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Keywords: Historically, embedded systems development has been a specialist skill, requiring knowledge of low-level pro-
MakeCode gramming languages, complex compilation toolchains, and specialist hardware, firmware, device drivers and
CODAL_ . applications. However, it has now become commonplace for a broader range of non-specialists to engage in the
BBC micro:bit making (design and development) of embedded systems - including educators to motivate and excite their stu-
Embedded systems

dents in the classroom. This diversity brings its own set of unique requirements, and the complexities of existing
embedded systems development platforms introduce insurmountable barriers to entry.

In this paper we present the motivation, requirements, implementation, and evaluation of a new programming
platform that enables novice users to create effective and efficient software for embedded systems. The platform
has two major components: (1) Microsoft MakeCode (www.makecode.com), a web app that encapsulates an
accessible IDE for microcontrollers; and (2) CODAL, an efficient component-oriented C++ runtime for microcon-
trollers. We show how MakeCode and CODAL combine to provide an accessible, cross-platform, installation-free,

Physical computing
Visual programming
Web-based programming

high level programming experience for embedded devices without sacrificing performance and efficiency.

1. Introduction

Recent years have witnessed expansive growth in the popularity and
ubiquity of embedded systems. This growth can be primarily attributed
to the emergence of new application domains ranging from wearables,
to home automation, industrial automation, and smart grids — the phe-
nomenon broadly referred to as the Internet of Things (IoT). As the IoT
continues to grow, it has become more pervasive — far beyond the realm
of domain experts and into the everyday lives of the public. This has
led to growth in non-expert developers actively creating software for
embedded systems. Small to medium sized businesses now create new
products through rapid prototyping of embedded devices. Hobbyist mak-
ers create novel technical projects to inspire themselves and society. And
now, more than ever before, educators are making extensive use of physi-
cal computing devices as a direct means to teach and inspire a generation
of students — and to prepare them for a society where IoT will be the
norm. These new developers all share a common characteristic: they
are not professional software developers [11,16,28].

There are many examples of existing devices that aim to cater to
non-expert developers such as the Arduino and Raspberry Pi [8,42],
both of which can interface to external peripherals by connecting wires
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to onboard GPIO. However, many barriers still exist for inexperienced
users. The Arduino still requires programs to be written in the relatively
unforgiving language of C/C++, and that these programs are written
using a platform specific IDE installed on a personal computer. The
Raspberry Pi gives access to higher level languages such as Python and
Scratch [35] via a high performance CPU and full operating system.
However, this comes at the cost of simplicity and transparency - requir-
ing users to attach dedicated displays and keyboards, master the Linux
operating system, and tolerate the non-realtime behaviours associated
with an interpreted language on a general purpose OS.

United under the aim of further lowering the barrier to entry for non-
expert developers, a consortium of industry and academic partners came
together in 2015 to develop the BBC micro:bit — an embedded device
designed specifically for education. One million of these devices were
delivered to UK school children in 2016. The micro:bit is a highly capa-
ble IoT device containing a 32-bit ARM Cortex-MO processor, integrated
light level, temperature, acceleration and magnetic sensors, touch sen-
sitive inputs, and USB and 2.4GHz radio communications.

Fig. 1 highlights two example educational projects based on
the BBC micro:bit. The first is a data gathering experiment, where
multiple sensor data was recorded to non-volatile memory as the

Finney), jhalleux@microsoft.com (P. de Halleux),

michal.moskal@microsoft.com (M. Moskal), tball@microsoft.com (T. Ball), steve.hodges@microsoft.com (S. Hodges).

https://doi.org/10.1016/j.sysarc.2019.05.005

Received 16 November 2018; Received in revised form 29 March 2019; Accepted 25 May 2019

Available online 28 May 2019

1383-7621/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)



J. Devine, J. Finney and P. de Halleux et al

device was launched into near space (32.5km altitude), along with an
externally interfaced camera and GPS unit. The second highlights a live
data telemetry application, where acceleration data was streamed in
real-time via Bluetooth Low Energy to enable the profiling of chemical-
rocket powered model vehicles. These projects are highly sophisticated
and were undertaken by high school educators and their students.

In this paper we introduce an open-source! platform for embedded
devices such as the micro:bit that enables the development of embedded
applications by non-expert programmers. This platform consists of two
major components: (1) Microsoft MakeCode (www.makecode.com), a
web app providing a beginner IDE for embedded systems; and (2) CO-
DAL (Component-Oriented Device Abstraction Layer), an efficient C++
runtime with high-level programming abstractions.

We contribute an approach to creating development tools for
non-experts (exemplified through MakeCode and CODAL) that offers
a simpler development experience using: multi-paradigm web-based
drag-and-drop visual programming with in-browser compilation,
device simulation, and driverless usb flash drive microcontroller pro-
gramming. Despite providing such high-levels of abstraction, we also
demonstrate up to 50x better performance than other state-of-the-art
implementations, in some cases nearing the performance of native C++.

The remainder of the paper describes the design, implementation,
and evaluation of MakeCode (Section 3), the CODAL C++ runtime
(Section 4), and the UF2 bootloader (Section 5) which enables
driver-less microcontroller programming. Sections 6 and 7 show that
combined, these technologies enable simplified programming while
maintaining a relatively high degree of temporal and spatial efficiency.
MakeCode has been live since the fall of 2016, at first supporting
just the micro:bit, but now supporting many more devices, most of
which are based on CODAL. Section 8 discusses related work and
Section 9 concludes the paper.

2. Design principles and architecture

In this section we present the major design challenges in bringing
embedded systems to novice users and briefly describe the architecture
of our solution.

2.1. Design principles

Enabling novice programmers to successfully develop embedded ap-
plications is a non-trivial task. Throughout our research we have estab-
lished a number of design principles that are addressed through Make-
Code and CODAL:

High Level Languages:. Programming languages for microcontroller
units (MCUs) have not kept pace with advances in hardware. Despite
active research in the field, the C/C++ languages remain the stan-
dard for embedded systems: they provide a familiar imperative pro-
gramming model, with compilers that produce highly efficient code,
and enable low level access to hardware features when necessary. The

1 MakeCode is open-source at https://github.com/microsoft/pxt ; CODAL is
open-source at https://github.com/lancaster-university/codal.
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Fig. 1. Example projects undertaken within
education: Rishworth School sent a micro:bit
to space [31] (left); The micro:bit placed
in a custom-built rocket car for teleme-
try [32,33] (right).

Table 1

Example microcontroller devices in relationship to a typical PC. De-
vice abbreviations: Uno (Arduino Uno), micro:bit (BBC micro:bit), CPX
(Adafruit Cireuit Playground Express), PC (Personal Computer).

Device RAM Flash Word Size CPU Speed CPU

Uno 2kB 32 kB 8 16MHz AVR
micro:bit 16 kB 256 kB 32 16MHz ARMv6-M
CPX 32kB 256 kB 32 48MHz ARMv6-M
PC 16 GB 1TB 64 3GHz x86-64

Arduino project (www.arduino.cc), started in 2003, and ARM’s Mbed
platform (www.mbed.org) both rely heavily on a C/C++ programming
model [6,39]. However, the limitations of using C/C++ as an applica-
tion programming language for inexperienced developers are well un-
derstood [10]. To address this, higher level languages such as JavaScript,
Python, and even visual programming languages are required.

Zero Installation Architecture:. The development environment for exist-
ing embedded systems typically requires the installation of code edi-
tors, custom device drivers, compiler toolchains, and even additional
programming hardware (such as a JLink programmer). For many, par-
ticularly in the field of education, this presents a high adoption barrier
as in many schools, custom hardware and software is simply not per-
mitted by policy and/or access to the necessary technical support is not
present. An effective solution must therefore provide a fully transparent, plat-
form agnostic, zero installation experience to developing embedded software.

Optimization for Code Efficiency:. The projects of Fig. 1 are enabled by
small, highly resource-limited programmable MCUs, which may have as
little as a few kilobytes of RAM and FLASH memory. Table 1 compares
the core capabilities of the class of MCU-based devices typically used in
the education domain to a typical PC. Note that these devices have a
proportionally large amount of processing power, relative to their stor-
age. Consider the BBC micro:bit vs. a typical PC: the micro:bit has about
100 times less CPU power, but 10° times less RAM, and 10° times less
storage. A language/runtime should therefore not only seek to provide high
code density and spatial efficiency, but actively trade off temporal for spatial
efficiency where possible.

Asynchronous and Concurrent Programming:. It is already well under-
stood that novice programmers benefit from event-based programming
paradigms [29,30,41]. This is increasingly relevant for embedded sys-
tems due to the typically asynchronous nature of their hardware. MCUs
still follow Moore’s law, but this additional capacity is not typically in-
vested in speeding up processors. Instead, more independent peripherals
(such as Bluetooth/WiFi radio modules, audio inputs/output processors,
etc.) are integrated onto the same package as the CPU as a system-on-
chip. Such peripherals often operate independently of the main CPU. An
effective language/runtime should directly support an asynchronous interac-
tion model designed to cooperate with the independent nature of peripherals
while remaining highly intuitive to the programmer.



J. Devine, J. Finney and P. de Halleux et al

— S .
( Editors ) | Simulator )

[ s )

MakeCode \
Web App |

JavaScript TypeScript

b r Yy

Metadata Browser compilation
g ion l
Monaco
Static
\ \ TypeScript
. 4
\ g
L Statlc - ‘
/1 TypeScript binary cached copy
Shim
generation

e compile

) Device L — _
1 runtime N M final binary
. CODAL runtime [0 (BERAIE]
( C++) | binary “\

N : 4 N

( —

Cloud compilation = = = =+ decompile

B > link

Fig. 2. The MakeCode and CODAL architecture.

Intuitive and Extensible APIs:. Intuitive APIs and programming models
are required to support novice users, yet it is equally important that
these APIs remain complete enough to realise the ambitious projects that
may be undertaken as students advance: simplification via the reduction
of functionality is not a valid approach. An effective solution must provide
APIs that are consistent, easy to understand/use, and progressive, to address
the growing capabilities of the programmer.

2.2. Architecture

Fig. 2 illustrates the architecture of our platform. The MakeCode web
app is the primary entry point for the end-user. MakeCode supports the
simplified programming of MCUs via editors for visual blocks and the
textual TypeScript® language. CODAL is a component-oriented, event-
driven, fiber-based C++ runtime environment that bridges the semantic
gap between the higher-level languages (such as TypeScript) and the
hardware (bottom-left of the Figure). Enabling the flashing of the mi-
crocontroller is UF2, a new file format and bootloader for the simplified
transfer of binaries to the device over USB (bottom-right).

MakeCode can be accessed from any modern web browser and
cached locally for entirely offline use. The MakeCode web app incor-
porates the open-source Blockly® and Monaco* editors (upper-left), an
in-browser device simulator (upper-right) for testing programs before
transferring them to the physical device, as well as in-browser compila-
tion of TypeScript to machine code and linking against the pre-compiled
CODAL C++ runtime (lower-left).

MakeCode devices appear as USB pen drives when plugged
into a computer, thanks to UF2. After a user has finished developing a
program, the compiled binary is “downloaded” locally to the user’s com-
puter (lower-right) and then transferred (flashed) to the MCU by a sim-
ple file copy operation. This works out-of-the-box on any OS with built-
in support for USB pen drives (MacOS, Windows, Linux, ChromeQS).

3. MakeCode

The key technical contribution of MakeCode is to provide users with
a basic environment to write programs for MCUs, enabling a simple
progression from visual block-based programming to text-based pro-
gramming in Static TypeScript (STS), while leveraging C++ on the back-
end for efficient use of MCU resources. MakeCode uses the open-source
Blockly and Monaco editors to allow the user to code with visual blocks

2 https://www.typescriptlang.org.
3 https://github.com/google/blockly.
4 https://github.com/microsoft/monaco-editor.
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Fig. 3. Screen snapshot of the MakeCode web app.

or STS. The editing experience is parameterized by a fully-typed device
runtime, which provides a set of categorized APIs to the end-user.

Fig. 3 is a screenshot of the MakeCode web app for Adafruit’s Circuit
Playground Express (CPX) device.® The web app has five sections: (A)
the menu bar allows switching between the two editors; (B) the simula-
tor shows the CPX board and provides feedback on user code executed in
the browser; (C) the toolbox provides access to device-specific APIs and
programming elements; (D) the programming canvas is where editing
takes place; (E) the download button invokes the compiler, producing a
binary executable.

The web app encapsulates all the components needed to deliver a
programming experience for MCUs, free of the need for a C++ com-
piler for the compilation of user code. The web app is written in Type-
Script and incorporates the TypeScript compiler and language service
as well. The app is built from a MakeCode “target” which parameter-
izes the MakeCode framework for a particular device. The remaining
subsections describe the essential components of the web app in Fig. 2.

3.1. Static TypeScript

TypeScript is a typed superset of JavaScript designed to enable
JavaScript developers to take advantage of code completion, static
checking and refactoring made possible by types. As a starting point,
every JavaScript program is a TypeSeript program. Types can be added
gradually to JavaScript programs, supported by type inference. While
TypeScript provides classes and interfaces with syntax like Java/C#,
their semantics are quite different as they are based on JavaScript.
Classes are simply syntactic sugar for creating objects that have code
associated with them, but these objects are indeed JavaScript objects
with all their dynamic semantics intact.

Static TypeScript (STS) is closely related to StrongScript [37], which
extends TypeScript with a type constructor for concrete types, allow-
ing the programmer to choose between untyped, optionally-typed, and
concretely typed code. This provides traditional type soundness guar-
antees, as in Java and C#. STS can be seen to be StrongScript where
every variable and expression has a concrete type. As in StrongScript,
classes are nominally typed, which permits a more efficient and tradi-
tional property lookup for class instances. Currently, STS goes further
than StrongScript by outlawing downcasts.

3.2. Device runtime and shim generation

A MakeCode target is defined, in part, by its device runtime; which
is a combination of C++ and STS code, as shown in the lower-left of

5 https://makecode.adafruit.com.
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Fig. 2. All the target’s C++ files are precompiled (by a C++ compiler in
the cloud) into a single binary, which is stored in the cloud as well as
in the HTMLS application cache. Additional runtime components may
be authored in STS, which allows the device runtime to be extended
without the use of C++, and permits components of the device runtime
to be shared by both the device and simulator runtimes. The ability to
author the device runtime in both STS and C++ is a unique aspect of
MakeCode’s design.

Whether runtime components are authored in C++ or STS, all run-
time APIs are exposed as fully-typed TypeScript definitions. A fully-
typed runtime improves the end-user experience by making it easier to
discover APIs; it also enables the type inference provided by the Type-
Script compiler to infer types for (unannotated) user programs.

MakeCode supports a simple foreign function interface from STS
to C++ based on namespaces, enumerations, functions, and basic type
mappings. MakeCode uses top-level namespaces to organize sets of re-
lated functions. Preceding a C++ namespace, enumeration, or function
with a comment starting with //% indicates that MakeCode should map
the C++ construct to STS. Within the //% comment, attributes specify
the visual appearance for that language construct, such as for the input
namespace in C++ for the CPX:

—

J/% color="#B4009E” weight=98 icon="\uf192"
namespace input {

b3

Fig. 3(C) shows the toolbox of API and language categories, where
the category INPUT corresponding to the namespace input can be seen
(second from the top).

Mapping of functions and enumerations between C++ and STS is
straightforward and performed automatically by MakeCode. For exam-
ple, the following C++ function onLightConditionChanged in the names-
pace input wraps the more complex C++ needed to update the sensor
and register the (Action) handler with the underlying CODAL runtime:
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counted C++ types for strings, lambdas (Action in C++, with up to three
arguments and a return type) and collections, with mappings to STS.

MakeCode does not yet include a garbage collector, so advanced
users who create cyclic data structures must be careful to break cycles
to ensure complete deallocation.

3.3. Browser compilation

When a user requests a download of the compiled binary, MakeCode
first invokes the TypeScript language service to perform type inference
and type checking on the user’s program, the device runtime written in
STS, and the TypeScript declarations corresponding to the C++ device
runtime. It then checks that the combined TypeScript program is within
the STS subset through additional syntactic and type checks over the
typed AST. Assuming all the above checks pass, MakeCode then per-
forms tree shaking of the AST to remove unused functions. The reduced
AST is then compiled to an intermediate representation (IR) that makes
explicit labelled control flow among a sequence of instructions with con-
ditional and unconditional jumps, heap cells, field accesses, store oper-
ations, and reference counting.

There are three backends for code generation from the IR. The first
backend generates JavaScript, for execution against the simulator run-
time. A second backend, parameterized by processor type, generates as-
sembly code. Currently supported processors include ARM’s Cortex class
(Thumb instructions) and Atmel’s ATmega class (AVR instructions). A
separate assembler, also parameterized by an instruction encoder/de-
coder, generates machine code and resolves runtime references, pro-
ducing a final binary executable. A third backend generates bytecode in-
structions. MakeCode can encode the resulting binary in several formats,
including Intel’s HEX format [22] and the UF2 format, documented in
Section 5.

The MakeCode compiler supports the STS language subset of Type-
Script with two compilation strategies: untagged and tagged. Under the
untagged strategy, a JavaScript number is interpreted as a C++ int by

//% block="on light %condition”

auto sensor = &getWLight ()—>sensor;
sensor —>updateSample () ;

registerWithDal (sensor—id ,

1
2
3
4
5 (int)condition ,
G

void onLightConditionChanged (LightCondition condition ,

handler);

Action handler) {

MakeCode generates TypeScript declaration file (here called a shim
file) to describe the TypeScript elements corresponding to C++ names-
paces, enumerations and functions. Since the C++ function above is
preceded by a //% comment, MakeCode adds the following TypeScript
declaration to the shim file and copies over the attribute definitions in
the comment. MakeCode also adds an attribute definition mapping the
TypeScript shim to its C++ function:

default and the type system is used to statically distinguish primitive
values from boxed values. As a result, the untagged strategy is not fully
faithful to JavaScript semantics: there is no support for floating point,
and the null and undefined values are represented by the default
integer value of zero. The untagged strategy is used for the micro:bit
and Arduino Uno targets.

1 //% block="0on light %condition”
2| //% shim=input::onLightConditionChanged
3| function onLightConditionChanged (condition:

void) : void;

LightCondition ,

handler: () =>

Since the //% comment also contains a block attribute, MakeCode
creates a block (named “on light”), which can be seen in the upper-left
of Fig. 3(D).

To support the foreign function interface, MakeCode defines a map-
ping between C++ and STS types. Boolean and void have straightfor-
ward mappings from C++ to STS (bool — boolean, void — void). As
JavaScript only supports number, which is a C++ double, MakeCode
uses TypeScript’s support for type aliases to name the various C++ inte-
ger types commonly used for MCU programming (int32, uint32, int16,
uintl6, int8, uint8). This is particularly useful for saving space on 8-
bit architectures such as the AVR. MakeCode also includes reference-

In the tagged strategy, numbers are either tagged 31-bit signed inte-
gers, or if they do not fit, boxed doubles. Special constants like false,
null and undef ined are distinguished by specific values. The tagged
execution strategy has the capability to fully support JavaScript seman-
tics and is used by all ATSAMD21 targets, including the CPX.

4, The CODAL runtime

CODAL is a lightweight, object-oriented, componentized C++ run-
time for microcontrollers designed to provide an efficient abstraction
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1 #include 7 CircuitPlayground .h”

2 CircuitPlayground cplay;

3

4 void onBright () { // user defined code }

5

6 int main() {

7 cplay . messageBus . listen (ID_.LIGHT_SENSOR, LIGHT.THRESHOLD_HIGH,
onBright);

8 ¥

Fig. 4. Example of the CODAL MessageBus.

layer for higher level languages, such as JavaScript. CODAL has five
key elements:

1. a unified eventing subsystem (common to all components) that pro-
vides a mechanism to map asynchronous hardware and software
events to event handlers;

. a non-preemptive fiber scheduler that enables concurrency while min-
imizing the need for resource locking primitives;

. a simple memory management system based on reference counting to
provide a basis for managed types;

. astream processing framework based on a composable, receiver-driven
component model;

. a set of drivers, that abstract microcontroller hardware components
into higher level software components, each represented by a C++
class;

. a parameterized object model composed from these components that
represents a physical device.

There are discussed in detail below.
4.1. Message bus and events

CODAL offers a simple yet powerful model for handling hardware or
user defined events. Events are modeled as a tuple of two integer values
- specifying an id (namespace) and a value. Typically, an id correlates
to a specific software component, which may be as simple as a button
or something more complex as a wireless network interface. The value
relates to a specific event that is unique within the id namespace. All
events pass through the CODAL MessageBus. Application developers can
then listen to events on this bus, by defining a C/C++ function to be
invoked when an event is raised. Events can be raised at any time simply
by creating an Event C++ object, which then invokes the event handlers
of any registered listeners.

Continuing the example of detecting the brightness of a room used in
Section 3.2, a listen call to the MessageBus with a component ID of the
light sensor and a threshold event is the underlying mechanism enabled
by the runtime, as illustrated by the equivalent C++ code snippet in
Fig. 4.

Unlike simple function pointers, CODAL event handlers can be pa-
rameterized by the event listener to provide decoupling from the context
of the code raising the event. The receiver of an event can choose to ei-
ther receive an event in the context of the fiber that created it, or can
be decoupled and executed via an Asynchronous Procedure Call (APC).
The former provides performance, while the latter provides decoupling
of low level code (that may be executing, say, in an interrupt context)
from user code. Each event handler may also define a threading model,
so they can be reentrant or run-to-completion depending upon the se-
mantics required.

4.2. Fiber scheduler

CODAL provides a non-preemptive fiber scheduler with asynchronous
semantics and a power efficient implementation. CODAL fibers can be
created at any time but will only be descheduled as a result of an explicit
call to yield(), sleep() or wait_for_event() on the MessageBus. The latter
enables condition synchronization between fibers through a wait/notify
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mechanism. A round-robin approach is used to schedule runnable fibers.
If at any time all fibers are descheduled, the MCU hardware is placed
into a power efficient sleep state.

The CODAL scheduler makes use of two novel mechanisms to opti-
mize for MCU hardware. Firstly, CODAL adopts a stack paging approach
to fiber management. MCUs do not support virtual memory and are
heavily RAM constrained, but relatively cycle rich. Therefore, instead
of overprovisioning stack memory for each fiber (which would waste
valuable RAM), we instead dynamically allocate stack memory from
heap space as necessary and copy the physical stack into this space at
the point at which a fiber is descheduled (and similarly restored when
a fiber is scheduled). This copy operation clearly incurs a small CPU
overhead, but brings greater benefits of RAM efficiency - especially
given that MCU stack sizes are typically quite small (~200 bytes is
typical).

Secondly, the CODAL scheduler supports transparent APCs. Any
function can be invoked as an APC. Conceptually, this is equivalent to
calling the given function in its own fiber. However, the CODAL run-
time provides a common-case transparent optimization for APCs we
call fork-on-block - whereby a fiber will only be created at the point at
which the given function attempts a blocking operation such as sleep()
or wait_for_event(). Functions which do not block therefore do not incur
all of the context switch overhead.

When invoking an APC, the scheduler snapshots the current proces-
sor context and stack pointer (but not the whole stack). If the scheduler
is re-entered before the APC completes, a new fiber context is created
at the point of descheduling, and placed on the appropriate wait queue.
The previously stored context is then restored, and execution contin-
ues from the point at which the APC was first invoked. This mechanism
provides potentially high RAM savings for the processing of MessageBus
event handlers in particular.

CODAL’s scheduling and eventing models are shared by both high
and low level languages, and therefore handled uniformly. As a result,
when a foreign function call is mapped to C++, that C++ function is ca-
pable of blocking the calling fiber without infringing on the concurrency
model of the higher level language. This enables, for example, a C++ de-
vice driver to block a JavaScript program when awaiting data without
changing the behavior of other JavaScript code acting asynchronously
(as in Fig. 3).

4.3. Memory management

CODAL implements its own lightweight heap allocator, introducing
reentrant versions of the libc malloc family of functions, permitting uni-
versal access to heap memory in user or interrupt code. The heap alloca-
tor is flexible and reconfigurable, allowing the specification of multiple
heaps across memory and it is optimized for repeat allocations of mem-
ory blocks that are commonplace in embedded systems.

CODAL also makes use of simple managed types, built using C++
reference counting mechanisms. C++ classes are provided for common
types such as strings, images, and data buffers. A generic base class
is also provided for the creation of other managed types. This simple
approach brings the benefits of greater memory safety for application
code, but with the expense of suffering from the issues related to cir-
cular references. We take the view that such scenarios are rare in MCU
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Fig. 5. CODAL stream interfaces.

1 class DataSink

2 {

3 public:

4 virtual int pullRequest () ;

5 b

6

7 class DataSource

8

9 public:
10 virtual ManagedBuffer pull();
11 virtual void connect(DataSink &sink);
12 B

1 CircuitPlayvground cplay;

2 SAMD2IDMAC dmac;

3 SAMD2IPDM microphone (cplay.io.microphoneData, cplay.io.microphoneClock,

dmac, 10000);

4 LevelDetector level(microphone.output, 70, 30);
5

6 void onLoud(DeviceEvent)

7 {

8 cplay.serial . printf ("LOUD\n” ) ;

9 }
10
11 int main ()
12 {
13 microphone.enable () ;
14 cplay . messageBus. listen (DEVICEID SYSTEM LEVEL DETECTOR,

LEVEL.THRESHOLD HIGH, onLoud) ;

15 1

Fig. 6. CODAL stream processing example
- a sound level detector.

applications, justifying this approach over a more complex garbage col-
lection scheme and its overhead.

4.4. Streams

Whilst some embedded systems applications only process discrete
data, many operate on data flows. Examples include digital signal pro-
cessing (DSP), audio recording/playback, and gesture and voice recog-
nition. CODAL defines a standardized mechanism to efficiently handle
data streams that can be then exported to higher level languages as
a data flow model. Following on from the Object Oriented approach
adopted by CODAL, data streams are modelled using two well defined
C++ abstract base classes - DataSource and DataSink, as defined in Fig. 5.
These two simple interfaces contain the minimal set of functionality to
enable simple, efficient, safe and extensible stream processing. As can
be seen, all data is conveyed using a managed type (ManagedBuffer).
This ensures that any device drivers that source streamed data or DSP
software or application code that process it need not be burdened with
the detail of memory management.

Any component capable of generating stream data (an upstream com-
ponent) implements the DataSource interface, and likewise a consumer
(downstream component) implements DataSink. A receiver driven ap-
proach to data streaming is adopted. DataSinks register with their up-
stream DataSource through an explict call to the connect method. When
data is subsequently generated by a DataSource, it then executes the
pullRequest() method on its downstream component to indicate that
data is available for processing, which can then be drained from the
DataSource through its pull() method. This receiver driven approach al-
lows for simple flow control to be implemented - placing the control
of precisely when and how processing takes place in the hands of the
application.

Components may be both a DataSource and a DataSink, allowing
the creation of a data flow graph of components. The CODAL runtime
contains reusable components that can be composed to undertake com-
mon operations. For example, analog to digital converter modules act
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as DataSources and digital to analag converter modules as DataSinks.
A Mixer component allows multiple DataSources to be aggregated into
one DataSink (with clear applications for audio processing). A LevelDe-
tector provides configurable smoothing and thresholding functionality
with asynchronous outputs reported through the CODAL MessageBus. A
DataStream provides user configurable first-in-first-out buffering func-
tionality, and a Synthesizer frequency and phase shifted datastreams
based on a user defined waveform template. For example, Fig. 6 il-
lustrates an event based, direct-memory-access enabled, asynchronous
sound level detector of a live data source from an attached microphone.

4.5. Device driver components

CODAL drivers abstract away the complexities of the underlying
hardware into reusable, extensible, easy-to-use components. For every
hardware component there is a corresponding software component that
encapsulates its behavior in a C++ object. CODAL has three types of
drivers:

1. A hardware agnostic abstract specification of a driver model (e.g. a
Button, or an Accelerometer). This is provided as a C++ base class.
The concrete implementation of the abstract driver model, which is
typically hardware specific. This is implemented as a subclass of a
driver model, such as a LIS3DH accelerometer, as manufactured by
ST Microelectronics.
. A high level driver that relies only on the interfaces specified in a
driver model (e.g. a gesture recognizer based on an Accelerometer
model).

2.

This approach brings the benefits of abstraction and reusability to
CODAL, without losing the hardware specific benefits seen in flat ab-
straction models where every MCU is made to look the same, even
though their capabilities are different (as in the Arduino and mbed APIs,
for example).

Finally, we group together the components of a physical device
to form a device model. This is a singleton C++ class that, through
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1 class CircuitPlayground public CodalDevice {

2 public:

3 MessageBus messageBus;

4 CPlayTimer timer ;

5 SAMD21Serial serial;

6 CircuitPlaygroundIO io;

7 Button buttonA ;

8 SAMD2112C i2c;

9 LIS3DH accelerometer ;
10 NonLinearAnalogSensor thermometer ;
11 AnalogSensor lightSensor ;
12

Fig. 7. Device model for the Adafruit CPX.

composition of device driver components, provides a configured repre-
sentation of the capabilities of a device. Such a model allows: an elegant
00 API for programming a device, and a static representation that forms
an ideal target for the MakeCode linker to bind high level STS interfaces
to low level optimized code.

An example device model for the CPX is shown in Fig. 7 for reference.

MakeCode is further supported by an annotated C++ library (Make-
Code wrappers) defining the mapping from CODAL to TypeScript and
Blockly. The use of MakeCode wrappers ensures that different Make-
Code targets that use CODAL share a common TypeScript and block API
vocabulary.®

5. UF2

The UF2 bootloader enables efficient, universal microcontroller pro-
gramming through a USB pen drive interface — no drivers are required,
as operating systems support pen drives out of the box. The UF2 boot-
loader builds upon the work of DAPLink [3], but offers a simpler imple-
mentation via a new flashing format, UF2.

DAPLink exposes a small virtual 512-byte block FAT file system
(VFS), with an empty file allocation table and root directory. When the
OS tries to read a block, DAPLink computes what should be there. Dur-
ing file system writes, DAPLink detects blocks of files in Intel HEX for-
mat [22], decodes them, and flashes the file’s contents into the target
microcontroller’s memory. Other file system writes are ignored.

DAPLink implements many heuristics to deal with quirks of FAT file
system implementations in various operating systems (order of writes,
various meta-data files that are created and need to be ignored, etc.).
However, we have found that the heuristics are fragile with respect to
operating system changes, which are not infrequent.

Our new file format, UF2, consists of one or more 512-byte self-
contained blocks (aligned to the block size of the VFS), removing the
need for the complex heuristics. The blocks have magic numbers, the
payload data to be written to flash, and the address where it should be
written. Thus, on every 512-byte write via the USB controller, the boot-
loader can quickly and easily check if the block being written is part of a
UF2 file (by comparing magic numbers) and if so, write it immediately
in a streaming fashion.

For simplicity, the 512-byte UF2 blocks usually contain 256 bytes of
payload data. While 50% density might seem low, the industry standard
16-byte-per-line HEX format has a density of around 35%. However, the
files are small by modern computer standards (under 1000k) and we
have not found the lower density to be a problem. On the MCU side, the
bottleneck there is speed of flash erase, not the USB bus (which reaches
1000k/s).

The minimal implementation of the UF2 bootloader consumes just 1—
2 kB of flash memory and less than 100 bytes of RAM, with some variability
due to the microcontroller instruction set and USB hardware interfaces
in use.

6 See https://github.com/microsoft/pxt-common-packages.
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6. Systems evaluation

Our platform has been actively deployed for over a year, bringing
the benefits of a safe programming environment for MCUs to hundreds
of thousands of active users. In this section we provide a broad, quan-
titative evaluation of the cost at which these benefits are realized. We
do this with several micro-benchmarks that give insight into the per-
formance of MakeCode and CODAL across the Uno, micro:bit, and CPX
devices. We break down results by layer (CODAL and MakeCode) to give
an insight into how each performs.

6.1. Benchmarks, devices, and methodology

To analyze the performance of our solution, we have written a suite
of programs to evaluate different aspects of MakeCode and CODAL on a
representative selection of real hardware devices. Throughout, we use
the C++ CODAL benchmarks as a baseline; the STS benchmarks show
the overhead added by MakeCode. These programs were written in both
C++ and STS, and evaluated on the three devices listed in Table 1: The
micro:bit (Nordic nRF51 MCU), the CPX (Atmel ATSAMD21 MCU), and
the Uno (Atmel ATmega MCU).

The Uno is the simplest of these devices, consisting of an 8-bit pro-
cessor running at 16 MHz, with only 2kB of RAM and 32kB of flash. The
micro:bit has a 32-bit Cortex-MO clocked at 16MHz, with 16kB RAM and
256kB of flash. The CPX is a 32-bit Cortex-MO +, which offers greater
energy efficiency and performance; it clocks at 48 MHz, has 32kB of
RAM and 256kB of flash. The Uno and micro:bit MakeCode targets use
the untagged compilation strategy, while the CPX target uses the tagged
strategy (see Section 3.3). The benchmarks are classified into two types,
each with their own methodology:

1. Performance Analysis: Tests that capture time taken to perform a
given operation. For these benchmarks, we toggle physical pins on
the device at key points in the test code. We then measure the time
to execute the operation, by using a calibrated oscilloscope observ-
ing these pins. This allows us to derive highly accurate real time
measurements without biasing the experiment.

. Memory Analysis: Tests that capture the RAM or FLASH footprint of
a certain operation. A map of memory is logged before and after the
execution of an operation, allowing us to compute the cost. A serial
terminal captures the output of these tests.

Note that memory and performance analysis are done in separate
runs to ensure logging does not affect time-related measurements.

6.2. Tight loop performance

To place the performance of MakeCode in context, we perform a
comparative evaluation of MakeCode against two state-of-the-art solu-
tions adopted by educators in the classroom, using native C++ as our
baseline. The two points of comparison are MicroPython [20], an imple-
mentation of Python for MCUs, and Espruino [45], an implementation
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Table 2

A comparison of execution speed between: native C++ with
CODAL; MakeCode compiled to native machine code; Make-
Code compiled to AVR VM; MicroPython; and Espruino. The
first line lists the C++ time, while subsequent lines are slow-
downs with respect to the C++ time. The 6.4x slowdown of
MakeCode VM compared to native MakeCode on the Uno is
compensated with 5x better code density.

UNO micro:bit CPX
CODAL 171ms 102ms 31ms
MakeCode 2.4x 2.1x 7.3x
MakeCode VM 15.3x - -
MicroPython - 101x 183x
Espruino - 1139x -

of JavaScript for MCUs. For the CPX, a fork of MicroPython known as
“CircuitPython” was used. Both MicroPython and Espruino use virtual
machine (VM) approaches.

To give an indicative general case execution time cost of each solu-
tion, we created a simple program that counts from 0 to 100,000 in a
tight loop in each solutions’ respective language; the results are shown
in Table 2. On AVR we count to 25,000 (to fit within a 16 bit int) and
scale up the results.

For MicroPython and Espruino on the micro:bit, the run is two or
more orders of magnitude slower than a native CODAL program. Make-
Code performs only 2x slower. The slowdown reflects the simple code
generator of our STS compiler. It should be noted that MakeCode for
the CPX uses the tagged approach, which allows for seamless runtime
switching to floating point numbers, resulting in a further 3x slowdown.
For both devices, we can observe that MakeCode outperforms both the
VM-based solutions of MicroPython and Espruino by at least an order of
magnitude.

MicroPython and similar environments cannot run on the Uno due
to flash and RAM size limitations. We also ran into these limitations,
and as a result, developed two compilation modes for AVR. One com-
piles STS to AVR machine code, and the other (MakeCode VM) generates
density-optimized byte code for a tiny (~500 bytes of code) interpreter.
The native strategy achieves code density of about 60.8 bytes per state-
ment, which translates into space for 150 lines of STS user code. The VM
achieves 12.3 bytes per statement allowing for about 800 lines. For com-
parison, the ARM Thumb code generator used in other targets achieves
37.5 bytes per statement, but due to the larger flash sizes we did not run
into space issues.

6.3. Context switch performance

To evaluate the performance of CODAL’s scheduler we conducted a
test that created two fibers, continuously swapped context, and mea-
sured the time taken to complete a context switch. We performed this
test in both STS and C++ and the resulting profiles can be seen in Fig. 8,
which breaks the context switch down into three phases: (1) CODAL, the
time it takes to perform a context switch in CODAL; (2) Stack, the time
taken to page out the MakeCode stack; and (3) MakeCode, the overhead
added by MakeCode.

From these results, we observe that context switches generally take
tens of microseconds. The cost of CODAL’s stack paging approach can
also be a significant, but not dominant cost. The cost of stack paging
would of course grow with stack depth. Fig. 9 profiles the time a context
switch takes with an increasing stack size across all three devices in
CODAL. This is similar to the previous test, except we placed bytes (in
powers of 2) on the stack of each fiber, starting from 64 and finishing at
1024. The difference in gradients, and ranges of values can be put down
to device capability. For instance, the Uno has an 8-bit word size, which
means more instructions are required to copy the stack, this results in a
steeper gradient than the other two devices. The vertical band indicates
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Fig. 9. Time taken to perform a context switch against stack size.

typical stack sizes for MakeCode programs based on a representative set
of examples.

6.4. Performance of asynchronous operations

To gauge the cost of asynchronous operations in CODAL, we tested
three commonly used code paths, designed to determine the efficiency
of CODAL’s fork-on-block Asynchronous Procedure Call (APC) mecha-
nism that underpins all event handlers in MakeCode and CODAL. We
measured the RAM and processor cost of: (1) creating a fiber; (2) han-
dling a non-blocking APC call; and (3) handling a blocking APC call. We
used the CPX for this experiment.

Non-blocking APC calls, the best case, have a small overhead of 32
bytes of RAM and 4.01 microseconds of processing time. Blocking APC
calls, the worst case, incur a large overhead of 204 bytes of RAM and
32.4 microseconds of processor time. Creating a fiber costs 136 bytes
of RAM and 35.4 microseconds of processing time. These results high-
light the performance gains of the opportunistic fork-on-block mecha-
nism over a naive approach that would execute every event handler in
a separate fiber.

6.5. Flash memory usage

MCUs make use of internal non-volatile FLASH memory to store pro-
gram code. Table 3 shows the per device flash consumption of each
software library used in the final MakeCode binary. To obtain these
numbers, we analyzed the final map file produced after compilation.
The ordering of the table aligns with the composition of the software
layer: MakeCode builds on CODAL which builds on the C++ standard
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Table 3
Flash consumption of a MakeCode binary (kB).
CPX micro:bit Uno
MakeCode 20.46 12.14 7.79
CODAL 29.85 34.35 13.7
Supporting Libraries 14.99 24.28 -
C++ Standard Library 43.14 24 1.03

Table 4
Static RAM consumption of a MakeCode binary (kB).
CPX micro:bit Uno
MakeCode 0.612 1.069 0.074
CODAL 0.369 0.214 0.156
Supporting Libraries 0.312 0.923 -
C++ Standard Library 0.161 0.149 0.074

library and supporting libraries. MakeCode and CODAL consume 108
kB of flash, whereas CircuitPython consumes 201 kB, MicroPython con-
sumes 228 kB, and Espruino consumes 142 kB of flash. This means that
users can write sizeable applications in MakeCode, without the worry
of running out of flash memory.

From the bottom up, the profile of the standard library changes dra-
matically for each device: The Uno has a very lightweight standard li-
brary; the micro:bit uses 64-bit integer operations (for timers) which
requires extra standard library functions; and the CPX requires software
floating point operations pulling in more standard library functions.

The size of CODAL and MakeCode scales linearly with the amount of
functionality a device has, due to the component oriented nature of CO-
DAL and transitively MakeCode. For instance, the Uno has few onboard
components when compared to the CPX and micro:bit. The modular
composition of CODAL allows us to support multiple devices with a va-
riety of feature sets, while maintaining the same API at the MakeCode
layer.

6.6. RAM memory usage

Table 4 shows the per device RAM consumption of each software
library used in the final MakeCode binary. To obtain these numbers,
we analyzed the final map file produced after compilation. At runtime,
MakeCode dynamically allocates additional memory: 1.56 kB for the
CPX, 560 bytes for the micro:bit, and 644 bytes for the Uno. We also can
see that in all cases, the RAM consumption of MakeCode and CODAL is
well within the RAM available of each device.

MakeCode and CODAL consume a small amount of resources in com-
parison: CircuitPython (a derivative of MicroPython) consumes 12.8 kB,
MicroPython consumes 9.5 kB, and Espruino consumes 5.3 kB of RAM.
On the micro:bit, the Bluetooth stack requires 8 kB of RAM to operate.
Due to MicroPython’s RAM consumption this means that Bluetooth is
inoperable. Comparatively, Espruino does enable the Bluetooth stack,
but users have just ~300 bytes available for their programs due to the
overhead incurred.

6.7. Compiling static typescript

During compilation, the entire STS program (including the STS run-
time) is passed to the TypeScript (TS) language service for parsing. Then,
only the remaining part of the program (after code shaking) is compiled
to native code. On a modern laptop, using Node.js, TS parsing and anal-
ysis takes about 0.1ms per statement, and MakeCode compilation to
native code takes about 1ms per statement. While the TS compiler has
been optimized for speed, MakeCode’s native compilation process has
not. For example, the CPX TS pass is dominated by compilation of the
device runtime and takes about 100ms, whereas the MakeCode pass typ-
ically only includes a small user program and a small bit of the runtime,
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resulting in less than 100ms. Thus, compilation times are under 200ms
for typical user programs of 100 lines or less.

6.8. Extensibility

Adding a new device in CODAL is trivial once a MCU has been ported.
The porting of a MCU is where we observe the largest development
overhead, as low-level implementations of drivers for 12C, Serial, and
SPI may have to be re-written. Due to CODAL’s abstraction model, once
low-level drivers have been implemented, drivers for higher level com-
ponents like Accelerometers (which depend on high-level interfaces for
low-level drivers) can be immediately adopted if hardware is present. A
similar technique is used in MakeCode for simulators.

7. User evaluation

In order to determine the overall usability of MakeCode and CODAL
for end users, we conducted a workshop to evaluate the experience of
novice programmers when using MakeCode and one of the supported
physical computing devices, the BBC micro:bit. We wanted to determine
how easily they engaged with the platform, and identify the challenges
they faced, specifically seeking answers to the following questions:

1. Visual Programming Language: How do novice users engage with the
block-based paradigm when applied to embedded computing? Do
novice users find it easier to create software using synchronous or
asynchronous paradigms (Fig. 10)?

. Programming Editor: Does the design of the editor introduce any ad-
ditional barriers for physical computing? Does the presence of an
interactive hardware simulator affect the success of participants?

. Physical Device: How do novice users engage with the physical device
during the development cycle?

7.1. Demographics

To help answer these questions, we ran a workshop with 50 partic-
ipants. Participants were over the age of 16, and encouraged to work
in a group size that was comfortable for them (commonly groups of 2),
with a leader completing the programming tasks. All were volunteers,
recruited through a public engagement event, groups were self-forming
and there was an even gender split. In total there were 30 groups, three
groups requested to be omitted, and 2 groups failed to fill out the ques-
tionnaire correctly; only valid groups are considered for analysis. Of the
lead programmers from each group, the majority (91%) had no or very
limited programming experience. One lead programmer had significant
prior experience.

7.2. Methodology

7.2.1. Workshop description

The workshop took 45 minutes. Participants were introduced to the
MakeCode environment in a short 5 minute presentation, which ex-
plained the Block language, and guided them through the creation of
a simple example program that scrolled text on the display, flashing the
final program to the micro:bit. Participants were then asked to com-
plete three physical computing programming tasks in an instrumented
MakeCode environment, and an optional questionnaire aiming to cap-
ture qualitative information. We also made a record of any questions
that were asked during the session. Participants were randomly allo-
cated to one of two versions of MakeCode to mitigate any layout bias
that may influence the blocks that the users chose. Version A had all
asynchronous (Fig. 10) blocks moved to the top of the toolbox, whereas
version B had all asynchronous blocks moved to the bottom of the tool-
box.

The programming tasks began simply, and advanced to controlling
a physical remote control vehicle using the radio interface for the final
task. The participants were given the following instructions:
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Fig. 10. Equivalent operations using asynchronous (left) or
synchronous (right) paradigms.

Editor version: A Sat Mar 11 2017 15:16:40 GMT+0000 (GMT)

Timestamp of current composition frame

Choose File [} user[B15qTd...ogram.jsor

Composition frame slider Current file

Fig. 11. MakeCode with the program reconstruction plugin (top). The slider will move through frames of program composition in the loaded log file.

1. Write a program that displays your name when you click button A.
(Hint look for a block in the editor that mentions buttons)

. Write a program that shows a winking smiley when you shake the
device.
(Hint look for a block in the editor that mentions shake)

. Write a program to drive this remote controlled car using Radio.
(Hint to get the car to move you need to send numbers using mi-
cro:bit radio in group number 52.)

The first task aimed to determine the paradigm groups implicitly
picked, and could be solved either synchronously or asynchronously
(Fig. 10). Participants were given no assistance and a strict time limit
of 11 minutes for the first task, to gauge how well users engaged with
the environment with minimal introduction. For the latter two tasks,
limited assistance was offered by the observers.

7.2.2. MakeCode instrumentation

Our primary data source was obtained from a custom version of
MakeCode that had increased logging, allowing us to capture mouse
movements and clicks, simulator interactions, and program composition
over time. Tracking of mouse movements was restricted to once every
25 milliseconds, and program composition was stored on every change
offering greater insights into how groups composed their programs.

To analyze program composition over time, we developed a new plu-
gin for MakeCode that enables step-by-step reconstruction of tracked
programs. MakeCode is built on Blockly [18], which offers a simple
XML export capability for portability; we exploit this feature for pro-
gram composition tracking. Upon every program change, we captured
the entire program XML generated by Blockly.

The plugin (Fig. 11) has a simple interface, showing date and time
information for the current composition frame, a slider to move through
the tracked frames of composition, and the currently selected file. We
used this tool to step through user programs and extract commonali-
ties between groups, gathering information on how far they progressed,
whether they completed the first task in the allotted time, and the com-
position of their programs including discarded and unused blocks.

Finally, analytics were added to MakeCode to capture engagements
with the simulator, allowing us to determine whether heavy usage of
the simulator correlated with participant progression.

7.3. Overall results

The following sections present the key findings grouped by research
question. They combine data from our three collection sources: Make-
Code analytics, qualitative data from questionnaires, and in-workshop
questions.
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For context, 51% of groups completed the first task within the time
limit and without assistance, 70% of our groups completed the second
task, and 30% completed the final radio task involving the remote con-
trolled car. 22% completed none of the tasks, of these, two groups did
not attempt any tasks. We analyzed those who did not attempt any tasks,
and from their logs we determined that one group curated programs that
were not relevant to the tasks, and the other did not make any attempt
to engage with the environment. All data is used to provide an indica-
tion of how the environment enabled groups to progress, and is not a
reflection on learning.

7.3.1. Results: visual programming language

Users Preferred Asynchronous Blocks. Asynchronous blocks are event-
driven blocks that execute when a condition is met, rather than a syn-
chronous, polling-based, approach (Fig. 10). Of the 51% that completed
the first task within the time limit, 43% used solely asynchronous blocks
to solve the task, 50% began with a synchronous approach but com-
pleted the task using asynchronous blocks, just 7% completed the task
using synchronous blocks only, and no participants attempted the task
asynchronously and finished synchronously. The participant who solved
the task synchronously completed the second task asynchronously, and
utilised asynchronous button blocks to send commands to the remote
control car in the final task. The version of the editor had no statistical
significance on either approach.

Blocks are Not Intuitive for All Users. Although 51% of groups managed
to complete the first task unsupervised and within the time limit, two
thirds of groups experienced difficulties when using the block language.
Fig. 12, right, shows the two most prolific examples we saw.

In Blocks, capped blocks are a way of protecting the user from creat-
ing invalid programming constructs or combinations of blocks that could
produce a confusing result. Groups commonly tried to connect these
capped blocks to other capped blocks, placing conditionals directly into
capped-blocks rather than logic or variable assignment blocks. With a
largely inexperienced audience who had a minimal introduction to the
environment, this shows that the simplicity of a “jigsaw” model was not
immediately intuitive to all of our groups. Feedback captured by ob-
servers reinforces this view, “Why can’t I plug ‘on shake’ (capped block)
into my forever block (capped)?”, and “Where do I plug this (condi-
tion) block into?”. In contrast, one participant “Thought the blocks in-
terconnect made it easy to see where things could be placed within the
program”.

7.3.2. Results: programming editor
Program Validation was Confusing. When a block is not connected to
any other blocks, or a duplicate event-based block handler is added,
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Fig. 12. Program Validation: (left) If there are duplicate event-based blocks
registered by the user, one is greyed out; in this case the bottom on shake event
handler duplicates the functionality of the top handler. (right, top) Groups tried
to connect capped (no connection dimple at the top) blocks to other capped
blocks; (right, bottom) and conditionals to capped blocks.
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Fig. 13. Likert ratings captured from our questionnaire.

the block is greyed out (Fig. 12, left). Given that 75% of groups dragged
blocks onto the canvas before connecting them to a valid block program-
ming construct, this feature caused confusion for groups. Two groups
asked why their blocks were greyed out as soon as they dragged them
onto the canvas. From looking at program composition, we see that four
groups ran into similar issues. The effect of this feature is exhibited in
Fig. 12 (left), where perfectly valid code is displayed as invalid causing
confusion when the program does not behave as expected.

The Simulator Improved Participant Progression. Responses to our ques-
tionnaire indicate (based on the mean rating in Fig. 13) that
participants-groups found simulations accurate and useful. Groups op-
tionally could give feedback on their experiences with the simulator: “It
was good, I didn’t use it much as I had the micro:bit and so wanted to see
the real effect. Helped to see if code was ok... ”. Two groups found the sim-
ulator constraining for the third task involving the remote control car,
commenting that there was “No ability to simulate the radio task”. One
participant had real difficulties understanding the simulator.

Based on the responses to the questionnaire (Fig. 13; Simulator Us-
age), we see that groups were unsure of how often they used the sim-
ulator. We therefore used the MakeCode analytics to understand how
many groups engaged with the simulator—where an engagement is de-
fined as a click of any button: Button A, Button B, or the Shake button.
The average number of engagements for all groups was u = 50.5 with a
variance of > = 22.4. To understand the source of this high variance, we
grouped participant-groups by their highest task completed and calcu-
lated the ratio of simulations to compiles (Fig. 14). One third of groups
who advanced no further than task one compiled far more than they
simulated, with the ratio inverted for those who advanced further than
task one. This indicates that those who used the simulator advanced
further than those who did not. We attribute the lack of testing via the
simulator to incomplete assimilation with the environment.
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Fig. 14. Simulations vs. compilations.

7.3.3. Results: physical device

Flashing the Device was Challenging. Questionnaire data indicates that
the flashing process was moderately difficult (Fig. 13; Ease of Flashing).
Qualitative data describes a similar story with participant-groups stating
that it “Took a while to understand the steps that had to be used” and “Once
shown the process it was straightforward but not obvious without being given
a hint”. Workshop assistants recorded 11 different questions from groups
throughout the workshop, with one group asking “I hit download but
my program is not running on my micro:bit, why?”. The flashing process
involves three steps: (1) in-browser compilation, a user hits compile in
the MakeCode editor; (2) the compiled program is downloaded to the
PC; and (3) the user saves or “drags” the compiled program onto the
micro:bit, which appears as a USB flash drive. This process was clearly
not simple and intuitive for our participants.

7.4. Discussion and implications

In this section we reflect on our results, providing implications for
the design of web-based physical computing. We begin by reflecting on
the visual programming language, following with recommendations for
improvements to the web-based programming editor generalisable to
web-based editors and other visual programming environments. Finally,
we reflect on how the move to the web impacts the user experience of
flashing the device.

7.4.1. Visual programming language

Use Asynchronous Blocks more Widely. Given the demographics, it’s in-
teresting to note that the majority completed the tasks using asyn-
chronous, event-based blocks. 93% of groups used event-based blocks
to complete the first task instead of their synchronous equivalents. A
possible reason for this is that the participants relied heavily on the
hints given alongside the tasks, resulting in them picking the first block
they saw, rather than the most intuitive block. However, we can con-
fidently say that inexperienced programmers found the asynchronous
blocks the simplest way to solve the task, reinforcing previous obser-
vations [30,41]. We recommend that any visual programming environ-
ment for physical computing offer asynchronous blocks to increase the
accessibility of physical computing for inexperienced users.

7.4.2. Programming editor

Program Validation Requires Explanation. Greying out disconnected
blocks caused confusion. 75% of groups chose to build programs by
dragging blocks from the toolbox to the canvas, dropping them, and
finally connecting them to the desired block. Using the canvas as an
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intermediary step caused confusion as the block was greyed out while
in the disconnected state. Further, when two identical handlers are
dragged onto the canvas one is greyed out—another form of program
validation. One can imagine the confusion this could cause an inexpe-
rienced programmer: why does the environment allow many ‘forever’
blocks but only one ‘on shake’ block? Why are blocks greyed out whilst
I am composing a program? Conversely, in Scratch, multiple event han-
dlers can be registered and executed sequentially, allowing users to
question why programs behave unexpectedly [29]. Each approach ul-
timately achieves the same goal, further user studies are required to
determine which approach is better. In the case of MakeCode, a simple
contextual explanation as to why a block was greyed out would suffi-
ciently reduce user confusion and better scaffold their experience.

Hardware Simulators Should be Included in all Environments. Simulating
the hardware was a positive experience for groups. We recommend that
future programming editors include the capability to simulate hardware,
reducing the need to flash the device and offering easy program val-
idation. We found that the groups who used the simulator more pro-
gressed further. There was one clear area for improvement from our
workshop: many projects involve external components or devices, the
inability to simulate these rendered the simulator useless when groups
were attempting the third task (the radio controlled car). This has wider
implications on other physical computing communities beyond the mi-
cro:bit, including the Arduino, where Circuit Labs, a circuit prototyping
solution, already simulates off-board components.

8. Related work
8.1. Novice programming environments

Arduino [39] is an environment for programming microcontrollers,
aimed at novices. However, its C++ based APIs introduces barriers for
novice programmers [10]. Scratch [36] is a widely adopted, event-based
visual programming environment designed to introduce novice pro-
grammers to computer science concepts. Extensions enable the program-
ming of physical devices with Scratch. However, devices require con-
stant tethered connections to operate, restricting potential projects [16].
ArduBlock [2] brings visual programming to the Arduino, but it lacks
the event-based blocks Scratch users are familiar with.

There are well-known benefits to using such visual programming lan-
guages: a simpler programming vocabulary, lower cognitive load, and
easy assembly, making program composition less error prone [9]. Prior
work in this area focuses on evaluating the learning of participants us-
ing Scratch, rather than the usability of the language or ecosystem. Fur-
thermore, prior studies are longitudinal, evaluating the language over
a number of sessions, hence, participants are experienced with the lan-
guage by the end of the study and do not capture the learning curve
involved [24,46].

Event-based programming is present in Scratch, and it has been
noted that it is used preferentially by novice users [29,30,41]. In ad-
dition, Fraser provides valuable reflections on learnings from the devel-
opment of Blockly [19]. We observe the same preference towards event
based blocks, and offer reflections on different design decisions new en-
vironments are taking using Blockly.

With the environments above, additional software must be installed
— this creates barriers for novice users in restrictive environments [14].
MakeCode and CODAL require no installation to support a diverse user
base and support event-based higher-level languages to help beginners get
a head start in the world of the microcontroller.

8.2. Hardware simulation
Some programming environments for physical computing include

hardware simulators for use without a device in order to increase adop-
tion and allow for easy debugging and testing before deploying to a real-
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world device [12,13,21,34,38]; circuit labs’ even simulates off-board
components. However, simulations in existing literature involve hard-
ware register simulation rather than real-time, visual simulation of the
device, resulting in a gap in our understanding of how interaction-level
simulators are used [23,25].

8.3. Virtual machine-based languages

Recently, virtual machines supporting most of the semantics of
higher level languages like JavaScript, Java, and Python, have been
ported to 32-bit microcontrollers by maker communities [16]. Examples
include: MicroPython [20], CircuitPython, and Espruino [45]. These
VMs consume a large amount of RAM and flash memory, and run sig-
nificantly slower than native languages.

The research community has worked to bring higher level languages
to microcontrollers [26,40,44]. Rather than running a full-featured VM,
others enable higher level languages to run efficiently by stripping
out advanced language features, in favour of efficient, native execu-
tion [43]. Comparing these solutions to our solution is challenging due
to a misalignment in evaluation metries and microcontrollers. For ex-
ample, the PICOBit uses an 8-bit MCU, and evaluates the cost of a VM,
without the cost of a runtime environment. Simply accounting for a 32-
bit MCU in this case, results in factor of 4 multiplication of most metrics.

Our approach bears most similarity to [43], where we compile higher
level languages to an optimized, event-driven C++ runtime (CODAL).

8.4. Embedded runtime environments

Arduino [39] is an example of a simple platform where the devel-
oper uses high-level APIs to control hardware; there is no scheduler and
memory management is discouraged, with a heavy emphasis on the use
of global variables.

TinyOS [27], Contiki [17], RIOT OS [7], Mynewt [4], mbed OS [6],
and Zephyr [5] are RTOS solutions known widely in the systems com-
munity. The majority focus on the networking features of sensor based
devices and commonly adopt a preemptive scheduling model, which
leads to competition over resources resolved using locks and condition
synchronization primitives. Contiki has a cooperative scheduler but uses
proto-threads to store thread context — local variables are not allowed
as the context of the stack is not stored.

Although the platforms above are widely used by C/C++ develop-
ers, none of these existing solutions align well with the programming
paradigms seen in higher level languages. CODAL bridges the semantic
gap between the higher level language and the microcontroller, offering ap-
propriate abstractions and higher level primitives written natively in
C++.

8.5. Flashing microcontrollers

There are two common ways to transfer a program to the flash of a
microcontroller: for embedded developers, a specialized debugger chip;
for hobbyists, a custom serial protocol [1]. Both approaches require op-
erating system drivers. ARM’s mbed platform provides DAPLink [3],
firmware that presents itself to an external computer as a USB pen drive.
DAPLink exposes a virtual file system that caters for normal file sys-
tem behaviour and handles the decoding of Intel HEX files [22] — the
firmware consumes 66 kB of flash and 13 kB RAM. UF2 contributes a
new file format that greatly simplifies the virtual file system approach,
reducing complexity of the firmware and code size.

9. Conclusion

We have presented MakeCode: a no installation, web-based pro-
gramming environment, that supports novice programmers with block-

7 https://circuits.io/lab.
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based and text-based higher-level languages, and compiles programs in the
browser. So as to not compromise the spatial efficiency of the micro-
controller, we created CODAL: a C++ runtime that bridges the semantic
gap between higher level languages in MakeCode and C++. To trans-
fer programs compiled by MakeCode to the microcontroller without the
installation of any drivers, we created UF2: a new bootloader and file
format that enables the simplified, driverless programming of microcon-
trollers. Combined, our approach to running higher level languages on
microcontrollers is up to 50x more performant compared to other ap-
proaches. Further, by using modern tooling, and higher level languages,
our approach lowers the barrier to entry for microcontroller program-
ming.

We have also presented a user evaluation of MakeCode and CODAL
via a structured workshop under controlled conditions. This evaluation
showed that novice users preferred, and were much more successful,
when using simplified asynchronous programming constructs than they
were when using synchronous constructs. It also showed that novice pro-
grammers typically benefit from a device simulator, but also revealed
that this simulator needs to model the whole system, not just a mi-
crocontroller. Finally, it highlighted that the simplified, universal pro-
gramming experience offered by UF2 still creates a barrier to entry for
users, and further work is required to make this process fully transpar-
ent. These conclusions further reinforce the informal observations we
have seen from the user community, where hundreds of thousands of
MakeCode programs are written every month (at the time of writing).
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Appendix A. Artifact appendix

Submission and reviewing guidelines
http://cTuning.org/ae/submission.html.

and methodology:

A.1. Abstract

This artifact allows others to reproduce the results seen in this paper
for MakeCode and CODAL, using the BBC micro:bit. The artifact contains
an offline build environment for CODAL and MakeCode, allowing eval-
uators to test and build programs locally. In addition, we also provide
espruino and micropython virtual machines to further increase repeata-
bility of our results. Evaluators should download the virtual machine
containing all pre-requisite tools, and use an oscilloscope to observe
wave forms (used for timing) generated by the micro:bit, and a serial
terminal to observe results reported from the micro:bit over serial.

A.2. Artifact check-list (meta-information)

Program: MakeCode & CODAL

Compilation: arm-none-eabi-gcc

Binary: espruino, and micropython binaries included; others com-
piled during testing

Run-time environment: CODAL

Hardware: BBC micro:bit

Output: Waveforms, and serial output

Publicly available?: Yes
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» Artifacts publicly available?: Yes
« Artifacts functional?: Yes

« Artifacts reusable?: Yes

» Results validated?: Yes

A.3. Description

A.3.1. How delivered

The artifact is available hosted on GitHub: https://lancaster-
university.github.io/Ictes-artefact-evaluation/ Alternately, the latest
release is available for download: https://doi.org/10.5281/zenodo.
1242627 Finally, a virtual machine, based on debian, containing
all the required software to reproduce our results is available here:
https://doi.org/10.5281/zenodo.1242605.

A.3.2. Hardware dependencies
* A BBC micro:bit
 An oscilloscope
» A computer capable of running a virtual machine

A.3.3. Software dependencies
+ A virtual machine obtained from the URL above.
A serial terminal.

A.4. Installation

Use virtual box to install the image located at: https://drive.
google.com/open?id=1nxiorz6NRqjen89G59RCOEMkIqgAyaUv7  and
the VirtualBox extension pack: https://www.virtualbox.org/wiki/
Downloads.

A.5. Experiment workflow

Tests generally follow the following sequence of steps:

. Perform small program modifications.

. Compile the program.

. Transfer program to the micro:bit (flashing).

. Observe either a waveform generated by the micro:bit using an os-
cilloscope, or serial output from the micro:bit using a serial program.

AW N =

A.6. Evaluation and expected result

We expect the results to be the same as those reported in the paper.
The observed waveforms may differ in time due to different compilers,
oscilloscopes, and oscilloscope calibration.

A.7. Experiment customization

All tests provided have a clear set of corresponding instructions that
evaluators should follow to observe the same results. Any steps involving
customisation have been minimised.

A.8. Notes

The virtual machine contains a folder named ‘evaluators’ which is
placed in the home directory of the Ictes user. The username for the
virtual machine is: Ictes and the password is: [ctes2018. To become super
user, type su in a terminal, and enter the same password (lctes2018).

Once logged in, and in the ‘evaluators’ directory, you can view
the tests as markdown files in the ‘docs’ directory. Alternately, these
markdown documents can also be viewed on the web by running ‘mk-
docs serve’ in the evaluators folder, or browsing to:https://lancaster-
university.github.io/lctes-artefact-evaluation/ Which is a pre-built, and
hosted version produced from the same source.
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We recommend that you add the micro:bit usb device using the ma-
chine settings tab in virtual box as shown in the image below:

Ictes-tests - Ports

General System Display Storage Audio Network Ports

£3 Serial Ports ? USB ‘
Enable USB Controller

USB 1.1 (OHCI) Controller
USB 2.0 (EHCI) Controller
© USB 3.0 (xHCI) Controller

USB Device Filters

'v| MBED CMSIS-DAP [1000]

- EHE e @ >

Shared Folders

Journal of Systems Architecture 98 (2019) 468-483

=

User Interface

oo

Cancel

We also have a convenience script for mounting a shared folder be-
tween the host and the vm. Simply create a shared folder named ‘Ictes-
vm-dir’ and run ‘sh mount.sh’ (contained in evaluators) as a super user
to mount the shared folder to vb-share (also contained in evaluators).
Shared folder creation in VirtualBox is pictured below:

Ictes-tests - Shared Folders

- H =

d % & P - E
[
General System Display Storage Audio Network Ports Shared Folders User Interface
Shared Folders —
| Folder Path: James/Desktop/ictes-vm-dir i ,
Name Pa \uto-mount Access ﬁ
Machine Folders Folder Name: Ictes-vm-dir
v Transient Folders ™s]
Ictes-vm-dir /U Read-only res Full
2 Auto-mount i
Make Permanent
cancel (T
Cancel OK
Supplementary material References

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.sysarc.2019.05.005.
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