADC in single ended mode. The mean ADCsingle value

for instance 1 is 2699 and for instance 2 is 2743 (shown by

the dotted vertical line). As shown in the figure, the standard

deviations of the values is small relative to the difference

between the mean values of the two instances. Thus enabling

single mode output as a feature for ADC PUF.

2) Differential mode output: Here, ADC measures the

voltage difference between two pins (Vp1&Vp2) and the ex-

pected output (ADCdiff ) is defined as,

ADCdiff =
times∑

1

{
Vp1 − Vp2

Vref
∗ 2res−1

}
(4)

To compute the offset error, Vp1&Vp2 will be given the same

voltage value and ideally the output value should be 0. How-

ever, due to process variations and mismatch in differential

circuits [24], the ADCdiff value can be either positive or

negative. We accumulate the value for 100 times and use it as

a feature for ADC PUF. Again like in single mode, through

software we can set the input voltage values of the two pins,

i.e., Vp1&Vp2 by writing to a register.

Figures 3c and 3d show the mean ADCdiff values of -15.42

for instance 1 and -0.42 for instance 2 (from an experiment)



in differential mode. Thus, combination of both ADCsingle

and ADCdiff accumulated over 100 times acts as features to

create a PUF for an ADC.

D. IoT-ID creation
Since the objective is to derive a device-specific identi-

fier, we combine features from clock and ADC PUFs, viz.,
clockcount, ADCsingle, and ADCdiff . Thus, IoT-ID is

represented as,

IoT− ID =< clockcount, ADCsingle, ADCdiff > (5)

In Section VI we show the efficacy of IoT-ID as device-

specific identifiers for instances from both, same manufacturer

and different manufacturers. Further, we present a detailed

evaluation of the proposed PUFs with both realistic tempera-

ture and voltage variations from our live deployment.

IV. UNDERSTANDING THE PHYSICS OF PROCESS

VARIATIONS

We now describe, why process variations exist during the

manufacturing process? and present circuit simulations of a

clock oscillator to show process variations across devices.

A. Why process variations exist?

During circuit manufacturing, process variation will be in-

troduced in various fabrication steps such as ion implantation,

thermal processes, leading to variations in physical parameters

of semiconductor devices like length, width, oxide thickness,

parasitic resistances and capacitances. In nanometer technol-

ogy, it is practically impossible to have two identical circuits

and hence, a circuit fabricated from the same process and same

die will vary in its characteristics from its neighbors [8].

B. Circuit simulation overview

Figure 4 shows an overview of the circuit simulation

flow. Semiconductor fabs characterise the process and develop

model files to capture the process parameters (such as thresh-

old voltage, oxide thickness, etc.) and their variations. These

model files are specific to a particular technology and are part

of the Process Design Kit [25]. A circuit designer designs

a circuit in IC design flow and uses a simulator (such as

spectre [26] and HSPICE [27]) to analyse the characteristics

of the circuit. The circuit simulator accurately simulates the

behavior of a circuit using the following three inputs: (a)

Netlist of the circuit: This consists of a list of electronic

components in a circuit and their interconnection. (b) Model

files: This consists of the characterisation data of all the

device components available in the process. (c) Simulation

settings: Numerous parameters that can be set based on the

simulation objective, such as total run time for transient

analysis, temperature and voltage variations.

The circuit designer performs Monte Carlo simulations [28]

to analyse the impact of process and mismatch variations.

Each trial from the Monte Carlo simulation takes a value

from the model parameter distribution and runs the simulation.

The outputs from the simulations show the variations in the

characteristics of a circuit. These can be used to determine if

Fig. 4: Overview of Circuit simulation flow.

(a) Single-stage inverter.

(b) 21 stage cascading for ring
oscillator.
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(d) Monte Carlo simulations.

Fig. 5: Circuit simulation results.

the circuit passes the necessary specifications and to derive the

tolerance levels, typically used to populate the datasheet.

C. Clock oscillator circuit simulation

We now present the usage of circuit simulations to un-

derstand the variations in clock oscillator. We use a ring-

oscillator architecture for the clock that consists of an odd

number of cascaded inverters [29]. Figures 5a and 5b show the

single-stage inverter design and 21 such inverters cascaded to

constitute a clock oscillator. This clock oscillator generates a

20 MHz square wave clock output as shown in Figure 5c. The

circuit design is implemented based on a popular fabricator

UMC [30] with 180 nm technology and simulated in industry

standard spectre simulator [26].

We performed Monte Carlo simulations for 1000 devices us-

ing the model files obtained from the fabricator i.e., UMC [30].

Figure 5d shows the clock frequency distribution across 1000

devices from circuit simulation of the clock oscillator. The

variation in frequency is around ±10% of the nominal value

for ±3σ variation which is comparable to oscillators commer-

cially available [20]. The simulation results demonstrate the

variation in clock frequency due to process variations.

While we show process variations using circuit simulation

for only clock oscillator, the approach is generic and could



be applied to any other circuit by using its design and

corresponding model files.

D. Modeling process variations to derive an identifier

We now demonstrate how process variations can be lever-

aged to derive an identifier. As described in the previous

section each semiconductor component has an inherent process

variation that can be modeled as a Normal distribution (also

known as Gaussian distribution) [31]. We have validated the

feature is distributed normally based on the model files from

the semiconductor fabs and also technical datasheets [32] [33].

For example, as shown in Section IV-C the clock frequency

has near-normal distribution.

Consider two devices whose feature values are given by

random variables X1 and X2. We assume that X1 and X2 are

identical and independent random variables with distribution

N(μ∗, σ∗), where μ∗ and σ∗ is the mean and standard de-

viation respectively for the normal distribution. The random

variable Z12 = |X2−X1| gives the probability distribution of

the feature difference between the 2 devices. The distribution

for Z12 is given by the probability density function,

fZ12 (x) =
1

σ

√
2

π
exp

{−x2

2σ2

}
, (6)

where σ =
√
2σ* [34]. Let d be the minimum acceptable

difference between the two devices i.e. if the difference

between the features of the two devices is less than d, then

we consider that the two devices are conflicting and can not

be distinctly identified. We can now define the cumulative

distribution function (CDF) as,

FZ12
(d) =

∫ d

0
fZ12

(x)dx, (7)

which describes the probability of conflict between two de-

vices. FZ12
(d) = 1 − FZ12

(d) represents the probability that

the two devices could be identified uniquely. For N devices,

we consider a device to be unique if it does not conflict with

any of the remaining (N − 1) devices. Hence, the probability

that the device is unique amongst N devices is given by the

equation,

PNC = FZ12
(d)

(N−1)
, (8)

and the number of unique devices can be represented as,

U = PNC ∗N, (9)

Equation (8) assumes independence amongst the CDFs of

difference in features (i.e. FZ12(d) is independent of FZij (d)
for all Zij �= Z12 where Zij = |Xj−Xi|). Hence the equation

(9) sets the lower bound for the number of unique devices. U
is a function of N , d, and σ∗, assuming a single feature. If

there are p features considered (in our case 3, i.e., clockcount,
ADCsingle and ADCdiff ), each with PNC = PNCi, then U
can be re-written as,

U = (1−
p∏

i=1

(1− PNCi)) ∗N. (10)

Equation 10 can now be used to determine the unique

non-conflicting identifiers derived based on p features. For

Fig. 6: Edge machine learning algorithm pipeline.

example, if N=100, d=0.1, p=1 and σ∗=100, number of unique

identifiers obtained are U=94.57%. U deteriorates to 56.91%

when N increases to 1000. Furthermore, by considering p=3

features, U improves to 99.98% for N=100 and 91.99% for

N=1000.

Using the proposed probabilistic models, we can also derive

the lower bound on unique identifiers for mid to large scale

deployments. For example, if the N devices are sampled re-

peatedly m times from a larger pool of devices, the probability

of having unique identifiers through all the m trials can be

written as,
PNCm = (PNC)m (11)

Thus, for N=100 and p=3, if the 100 devices are sampled

1000 times from a larger pool of 10000 devices, with a PNC

of 0.9998, then the probability of having at least 100 unique

devices is PNCm is 0.8187. The parameters, d and σ∗ could be

controlled to further improve PNC , PNCm, and U by changing

the accumulation count. We provide more details on the usage

of this model in our scalability analysis described in Section

VII.

V. DEVICE IDENTIFICATION WITH IoT-ID

We now present an edge machine learning (ML) model that

is trained on IoT-ID for all devices, which is then used to

identify the device instance accurately.

In Section IV-D we presented a probabilistic approach to

derive unique identifiers. However, such an approach requires

users to define the minimum separating distance “d”. In order

to generalize the usage of IoT-ID across various devices, we

build an edge ML model to accurately distinguish between

different identifiers.

Our proposed edge algorithm pipeline has two stages as

shown in Figure 6: (i) pre-deployment stage, wherein the

features of IoT-ID for each instance is collected and stored to

build a model, and (ii) deployment stage, wherein the device

generates a new IoT-ID which is then compared with the

trained model to identify the device.

A. Pre-deployment stage

In this stage, we collect the IoT-ID for all IoT devices used

in a deployment. We then build a classifier model to uniquely

identify the device. We now describe the steps involved:

1) When installing the IoT device for the first time we record

the IoT-ID’s for the device for each iteration, this will



result in the following tuple:

< Clockcount, ADCsingle, ADCdiff , Devicename >.

2) On each device instance we collect multiple IoT-ID’s,

say typically 100-1000.

3) We build a classifier model using the above data from all

IoT device instances used in the deployment.

4) This classifier model is now embedded into the IoT device

before deployment.

Note that the usage of IoT-ID is independent of the ML

algorithm. In this paper, we use a state-of-the-art classifier

model called Bonsai, which is a decision tree based classifier.

However, other ML algorithms such as kNN algorithms can

also be used for device identification.

B. Bonsai model for IoT device identification

Bonsai [35] is a state-of-the-art classification model that

can run on resource-constrained devices. It is a novel tree

based algorithm, which maintains high prediction accuracy

while minimizing model size by performing numerous opti-

mizations such as: (i) Developing a tree model which learns a

single, shallow, sparse tree with powerful nodes, (ii) Sparsely

projecting all data into a low-dimensional space in which the

tree is learnt, and (iii) Jointly learning all tree and projection

parameters.

We train the Bonsai model using the IoT-ID’s collected

from all IoT devices in the pre-deployment stage. The train-

ing requires the following input parameters, viz., number of

features, number of devices, number of train and test samples,

projection dimension, and depth of the Bonsai tree. In our case,

we have 3 features (Clockcount, ADCsingle, ADCdiff ), and

number of devices corresponding to the number of IoT devices

used in the deployment. The projection dimension specifies

the dimension to which the input training data needs to be

projected, the lower the projection dimension the sparser the

data set and depth parameter indicates the depth of the tree,

the larger the depth the higher the computation required. The

trained model is then deployed on all IoT devices in the

deployment. Further, the trained model is optimized to run

on resource-constrained devices such as Arduino [15] with 2

KB RAM and 32 KB read-only flash.

C. Deployment stage

In the deployment stage, all the IoT devices are deployed

(mostly remotely) according to the application requirements.

IoT device identification can now follow the following two

scenarios: (i) the IoT device automatically invokes the device

identification before transmitting any data to a controller or

before making any decision on the system, and/or (ii) the

controller or aggregator before taking an action based on the

device data can invoke the identification of remote IoT device.

In either case, when the device receives an identification

request, an IoT-ID for the device is then generated and

compared to determine its identity.

Specifically, the device in question generates an IoT-ID
using the clock and ADC PUF. This is then evaluated against

the classifier model locally on the device. The classification

Fig. 7: Fuselage used for deployment of devices.

Fig. 8: Different device types used for evaluation.

model will output the device name (one of the devices de-

ployed or labels it as an unknown/malicious device) along

with a confidence metric. While we enable our model to

run locally on resource-constrained devices, depending on

the application requirement the device can send the IoT-ID
directly to the cloud, where the device identification can be

evaluated. Finally, necessary steps need to be taken to ensure

upon invocation of IoT-ID generation, the software routine is

actually executed on the device as we describe in Section VIII.

In Section VI-D we describe the model size, train and test

data, time required to perform classification on Arduino and

classification accuracy towards IoT device identification.

VI. EXPERIMENTAL EVALUATION AND RESULTS

We evaluate IoT-ID on a real-world live IoT deployment

running over a month. In this section, we first present our real-

world deployment setup along with the characteristics of the

IoT devices used. We then discuss the efficacy of IoT-ID
with respect to the four key properties as described earlier.

A. Deployment setup

We have 50 IoT devices deployed in a large model fuselage

of an aircraft (see Figure 7). These devices are monitoring

and sensing the ambient temperature every minute at various

locations in the fuselage. The sensed data is then used to model

the temperature variations inside a fuselage. Note that, there

is no automated climate control setup in the fuselage, thus

the devices are exposed to natural temperature and voltage

variations. In our live deployment running over a month, we

have observed the ambient temperature variations between

16°C to 45°C with an average of 27.5°C. Further, the devices

are powered using AA batteries and hence the supply voltage

to the devices also varied over time.

We have considered three types of microcontroller (see

Figure 8) in our deployment of 50 IoT devices viz.,
1) Device type 1 (D1): 10 off-the-shelf Arduino Mega IoT

device with ATmega2560 microcontroller [20] [15].



TABLE I: Procedures for extraction of different features

Feature Procedure for extraction

Clockcount

(i) Configure Real time clock (RTC) to generate interrupt after
every interval Tint. For each device type, Tint could be
configured through register settings.
(ii) Initialize the high-frequency counter.
(iii) Read the count of high-frequency counter at every
interrupt. Reinitialize the counter to 0.

ADCsingle

(i) Initialize the ADC in single ended mode.
(ii) Apply a fixed voltage Vin. This fixed voltage Vin is one
of the available internal voltages within each device type
and routed to ADC core input through register settings.
(iii) For each device type, the reference is selected from
available input references through register settings.
(iv) Perform 100 conversions and accumulate the output.

ADCdiff

(i) Initialize the ADC in differential mode.
(ii) Connect the differential input to a common voltage
Vin. This voltage Vin is one of the available internal
voltages within each device type and routed to
ADC core input through register settings.
(iii) For each device type, the reference is selected from
available input references through register settings.
(iv) Perform 100 conversions and accumulate the output.

2) Device type 2 (D2): 38 custom IoT device developed by

us with nRF52832 microcontroller [22].

3) Device type 3 (D3): 2 off-the-shelf programmable system-

on-chip (PSoC) CY8CKIT-062-BLE devices with Cortex

M4 microcontroller [36].

We selected the above devices in our deployment as these

are some of the most common IoT devices used in mid to

large scale IoT deployments across verticals. Furthermore, our

objective is to not just identify the class of IoT device (e.g.,

Arduino or nRF) but also to identify devices at an instance

level (e.g., Arduino A1 and Arduino A2). Note that, our

approach is generalizable to any IoT device that supports the

three features used by IoT-ID.

Data collection:
The 50 IoT devices in our deployment are sensing the ambient

temperature every minute. Each device also generates an

IoT-ID every time it senses the environment, by measuring

the clock and ADC PUF. This IoT-ID is then used to

determine the identity of the device before acting upon the

sensed data. In our live deployment, we have collected over

500K IoT-ID’s across the 50 devices. As mentioned earlier

the IoT devices are exposed to variations in both operating

temperature and voltage.

Software API for PUF feature extraction:
One key novelty of this work is the design of non-invasive

PUF features without the need for additional hardware.

Table I shows the procedure for the extraction of

Clockcount, ADCsingle and ADCdiff signatures for various

device families. It is clear from the table, the APIs are

hardware agnostic, generic and require just minimal config-

urations in the device registers. The application developer can

invoke these APIs to extract PUF features, thereby generating

IoT-ID for the device.

For example, to derive ADC PUF features in device type

D1, the registers ADMUX and ADCSRB are programmed in

software for selecting the reference and setting the ADC in

single ended or differential mode [22]. Through this program-

ming the ADC error could be computed without any hardware

modifications.

TABLE II: Time req. and current consumption for IoT-ID.

Device Time required
(sec) Current (mA)

D1 1 65
D2 1 2.2
D3 1 5

B. Constructability and reproducibility of IoT-ID

We now present results to show the efficacy of IoT-ID
with respect to constructability and reproducibility properties,

across 50 IoT devices.

1) Clock oscillator PUF: Figure 9a and 9b shows the clock

count feature from clock oscillator PUF for 10 instances of IoT

device type D1 and D2, respectively. The x-axis represents

the time in days and the y-axis represents the daily average

of the clockcount. Each line in the plot represents clock PUF

for an IoT device. We make two key observations for the 10

instances of device 1 and device 2: (i) Due to variations in the

manufacturing process of clock oscillators, each device has

a distinct clock count. Thus supporting the constructability
property of IoT-ID. (ii) For each individual IoT device, the

clock count feature does not vary significantly over time. Thus

supporting the reproducibility property of IoT-ID.

2) ADC PUF: ADC PUF uses two features viz.,
ADCsingle and ADCdiff , as described in Section III-C.

Figures 9c and 9d show the accumulated ADC output

values for single mode across 10 instances of devices D1

and D2, respectively. The values are plotted over the duration

of the deployment. Each line on the plot represents an IoT

device with x-axis and y-axis corresponding to the time in days

and daily average of ADCsingle feature value, respectively.

It can be seen that the ADCsingle value is distinct across

devices, supporting the constructability property. Further, the

ADCsingle value is stable with negligible variation over the

duration of a month, supporting the reproducibility property

of IoT-ID.

Figures 9e and 9f show similar characteristics for ADCdiff

feature. Thus supporting both constructability and repro-

ducibility properties of IoT-ID.

C. Time and current consumption for IoT-ID generation

Time required to generate IoT-ID: Table. II shows the

time required to extract both clock and ADC features across

devices D1-D3. In general, the clock oscillator PUF for all

the devices is computed within 100 ms (for 100 accumulation

count) and ADC features are computed within a second

(for 100 accumulation). Overall, in one second IoT-ID can

be generated across the three IoT device types. Thus, the
time required for IoT-ID generation supports the real-time
property.

Current consumption: Table II shows the current con-

sumption overhead for computing features of both clock and

ADC PUFs in devices D1-D3. The current consumption is

around 65mA, 2.2mA, 5mA, for the three device types D1,

D2 and D3, respectively. Note that, the current consumption

during feature extraction is in a similar range as that of the

corresponding active state current of the device. For example,



(a) clockcount - 10 D1 devices(b) clockcount - 10 D2 devices

(c) ADCsingle - 10 D1 devices(d) ADCsingle - 10 D2 devices

(e) ADCdiff - 10 D1 devices (f) ADCdiff - 10 D2 devices

Fig. 9: PUF variations across 10 instances of D1 and D2.

D1 device with Arduino Mega consumes 65mA in active state

and IoT-ID ID generation has a very minimal overhead on

top of 65mA. Thus we generate IoT-ID ID with negligible
current and compute overhead.

D. Uniqueness of IoT-ID across IoT devices

We now evaluate the robustness of IoT-ID towards accu-

rately identifying the IoT device instance from our 50 device

deployment. We use the Bonsai classification model described

in Section V-B to determine the identity of the device.

1) Bonsai model accuracy : In our deployment of 50

nodes running over a month, we have collected around 500K

IoT-ID’s. Specifically, for each device, we collected around

100-1000 IoT-ID identifiers. The collected data is split

into two sets; training dataset and test dataset. To show the

effectiveness of IoT-ID we use various train and test splits

ranging from 50% (15 days of data) to 1% (less than a day

of data) for training the model.

We use the following parameters to train the Bonsai

model: number of features = 3, i.e., Clockcount, ADCsingle,

ADCdiff , number of devices = 50, projection dimension = 2,

i.e., projecting the dataset to two dimensional space and tree

depth = 2, creating a Bonsai tree with just depth 2.

Table III shows the accuracy of device identification using

IoT-ID with various train and test splits. We can see that

TABLE III: Device identification accuracy on 50 devices.

Train Test Clock ADC Combined
split split count (single+diff) (clock+ADC)
50% 50% 54.0% 87.2% 100%
20% 80% 53.3% 87.0% 100%
5% 95% 53.0% 86.5% 100%
1% 99% 52.2% 86.1% 100%

when 50% of the data, i.e., 15 days of data is used to train

the ML model, the device identification accuracy among 50

devices is 54% and 87.2% when only clock PUF and ADC

PUF is used, respectively. However, when both clock and

ADC PUF features are used, i.e., combined, the identification

accuracy for the 50 nodes goes to 100%. Furthermore, as we

reduce the training to 1%, i.e., less than one day of data, the

ML model is still able to accurately identify the 50 devices

with 100% accuracy when the combined features are used,

Thus showing the effectiveness of IoT-ID towards device-
specific identifier.

We also evaluated the importance of individual features

on the classification task after training the model with all

3 features (combined). The higher the weightage the more

important the feature is. We observe that all the three features,

viz., Clockcount, ADCsingle, ADCdiff have weights around

0.3, 0.34, 0.36, respectively, indicating the trained model relies

on all the three features to uniquely identify the IoT device.

2) Bonsai Model size: Bonsai classification model is just

6KB in size, which can be easily embedded into resource-

constrained IoT device.

3) Time required for classification: We benchmarked our

Bonsai model on IoT device D1 based on Arduino. The

time taken to perform a classification on Arduino is 20.2

milliseconds (ms). Furthermore, the overall accuracy of Bonsai

running locally on all the three device types D1-D3 is 100%

when all the three features are used.

E. Impact of voltage/temperature variations on IoT-ID

Given IoT-ID is used as a device-specific identifier, repro-

ducibility of IoT-ID under varying operating conditions such

as variations in temperature and supply voltage is imperative.

To study the impact of supply voltage and temperature we

performed both controlled experiments and also exposed IoT

devices to real-world conditions in our deployment.

Controlled Experiments:

1) Impact of variation in supply voltage: We performed

controlled experiments on 5 instances of IoT device type D2 by

varying the supply voltage given to the device between 2.7V

to 3.3V in a lab setting. At each supply voltage value, we ex-

tracted clock and ADC PUF features. Figure 10a, 10c and 10e

shows the variations in clockcount, ADCsingle and ADCdiff

features for different supply voltage values, respectively. We

can clearly see that as the supply voltage varies there are very

minimal variations in all the three features. Thus indicating the
clock and ADC PUF features are agnostic to supply voltage
variations.



(a) clockcount-Voltage variations (b) clockcount-Temp Variations

(c) ADCsingle-Voltage variations (d) ADCsingle-Temp variations

(e) ADCdiff -Voltage variations (f) ADCdiff -Temp variations

Fig. 10: PUF variations across 5 device instances with respect

to temperature and voltage.

2) Impact of variation in temperature: To study the

impact of temperature variations on clock and ADC PUF, we

used a temperature controllable thermal oven. We varied the

temperature inside the oven from 15°C to 45°C in steps of

5°C and collected the three PUF features on the 5 devices.

Figure 10b, 10d and 10f show the variations in clockcount,
ADCsingle and ADCdiff features at different operating tem-

perature values. Unlike supply voltage, temperature variation

induces changes in both clock and ADC features. As we

increase the temperature from 15°C to 45°C, we can see that

the three features have a linear dependency on the temperature

variation across 5 devices. Thus it is important to take into

account temperature variations when devising device-specific

identifier. Next, we present how to consider temperature vari-

ations during device identification using IoT-ID.

Real-world Experiments:

From our controlled experiments it is clear that supply

voltage variations do not affect PUF features. We will now

describe how to take into account temperature variations and

yet achieve 100% accuracy in device identification.

In Section VI-D we showed that Bonsai model was able to

uniquely identify the IoT device from our 50 node deployment.

While we had not explicitly considered operating temperature

as a feature, the train and test data had similar/overlapping

temperature variations and hence the model was able to

distinguish the IoT-ID’s of different devices.

To validate this we performed an experiment, where we

divided the IoT-ID data obtained from 50 devices into two

sets with different temperature values. Thus, the training data

includes IoT-ID with three features from all 50 devices

when temperature values were ≤ 27°C and the test data

includes IoT-ID with three features from all 50 devices

when temperature values were > 27°C. We trained the Bonsai

model with this train and test splits and the model accuracy

towards device identification dropped to 90%. Thus validating

our hypothesis that when the train and test data are collected

over non-overlapping temperature ranges, the accuracy of our

Bonsai ML model drops.

Thus to mitigate the effect of temperature variations on

device identification, we propose two strategies, viz.,
1. Collect training and test data in similar operating condi-
tions. In this case, there is no need for explicit temperature

sensing as the train and test data are collected in similar

operating conditions. Thus leading to unique identification

as described above. However, when the operating conditions

differ significantly from train environment the accuracy drops

and one can re-train the model by including the new data.

2. Include temperature as an additional feature to train the
model. All modern IoT device microcontrollers come with

an in-built temperature sensor, which could be leveraged to

sense the temperature and include that in the Bonsai model.

The model can learn the mapping between the variations in

temperature and PUF features. To verify this, we re-trained the

Bonsai model with temperature as an additional feature, now

the overall accuracy increased to 100% from 90%. Thus, using

the above mentioned techniques, we ensure that the IoT-ID
for the device remains unique across the operating temperature

range of the device.

F. Impact of component aging on IoT-ID

The PUF features should not degrade significantly. If there

is a significant deviation in PUF features this might indicate

a fault in the system component. For example, if the clock

count value varies significantly then the behavior of the clock

oscillator has changed and may not be operating normally.

Specifically, in our real-world deployment of 50 devices over

a month, we did not observe any significant change in PUF

behavior as shown in Figure 9.

Furthermore, due to the low-cost nature of these compo-

nents, there will be some variation in PUF features over

multiple years of operation. For example, a clock oscillator

will have an aging of 5 ppm (i.e., 5X10−6) during the first

year of operation and 3 ppm per year thereafter [37]. These

variations are relatively small and are ignored for the first few

years of operation. To ensure IoT-ID generated is robust,

we propose that periodic re-training of the model should be

carried out after a few years of deployment to take aging into

account.

VII. SCALABILITY ANALYSIS OF IoT-ID

Till now we showed that IoT-ID can be generated in

real-time with minimal energy overhead, and is unique for



(a) Accumulation: clock & ADC for 1s. (b) Accumulation: clock & ADC for 100s. (c) Accumulation: clock & ADC for 300s.

Fig. 11: Scalability Analysis

a device even under varying operating conditions in our 50

node real-world deployment. However, it is also important

to understand the bounds of IoT-ID when the number of

devices increases in a deployment. As mentioned earlier,

IoT-ID is not a universal IoT device identifier. Infact as

the number of devices increases the likelihood of multiple

devices having the same IoT-ID increases due to bounded

process variations of system components. In this section, we

systematically study the scalability of IoT-ID for 100-1000s

of IoT devices.

The circuit designs for the semiconductor parts are in-

tellectual property of the vendor and are not available for

public usage. Given the non availability of circuit designs and

corresponding models, performing monte carlo simulations for

the circuit to analyse the scalability is not feasible. Further,

given the limitation of deploying or working with such large-

scale physical IoT devices, we look towards a numerical

approach to analyze the scalability aspect. As described in this

section, in a deployment with 10000 IoT devices, our approach

can accurately identify 82.6% of the devices.

To conduct numerical analysis we first need to develop

a realistic model of process variations for the three PUF

features. To this end, we utilize the process distributions

observed on our 50 node deployment over a period of one

month. Specifically, we extract the mean, inter-device standard

deviation and intra-device standard deviation values for the

three features viz., Clockcount, ADCsingle, ADCdiff . The

intra-device standard deviation is derived from the multiple

measurements done on a single device over a period of time.

Similarly, the inter-device standard deviation is derived from

the variations in the mean values across the 50 devices over a

period of time. We then run a MATLAB simulation to spawn

multiple devices from the above distribution for each feature.

This approach represents a spread of devices with parameters

representing the 50 deployed devices. Further, like in our real-

world deployment, we accumulate the raw values from clock

for a period of 2048 cycles corresponding to 62.5 ms and ADC

over 100 conversions corresponding to 1 second to derive the

corresponding PUF features.

MATLAB model verification: We use the above simulation

setup to spawn 50 devices and generate PUF features for each

of them. In total for each device, we had 1000 IoT-ID’s

resulting in 50× 1000 IoT-ID’s. We trained the Bonsai ML

model with 50% train and test data splits and the resulting

device identification accuracy was 56%, 96% and 100% when

only clock count, only ADC, and combined features were

used, respectively. The device identification accuracy is very

similar to the results obtained from real-world 50 node de-

ployment as shown in Table. III.

Scenario-1: Accumulation of clock count for 62.5ms and
ADC for 1s, total time per IoT-ID generation is 1s
This scenario corresponds to accumulation time periods used

for generating IoT-ID in our real-world experiments. We

now spawn 100, 1000 and 10000 devices using the above

mentioned distributions and the accumulation count. Thus for

each device, we generated 1000 IoT-ID’s that can be used

for training and testing purposes.

Figure 11a shows the accuracy of identifying a device

uniquely for 100, 1000 and 10000 devices using only

Clockcount, only ADC (single + diff) or through a combina-

tion of features. Similar to real-world experiments, the com-

bined features, in general, give the highest accuracy towards

device identification. When the device count is 100, the device

identification accuracy using IoT-ID is still 100%. However,

as the number of devices increases to 1000 and 10000, the

device identification accuracy using IoT-ID drops to 67.2%

and 12.2%, respectively. This is due to the negligible inter-

device separation as we scale the number of devices resulting

in overlapping IoT-ID’s.

One obvious way to increase the overall identification

accuracy is to increase the accumulation time period. The

hypothesis here is that, as the accumulation is increased by

N times, the mean of the accumulated feature is scaled by

N and the standard deviation of the accumulated feature is

scaled by
√
N [38]. Hence the inter-device separation of the

feature increases. This helps towards better distinction across

the devices.

Scenario-2: 100x increase in accumulation of clock count
and ADC, total time per IoT-ID generation is 100s
Here we increase the accumulation time for each feature by

100 times, e.g., 62.5ms of clock count accumulation takes

now 6.25s and 1s of ADC accumulation takes 100s. Thus total

time taken for generation of IoT-ID is 100s, consequently

limiting the device identification once every 100s.



Figure 11b shows that as we increase the accumulation

count by 100 times, the device identification accuracy for

1000 devices is increased to 99.7% and for 10000 devices is

increased to 66.2%.

Scenario-3: 300x increase in accumulation of clock count
and ADC, total time per IoT-ID generation is 300s
Here we increase the accumulation time for each feature by

300 times, thus resulting in IoT-ID generation once every

5 minutes. From Figure 11c it is clear that now 82.6% of the

10000 devices could be identified accurately within 5 minutes

by increasing the accumulation across all features.

Thus as the number of devices in a deployment increases

the identification accuracy using IoT-ID decreases. However,

with an increase in accumulation time for deriving IoT-ID
per device, we can have over 82% unique identification in

a 10000 node deployment. This comes at the expense of

increased time required for IoT-ID generation. An alterna-

tive approach is to include additional features towards the

generation of IoT-ID. In our current scenario, we have

used our three novel PUF features, but this can be extended

by integrating features from other system components like

sensors, power supply, communication modules, etc.

VIII. SECURITY ANALYSIS OF IoT-ID

In the previous section, we have discussed the efficacy of

our novel IoT-ID under different conditions. Our focus here

is towards the generation of robust identifiers, which can then

be used for various applications from device identification to

authentication. Furthermore, based on the application require-

ment necessary precautions need to be taken for IoT-ID to

be also secure. This is out of scope for this paper, however,

we present some basic threat models and additional security

measures that might be required for usage of IoT-ID.

1) Case 1- Incorrect or No IoT-ID generation in
an installed device: In this case, we consider the following

scenarios that might result in the generation of incorrect

IoT-ID’s.

• The execution of the classifier model is skipped and the

classifier output is faked or tampered.

• The IoT-ID being communicated is not generated

through the classifier model, but is faked or tampered.

• The classifier model is fed with incorrect inputs.

• The inputs to the classifier model are correct, but the

classifier model is changed or tampered.

Each of the above scenarios would result in the generation

of an incorrect IoT-ID. The above scenarios are possible

only if the software running on the device is tampered or

compromised. The software of the device could be secured

through the following existing approaches:

• Many of the modern microcontrollers provide an option

to disable the software read back. This ensures that logic

for the IoT-ID generation is protected [22]. Further,

one could prevent reprogramming of the microcontroller

by connecting the pins used for programming to ground

permanently in hardware.

• The software code for IoT-ID generation must be stored

in the secure boot of the microcontroller or in the root of

trust of the microcontroller. The software code stored in

the secure boot memory of the microcontroller can not

be modified and is executed during the boot up of the

microcontroller.

2) Case 2- Subjecting the device to temperatures be-
yond the training range to generate wrong IoT-ID’s:
As discussed in Section VI-E, if the device is subjected

to temperatures beyond the training range, the accuracy of

IoT-ID degrades resulting in frequent incorrect IoT-ID
generation. To prevent this, the training samples must be

collected over the entire operating temperature range. The

software must bypass IoT-ID generation and provide an

alert if the measured temperature is beyond the operating

temperature range.

3) Case 3- Device being replaced or tampered or dam-
aged: If the installed device is replaced by another device of

the same make and software, the IoT-ID generated would

detect such a replacement. No additional measure is required.

The device could be damaged physically, e.g. the power

could be disconnected or the communication module could

be damaged, making it impossible to generate or communicate

IoT-ID. The physical tampering can be avoided by additional

anti-tampering mechanisms.

4) Case 4- Stealing of IoT-ID for malicious usage: A

malicious device could be passively listening to the transac-

tions and might eventually steal the identity of a device. This

is possible since IoT-ID is being transmitted over the air.

Additional mechanisms like encrypting the IoT-ID with the

public key must be utilised to prevent stealing. In such cases,

IoT-ID acts like a Physically Obfuscated Key (POK) [39] or

private key.

IX. DISCUSSIONS AND FUTURE WORK

Today to derive a unique device-specific identifier one has

to add additional hardware as in the case of Microsoft Azure

Sphere [14]. The proposed IoT-ID with novel PUFs shows a

promising alternative approach towards device-specific identi-

fier on off-the-shelf devices without additional hardware.

With extensive evaluations in both controlled environments

and real-world deployment with 50 devices running over a

month, we show that IoT-ID is a robust device-specific

identifier even under varying operating conditions (temperature

and supply voltage). We now discuss some limitations and

possible future work to improve IoT-ID.

• Design PUFs for other IoT system components: In this work,

we presented novel design of PUFs for clock and ADC.

However to enable robust device identification in large-

scale deployment of IoT devices, one can extend the PUF

features to other system components such as the battery,

radio module, etc.

• Aging: The experiments presented in this paper was con-

ducted over a duration of a month in real-world conditions.

As discussed in Section VI-F, we saw a negligible difference

in PUF features over this duration. However, due to the



characteristics of IoT system components, the PUF features

will vary after few years of operation. We believe a long-

term data collection study is required to systematically

understand the impact of aging.

• IoT device fault detection using PUFs: Current works aim to

create new signatures for identifying faults in an IoT system,

such as malfunctioning microcontroller and sensor, etc. In

this work, while we focus on using PUFs to derive a device-

specific identifier, we believe PUFs can also be employed to

detect and isolate faults in an IoT device. PUFs of a working

and malfunctioning component will vary significantly.

X. RELATED WORK

The approach of device identification through signature

analysis and behavioural profiling of protocols works well

to identify class of devices. However, the approach fails to

differentiate between multiple instances of the same device.

Furthermore, these are application specific. Majority of the

recent work for the identification of IoT devices have proposed

the analysis and classification of signatures generated by

network protocols. IoT Sentinel [40] proposes the extraction

of 23 different features from the network packets. Similarly,

ProfilIoT [41] and [42] use features across multiple protocol

layers to identify different devices. DIoT [43] proposes the

implementation of anomaly detection to identify suspicious

nodes. BF-IoT [17] discusses the fingerprinting of Bluetooth

devices. The temporal properties of the packets have also been

studied as features for the identification of devices. The work

in [44] extracts Inter-arrival time between consecutive packets

and applies deep learning for the classification of devices.

For identifying the device at an instance level, a unique

identity could be stored in the non-volatile memory. Whenever

there is a need to know the identity, the system could be

queried and the identity could be read from the memory. How-

ever multiple attacks have been reported, which could retrieve

and change the information stored in the memory. The memory

values could be read using scanning electron microscopy [6].

Further, fault injection attacks [7] have been reported, which

could change the memory values. One proposed approach

to create a unique and unclonable identity is to tag devices

with plant DNA [3]. To confirm the identity of the chip, the

swab of DNA is taken and DNA fingerprinting is performed.

However, this approach is expensive and authenticating the

device identity is time consuming. Dielets [45] have also been

proposed to introduce unclonable identity during manufactur-

ing. This approach becomes impractical to implement for the

IoT devices, which are deployed in the wild.

Physically Unclonable Functions (PUFs) have been studied

to generate unique device identities for semiconductor devices

[8] [9]. Arbiter PUF [12] uses a common rising edge at

the clock as well as data input at the D flip flop. In the

RO PUF implementation [19], the ring oscillators are con-

figured for the same frequency. Even custom analog circuits

are being explored for generating PUFs. The analog PUFs

use characteristics like mismatch in differential pairs [46] or

comparator offsets [13] for generating signatures. These PUFs

need custom circuit implementation. The memory PUF [10]

uses the startup values of RAM as a signature. However, the

generation of signatures demand power cycling and hence are

invasive. The generation of PUF for off-the-shelf components

by connecting DAC and ADC back to back and utilizing the

offset of the system to generate the unique signature has been

explored [47]. This approach necessitates usage of DAC which

might not be commonly present in IoT devices. There has

been minimal research for generating system identity based on

combining individual component PUFs in the Commercially

Off the Shelf Components, as proposed in this work. Further,

this is one of the first studies to evaluate PUF based identifiers

in a real deployment with 50 IoT devices.

XI. CONCLUSION

In this paper, we presented a novel device-specific identifier

– IoT-ID derived based on physically unclonable functions

(PUFs), that exploits variations in the manufacturing process

to uniquely identify Integrated Circuits. IoT-ID is composed

of multiple PUF features derived from basic system com-

ponents such as clock oscillator and ADC, present in every

microcontroller. Unlike previous efforts, PUFs designed in

this work are non-invasive and do not require any additional

hardware support. We have evaluated the efficacy of IoT-ID
on our real-world deployment of 50 IoT devices from different

manufacturers running over a month. Our edge ML model has

an accuracy of 100% in uniquely identifying individual IoT

device instance from our deployment. Furthermore, to analyze

the robustness of IoT-ID we conducted extensive evaluations

under varying operating temperature and supply voltage con-

ditions. Finally, we show the scalability of IoT-ID to 1000s

of IoT devices using realistic data and numerical analysis.

IoT-ID is a first step towards robust device-specific identifier

in the wild.
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