
Dynamic Convolution: Attention over Convolution Kernels

Yinpeng Chen Xiyang Dai Mengchen Liu Dongdong Chen Lu Yuan Zicheng Liu
Microsoft

{yiche,xidai,mengcliu,dochen,luyuan,zliu}@microsoft.com

Abstract

Light-weight convolutional neural networks (CNNs) suf-
fer performance degradation as their low computational
budgets constrain both the depth (number of convolution
layers) and the width (number of channels) of CNNs, re-
sulting in limited representation capability. To address this
issue, we present Dynamic Convolution, a new design that
increases model complexity without increasing the network
depth or width. Instead of using a single convolution kernel
per layer, dynamic convolution aggregates multiple paral-
lel convolution kernels dynamically based upon their atten-
tions, which are input dependent. Assembling multiple ker-
nels is not only computationally efficient due to the small
kernel size, but also has more representation power since
these kernels are aggregated in a non-linear way via atten-
tion. By simply using dynamic convolution for the state-of-
the-art architecture MobileNetV3-Small, the top-1 accuracy
of ImageNet classification is boosted by 2.9% with only 4%
additional FLOPs and 2.9 AP gain is achieved on COCO
keypoint detection.

1. Introduction
Interest in building light-weight and efficient neural net-

works has exploded recently. It not only enables new expe-
riences on mobile devices, but also protects user’s privacy
from sending personal information to the cloud. Recent
works (e.g. MobileNet [12, 27, 11] and ShuffleNet [42, 23])
have shown that both efficient operator design (e.g. depth-
wise convolution, channel shuffle, squeeze-and-excitation
[13], asymmetric convolution [5]) and architecture search
([29, 7, 2]) are important for designing efficient convolu-
tional neural networks.

However, even the state-of-the-art efficient CNNs (e.g.
MobileNetV3 [11]) suffer significant performance degrada-
tion when the computational constraint becomes extremely
low. For instance, when the computational cost of Mo-
bileNetV3 reduces from 219M to 66M Multi-Adds, the top-
1 accuracy of ImageNet classification drops from 75.2% to
67.4%. This is because the extremely low computational

50 60 70 80 90 100 120 150 200 250 300 350
Multiply Add, Millions

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

, I
m

ag
en

et
, T

op
-1

x1.0

x0.75

x0.5

x0.35
Dynamic MobileNetV3-Small
MobileNetV3-Small
Dynamic MobileNetV2
MobileNetV2

Figure 1. The trade-off between computational cost (MAdds) and
top-1 accuracy of ImageNet classification. Dynamic convolution
significantly boosts the accuracy with a small amount of extra
MAdds on MobileNet V2 and V3. Best viewed in color.

Figure 2. Dynamic perceptron. It aggregates multiple linear func-
tions dynamically based upon their attentions {πk}, which are in-
put dependent.

cost severely constrains both the network depth (number of
layers) and width (number of channels), which are crucial
for the network performance but proportional to the compu-
tational cost.

This paper proposes a new operator design, named dy-
namic convolution, to increase the representation capabil-
ity with negligible extra FLOPs. Dynamic convolution uses
a set of K parallel convolution kernels {W̃k, b̃k} instead
of using a single convolution kernel per layer (see Figure
2). These convolution kernels are aggregated dynamically
W̃ =

∑
k πk(x)W̃k for each individual input x (e.g. im-

ar
X

iv
:1

91
2.

03
45

8v
2 

 [
cs

.C
V

] 
 3

1 
M

ar
 2

02
0



age) via input dependent attention πk(x). The biases are
aggregated using the same attention b̃ =

∑
k πk(x)b̃k. Dy-

namic convolution is a non-linear function with more repre-
sentation power than its static counterpart. Meanwhile, dy-
namic convolution is computationally efficient. It does not
increase the depth or width of the network, as the parallel
convolution kernels share the output channels by aggrega-
tion. It only introduces extra computational cost to com-
pute attentions {πk(x)} and aggregate kernels , which is
negligible compared to convolution. The key insight is that
within reasonable cost of model size (as convolution kernels
are small), dynamic kernel aggregation provides an efficient
way (low extra FLOPs) to boost representation capability.

Dynamic convolutional neural networks (denoted as DY-
CNNs) are more difficult to train, as they require joint
optimization of all convolution kernels and the attention
across multiple layers. We found two keys for efficient
joint optimization: (a) constraining the attention output as∑
k πk(x) = 1 to facilitate the learning of attention model

πk(x), and (b) flattening attention (near-uniform) in early
training epochs to facilitate the learning of convolution ker-
nels {W̃k, b̃k}. We simply integrate these two keys by us-
ing softmax with a large temperature for kernel attention.

We demonstrate the effectiveness of dynamic convolu-
tion on both image classification (ImageNet) and keypoint
detection (COCO). Without bells and whistles, simply re-
placing static convolution with dynamic convolution in Mo-
bileNet V2 and V3 achieves solid improvement with only a
slight increase (4%) of computational cost (see Figure 1).
For instance, with 100M Multi-Adds budget, our method
gains 4.5% and 2.9% top-1 accuracy on image classifica-
tion for MobileNetV2 and MobileNetV3, respectively.

2. Related Work
Efficient CNNs: Recently, designing efficient CNN archi-
tectures [15, 12, 27, 11, 42, 23] has been an active research
area. SqueezeNet [15] reduces the number of parameters by
using 1× 1 convolution extensively in the fire module. Mo-
bileNetV1 [12] substantially reduces FLOPs by decompos-
ing a 3× 3 convolution into a depthwise convolution and a
pointwise convolution. Based upon this, MobileNetV2 [27]
introduces inverted residuals and linear bottlenecks. Mo-
bileNetV3 [11] applies squeeze-and-excitation [13] in the
residual layer and employs a platform-aware neural archi-
tecture approach [29] to find the optimal network structures.
ShuffleNet further reduces MAdds for 1× 1 convolution by
channel shuffle operations. ShiftNet [33] replaces expen-
sive spatial convolution by the shift operation and point-
wise convolutions. Compared with existing methods, our
dynamic convolution can be used to replace any static con-
volution kernels (e.g. 1 × 1, 3 × 3, depthwise convolution,
group convolution) and is complementary to other advanced
operators like squeeze-and-excitation.

Model Compression and Quantization: Model compres-
sion [8, 22, 10] and quantization [3, 43, 40, 38, 30] ap-
proaches are also important for learning efficient neural net-
works. They are complementary to our work, helping re-
duce the model size for our dynamic convolution method.
Dynamic Deep Neural Networks: Our method is related
to recent works of dynamic neural networks [18, 21, 31,
34, 39, 14] that focus on skipping part of an existing model
based on input image. D2NN [21], SkipNet [31] and Block-
Drop [34] learn an additional controller for skipping de-
cision by using reinforcement learning. MSDNet [14] al-
lows early-exit based on the current prediction confidence.
Slimmable Nets [39] learns a single neural network exe-
cutable at different width. Once-for-all [1] proposes a pro-
gressive shrinking algorithm to train one network that sup-
ports multiple sub-networks. The accuracy for these sub-
networks is the same as independently trained networks.
Compared with these works, our method has two major dif-
ferences. Firstly, our method has dynamic convolution ker-
nels but static network structure, while existing works have
static convolution kernels but dynamic network structure.
Secondly, our method does not require an additional con-
troller. The attention is embedded in each layer, enabling
end-to-end training. Compared to the concurrent work [37],
our method is more efficient with better performance.
Neural Architecture Search: Recent research works in
neural architecture search (NAS) are powerful on finding
high-accuracy neural network architectures [44, 26, 45, 20,
36] as well as hardware-aware efficient network architec-
tures [2, 29, 32]. The hardware-aware NAS methods in-
corporate hardware latency into the architecture search pro-
cess, by making it differentiable. [7] proposed single path
supernet to optimize all architectures in the search space si-
multaneously, and then perform evolutionary architecture
search to handle computational constraints. Based upon
NAS, MobileNetV3 [11] shows significant improvements
over human-designed baselines (e.g. MobileNetV2 [27]).
Our dynamic convolution method can be easily used in ad-
vanced architectures found by NAS. Later in this paper, we
will show that dynamic convolution not only improves the
performance for human-designed networks (e.g. Mobiel-
NetV2), but also boosts the performance for automatically
searched architectures (e.g. MobileNetV3), with low extra
FLOPs. In addition, our method provides a new and effec-
tive component to enrich the search space.

3. Dynamic Convolutional Neural Networks
We describe dynamic convolutional neural networks

(DY-CNNs) in this section. The goal is to provide bet-
ter trade-off between network performance and computa-
tional burden, within the scope of efficient neural networks.
The two most popular strategies to boost the performance
are making neural networks “deeper” or “wider”. How-



ever, they both incur heavy computation cost, thus are not
friendly to efficient neural networks.

We propose dynamic convolution, which does not in-
crease either the depth or the width of the network, but in-
crease the model capability by aggregating multiple convo-
lution kernels via attention. Note that these kernels are as-
sembled differently for different input images, from where
dynamic convolution gets its name. In this section, We
firstly define the generic dynamic perceptron, and then ap-
ply it to convolution.

3.1. Preliminary: Dynamic Perceptron

Definition: Let us denote the traditional or static perceptron
as y = g(W Tx + b), where W and b are weight matrix
and bias vector, and g is an activation function (e.g. ReLU
[24, 16]). We define the dynamic perceptron by aggregating
multiple (K) linear functions {W̃ T

k x+ b̃k} as follows:

y = g(W̃ T (x)x+ b̃(x))

W̃ (x) =

K∑
k=1

πk(x)W̃k, b̃(x) =

K∑
k=1

πk(x)b̃k

s.t. 0 ≤ πk(x) ≤ 1,

K∑
k=1

πk(x) = 1, (1)

where πk is the attention weight for the kth linear function
W̃ T

k x+b̃k. Note that the aggregated weight W̃ (x) and bias
b̃(x) are functions of input and share the same attention.
Attention: the attention weights {πk(x)} are not fixed, but
vary for each input x. They represent the optimal aggrega-
tion of linear models {W̃ T

k x + b̃k} for a given input. The
aggregated model W̃ T (x)x+b̃(x) is a non-linear function.
Thus, dynamic perceptron has more representation power
than its static counterpart.
Computational Constraint: compared with static percep-
tron, dynamic perceptron has the same number of output
channels but bigger model size. It also introduces two addi-
tional computations: (a) computing the attention weights
{πk(x)}, and (b) aggregating parameters based upon at-
tention

∑
k πkW̃k and

∑
k πkb̃k. The additional compu-

tational cost should be significantly less than the cost of
computing W̃ Tx + b̃. Mathematically, the computational
constraint can be represented as follows:

O(W̃ Tx+ b̃)� O
(∑

πkW̃k

)
+O

(∑
πkb̃k

)
+O (π(x)) (2)

where O(·) measures the computational cost (e.g. FLOPs).
Note that fully connected layer does not satisfy this, while
convolution is a proper fit for this constraint.

Figure 3. A dynamic convolution layer.

3.2. Dynamic Convolution

In this subsection, we showcase a specific dynamic per-
ceptron, dynamic convolution that satisfies the computa-
tional constraint (Eq. 2). Similar to dynamic perceptron,
dynamic convolution (Figure 3) has K convolution kernels
that share the same kernel size and input/output dimensions.
They are aggregated by using the attention weights {πk}.
Following the classic design in CNN, we use batch normal-
ization and an activation function (e.g. ReLU) after the ag-
gregated convolution to build a dynamic convolution layer.
Attention: we apply squeeze-and-excitation [13] to com-
pute kernel attentions {πk(x)} (see Figure 3). The global
spatial information is firstly squeezed by global average
pooling. Then we use two fully connected layers (with a
ReLU between them) and softmax to generate normalized
attention weights for K convolution kernels. The first fully
connected layer reduces the dimension by 4. Different from
SENet [13] which computes attentions over output chan-
nels, we compute attentions over convolution kernels. The
computation cost for the attention is cheap. For an input
feature map with dimensionH×W ×Cin, the attention re-
quiresO(π(x)) = HWCin+C

2
in/4+CinK/4 Mult-Adds.

This is much less than the computational cost of convolu-
tion, i.e. O(W̃ Tx + b̃) = HWCinCoutD

2
k Mult-Adds,

where Dk is the kernel size, and Cout is the number of out-
put channels.
Kernel Aggregation: aggregating convolution kernels is
computationally efficient due to the small kernel size. Ag-
gregating K convolution kernels with kernel size Dk×Dk,
Cin input channels and Cout output channels introduces
KCinCoutD

2
k +KCout extra Multi-Adds. Compared with

the computational cost of convolution (HWCinCoutD
2
k),

the extra cost is neligible if K � HW . Table 1 shows the
computational cost of using dynamic convolution in Mo-
bileNetV2. For instance, when using MobileNetV2 (×1.0),
dynamic convolution withK = 4 kernels only increases the
computation cost by 4%. Note that even though dynamic
convolution increases the model size, it does not increase



×1.0 ×0.75 ×0.5 ×0.35
static 300.0M 209.0M 97.0M 59.2M
K=2 309.5M 215.6M 100.5M 61.5M
K=4 312.9M 217.5M 101.4M 62.0M
K=6 316.3M 219.5M 102.3M 62.5M
K=8 319.8M 221.4M 103.2M 62.9M

Table 1. Mult-Adds of static convolution and dynamic convolu-
tion in MobileNetV2 with four different width multipliers (×1.0,
×0.75, ×0.5, and ×0.35).

the output dimension of each layer. The amount of the in-
crease is acceptable as convolution kernels are small.
From CNNs to DY-CNNs: dynamic convolution can be
easily used as a drop-in replacement for any convolution
(e.g. 1 × 1 conv, 3 × 3 conv, group convolution, depth-
wise convolution) in any CNN architecture. It is also com-
plementary to other operators (like squeeze-and-excitation
[13]) and activation functions (e.g. ReLU6, h-swish [11]).
In the rest of the paper, we use prefix DY- for the net-
works that use dynamic convolution. For example, DY-
MobileNetV2 refers to using dynamic convolution in Mo-
bileNetV2. We also use weight W̃k to denote a convolution
kernel and ignore bias b̃k, for the sake of brevity.

4. Two Insights of Training Deep DY-CNNs
Training deep DY-CNNs is challenging, as it requires

joint optimization of all convolution kernels {W̃k} and at-
tention model πk(x) across multiple layers. In this section,
we discuss two insights for more efficient joint optimization,
which are crucial especially to deep DY-CNNs.

4.1. Insight 1: Sum the Attention to One

The first insight is: constraining the attention output can
facilitate the learning of attention model πk(x). Specifi-
cally, we have the constraint

∑
k πk(x) = 1 in Eq. (1)

to keep the aggregated kernel W̃ =
∑
k πkW̃k within

the convex hull of {W̃k} in the kernel space. Figure 4
shows an example with 3 convolution kernels. The con-
straint 0 ≤ πk(x) ≤ 1 only keeps the aggregated kernel
within the two pyramids. The sum-to-one constraint further
compresses the kernel space to a triangle. It compresses the
red line that comes from the origin into a dot by normalizing
the attention sum. This normalization significantly simpli-
fies the learning of πk(x), when it is jointly optimized with
{W̃k} in a deep network. Softmax is a natural choice of∑
k πk(x) = 1.

4.2. Insight 2: Near-uniform Attention in Early
Training Epochs

The second insight is: near-uniform attention can facil-
itate the learning of all kernels {W̃k} during early train-
ing epochs. This is because near-uniform attention enables

Figure 4. Illustration of constraint
∑
k πk(x) = 1. It compresses

the space of aggregated kernel
∑
k πkW̃k from two pyramids

(used in CondConv [37]) to a triangle. A red line is compressed
into a dot by normalizing attention sum. Best viewed in color.

more convolution kernels to be optimized simultaneously.
Softmax does NOT work well on this due to its near

one-hot output. It only allows a small subset of kernels
across layers to be optimized. Figure 5-(Left) shows that the
training converges slowly when using softmax (blue curves)
to compute attention. Here, DY-MobileNetV2 with width
multiplier×0.5 is used. The final top-1 accuracy (64.8%) is
even worse than its static counterpart (65.4%). This ineffi-
ciency is related to the number of dynamic convolution lay-
ers. To validate this, we reduce the number of dynamic con-
volution layers by 3 (only use dynamic convolution for the
last 1×1 convolution in each bottleneck residual block) and
expect faster convergence in training. The training and val-
idation errors are shown in Figure 5-(Right) (blue curves).
As we expected, the training converges faster with higher
top-1 accuracy (65.9%) at the end.

We address this inefficiency in training deeper DY-CNNs
by using a large temperature in softmax to flatten attention
as follows:

πk =
exp(zk/τ)∑
j exp(zj/τ)

, (3)

where zk is the output of the second FC layer in attention
branch (see Figure 3), and τ is the temperature. The original
softmax is a special case (τ = 1). As τ increases, the out-
put is less sparse. When using a large temperature τ = 30,
the training becomes significantly more efficient (see the
red curves in Figure 5-(Left)). As a result, the top-1 accu-
racy boosts to 69.4%. The larger temperature is also helpful
when stacking fewer dynamic convolution layers (see red
curves in Figure 5-(Right)).

Temperature annealing, i.e. reducing τ from 30 to 1 lin-
early in the first 10 epochs, can further improve the top-1
accuracy (from 69.4% to 69.9%). These results support that
near-uniform attention in early training epochs is crucial.

4.3. Relation to Concurrent Work

These two insights are the key differences between our
method and the concurrent work (CondConv [37]), which
uses sigmoid to compute kernel attention. Even though
sigmoid provides near-uniform attention in early training



0 50 100 150 200 250 300
epochs

20

30

40

50

60

70

80

90

100

To
p-

1 
er

ro
r (

%
)

dynamic convolution for all layers
= 1 train
= 1 val
= 30 train
= 30 val

0 50 100 150 200 250 300
epochs

20

30

40

50

60

70

80

90

100

To
p-

1 
er

ro
r (

%
)

dynamic convolution for the last layer in each block
= 1 train
= 1 val
= 30 train
= 30 val

Figure 5. Training and validation errors for using different soft-
max temperatures. Left: using dynamic convolution for all lay-
ers. Right: using dynamic convolution for the last layer in each
bottleneck residual block. We use DY-MobileNetV2 with width
multiplier ×0.5, and each dynamic convolution layer has K = 4
convolution kernels. Best viewed in color.

Method #Kernels #Param MAdds Top-1

×1.0 CondConv [37] 8 27.5M 329M 74.6
DY-CNNs (ours) 4 11.1M 312.9M 75.2

×0.5 CondConv [37] 8 15.5M 113M 68.4
DY-CNNs (ours) 4 4M 101.4M 69.9

Table 2. Comparison between DY-CNNs and the concurrent work
(CondConv [37]) on ImageNet classification using MobileNetV2
×1.0 and ×0.5.

epochs, it has significantly larger kernel space (two pyra-
mids in Figure 4) than our method (the shaded triangle in
Figure 4). Thus, learning attention model πk(x) becomes
more difficult. As a result, our method has less kernels per
layer, smaller model size, less computations but achieves
higher accuracy (see Table 2).

5. Experiments: ImageNet Classification
In this section, we present experimental results of dy-

namic convolution along with comprehensive ablations on
ImageNet [4] classification. ImageNet has 1000 classes, in-
cluding 1,281,167 images for training and 50,000 images
for validation.

5.1. Implementation Details

We evaluate dynamic convolution on three architectures
(ResNet [9], MobileNetV2[27], and MobileNetV3 [11]), by
using dynamic convolution for all convolution layers except
the first layer. Each layer has K = 4 convolution kernels.
The batch size is 256. We use different training setups for
the three architectures as follows:
Training setup for DY-ResNet: The initial learning rate is
0.1 and drops by 10 at epoch 30, 60 and 90. The weight
decay is 1e-4. All models are trained using SGD optimizer
with 0.9 momentum for 100 epochs. We use dropout rate
0.1 before the last layer of DY-ResNet-18.
Training setup for DY-MobileNetV2: The initial learning
rate is 0.05 and is scheduled to arrive at zero within a sin-

Kernel Aggregation Top-1 Top-5
attention:

∑
πk(x)W̃k 69.4 88.6

average:
∑

W̃k/K 36.0 61.5
max: W̃argmaxk(πk)

0.1 0.5

shuffle per image:
∑
πj(x)W̃k, j 6= k 14.8 30.5

shuffle across images:
(∑

πk(x)W̃k

)
(x′) 27.3 48.4

Table 3. Inspecting DY-CNN using different kernel aggregations.
DY-MobileNetV2 ×0.5 is used. The proper aggregation of con-
volution kernels {W̃k} using attention πk(x) is shown in the
first line. Shuffle per image means shuffling the attention weights
for the same image over different kernels. Shuffle across images
means using the attention of an image x for another image x′. The
poor performance for the bottom four aggregations validates that
the DY-CNN is dynamic.

gle cosine cycle. The weight decay is 4e-5. All models
are trained using SGD optimizer with 0.9 momentum for
300 epochs. To prevent overfitting, we use label smoothing
and dropout before the last layer for larger width multipli-
ers (×1.0 and ×0.75). The dropout rate are 0.2 and 0.1 for
×1.0 and×0.75, respectively. Mixup [41] is used for×1.0.
Training setup for DY-MobileNetV3: The initial learning
rate is 0.1 and is scheduled to arrive at zero within a single
cosine cycle. The weight decay is 3e-5. We use SGD opti-
mizer with 0.9 momentum for 300 epochs and dropout rate
of 0.2 before the last layer.

5.2. Inspecting DY-CNN

We inspect if DY-CNN is dynamic, using DY-
MobileNetV2×0.5, which hasK = 4 kernels per layer and
is trained by using τ = 30. Two properties are expected if
it is dynamic: (a) the convolution kernels are diverse per
layer, and (b) the attention is input dependent. We examine
these two properties by contradiction. Firstly, if the con-
volution kernels are not diverse, the performances will be
stable if different attentions are used. Thus, we vary the ker-
nel aggregation per layer in three different ways: averaging∑

W̃k/K, choosing the convolution kernel with the max-
imum attention W̃argmaxk(πk), and random shuffling atten-
tion over kernels per image

∑
πj(x)W̃k, j 6= k. Com-

pared with using the original attention, the performances of
these variations are significantly degraded (shown in Table
3). When choosing the convolution kernel with the max-
imum attention, the top-1 accuracy (0.1) is as low as ran-
domly choosing a class. The significant instability confirms
the diversity of convolution kernels. In addition, we shuf-
fle attentions across images to check if the attention is input
dependent. The poor accuracy (27.3%) indicates that it is
crucial for each image to use its own attention.

Furthermore, we inspect the attention across layers and
find that attentions are flat at low levels and sparse at high
levels. This is helpful to explain why variations in Table 3



30 40 50 60 70 80 90100 120 150 200 250 300
Multiply Add, Millions

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

, I
m

ag
en

et
, T

op
-1 x1.0

x0.75

x0.5

x0.35

DY-MobileNetV2 vs MbileNetV2 (Depth x1.0)

DY-MobileNetV2 K=8
DY-MobileNetV2 K=6
DY-MobileNetV2 K=4
DY-MobileNetV2 K=2
MobileNetV2 (baseline)

30 40 50 60 70 80 90100 120 150 200 250 300
Multiply Add, Millions

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

, I
m

ag
en

et
, T

op
-1 x1.0

x0.75

x0.5

x0.35

DY-MobileNetV2 vs MbileNetV2 (Depth x0.7)

DY-MobileNetV2 K=8
DY-MobileNetV2 K=6
DY-MobileNetV2 K=4
DY-MobileNetV2 K=2
MobileNetV2 (baseline)

30 40 50 60 70 80 90100 120 150 200 250 300
Multiply Add, Millions

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

, I
m

ag
en

et
, T

op
-1

x1.0

x0.75

x0.5

x0.35

DY-MobileNetV2 vs MbileNetV2 (Depth x0.5)

DY-MobileNetV2 K=8
DY-MobileNetV2 K=6
DY-MobileNetV2 K=4
DY-MobileNetV2 K=2
MobileNetV2 (baseline)

Figure 6. The number of convolution kernels (K) in DY-MobileNetV2 with different depth and width multipliers. Left: depth multiplier
is 1.0, Middle: depth multiplier is 0.7, Right: depth multiplier is 0.5. Each curve has four width multipliers ×1.0, ×0.75, ×0.5, and
×0.35. Dynamic convolution outperforms its static counterpart by a clear margin for all width/depth multipliers. Best viewed in color.

Input Resolution
1122 562 282 142 72 Top-1 Top-5

– – – – X 57.3 79.9
– – – X X 67.0 87.2
– – X X X 67.5 87.4
– X X X X 69.1 88.4
X X X X X 69.4 88.6
X X X X – 50.9 76.2
X X X – – 42.5 68.4
X X – – – 41.2 67.0
X – – – – 37.9 63.5
– – – – – 36.0 61.5

Table 4. Inspecting DY-CNN by enabling/disabling attention
at different input resolutions. DY-MobileNetV2 ×0.5 is used.
Each resolution has two options: Xindicates enabling attention∑
πk(x)W̃k for each layer in that resolution, while − indicates

disabling attention and using average kernel
∑

W̃k/K for each
layer in the corresponding resolutions. The attention is more ef-
fective at higher layers with lower resolutions.

have poor accuracy. For instance, averaging kernels with
sparse attention at high levels or picking one convolution
kernel (with the maximum attention) at low levels (where
attention is flat) is problematic. Table 4 shows how atten-
tion affects the performance across layers. We group layers
by their input resolutions, and switch on/off attention for
these groups. If attention is switched off for a resolution,
each layer in that resolution aggregates kernels by averag-
ing. When enabling attention at higher levels alone (resolu-
tion 142 and 72), the top-1 accuracy is 67.0%, close to the
performance (69.4%) of using attention for all layers. If at-
tention is used for lower levels alone (resolution 1122, 562

and 282), the top-1 accuracy is poor 42.5%.

5.3. Ablation Studies

We perform a number of ablations on DY-MobileNetV2
and DY-MobileNetV3. The default setup includes using
K = 4 kernels per layer and τ = 30.
The number of convolution kernels (K): the hyper-

Network C1 C2 C3 Top-1 Top-5
MobileNetV2 1 1 1 65.4 86.4

4 1 1 67.4(2.0) 87.5(1.1)
1 4 1 67.4(2.0) 87.3(0.9)
1 1 4 68.2(2.8) 87.9(1.5)

DY-MobileNetV2 4 1 4 68.7(3.3) 88.0(1.6)
1 4 4 68.4(3.0) 87.9(1.5)
4 4 1 68.6(3.2) 88.0(1.6)
4 4 4 69.4(4.0) 88.6(2.2)

Table 5. Dynamic convolution at different layers in Mo-
bileNetV2 ×0.5. C1, C2 and C3 indicate the 1 × 1 convolution
that expands output channels, the 3×3 depthwise convolution and
the 1 × 1 convolution that shrinks output channels per block re-
spectively. C1=1 indicates using static convolution, while C1=4
indicates using dynamic convolution with 4 kernels. The numbers
in brackets denote the improvement over the baseline.

parameter K controls the model complexity. Figure 6
shows the classification accuracy and computational cost
for dynamic convolution with differentK. We compare DY-
MobileNetV2 with MobileNetV2 on different depth/width
multipliers. Firstly, the dynamic convolution outperforms
its static counterpart for all depth/width multipliers, even
with small K = 2. This demonstrates the strength of our
method. In addition, the accuracy stops increasing once K
is larger than 4. This is because asK increases, even though
the model has more representation power, it is more difficult
to optimize all convolution kernels and attention simultane-
ously and the network is more prone to over-fitting.
Dynamic convolution at different layers: Table 5 shows
the classification accuracy for using dynamic convolution at
three different layers (1×1 conv, 3×3 depthwise conv, 1×1
conv) per bottleneck residual block in MobileNetV2 ×0.5.
The accuracy increases as more dynamic convolution layers
are used. Using dynamic convolution for all three layers
yields the best accuracy. If only one layer is allowed to use
dynamic convolution, using it for the last 1× 1 convolution
yields the best performance.



Network Temperature Top-1 Top-5
MobileNetV2 — 65.4 86.4

τ = 1 64.8(−0.6) 85.5(−0.9)

τ = 5 65.7(+0.3) 85.8(−0.6)

τ = 10 67.5(+2.1) 87.4(+1.0)

DY-MobileNetV2 τ = 20 69.4(+4.0) 88.5(+2.1)

τ = 30 69.4(+4.0) 88.6(+2.2)

τ = 40 69.2(+3.8) 88.4(+2.0)

τ annealing 69.9(+4.5) 89.0(+2.6)

Table 6. Softmax Temperature: large temperature in early train-
ing epochs is important. Temperature annealing refers to reducing
τ from 30 to 1 linearly in the first 10 epochs. The numbers in
brackets denote the performance improvement over the baseline.

Network Top-1 Top-5
MobileNetV3-Small 67.4 86.4
MobileNetV3-Small w/o SE 65.4(−2.0) 85.2(−1.2)

DY-MobileNetV3-Small 70.3(+2.9) 88.7(+2.3)

Dy-MobileNetV3-Small w/o SE 69.6(+2.2) 88.4(+2.0)

Table 7. Dynamic convolution vs Squeeze-and-Excitation (SE
[13]) on MobileNetV3-Small. The numbers in brackets denote
the performance improvement over the baseline. Compared with
static convolution with SE, dynamic convolution without SE gains
2.2% top-1 accuracy.

Softmax Temperature: the temperature τ in softmax con-
trols the sparsity of attention weights. It is important for
training DY-CNNs effectively. Table 6 shows the classifica-
tion accuracy for using different temperatures. τ = 30 has
the best performance. Furthermore, temperature annealing
(reducing τ from 30 to 1 linearly in the first 10 epochs)
provides additional improvement on top-1 accuracy (from
69.4% to 69.9%). Therefore, using large temperature in the
early stage of training is important.
Dynamic Convolution vs Squeeze-and-Excitation (SE)
[13]: MobileNetV3-Small [11] is used, in which the lo-
cations of SE layers are considered optimal as they are
found by network architecture search (NAS). The re-
sults are shown in Table 7. Without using SE, the top-
1 accuracy for MobileNetV3-Small drops 2%. How-
ever, DY-MobileNetV3-Small without SE outperforms
MobileNetV3-Small with SE by 2.2% in top-1 accuracy.
Combining dynamic convolution and SE gains additional
0.7% improvement. This suggests that attention over ker-
nels and attention over output channels can work together.

5.4. Main Results

Table 8 shows the comparison between dynamic convo-
lution and its static counterpart in three CNN architectures
(MobileNetV2, MobileNetV3 and ResNet). K = 4 kernels
are used in each dynamic convolution layer and tempera-
ture annealing is used in the training. Although we focus on
efficient CNNs, we evaluate dynamic convolution on two
shallow ResNets (ResNet-10 and ResNet-18) to show its

Network #Param MAdds Top-1 Top-5
MobileNetV2 ×1.0 3.5M 300.0M 72.0 91.0

DY-MobileNetV2 ×1.0 11.1M 312.9M 75.2(3.2) 92.1(1.1)
MobileNetV2 ×0.75 2.6M 209.0M 69.8 89.6

DY-MobileNetV2 ×0.75 7.0M 217.5M 73.7(3.9) 91.3(1.7)
MobileNetV2 ×0.5 2.0M 97.0M 65.4 86.4

DY-MobileNetV2 ×0.5 4.0M 101.4M 69.9(4.5) 89.0(2.6)
MobileNetV2 ×0.35 1.7M 59.2M 60.3 82.9

DY-MobileNetV2 ×0.35 2.8M 62.0M 65.9(5.6) 86.4(3.5)
MobileNetV3-Small 2.9M 66.0M 67.4 86.4

DY-MobileNetV3-Small 4.8M 68.5M 70.3(2.9) 88.7(2.3)
ResNet-18 11.1M 1.81G 70.4 89.7

DY-ResNet-18 42.7M 1.85G 72.7(2.3) 90.7(1.0)
ResNet-10 5.2M 0.89G 63.5 85.0

DY-ResNet-10 18.6M 0.91G 67.7(4.2) 87.6(2.6)

Table 8. ImageNet [4] classification results of DY-CNNs. The
numbers in brackets denote the performance improvement over the
baseline.

Input Operator exp size #out n
16× 12×Bout bneck, 5× 5 768 256 2
32× 24× 256 bneck, 5× 5 768 128 1
64× 48× 128 bneck, 5× 5 384 128 1

Table 9. Light-weight head structures for keypoint detection. We
use MobileNetV2’s bottleneck residual block [27] (denoted as
bneck). Each row is corresponding to a stage, which starts with
a bilinear upsampling operator to scale up the feature map by 2.
#out denotes the number of output channels, and n denotes the
number of bottleneck residual blocks.

effectiveness on 3 × 3 convolution, which is only used for
the first layer in MobileNet V2 and V3. Without bells and
whistles, dynamic convolution outperforms its static coun-
terpart by a clear margin for all three architectures, with
small extra computational cost (∼ 4%). DY-ResNet and
DY-MobileNetV2 gains more than 2.3% and 3.2% top-1 ac-
curacy, respectively. DY-MobileNetV3-Small is 2.9% more
accurate than the state-of-the-art MobileNetV3-Small.

6. DY-CNNs for Human Pose Estimation
We use COCO 2017 dataset [19] to evaluate dynamic

convolution on single-person keypoint detection. Our mod-
els are trained on train2017, including 57K images and
150K person instances labeled with 17 key-points. We
evaluate our method on val2017 containing 5000 images
and use the mean average precision (AP) over 10 object key
point similarity (OKS) thresholds as the metric.
Implementation Details: We implement two types of net-
works to evaluate dynamic convolution. Type-A follows
SimpleBaseline [35] by using deconvolution in head. We
use MobileNetV2 and V3 as a drop-in replacement for the
backbone feature extractor and compare static convolution
and dynamic convolution in the backbone alone. Type-B
still uses MobileNetV2 and V3 as backbone. But it uses
upsampling and MobileNetV2’s bottleneck residual block
in head. We compare dynamic convolution with its static
counterpart in both backbone and head. The details of head



Type Backbone Head
Networks #Param MAdds Operator #Param MAdds AP AP0.5 AP0.75 APM APL AR

A ResNet-18 10.6M 1.77G dconv 8.4M 5.4G 67.0 87.9 74.8 63.6 73.5 73.1
DY-ResNet-18 42.2M 1.81G dconv 8.4M 5.4G 68.6(1.6) 88.4 76.1 65.3 75.1 74.6

A MobileNetV2 ×1.0 2.2M 292.6M dconv 8.4M 5.4G 64.7 87.2 72.6 61.3 71.0 71.0
DY-MobileNetV2 ×1.0 9.8M 305.3M dconv 8.4M 5.4G 67.6(2.9) 88.1 75.5 64.4 74.1 73.8

A MobileNetV2 ×0.5 0.7M 93.7M dconv 8.4M 5.4G 57.0 83.7 63.1 53.9 63.1 63.7
DY-MobileNetV2 ×0.5 2.7M 98.0M dconv 8.4M 5.4G 61.9(4.9) 85.8 69.7 58.9 67.9 68.4

A MobileNetV3-Small 1.1M 62.7M dconv 8.4M 5.4G 57.1 83.7 63.8 54.9 62.3 64.1
DY-MobileNetV3-Small 2.8M 65.1M dconv 8.4M 5.4G 59.3(2.2) 84.7 66.7 56.9 64.7 66.1

B MobileNetV2 ×1.0 2.2M 292.6M bneck 1.2M 701.1M 64.6 87.0 72.4 61.3 71.0 71.0
DY-MobileNetV2 ×1.0 9.8M 305.3M bneck 6.3M 709.4M 68.2(3.6) 88.4 76.0 65.0 74.7 74.2

B MobileNetV2 ×0.5 0.7M 93.7M bneck 1.2M 701.1M 59.2 84.3 66.4 56.2 65.0 65.6
DY-MobileNetV2 ×0.5 2.7M 98.0M bneck 6.3M 709.4M 62.8(3.6) 86.1 70.4 59.9 68.6 69.1

B MobileNetV3-Small 1.1M 62.7M bneck 1.0M 664.2M 57.1 83.8 63.7 55.0 62.2 64.1
DY-MobileNetV3-Small 2.8M 65.1M bneck 4.9M 671.1M 60.0(2.9) 85.0 67.8 57.6 65.4 66.7

Table 10. Keypoint detection results on COCO validation set. All models are trained from scratch. The top half uses dynamic convolution
in the backbone and uses deconvolution in the head (Type A). The bottom half use MobileNetV2’s bottleneck residual blocks in the head
and use dynamic convolution in both the backbone and the head (Type B). Each dynamic convolution layer includes K = 4 kernels. The
numbers in brackets denote the performance improvement over the baseline.

structure are shown in Table 9. For both types, we use
K = 4 kernels in each dynamic convolution layer.
Training setup: We follow the training setup in [28]. The
human detection boxes are cropped from the image and re-
sized to 256×192. The data augmentation includes random
rotation ([−45◦, 45◦]), random scale ([0.65, 1.35]), flipping,
and half body data augmentation. All models are trained
from scratch for 210 epochs, using Adam optimizer [17].
The initial learning rate is set as 1e-3 and is dropped to 1e-4
and 1e-5 at the 170th and 200th epoch, respectively. The
temperature of softmax in DY-CNNs is set as τ = 30.
Testing: We follow [35, 28] to use two-stage top-down
paradigm: detecting person instances using a person detec-
tor and then predicting keypoints. We use the same per-
son detectors provided by [35]. The keypoints are predicted
on the average heatmap of the original and flipped images
by adjusting the highest heat value location with a quarter
offset from the highest response to the second highest re-
sponse.
Main Results and Ablations: Firstly we compare dy-
namic convolution with its static counterpart in the back-
bone (Type-A). The results are shown in the top half of Table
10. Dynamic convolution gains 1.6, 2.9, 2.2 AP for ResNet-
18, MobileNetV2 and MobileNetV3-Small, respectively.

Secondly, we replace the heavy deconvolution head
with light-weight upsampling and MobileNetV2’s bottle-
neck residual blocks (Type-B) to make the whole network
small and efficient. Thus, we can compare dynamic convo-
lution with its static counterpart in both backbone and head.
The results are shown in the bottom half of Table 10. Sim-
ilar to Type-A, dynamic convolution outperforms its static
counterpart by a clear margin. It gains 3.6 and 2.9 AP for
MobileNetV2 and MobileNetV3-Small, respectively.

Backbone Head AP AP0.5 AP0.75

static static 59.2 84.3 66.4
static dynamic 60.3(1.1) 84.9 67.3

dynamic static 62.3(3.1) 85.6 70.0
dynamic dynamic 62.8(3.6) 86.1 70.4

Table 11. Keypoint detection results of using dynamic convolution
in backbone and head separately. We use MobileNetV2 ×0.5 as
backbone and use the light-weight head structure discussed in Ta-
ble 9. The numbers in brackets denote the performance improve-
ment over the baseline. Dynamic convolution can improve AP at
both the backbone and the head.

We perform an ablation to investigate the effects of dy-
namic convolution at backbone and head separately (Table
11). Even though most of improvement comes from the dy-
namic convolution at the backbone, dynamic convolution at
the head is also helpful. This is mainly because the back-
bone has more convolution layers than the head.

7. Conclusion
In this paper, we introduce dynamic convolution, which

aggregates multiple convolution kernels dynamically based
upon their attentions for each input. Compared to its static
counterpart (single convolution kernel per layer), it signif-
icantly improves the representation capability with negligi-
ble extra computation cost, thus is more friendly to efficient
CNNs. Our dynamic convolution can be easily integrated
into existing CNN architectures. By simply replacing each
convolution kernel in MobileNet (V2 and V3) with dynamic
convolution, we achieve solid improvement for both im-
age classification and human pose estimation. We hope
dynamic convolution becomes a useful component for ef-
ficient network architectures.



A. Appendix
In this appendix, we report running time and perform

additional analysis for our dynamic convolution method.

A.1. Inference Running Time

We report the running time of dynamic MobileNetV2
(DY-MobileNetV2) with four different width multipliers
(×1.0, ×0.75, ×0.5, and ×0.35) and compare with its
static counterpart (MobileNetV2 [27]) in Table 12. We
use a single-threaded core of Intel Xeon CPU E5-2650 v3
(2.30GHz) to measure running time (in milliseconds). The
running time is calculated by averaging the inference time
of 5,000 images with batch size 1. Both MobileNetV2 and
DY-MobileNetV2 are implemented using PyTorch [25].

Compared with its static counterpart, DY-MobileNetV2
consumes about 10% more running time and 4% more
Multi-Adds. The overhead of running time is higher than
Multi-Adds. We believe this is because the optimizations of
global average pooling and small inner-product operations
are not as efficient as convolution. With the small addi-
tional computational cost, our dynamic convolution method
significantly improves the model performance.

A.2. Dynamic Convolution in Shallower and Thin-
ner Networks

Figure 7 shows that the shallower DY-MobileNetV2
(depth ×0.5) has better trade-off between accuracy and
computational cost than the deeper MobileNetV2 (depth
×1.0), even though shallower networks (depth ×0.5) have
performance degradation for both DY-MobileNetV2 and
MobileNetV2. Improvement on shallow networks is useful
as they are friendly to parallel computation. Furthermore,
dynamic convolution achieves more improvement for thin-
ner and shallower networks with small width/depth multi-
pliers. This is because thinner and shallower networks are

Network Top-1 MAdds CPU (ms)
MobileNetV2 ×1.0 72.0 300.0M 127.9

DY-MobileNetV2 ×1.0 75.2(3.2) 312.9M 141.2
MobileNetV2 ×0.75 69.8 209.0M 99.5

DY-MobileNetV2 ×0.75 73.7(3.9) 217.5M 110.5
MobileNetV2 ×0.5 65.4 97.0M 69.6

DY-MobileNetV2 ×0.5 69.9(4.5) 101.4M 77.4
MobileNetV2 ×0.35 60.3 59.2M 61.1

DY-MobileNetV2 ×0.35 65.9(5.6) 62.0M 67.4

Table 12. Inference running time of DY-MobileNetV2 [27] on
ImageNet [4] classification. We use dynamic convolution with
K = 4 kernels for all convolution layers in DY-MobileNetV2 ex-
cept the first layer. CPU: CPU time in milliseconds measured on
a single core of Intel Xeon CPU E5-2650 v3 (2.30GHz). The run-
ning time is calculated by averaging the inference time of 5,000
images with batch size 1. The numbers in brackets denote the per-
formance improvement over the baseline.

underfitted due to their limited model size and dynamic con-
volution significantly improves their capability.

A.3. Example: Learning XOR

To make the idea of dynamic perceptron more concrete,
we use it on a simple task, i.e. learning the XOR function.
In this example, we want our network to perform correctly
on the four points X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T }.
Compared with the solution using two static perceptron lay-
ers [6] as follows:

y = wT max{0,W Tx+ b}

w =

[
1
−2

]
,W =

[
1 1
1 1

]
b =

[
0
−1

]
, (4)

dynamic perception only needs a single layer as follows:

y =

2∑
k=1

[(
πk(x)W̃

T
k

)
x+ πk(x)b̃k

]
W̃1 =

[
−1 0
0 0

]
, b̃1 =

[
1
0

]
, W̃2 =

[
1 0
0 0

]
, b̃2 =

[
0
0

]
,

(5)

where the attentions are π1(x) = x2, π2(x) = 1−x2. This
example demonstrates that dynamic perceptron has more
representation power due to the non-linearity.

30 40 50 60 70 80 90100 120 150 200 250 300
Multiply Add, Millions

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

, I
m

ag
en

et
, T

op
-1

x1.0

x0.75

x0.5

x0.35

DY-MobileNetV2 depth x1.0
DY-MobileNetV2 depth x0.5
MobileNetV2 depth x1.0 (baseline)
MobileNetV2 depth x0.5 (baseline)

Figure 7. Shallower DY-MobileNetV2 vs Deeper MobileNetV2.
The shallower DY-MobileNetV2 (depth ×0.5) has better trade-off
between accuracy and computational cost than the deeper Mo-
bileNetV2 (depth ×1.0). To make comparison fair, we also plot
the deeper DY-MobileNetV2 and shallower MobileNetV2. For
both DY-MobileNetV2 and MobileNetV2, deeper networks have
better performance. Best viewed in color.



References
[1] Han Cai, Chuang Gan, and Song Han. Once for all: Train one

network and specialize it for efficient deployment. ArXiv,
abs/1908.09791, 2019.

[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2019.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 28,
pages 3123–3131. Curran Associates, Inc., 2015.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[5] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. Acnet: Strengthening the kernel skeletons for powerful
cnn via asymmetric convolution blocks. In The IEEE Inter-
national Conference on Computer Vision (ICCV), October
2019.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. The MIT Press, 2016.

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling, 2019.

[8] Song Han, Huizi Mao, and William Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In International
Conference on Learning Representations (ICLR), 10 2016.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[10] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and accel-
eration on mobile devices. In The European Conference on
Computer Vision (ECCV), September 2018.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[14] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In Inter-
national Conference on Learning Representations, 2018.

[15] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360, 2016.

[16] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato,
and Yann LeCun. What is the best multi-stage architecture
for object recognition? In The IEEE International Confer-
ence on Computer Vision (ICCV), 2009.

[17] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

[18] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime
neural pruning. In Advances in Neural Information Process-
ing Systems, pages 2181–2191. 2017.

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019.

[21] Lanlan Liu and Jia Deng. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective exe-
cution. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

[22] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In The
IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In The European Conference on Computer Vi-
sion (ECCV), September 2018.

[24] Vinod Nair and Geoffrey E. Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classifier architecture
search. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[28] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In CVPR, 2019.

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019.



[30] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[31] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. Skipnet: Learning dynamic routing
in convolutional networks. In The European Conference on
Computer Vision (ECCV), September 2018.

[32] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[33] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng
Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonza-
lez, and Kurt Keutzer. Shift: A zero flop, zero parameter
alternative to spatial convolutions. 2017.

[34] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S. Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[35] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In European con-
ference on computer vision, 04 2018.

[36] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019.

[37] Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. In NeurIPS, 2019.

[38] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-
tization networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[39] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

[40] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In The European Conference
on Computer Vision (ECCV), September 2018.

[41] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018.

[42] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018.

[43] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.
Trained ternary quantization. In International Conference on
Learning Representations (ICLR), 2017.

[44] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. CoRR, abs/1611.01578, 2017.

[45] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.


