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Abstract—Brain-computer interface (BCI) systems offer a non-
verbal and covert way for humans to interact with a machine.
They are designed to interpret a user’s brain state that can
be translated into action or for other communication purposes.
This study investigates the feasibility of developing a hands- and
eyes-free BCI system based on auditory and tactile attention.
Users were presented with multiple simultaneous streams of
auditory or tactile stimuli, and were directed to detect a pattern
in one particular stream. We applied a linear classifier to decode
the stream-tracking attention from the EEG signal. The results
showed that the proposed BCI system could capture attention
from most study participants using multisensory inputs, and
showed potential in transfer learning across multiple sessions.

Index Terms—Attention, auditory, BCI, EEG, tactile

I. INTRODUCTION

RAIN-COMPUTER interface (BCI) systems offer a non-

verbal and covert way for humans to communicate a con-
trol signal to a computer. Among the neuroimaging modalities
that are currently available, electroencephalography (EEG) has
become the most popular choice for BCI applications due to
its noninvasiveness, mobility, and low cost [1]. EEG monitors
brain activity through sampling the electrical potential along
the scalp at a very high rate. The high temporal resolution of
EEG oscillations allows capturing certain neural signatures of
a brain state or mental efforts, which can be used to decode
users’ intention.

Many successful BCI systems rely on external stimulation,
especially with visual stimuli. For example, visual P300 is
a well-studied event-related potential (ERP) that is elicited
as a response to infrequent events, or “oddballs.” It usually
happens around 300 ms after the onset of the event, and
could be captured by sensors in the parietal area [1]. Another
popular neural signature of visual stimuli is the steady-state
visual evoked potential (SSVEP), which is the response in
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the visual cortex to a constant-frequency flickering stimulus.
These vision-based paradigms have high efficiency for trans-
mitting bits to a computer, which can be quantified by their
information transfer rate (ITR). Previous studies yielded an
ITR of 20.26 bits/min using P300 [2], or 30.10 bits/min using
SSVEP [3].

A major disadvantage of using visual stimuli for BCI is
the level of visual attention required to complete the task
in the presence of competing stimuli and the fact that it
could interfere with competing tasks (e.g., walking, driving)
when vision is primarily involved. It also requires correctable
vision and voluntary gaze control, making it inaccessible to
users with severe visual impairment or locked-in-syndrome.
In view of this, previous studies have focused on developing
an attention-based BCI system using auditory or tactile stimuli.
They used modulated signals with a constant carrier frequency
as the input, usually in multiple streams of spatial sound [4] or
vibration on fingers [5]. Attention was decoded from auditory
steady-state response (ASSR) or steady-state somatosensory
evoked potential (SSSEP), where the EEG signal is locked to
the modulation frequency of the attended stream. However,
these sinusoidal carriers with a constant frequency were per-
ceived by users to be annoying or fatiguing [6]. There were
also no behavioral metrics to verify the attentional state of
the participants. Separately, another recent work on auditory
selective attention revealed that lateralized alpha-band (8-
12 Hz) power could be a more effective neural signature than
ASSR for use in BCI [7]. This is in line with previous studies
that have shown an important role of parietal alpha activity in
attention to auditory stimuli [8], [9], even while walking [10].

The current study proposes a user-friendly, attention-based
BCI paradigm using auditory and tactile stimuli. A task was
embedded in the stimuli, which demanded attentional focus
from the participants. The auditory stimuli were spatialized
melodies, which sound more pleasant and are easier to attend
to than monotones. The tactile stimuli were pulsed vibrations
applied to the user’s wrists, so that their hands were freed for
other hypothetical concurrent work. Both the melodies and
the vibrations were amplitude-modulated, which might induce



steady-state responses. Since various neural signatures (e.g.,
ASSR, SSSEP, lateralized alpha and gamma activity) could be
expected from the EEG signal, the multisensory attention was
decoded by an individualized linear model with full spectral
information (from alpha to gamma band). The model’s ability
in transfer learning was also evaluated through recording a
subset of participants across multiple sessions.

II. METHOD
A. Participants

Twelve adults (32.2 4 7.4 years old, 3 female) volunteered
to participate in this study. Eleven participants were novel to
BCI upon recruitment, among which seven had no experience
with EEG experiments. No participants reported known history
of neurological disorder or hearing loss.

B. Experiment

Before the experiment started, the participants were asked
to sit comfortably in front of a computer, read the instructions
from the screen, and familiarized themselves with the stimuli.
The experiment consisted of 3 blocks using auditory stimuli, 3
blocks using tactile stimuli, and 3 blocks using both auditory
and tactile stimuli simultaneously (mixed). At the beginning of
each block, a text message (“audio”, “tactile” or “mixed”) was
presented in the center of the screen, indicating the sensory
modality about to be stimulated. The order of the blocks was
randomized for each participant.

The experiment for audio blocks was adapted from a previ-
ous study on auditory selective attention [11]. Two streams of
modulated signals were used as stimuli, with one presented to
the left ear, and the other to the right ear. The audio signals
were delivered through a pair of MaximalPower RHF 617-1N
earpieces which transmit sound through acoustic tubes, thus
reducing possible electromagnetic interference with the EEG
signal. Each stream had multiple standard (S), high-pitched
(H) and low-pitched notes (L). Each note contained six har-
monics of the fundamental frequency (f0), making it sound
more natural than a single sinusoid. The configurations of
the two streams are summarized in Table I. The left stream
was formed by 9 repetitions of 400-ms notes, among which
the first five were always standard (Fig. la). The fO of the
last four notes determined whether the melodic pattern of the
stream was “rising” (- - --S-H-H-H-H), “falling” (- - --S-L-L-L-
L) or “zig-zag” (- - --S-H-H-S-S). Similarly, the right stream
was formed by 12 repetitions of 300-ms notes, with the first
five always being standard. The melodic pattern of this stream
could be “rising” (- - --S-H-H-H-H-- - -), “falling” (- - --S-L-L-
L-L---+), or “zig-zag” (- - --S-H-H-H-S-- - -), depending on the
fO of the last seven notes. The two streams always started at
the same time and were played back simultaneously.

There were 24 trials in each audio block. At the beginning
of each trial, a visual cue (VC) was shown on the screen to
direct the participant’s attention to the left stream, right stream
or neither of the two (Fig. 1c). The cue was replaced by a white
fixation dot after 1 second, and two streams of melodies started
to play 0.5 second later. The participants were asked to identify
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Fig. 1. TIllustration of (a) four scenarios of left and right sound streams in

an audio block; (b) two scenarios of left and right vibration streams in a
tactile block; (c) event sequence in one trial; (d) photograph illustrating the
experimental setup.

TABLE 1
CONFIGURATIONS OF SOUND STREAMS

Stream | Length Modulation Fundamental frequency (Hz)
(ms) frequency (Hz) | Low | Standard High
Left 400 37 703 740 777
Right 300 44 396 440 484

the melodic pattern of the attended stream and answer with
the keyboard after the fixation dot turned blue. Visual feedback
at the end of each trial indicated whether they identified the
melodic pattern correctly (green dot) or incorrectly (red dot).
The average behavioral performance was shown at the end of
each block. The inter-trial interval was set to 2 seconds.

The design of the tactile experiment was analogous to that of
the auditory one. The tactile stimuli consisted of two streams
of vibration which were applied separately to the left and right
wrist of the participant. The streams were rendered through
two coin-type loudspeakers (DAEX19CT-4, Dayton Audio)
taped to the participant’s wrists (Fig. 1d). Similar to the audio
blocks, modulated signals in the form of pulse trains were used
for both streams. Their configurations are shown in Table II.



TABLE II
CONFIGURATIONS OF VIBRATION STREAMS

Stream | Length Modulation Carrier frequency (Hz)
(ms) frequency (Hz) | Standard Oddball
Left 400 27 120 210
Right 300 17 120 210

The modulation and the carrier frequencies were carefully
selected through piloting, so that the participants could feel,
but not hear the vibration. Unlike in the audio blocks, where
there were three types of notes (S, H and L), there were only
two types of vibration pulses in tactile blocks, standard (S)
and oddball (O). The reason behind this difference is that
though most participants could perceive a change in the tactile
carrier frequency, they were unable to identify whether it was
increasing or decreasing relative to S. Hence, a single oddball
condition was the only choice for the tactile experiment. The
design of the two spatially separated vibration streams was
very similar to that of the sound streams (Fig. 1b). The first
five pulses in the left stream were always standard, and the
last four could form a “switch” pattern (- - --S-O-O-0-0O) or a
“zig-zag” pattern (- - --S-O-O-S-S). The first five pulses in the
right stream were always standard, and the last seven could
form a “switch” (- - --S-O-O-O-O-- - -) or a “zig-zag” (- - --
S-0O-0-0O-S-- - -) pattern. There were 24 trials in each tactile
block. In analogy to the audio condition, the participants were
asked to identify the vibration pattern in the attended stream
and respond with the keyboard.

In multisensory (“mixed”) blocks, the streams of sound
and vibration that were used in the audio and the tactile
blocks were played concurrently. The melodic pattern and
the vibration pattern of the streams on the same side of the
participant were matched. For example, a “rising” or “falling”
left sound stream was matched to a “switch” left vibration
stream; a “zig-zag” right sound stream was matched to a “zig-
zag” right vibration stream. Since the notes and pulses on the
same side had the same length, when the two streams were
played simultaneously, the onset of the frequency change for
the two sensory modalities on the same side was synchronized.
The task was the same as the one for the audio blocks, where
the participants were asked to identify the melodic pattern of
the attended stream.

The user interface for all tasks was created in MATLAB.
During the experiment, EEG signals were collected using a
wireless, gel-based 24-channel system (mBrainTrain Smart-
ing), at a sampling of 500 Hz.

C. EEG processing

The EEG signals were processed using EEGLAB [12]
functions and custom MATLAB scripts. The signals were
first band-pass filtered by a finite-impulse-response bandpass
filter with cut-off frequencies at 0.1 Hz and 50 Hz. After
re-referencing to the common average, an adaptive mixture
independent component analysis (AMICA) [13] method was
used to separate noise and artifact components from the

signals. An automatic EEG artifact detector, ADJUST [14],
was then used to select and remove components representing
eye blinks and movement. On average, 3.08+£1.67 components
were removed from each participant.

The continuous EEG data were then segmented into epochs
for further analysis. Each epoch contained data within 500 ms
before and 3600 ms after the stimulus onset of each trial.
The 216 epochs (9 blocks x 24 trials/block) were then divided
into 9 conditions depending on their sensory modality (au-
dio/tactile/mixed) and attention type (attend left/attend right/no
attention). The EEG data were further cleaned by removing tri-
als with extreme values, which might represent random noise
or strong motion artifacts. Trials with peak values beyond
three standard deviations from their conditional average were
removed from the pool. On average, 21.54 4+ 1.62 trials per
condition remained for each participant.

D. Feature extraction and classification

A participant-specific linear discriminant analysis (LDA)
model was used to decode attention type (left, right or no
attention) from single-trial EEG data within each one of the
three sensory modalities (audio, tactile or mixed). Spectral
information of each epoch, in the form of the magnitude of
its Fast Fourier Transform (FFT) coefficients (8 - 50 Hz), was
used as the feature to train and test the model. The FFT was
calculated using a 3-second sliding window with 90% overlap.
Since an epoch (4.1 seconds) was longer than the FFT window
length, multiple samples were drawn from each trial, which
served well for the purpose of data augmentation. Features
of multiple channels were concatenated into a single vector.
Its dimensionality was then reduced by principal component
analysis (PCA) retaining 99% of the variance.

The accuracy of each 3-way classification was derived from
a 10-fold cross-validation (1000 repetition). To prevent infor-
mation leakage, trials were divided into training and testing
sets before data augmentation. The classification of one trial
was done by averaging the sample-level posterior probabilities
of all testing samples that belonged to that trial, and choosing
the one with the highest probability as the decoding output.

E. Feature weight estimation

In order to verify whether the decoding was based on neuro-
logically relevant factors, a post-hoc feature weight estimation
was run using neighbourhood components analysis (NCA). It
estimated the weight of each feature dimension. The feature
before PCA was used for this analysis, and each estimated
weight represented the importance of one frequency bin at
one particular channel.

F. Cross-session validation

In order to evaluate the transfer learning ability of the
proposed BCI system, three participants were invited back to
repeat the exact experiment one week after their first attempt.
They were chosen based on their decoding score from Session
1 — one with the highest score (participant 72, >70%), one
around the average (participant 45, ~60%), and one around the



TABLE III
DECODING ACCURACY AND INFORMATION TRANSFER RATE (ITR)

Modality | Average | Average ITR | Best ITR
decoding (bits/min) (bits/min)
Audio 54.18% 1.90 13.69
Tactile 60.87% 3.37 18.27
Mixed 58.02% 2.69 11.57

chance level (participant 78, ~40%). Classification was first
done using the within-session decoding method as described
above, i.e., training and testing an LDA model using the data
only from Session 2. A subsequent cross-session decoding was
conducted by training a model with data from one session,
and having it tested on another. The cross-session decoding
result was compared to that of the within-session decoding to
evaluate the model’s ability to generalize.

III. RESULTS
A. Attention decoding

The absolute chance level of a 3-way decoding is 33.33%.
However, studies on brain signal classification, like the current
one, are generally susceptible to a high chance of false
positives due to small sample size. To tackle this problem,
Combrisson and Jerbi [15] suggested calculating the chance
level as a function of sample size, number of classes, and the
desired confidence interval based on a binomial cumulative
distribution. Using this method, the significant chance level in
this study is corrected to 43.06% (p=0.05).

The decoding accuracy of most participants exceeded the
corrected chance level, despite the existence of substantial
individual differences (Fig. 2a). EEG of 4 participants were not
significantly classifiable in at least one sensory modality, while
3 participants’ decoding was over 70% in at least two sensory
modalities. The highest decoding accuracy for audio, tactile
and mixed conditions were 87.72%, 95.32% and 83.63%,
respectively. Their equivalent ITRs are shown in Table III.
Within the three types of sensory modalities, tactile conditions
had the highest average decoding accuracy (Table III), which is
significantly higher than that of audio conditions (p=0.0348).

B. Behavioral performance

Most participants could identify the melodic patterns with
high accuracy for the audio (92.53%=+9.10%) and the mixed
(93.92%47.91%) conditions (Fig. 3). Out of the 12 partici-
pants, 6 completed the audio or the mixed task with a perfect
score. The tactile task appeared to be the most difficult, with a
behavioral performance (65.28%=+16.89%) significantly lower
than that of the other two sensory modalities (p<0.001).
Only one participant completed the tactile task with more
than 90% correct. One interesting observation is that the
behavioral performance in tactile blocks seemed to divide the
participants into two subgroups — one with a performance
score above 75% (n=5), and one below (n=7). The behavioral
results of these subgroups in other sensory modalities were
not separable.
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Fig. 2. (a) The decoding accuracy of each participant in the order of high to
low average score. (b) The decoding accuracy grouped by sensory modality.
Each line represents a participant. The lines and labels are color-coded, where
a warmer color denotes a higher average decoding score.
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Fig. 3. The behavioral results of all participants performing the pattern
identification task in each sensory modality. Each line represents a participant.
The lines are color-coded by the participant’s average decoding accuracy
(same as in Fig. 2).

C. Behavioral correlate

Despite the fact that the highest decoding score and the
worst behavioral performance both happened in tactile blocks,
there was no significant correlation between these factors
across subjects (Fig 4). Neither a linear nor a quadratic
function could fit all the data in tactile blocks with high
confidence. However, a subgroup analysis revealed that the
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Fig. 4. Correlation between behavioral performance and attention decoding.
Each circle or triangle represents a participant whose behavioral performance
in tactile blocks was blow or above 70%, respectively. The circles and triangles

are color-coded by the participant’s average decoding accuracy (same as in
Fig. 2).

participants with a high behavioral score in tactile task (>70%)
had a linear behavioral correlate with their decoding score in
all sensory conditions. This relationship was not seen in the
other subgroup with low behavioral scores in tactile task.

D. Feature weight

The estimated feature weights of 4 participants with good
decoding scores are shown in Fig. 5. Surprisingly, high weights
are not associated with any of the modulation frequencies as in
an ASSR/SSSEP feature (dashed lines). Instead, they appear
mostly in alpha (8 — 12 Hz) and gamma bands (>30 Hz) in
these participants (shaded regions). Topographic maps of max-
imum feature weights in alpha band reveal dominant patterns
in the parietal and occipital channels, especially in decoding
tactile attention (Fig. 6). For gamma band feature weights, the

dominant patterns reside in the frontal and temporal channels.
(Fig. 7).
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Fig. 5. Estimated feature weights for participant (a) 72 (b) 76 (c) 33 (d) 45.
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Fig. 7. Topographic maps of maximum feature weights in gamma band for
participant (a) 72 (b) 33.

E. Cross-session validation

Three participants were invited to repeat the experiment for
cross-session validation. The decoding scores of participant
45 and 78 from Session 2 were in line with their results from
Session 1 (Fig. 8). The scores of participant 88 dropped from
the first session, but still remained high in all three modalities.
Notably, the cross-session validation of all three participants
stays in the same range as their within-session decoding.
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Fig. 8. Decoding result of the cross-session validation analysis

IV. DISCUSSION
A. Transmission efficiency

The efficiency of the proposed BCI system is on par
with previous works. The average ITR derived from audio



blocks (1.90 bits/min) was comparable to previous studies
on ASSR-based BClIs [6], [16]. The average ITR in tactile
blocks outperformed the results of previous BCI designs with
vibrotactile actuators attached to the user’s thumb (~1.19
bits/min, calculated from the reported accuracy) [5], or five
fingers (1.2 bits/min) [17]. A recent study reported a higher
ITR (4.9 bits/min), but electrical stimulation on four fingers
was needed [18]. Promisingly, the highest ITR achieved in
the tactile condition was comparable to that of some vision-
based BCI systems previously reported [19]. There is great
potential in improving the decoding results with the current
dataset. For example, the pattern identification task used in
this experiment is not dissimilar to detecting oddball events.
One possible direction is to combine a P300 feature into the
current one to improve decoding accuracy.

B. Decoding based on spatial attention

This study used modulated signals as the stimuli. We ex-
pected that attention would enhance the neural representation
of the steady-state response of the modulation. Instead, the
high feature weights in parietal alpha and temporal gamma
indicated that spatial attention was the dominating factor of
attention decoding in this study.

Steady-state responses played a less important role in this
BCI design than in a typical ASSR/SSSEP-based BCI system.
One explanation for such difference is the use of discrete
stimuli. The pulses might have been processed by the brain
as individual events instead of a continuous stream, so the
brain never truly entered a steady state during the experiment.
Using continuous stimuli, such as natural speech, might help
enhance the representation of steady-state response in EEG.

C. Transfer learning

The cross-session validation results were comparable to
their corresponding within-session results. It indicates that
the participants might have adopted a similar strategy to
focus even on different days. The modest drop in some
participants might be due to a slightly different EEG cap
placement between sessions. This result demonstrates some
transfer learning ability in the proposed BCI system, showing
potential in improving the model through multiple training
sessions [20].

V. CONCLUSIONS

The current study proposed a new BCI system based on au-
ditory and tactile attention. It yielded an efficiency comparable
to or even higher than the existing BCI paradigms, without
engaging the user’s hands or eyes. The highest efficiency
achieved in the tactile condition was close to a visual-based
BCI. The system also demonstrated certain transfer learning
ability.
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