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interpretations to be related back to classical genomic principles.
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Lab Theme: Dissectung Phenotypic Variation

Total Phenotypic Variation

100%




Lab Theme: Dissectung Phenotypic Variation

* The phenotypic variance is
made up of genetic and
environmental effects.

Environmental
40%

Genetic
60%




Lab Theme: Dissecting Phenotypic Variation

* The phenotypic variance is
made up of genetic and

environmental effects. Nonlinear

20% :
* Genotypic variation can be Environmental

dissected into additive 40%
effects and nonlinear
interactions.




Modeling Variation across Shapes
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Phylogeny of Darwin’s Finch Beaks Fossil Classification

[Gould (1977), Ontogeny and Phylogeny] [Boyer et al. (2011), PNAS]
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Presentation Outline

Part I: Previous Work with Shapes in Statistics
History of Comparing Shapes
Topological Summary Statistics

Prediction-Driven Application in Radiomics




Presentation Qutline

* Part I: Previous Work with Shapes in Statistics
History of Comparing Shapes
Topological Summary Statistics

Prediction-Driven Application in Radiomics

Part II: SINATRA Pipeline for Variable Selection with 3D Shapes
- Algorithmic Overview
- Entropy and RelATive cEntrality (RATE) Measures
Reconstruction and Visualization of Enrichment

- Simulations and Real Data Classification of Shapes




History of Shape Statstics

Classical shape statistics represented 3D shapes as user-defined
landmark points placed on the shape.

Methods that incorporated information of 3D structure simply did
not exist.

[Mitterocker and Gunz (2002), | Phys Anthropol]



Classic Shape Comparisons

- Recent methods generate (semi-)automatically defined landmark
points and bypass the variability caused by user-specifications.

- Application: Biological Morphometrics

[Boyer et al. (2011), PNAS ; Gao et al. (2016), Anat Rec (Hoboken)]



Classic Shape Comparisons

Collect landmarks and compare shapes via some distance metric.

Example: Procrustes Distance
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Classic Shape Comparisons

- Recent methods generate (semi-)automatically defined landmark
points and bypass the variability caused by user-specifications.

- Application: Biological Morphometrics

[Boyer et al. (2011), PNAS ; Gao et al. (2016), Anat Rec (Hoboken)]



[ssues with Landmark-Based Methods

- Current methods for geometric-morphometrics are currently limited
to simple pairwise comparisons and often rely on expert-derived
landmarks (e.g. Gao et al. (2016), Anat Rec (Hoboken)).

Some analyses require specification of a metric, which is not always
a straightforward task.




Shape Representations

[mproved imaging technologies allow 3D shapes to be represented
as meshes --- a collection of vertices (V), faces (F), and edges (E).

Ventricles

Tumor /

[Boyer et al. (2011), PNAS; Crawford et al. (2020), JASA]




Main Objective(s)

Alternative transformation that can be used in wide range of regression and
machine learning methods:
Generalized linear models (GLMs)

Neural Networks

Desired Transformation Properties:
Injective mapping or (even better) explicitly invertible

Compute distances and define probabilities in the transformed space

Topological Summaries:
Persistence Landscapes (PL)
Persistent Homology Transform (PHT)

Euler Characteristic Transform (ECT)




Mouvatng Topology with Picasso




Persistent Homology

(A) Simplicial
s Complexes




Persistent Homology
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Persistent Homology

Construct some filtration operator...
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Persistent homology tracks the evolution of homology via collections of
simplicial complexes




Persistent Homology: A Visual Demonstration
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Persistent Homology: A Visual Demonstration




Persistent Homology

|Carlsson (2014), Acta Numer]



Persistent Homology: A Visual Demonstration

Evolution of homology as a birth-death pair.
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Practical Example: 2D Maize Roots
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Persistent Homology Iranstorm for 3D Shapes

Let M be a shape of R? that can be written as a finite simplicial complex K.

And let v € S9! be any unit vector over the unit sphere.

[Turner et al. (2014), Inf Inference



Persistent Homology Iranstorm for 3D Shapes

For direction vq:




Persistent Homology 'Iransform for 3D Shapes

For direction vq:




Persistent Homology 'Transform for 3D Shapes

For direction v»:




Shape Analysis Using the PH'T
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Ex: Phylogenetic groups of primate calcanei with 67 genera.

[Turner et al. (2014), Inf Inference




Shape Analysis Using the PH'T
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Ex: Phylogenetic groups of primate calcanei with 67 genera.

[Turner et al. (2014), Inf Inference




Disadvantages/Pitfalls of the PHT

Common regression models use covariates that have an inner
product structure defined in Hilbert space.

The PHT does not admit a simple inner product structure as it is a
collection of persistence diagrams.

Example: What is the interpretation of an effect size for an ordered
(birth and death time) pair?




Shape Analysis Using the PH'T
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Ex: Phylogenetic groups of primate calcanei with 67 genera.

[Turner et al. (2014), Inf Inference




Disadvantages/Pitfalls of the PHT

- Common regression models use covariates that have an inner
product structure defined in Hilbert space.

The PHT does not admit a simple inner product structure as it is a
collection of persistence diagrams.

Example: What is the interpretation of an effect size for an ordered
(birth and death time) pair?




The Euler Characteristic

The Euler characteristic (EC) y for a finite simplicial complex K¢ for d = 3 is
defined by:

Y(K°)=V — FE+ F,

where V', E/, and F' are the numbers of vertices, edges, and faces, respectively.




The Euler Characteristic Curve
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The Euler Characteristic Curve

Concatenate curves over all
directions to obtain a vector
representation of the shape.
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End result: A matrix where each
row is the concatenated EC curve
of one shape in our dataset.

[Turner et al. (2014), Inf Inference; Crawford et al. (2020), JASA]




Properties of the Euler Characteristuc Transform

- The Euler characteristic transform results in a collection of curves —
this represents the topological summary statistic of a 3D shape.

* An EC curve has a simple inner product structure.

Allows for quantitative comparisons using the full scope of
parametric and nonparametric regression methodology.




Application to

Radiogenomics




Predicting Clinical Outcomes in Radiomics

Magnetic resonance images (MRIs) of primary glioblastoma
multiforme (GBM) tumors were collected from ~40 patients

Data archived by the The Cancer Imaging Archive (TCIA)




Predicting Clinical Outcomes in Radiomics

Magnetic resonance images (MRIs) of primary glioblastoma
multiforme (GBM) tumors were collected from ~40 patients

* Data archived by the The Cancer Imaging Archive (TCIA)

These patients also had matched genomic and clinical data collected
by The Cancer Genome Atlas (TCGA)




Application to Glioblastoma Multiforme

[Crawford et al. (2020), JASA]




Application to Glioblastoma Multiforme
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Nonlinear Regression Methods

Nonlinear models perform better for phenotypic prediction

v = f(xi) +ei, El]=0, feH




Nonlinear Regression Methods

Nonlinear models perform better for phenotypic prediction
v = g 1 . ’
yi = f(xi) +ei, Elg]=0, feH
(Gaussian processes specify prior distribution over the function space directly

f(x) ~ GP(m(x), k(x,x")),

where:

k(x1,x1) k(x1,X2) k(x1,Xn)
k(x2,x1) k(x2,X2) ks, )
| M _




Predicting Clinical Outcomes in Radiogenomics

Compare ECs with three key types of tumor characteristics:
MmRNA Gene Expression Measurements
Tumor Morphometry

Tumor Volume and Geometrics

- Predict two clinical outcomes:
Disease Free Survival (DFES)
Overall Survival (OS)

Perform 80-20 (in/out of sample) splits; 100 times

Predictive Measure: Root Mean Square Error of Prediction (RMSEP)




Prediction Results

Disease Free Survival Overall Survival

Data Type RMSEP Pr[Optimal] RMSEP Pr[Optimal]
Gene Expression  0.944 (0.035) 0.20 0.981 (0.030) 0.27
Morphometrics  0.942 (0.035) 0.07 0.965 (0.029) 0.15
Volume 0.939 (0.035) 0.06 0.964 (0.029) 0.16
SECT 0.803 (0.035) 0.69 0.958 (0.028) 0.42

Average RMSPE across both clinical outcomes. The number in

parenthesis is the standard error due to random sampling



Oncogene Actvity and Therapeutic Resistance

0-0-0-6

Molecular Signaling Pathway




Oncogene Activity and Therapeutic Resistance

Molecular Signaling Pathway

Survival and

Proliferation




Oncogene Acuvity and Therapeutic Resistance

Molecular Signaling Pathway




Oncogene Actvity and Therapeutic Resistance
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Shape Variation to Explain Biological Phenomena

Survival and
Proliferation




Sub-Image Analysis
using | opological
Summary Statistics

(SINATRA)




T'he SINATRA Pipeline
(b) Derive Topological Summary Statistics
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General Steps in the SINATRA Pipeline

l l Represent shapes via statistics summarizing

- their topology / geometry;

I ' Use a statistical model and classify shapcs

based on these summary statistics;

) 2.
{ I Derive an “evidence of association” metric
’ for each topological / geometric feature;
&N i I Project these association measures back onto

the original shape.




L3 © L ‘ -~
Revisiting the Gaussian Process
Nonlinear models perform better for phenotypic prediction
Vi = f(X,) e E[:,} =(). / cH
(Gaussian processes specify prior distribution over the function space directly

f(x) ~ GP(m(x), k(x,x")),

where:

k(x1,X1) k(x1,X2) k(x1,Xn)
k(x2,x1) k(x2,x2) k(x2,Xp)




General Steps in the SINATRA Pipeline

chprcscnt shapes via statistics summarizing

their top()logy/gcomctry,’

‘ZUSL‘ a statistical model and classify shapes

based on these summary statistics;

) 5
! I Derive an “evidence of association” metric
’ for each topological / geometric feature;
A ! l Project these association measures back onto

the original shape.




L.inear vs. Nonlinear Models

Linear Models Nonlinear Models

Nonlinear
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The "Kernel Trick™ Issue

original p-
dimensional space

y=X08+¢




The "Kernel Trick™ Issue

original p- n-dimensional
dimensional space function space

y=X0+¢€ y=1f+¢




The "Kernel Trick™ Issue

original p- n-dimensional
dimensional space function space

y=X0+¢ y=1f+¢




T'he Elfect Size Analog

Linear Models Nonlinear Models




T'he Eftect Size Analog

Linear Models Nonlinear Models

A regression model is takes the form:

y=X0+e

An effect size is the linear projection
onto the phenotype:

o~

B = Proj(X,y)

One standard projection operation is
uses generalized inverses:

Proj(X,y) = X'y




T'he Elfect Size Analog

Linear Models

A regression model is takes the form:

y=XB+e¢

An effect size is the linear projection

onto the phenotype:

3 = Proj(X,y)

One standard projection operation is

uses generalized inverses:

Proj(X,y) = X'y

Nonlinear Models

A regression model is takes the form:

y=1f+¢€

An effect size analog is the projection
onto the smooth nonlinear function:

3 = Proj(X, f)

We can use the same standard
projection operations:

Proj(X,f) = X'f




Posterior Inference and Sampling

Assume we have completely specified hierarchical model

‘)

y=f+e, f~N(0,K), e~N(0,7°I), 7°~ Scale-Inv-x*(a,b).

MCMC for this regression model includes:




[[lustration: Ranking Influental Players




[[lustration: Ranking Influenual Players




[[lustration: Ranking Influenual Players




[llustration: Ranking Influenual Players




Kullback-Leibler Divergence (KLD)

Summarize the influence of the variant x; on the rest of the variants in X_; via
the KLD measuring the difference between p(3_; | 3;) and p(B8-;). Namely,




Kullback-Leibler Divergence (KLD)

Summarize the influence of the variant x; on the rest of the variants in X_; via
the KLD measuring the difference between p(3—; | 3;) and p(8-;). Namely,

e R ' p(B-;) > . .
KLD(B;) = ok - B )dB..
: | - ) .//'3 ; ( (l)(ﬁ ] ' )), ) : ([ .})( I[ :

where KLD(j3;) € [0, 00).

Here, KLD(/3;) = 0 is interpreted as variant j not being a key explanatory vari-
able relative to others.

Or alternatively, KLD(/3,) = 0 if and only if p(8_, | 3;) = p(B-,).




RelATive cEntrality (RATE) Measures

One natural way for determining significance is to explore a variable’s “RelATive

cEntrality” or RATE

RATE(B;) = KLD(8;)/ > KLD(B:), » RATE(B;)=1.

[Crawford et al. (2019), AoAS]



RelATive cEntrality (RATE) Measures

One natural way for determining significance is to explore a variable’s “RelATive

cEntrality” or RATE
RATE(B;) = KLD(8;)/ Y KLD(B:), » RATE(B;)=1.
A set of significant markers then have RATEs satistying
{j : RATE(B;) > 1/p}.

where 1/p represents the level at which there is relative equal importance across
all variants.

[Crawford et al. (2019), AoAS]



RATE Example: Proof-ol-Concept

Simulate datasets with n = 2000 samples and p = 25 features.
+ Choose the last three features j* = {23, 24, 25} to be causal.

Consider the following scenario to simulate phenotypes:
All j* variants have additive effects;
There is an interaction between these variables;

Interaction effects makes up 50% of the phenotypic variance.

Perform association mapping using RATE.




RATE Example: Proof-of-Concept

RATE())
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o
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0.0

e DELTA=2.078
® ESS =32.48%

Covariates

|Crawford et al. (2019), AoAS]




RATE Example: Proof-ol-Concept
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[Crawford et al. (2019), AoAS]
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RATE(f)
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RATE Example: Proof-of-Concept

e DELTA=2.078
® ESS =32.48%
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RATE(F)
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RATE Example: Null Hypothesis
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General Steps in the SINATRA Pipeline

‘Zchrcscnt shapes via statistics summarizing

their topology / geometry;

gUsc a statistical model and classify shapes

based on these summary statistics;

l l Derive an “evidence of association” metric
for each topological / geometric feature;
& | I Project these association measures back onto

the original shape.




Shape Reconstruction Algorithm

Goal: Map the selected features back onto the shape.

Directions near each other will share similar information [Curry, Turner, and
Mukherjee (2018)].

Reconstruction Algorithm uses the following steps:
(1) Pick a cone with a set of directions;
(2) For each direction, find all vertices that correspond to the topological
features selected by the GP;

(3) Repeat this procedure for all cones;




Shape Reconstruction Algorithm




Shape Reconstruction Algorithm




Shape Reconstruction Algorithm

@y




Proof-ol-Concept Simulation Study




Proof-ol-Concept Simulation Study

Simulate datasets with n = 100 spheres split into two classes.
Select a set of shared regions marked by cusps.

Class-specific causal regions marked by dents.

Assess the power of SINATRA via ROC curves (TPR vs. FPR).




Simulation Study Results




Null Hypothesis: Scenario # 1
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Null Hypothesis: Scenario #2
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Simulation via Caricaturization of Real Data

Computed tomography (CT) scans of real Lemuridae teeth (primates
commonly known as lemurs).

Classes are defined by creating causal and shared regions via
caricaturization.

This done by smoothly modifying regions of interest on the triangular
mesh of the teeth (centered around expert-derived biological
l[andmarks).

[Sela et al. (2015), Comput Vis Image Underst



Caricature Simulaton Flowchart

(i) Original Shape

(i) Shape Class #2 (ili)) Reconstruction



Caricature Simulation Results

TPR (True P

FPR (False Positive Rate)

Easy Scenario (3 Peaks) Difficult Scenario (5 Peaks)




Application:

Recovering Known

Morphological

Variation




Morphological Variation Across Genera of Primates

Data set with CT scans of n = 59 second mandibular molars from four
genera of primates: Tarsius, Saimiri, Microcebus, and Mirza.

Ground Truth: Tarsius have retained the paraconid (the cusp of a
primitive lower molar), while the other primates have not.

Goal: Assess if SINATRA recovers the information that the paraconids
are specific to the Tarsius genus.




Morphological Variation Across Genera of Primates

Data set with CT scans of n = 59 second mandibular molars from four
genera of primates: Tarsius, Saimiri, Microcebus, and Mirza.

Ground Truth: Tarsius have retained the paraconid (the cusp of a
primitive lower molar), while the other primates have not.

Goal: Assess if SINATRA recovers the information that the paraconids
are specific to the Tarsius genus.

Observation: Determine whether variation across the molar is
associated to the divergence time of the genera.




Phylogenetic Relationship Between Primates
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Recovering the Region of Interest (ROI)

(i) Tarsius vs. (ii) Tarsius vs. (iii) Tarsius vs.
Saimiri Mirza Microcebus

Evidence Scale




Ongoing Work in the Lab

Genotype Data




Ongoing Work in the Lab

Input Layer Hidden Layer Hidden Layer Output Layer
Explore pairing SINATRA with probabilistic X| — @
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Association Analyses Using Shape Summary
Statistics Derived from MRIs:

Probe whether shape variation is correlated
with genotypic/phenotypic variation.




Ongoing Work in the Lab

Explore pairing SINATRA with probabilistic
deep learning methods:

Biologically annotated neural networks
(BANNSs) provide a framework amenable for
genomic studies with small sample sizes.

Extend the BANN framework to model
multiple -omic and shape information
simultaneously.

Association Analyses Using Shape Summary
Statistics Derived from MRIs:

Probe whether shape variation is correlated
with genotypic/phenotypic variation.

[dentify physical characteristics of brain
tumors that are linked to oncogenic signatures
or underlying signaling cascades that have
become activated.
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