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Abstract— Machines are a long way from robustly solving
open-world perception-control tasks, such as first-person view
(FPV) aerial navigation. While recent advances in end-to-
end Machine Learning, especially Imitation and Reinforce-
ment Learning appear promising, they are constrained by
the need of large amounts of difficult-to-collect labeled real-
world data. Simulated data, on the other hand, is easy to
generate, but generally does not render safe behaviors in
diverse real-life scenarios. In this work we propose a novel
method for learning robust visuomotor policies for real-world
deployment which can be trained purely with simulated data.
We develop rich state representations that combine supervised
and unsupervised environment data. Our approach takes a
cross-modal perspective, where separate modalities correspond
to the raw camera data and the system states relevant to
the task, such as the relative pose of gates to the drone
in the case of drone racing. We feed both data modalities
into a novel factored architecture, which learns a joint low-
dimensional embedding via Variational Auto Encoders. This
compact representation is then fed into a control policy, which
we trained using imitation learning with expert trajectories in
a simulator. We analyze the rich latent spaces learned with
our proposed representations, and show that the use of our
cross-modal architecture significantly improves control policy
performance as compared to end-to-end learning or purely
unsupervised feature extractors. We also present real-world
results for drone navigation through gates in different track
configurations and environmental conditions. Our proposed
method, which runs fully onboard, can successfully generalize
the learned representations and policies across simulation and
reality, significantly outperforming baseline approaches.

Supplementary video: https://youtu.be/VKc3A5HlUU8
Open-sourced code available at: https://github.com/
microsoft/AirSim-Drone-Racing-VAE-Imitation

I. INTRODUCTION

Aerial navigation of drones using first-person view (FPV)
images is an exemplary feat of the human mind. Expert pilots
are able to plan and control a quadrotor with high agility
using a potentially noisy monocular camera feed, without
comprising safety. We are interested in exploring the question
of what would it take to build autonomous systems that
achieve similar performance levels.

One of the biggest challenges in the navigation task is
the high dimensional nature and drastic variability of the
input image data. Successfully solving the task requires a
representation that is invariant to visual appearance and robust
to the differences between simulation and reality. Collecting
labeled real-world data to minimize the sim-to-real gap, albeit
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Fig. 1. The proposed framework uses simulations to learn a rich low-
dimensional state representation using multiple data modalities. This latent
vector is used to learn a control policy which directly transfers to real-world
environments. We successfully deploy the system under various track shapes
and weather conditions, ranging from sunny days to strong snow and wind.

possible, requires intensive effort and specialized equipment
for gathering ground-truth labels [1], [2]. Attempting to solve
the task solely with real-world data is also challenging due
to poor sample efficiency of end-to-end methods, and often
leads to policies that are unable to deal with large perceptual
variability [3]–[5]. Additionally, end-to-end training in the
real world is expensive and dangerous, especially in early
phases of training when policies are highly prone to errors
and collisions.

Sim-to-real transfer learning methods aim to partially alle-
viate these challenges by training policies in a synthetic
environment and then deploying them in the real-world
[6]–[8]. Domain randomization uses a large collection of
object appearances and shapes, assuming that any real-life
features encountered will be represented within a subset of the
database. Simulations can be used to generate large amounts
of synthetic data under a wide variety of conditions [9], [10].

In this work, we introduce cross-modal learning for generating
representations which are robust to the simulation-reality gap,
and do not overfit to specificities of the simulated data. In
particular, the need to explain multiple modes of information
during the training phase aids in implicit regularization of the
representation, leading to an effective transfer of models
trained in simulation into the real world. We use high-
fidelity simulators [11] to generate both labeled and unlabeled
modalities of simulated data. Furthermore, our proposed
framework can also use unlabeled real-world data in the
training phase, thereby allowing us to incorporate real-life
unlabeled traces into the state representation. Fig. 1 depicts
the overall concept, showing a single perception module
shared for simulated and real autonomous navigation. Our
unmanned aerial vehicle (UAV) uses FPV images to extract
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a low-dimensional representation, which is then used as the
input to a control policy network to determine the next
control actions. We successfully test the system operating
in challenging conditions, many of which were previously
unseen by the simulator, such as snow and strong winds.

Our proposed framework entails learning a cross-modal
representation for state encoding. The first data modality
considers the raw unlabeled sensor input (FPV images), while
the second directly characterizes state information directly
relevant for the desired application. In the case of drone
racing, our labels correspond to the relative pose of the
next gate defined in the drone’s frame. We learn a low-
dimensional latent representation by extending the Cross-
Modal Variational Auto Encoder (CM-VAE) framework from
[12], which uses an encoder-decoder pair for each data
modality, while constricting all inputs and outputs to and
from a single latent space. Consequently, we can naturally
incorporate both labeled and unlabeled data modalities into the
training process of the latent variable. We then use imitation
learning to train a control policy that maps latent variables
into velocity commands for the UAV. The representation
uses only raw images during deployment, without access to
the ground-truth gate poses. While closest to our work is
the recent line of research on autonomous drone racing [1],
[10], we would like to note that our objective here is not to
engineer a system that necessarily finishes the race the fastest.
Unlike the prior work, we do not assume prior knowledge
during deployment in terms of an accurate dynamics model
coupled with optimal trajectory generation methods. Instead,
our goal is to learn visuomotor policies operating on learned
representations that can be transferred from simulation to
reality. Thus, the methods presented in this paper are not
directly comparable to [1], [10].

While in this paper we specifically focus on the problem
of aerial navigation in a drone racing setting, the proposed
techniques are general and can be applied to other perception-
control tasks in robotics. Our key contributions are:

• We present a cross-modal framework for learning latent
state representations for navigation policies that use
unsupervised and supervised data, and interpret the bi-
modal properties of the latent space encoding;

• We provide simulation experiments comparing variants
of the cross-modal framework with baseline feature
extractors such as variational auto-encoders (VAEs), gate
pose regression, and end-to-end learning;

• We provide multiple real-world navigation experiments
and performance evaluations of our control policies. We
show that our proposed representation allows for sim-to-
real deployment of models learned purely in simulation,
achieving over one kilometer of cumulative autonomous
flight through obstacles.

II. RELATED WORK

a) Navigation policies: Classically, navigation policies rely
on state estimation modules that use either visual-inertial
based odometry [13] or simultaneous localization and map-
ping [14]. These techniques can present high drift and noise
in typical field conditions, impacting the quality of both
the robot localization and the map representation used for
planning. Therefore, trajectory optimization based algorithms
[15]–[17] can result in crashes and unsafe robot behaviors.
Against these effects, [18] learn a collision avoidance policy
in dense forests using only monocular cameras, and [19] learn
a steering function for aerial vehicles in unstructured urban
environments using driving datasets for supervision.

Recently, [3], [20]–[22] explore learning separate networks
for the environment representation and controls, instead
of the end-to-end paradigm. The goal of an intermediate
representations is to extract a low-dimensional space which
summarizes the key geometrical properties of the environment,
while being invariant to textures, shapes, visual artifacts. Such
intermediate representations mean that behavior cloning or
reinforcement learning methods have a smaller search space
[21] and more sample efficiency.

b) Learning representations for vision: Variational Autoen-
coder (VAE) based approaches have been shown to be
effective in extracting low-dimensional representation from
image data [23]–[26]. Recently, VAEs have been to leveraged
to extract representations from multiple modalities [12], [27]–
[29]. Relevant to our work, [12] propose a cross-modal VAE
to learn a latent space that jointly encodes different data
modalities (images and 3D kyepoints associated with hand
joints) for a image to hand pose estimation problem.

c) Drone Racing: We find different problem definitions in
the context of autonomous drone racing. [1], [10] focus
on scenarios with dynamic gates by decoupling perception
and control. They learn to regress to a desired position
using monocular images with a CNN, and plan and track a
minimum jerk trajectory using classical methods [15], [30].
[10] utilize domain randomization for effective simulation to
reality transfer of learned policies.

Gate poses are assumed as a priori unknown in [31]–[33].
[31] use depth information and a guidance control law for
navigation. [32], [33] use a neural network for gate detection
on the image. A limitation of the guidance law approach is
that the gate must be in view at all times, and it does not
take into account gate relative angles during the approach.

[2] formulate drone racing as flight though a predefined
ordered set of gates. They initialize gate locations with a
strong prior via manual demonstration flights. The belief over
each gate location is then updated online by using a Kalman
Filter over the gate pose predictions from a neural network.

In our work we take inspirations from the fields of policy and
representation learning to present a method that combines
unsupervised and supervised simulated data to train a single



Fig. 2. Control system architecture. The input image is encoded into a
latent representation of the environment. A control policy acts on the lower-
dimensional embedding to output the desired robot velocity commands.

latent space on which a control policy acts. The bi-modal
nature of the latent space implicitly regularizes the represen-
tation model, allowing for policy generalization across the
simulation-reality gap.

III. APPROACH

This work addresses the problem of robust autonomous
navigation through a set of gates with unknown locations. Our
approach is composed of two steps: first, learning a latent state
representation, and second, learning a control policy operating
on this latent representation (Fig. 2). The first component
receives monocular camera images as input and encodes the
relative pose of the next visible gate along with background
features into a low-dimensional latent representation. This
latent representation is then fed into a control network, which
outputs a velocity command, later translated into actuator
commands by the UAV’s flight controller.

A. Definitions and Notations

Let W define the world frame, B the body frame, and Gi the
frame of the target gate. Let E define the full environment
geometry and object categories. Assuming that all gates are
upright, let yi = [r, θ, φ, ψ] define the relative spherical
coordinates and yaw gate frame Gi, in the B frame.

We define qRGB(It) → RN to be an encoder function that
maps the current image It to a latent compressed vector zt
of size N . Let π(zt) → R4 be a control policy that maps
the current encoded state to a body velocity command vB =
[vx, vy, vz, vψ], corresponding to linear and yaw velocities.

Let π∗ be an expert control policy. Our objective is to find
the optimal model parameters Θ∗ and Φ∗ that minimize the
expectation of distance D between our control policy and
the expert, taken over observed states s. Note that the expert
policy operates with full knowledge of the environment E,
while our policy only has access to the observation qRGB(It):

Θ∗,Φ∗ = arg min
Θ,Φ

Es
[
D
(
π∗
(
E
)
, πΦ

(
qΘ
RGB(I

))]
(1)

Fig. 3. Cross-modal VAE architecture. Each data sample is encoded into a
single latent space that can be decoded back into images, or transformed
into another data modality such as the poses of gates relative to the UAV.

B. Learning Cross-Modal Representations for Perception

The goal of the perception module is to extract all pertinent
information for the current task from the current state of
the environment E and UAV. Several approaches exist for
feature extraction, from fully supervised to fully unsupervised
methods, as mentioned in Section II.

An effective dimensionality reduction technique should be
smooth, continuous and consistent [12], and in our application,
also be robust to differences in visual information across
both simulated and real images. To achieve these objectives
we build on the architecture developed by [12], who use
a cross-modal variant of variational auto-encoders (CM-
VAE) to train a single latent space using multiple sources of
data representation. The core hypothesis behind our choice
of encoding architecture is that, by combining different
data modalities into one latent vector, we can induce a
regularization effect to prevents overfitting to one particular
data distribution. As shown in Section IV-C, this becomes
an important feature when we transfer a model learned with
simulated data to the real world, where appearances, textures
and shapes can vary significantly.

CM-VAE derivation and architecture: The cross-modal ar-
chitecture works by processing a data sample x, which can
come from different modalities, into the same latent space
location (Fig. 3). In robotics, common data modalities found
are RGB or depth images, LiDAR or stereo pointclouds, or
3D poses of objects in the environment. In the context of
drone racing, we define data modalities as RGB images and
the relative pose of the next gate to the current aircraft frame,
i.e, xRGB = It and xG = yi = [r, θ, φ, ψ]. The input RGB
data is processed by encoder qRGB into a normal distribution
N (µt, σ

2
t ) from which zt is sampled. Either data modality

can be recovered from the latent space using decoders pRGB
and pG.

In the standard definition of VAEs, the objective is to optimize
the variational lower bound on the log-likelihood of the data
[23], [34]. In [12], this loss is re-derived to account for
probabilities across data modalities xi and xj , resulting in



the new lower bound shown in Eq. 2:

Ez∼q(z|xi) [log p(xj |z)]−DKL(q(z|xi)||p(z)) (2)

We use the Dronet [19] architecture for encoder pRGB , which
is equivalent to an 8-layer Resnet [35]. We choose a small
network, with about 300K parameters, for its low onboard
inference time. For the image decoder qRGB we use six
transpose convolutional layers, and for the gate decoder pG
we use two dense layers.

Training procedure: We follow the training procedure outlined
in Algorithm 1 of [12], considering three losses: (i) MSE loss
between actual and reconstructed images (It, Ît), (ii) MSE
loss for gate pose reconstruction (yi, ŷi), and (iii) Kullback-
Leibler (KL) divergence loss for each sample. During training,
for each unsupervised data sample we update networks qRGB ,
pRGB , and for each supervised sample we update both image
encoder qRGB and gate pose decoder pG with the gradients.

Imposing constraints on the latent space: Following recent
work in distantangled representations [24], [36], we compare
two architectures for the latent space structure. Our goal is to
improve performance of the control policy and interpretability
of results. In first architecture, zunc stands for the uncon-
strained version of the latent space, where: ŷi = pG(zunc) and
Ît = pRGB(zunc). For second architecture, instead of a single
gate pose decoder pG, we employ 4 independent decoders
for each gate pose component, using the first 4 elements of
zcon. As human designers, we know that these features are
independent (e.g, the distance between gate and drone should
have no effect on the gate’s orientation). Therefore, we apply
the following constraints to zcon: r̂ = pr(z

[0]
con), θ̂ = pθ(z

[1]
con),

ψ̂ = pψ(z
[2]
con), φ̂ = pφ(z

[3]
con). The image reconstruction step

still relies on the full latent variable: Ît = pRGB(zcon).

C. Imitation learning for control policy

Expert trajectory planner and tracker: To generate expert data
(π∗
(
E
)
) we use a minimum jerk trajectory planner following

the work of [15], [30], [37] considering a horizon of one gate
into the future, and track it using a pure-pursuit path tracking
controller. We generate a dataset of monocular RGB images
with their corresponding controller velocity commands.

Imitation learning algorithm: We use behavior cloning (BC),
a variant of supervised learning [38], to train the control
policy π

(
q(I)

)
when minimizing Equation 1. We freeze all

encoder weights when training the control policy. In total
we train 5 policies for the simulation experiments: BCcon
and BCunc, which operate on zcon and zunc respectively
as features, BCimg, which uses a pure unsupervised image
reconstruction VAE for features, BCreg , which uses a purely
supervised regressor from image to gate pose as features,
and finally BCfull, which uses a full end-to-end mapping
from images to velocities, without an explicit latent feature
vector. We train an additional policy BCreal for the physical

experiments, using unsupervised real-life images along the
CM-VAE architecture, as further detailed in Section IV-C.

To provide a fair comparison between policy classes, we
design all architectures to have the same size and structure.
BC policies learned on top of representations are quite small,
with only 3 dense layers and roughly 6K neurons. The end-
to-end BCfull layout is equivalent to the combination of the
Dronet encoder plus BC policy from the other cases, but
initially all parameters are untrained.

IV. RESULTS

A. Learning Representations

Our first set of experiments aims to valuate the latent
representations from three different architectures: (i) qreg,
for direct regression from It → zreg = [r, θ, φ, ψ] ∈ R4,
(ii) qunc, for the CM-VAE using RGB and pose modalities
without constraints: It → zunc ∈ R10, and (iii) qcon, for the
CM-VAE using RGB and pose modalities with constraints:
It → zcon ∈ R10.

We generated 300K pairs of 64 × 64 images along with
their corresponding ground-truth relative gate poses using the
AirSim simulator [11]. We randomly sample the distance to
gate, aircraft orientation, and gate yaw. 80% of the data was
used to train the network, and 20% was used for validation.

Fig. 4 displays images decoded over various regions of
the latent spaces zcon and zunc. Each row corresponds to
variations in z values in one of the 10 latent dimensions. We
verify that the latent variables can encode relevant information
about the gate poses and background information. In addition,
the constrained architecture indeed learned to associate the
first four dimensions of zcon to affect the size, the horizontal
offset, the vertical offset and the yaw of the visible gate.

Fig. 5 depicts examples of input images (left) and their
corresponding reconstructions (right). We verify that the
reconstruction captures the essence of the scene, preserving
both the background and gate pose.

The smoothness of the latent space manifold with respect
to the gate poses and image outputs is a desirable property
(i.e., similar latent vectors correspond to similar gate poses).
Intuitively, our single cross-modal latent space should lead
to such smooth latent space representation, and our next
analysis confirms that such properties emerge automatically.
In Fig. 6 we show the decoded outputs of a latent space
interpolation between the encoded vectors from two very
different simulated images. Both images and their decoded
poses are smoothly reconstructed along this manifold.

Additionally, we quantitatively evaluate the predictions of the
three architectures that can recover the gate poses from the
images, as shown in Table I. When trained for the same
number of epochs, qreg, qunc, and qcon achieve roughly
the same error in prediction. The cross-modal latent space
can encode gate pose information slightly better than direct



Fig. 4. Visualization of latent space from a) constrained and b) unconstrained cross-modal representations. The constraints on latent space force the
disantanglement of the first four variables of zcon to encode the relative gate pose, condition that is also observed in the image modality.

TABLE I
AVERAGE AND STANDARD ERRORS FOR ENCODING GATE POSES

q Radius Azimuth Polar Yaw
r [m] θ [◦] φ [◦] ψ [◦]

qreg 0.41± 0.013 2.4± 0.14 2.5± 0.14 11± 0.67
qunc 0.42± 0.024 2.3± 0.23 2.1± 0.23 9.7± 0.75
qcon 0.39± 0.023 2.6± 0.23 2.3± 0.25 10± 0.75

regression, likely due to the additional unsupervised gradient
information. Small variations can also be attributed to the
training regime using stochastic gradient descent.

B. Simulated navigation results

Our next set of experiments evaluates control policies learned
over five different types of feature extractors. As described in
Section III-C, we train behavior cloning policies on top of the
CM-VAE latent spaces (BCcon, BCunc), a direct gate pose
regressor (BCreg), vanilla VAE image reconstruction features
(BCimg), and finally full end-to-end training (BCfull).

For data collection we generated a nominal circular track with
50m of length, over which we placed 8 gates with randomized
position offsets in XYZ changing at every drone traversal.
We collected 17.5K images with their corresponding expert
velocity actions while varying the position offset level from 0-
3m. 80%, or 14K datapoints, were used to train the behavior
cloning policies, and the remainder were used for validation.

Fig. 5. Comparison between original simulated images with their respective
CM-VAE reconstructions. Reconstructed images are blurrier than the original,
but overall gate and background features can be well represented.

Fig. 6. Visualization of latent space interpolation between two simulated
images. Smooth interpolation can be perceived in both image and gate pose
data modalities. Even background features such as the ground’s tilt are
smoothly captured.

We evaluate our proposed framework under controlled simu-
lation conditions analogous to data collection. Similarly to
previous literature [1], [2], [10], we define a success metric
of 100% as the UAV traversing all gates in 3 consecutive
laps. For each data point we average results over 10 trials in
different randomized tracks. Figure 7 shows the performance
of different control policies which were trained using different
latent representations, under increasing random position offset
amplitudes. At a condition of zero noise added to the gates,
most methods, except for the latent representation that uses
pure image compression, can perfectly traverse all gates. As
the track difficulty increases, end-to-end behavior cloning
performance drops significantly, while methods that use latent
representations degrade slower. At a noise level of 3 m over
a track with 8 m of nominal radius the proposed cross-modal
representation BCcon can still achieve approximately 40%
success rate, 5X more than end-to-end learning. We invite
the reader to watch the supplementary video for more details.

The three architectures that implicitly or explicitly encode
gate positions (BCcon, BCunc, BCreg) perform significantly
better than the baselines. This behavior likely spans from
the small pixel-wise footprint of gates on the total image,
which makes it harder for the vanilla VAE architecture or
end-to-end learning to effectively capture the relative object
poses. However, even though the regression features have



a relatively good performance in simulation, policy success
degrades when exposed to real-world images, as detailed in
Subsection IV-C.

Fig. 7. Performance of different navigation policies on simulated track.

C. Real-World Results

We also validate the ability of the different visuomotor
policies to transfer from simulation to real-world deployment.
Our platform is a modified kit1, as shown in Figure 8. All
processing is done fully onboard with a Nvidia TX2 computer,
with 6 CPU cores and an integrated GPU. An off-the-shelf
Intel T265 Tracking Camera provides odometry, and image
processing uses the Tensorflow framework. The image sensor
is a USB camera with 83◦ horizontal FOV, and we downsize
the original images to dimension 128× 72.

Fig. 8. UAV platform.

First we evaluate how the CM-VAE
module, which was learned only with
simulated data, performs with real-
world images as inputs. We only focus
on zcon given that it presented the
best overall performance in simulation
experiments. Fig. 9 shows that the
latent space encoding remains smooth
and consistent. We train this model with a new simulation
dataset composed of 100K images with size 128 × 72 and
FOV equal to our hardware USB camera.

To show the capabilities of our approach on a physical
platform, we test the system on a S-shaped track with 8
gates and 45m of length, and on a circular track with 8 gates
and 40m of length, as shown in Fig 10. We compare three
policies: BCcon, BCreg , and BCreal. To train this last control
policy, BCreal, we use a CM-VAE trained using not only
the 100K images from simulation, but also additional 20K
unsupervised real-world images. Our goal with this policy is
to compare if the use of unsupervised real data can help in
the extraction of better features for navigation.

We display results from both tracks on Table II. The
navigation policy using CM-VAE features trained purely in
simulation significantly outperforms the baseline policies in

1https://www.getfpv.com/student-competition-5-bundle.html

Fig. 9. Visualization of smooth latent space interpolation between two real-
world images. The ground-truth and predicted distances between camera and
gate for images A and B were (2.0, 6.0) and (2.5, 5.8) meters respectively.

Fig. 10. Side and top view of: a) Circuit track, and b) S-shape track.

both tracks, achieving over 3× the performance of BCreg
in the S-track. The performance gap is even larger on the
circuit track, with BCcon achieving a maximum of 26 gates
traversed before any collision occurs. It is important to note
that some of the circuit trials occurred among wind gusts
of up to 20km/h, a fact that further shows that our policies
learned in simulation can operate in physical environments.

We also investigate the cause of the performance drop in
BCreg when transferred to real-world data. Table III shows
the ground-truth and predicted gate distances for different
input images. The CM-VAE, despite being trained purely on
simulation, can still decode reasonable values for the gate
distances. Direct regression, however, presents larger errors.
In addition, Figure 11 displays the accumulated gate poses as
decoded from both representations during 3s of a real flight
test. The regression poses are noticeably noisier and farther
from the gate’s true location.

In the experiments thus far we deployed the learned policies
on physical environments that roughly resemble the visual
appearances of the simulation dataset. There, all images were
generated in a grass field with blue skies, and trees in the
background. To verify policy and representation robustness to
extreme visual changes, we perform additional tests in more
challenging scenarios. Fig. 12 shows examples of successful
test cases: Fig. 12a) indoors where the floor is blue with red
stripes, and Fig. 12b-c) among heavy snow. We invite the
reader to visualize these experiments in the video attachment
(https://youtu.be/VKc3A5HlUU8).

https://youtu.be/VKc3A5HlUU8


TABLE II
POLICY PERFORMANCE IN NUMBER OF GATES TRAVERSED

S-Track [12 trials] Circuit [6 trials]
Mean Max Mean Max

BCcon 7.8 8 14.3 26
BCreal 5.0 7 3.1 5
BCreg 2.3 5 1.2 2

Fig. 11. Analysis of a 3-second flight segment. a) Input images and their
corresponding images decoded by the CM-VAE; b) Time history of gate
center poses decoded from the CM-VAE (red) and regression (blue). The
regression representation has significantly higher offset and noise from the
true gate pose, which explains its poor flight performance.

V. CONCLUSION AND DISCUSSION

In this work we present a framework to solve perception-
control tasks that uses simulation-only data to learn rich rep-
resentations of the environment, which can then be employed
by visuomotor policies in real-world aerial navigation tasks.
At the heart of our approach is a cross-modal Variational
Auto-Encoder framework that jointly encodes raw sensor
data and useful task-specific state information into a latent
representation to be leveraged by a control policy. We
provide detailed simulation and real-world experiments that
highlight the effectiveness of our framework on the task
of FPV drone navigation. Our results show that the use of
cross-modal representations significantly improves the real-
world performance of control policies in comparison with
several baselines such as gate pose regression, unsupervised
representations, and end-to-end approaches.

The main finding we can infer from our experiments is that by
introducing multiple data modalities into the feature extraction
step, we can avoid overfitting to specific characteristics of
the incoming data. For example, even though the sizes of
the square gates were the same in simulation and physical
experiments, their width, color, and even intrinsic camera
parameters are not an exact match. The multiple streams of
information that the CM-VAE encounters regularize its model,
leading to better generalization among appearance changes.

From our experiments in Fig. 7 we can also infer that features
trained for unsupervised image reconstruction can serve as
important cues describing the UAV’s current state for the
control policy, on top of the explicit human-defined supervised
parameters. For example, by using background features such
as the line of horizon, a pilot may infer the UAV’s current
roll angle, which influences the commanded velocities. This
remark can serve as an additional motivator for the use of a

TABLE III
EXAMPLES OF DISTANCE TO GATES DECODED FROM REAL IMAGES

Image
Ground-truth [m] 2 4 6 8
CM-VAE [m] 2.16 3.78 6.10 8.77
Regression [m] 4.67 5.50 6.68 9.13

Fig. 12. Examples of challenging test environments: a) Indoors, with blue
floor with red stripes, and b-c) among heavy snowfall.

semi-supervised features extraction module, since it is difficult
to hand-define all relevant features for a particular control task.
Another advantage of the CM-VAE architecture is that it can
allow the robot operator to gain insights onto the decisions
made by the networks. For instance, a human can interpret
the decoded gate pose and decoded images in real time and
stop the vehicle if perception seems to be abnormal.

Interestingly, BCreal did not outperform BCcon in our real-
world experiments, as we originally expected. However, it
was still better than BCreg. We suspect that the drop in
performance happens because the dataset used for imitation
learning only contained images from simulation, and there
is distribution shift in comparison with images used for
training the representation. As future work we envision using
adversarial techniques such as [39] for lowering the distance
in latent space between similar scenes encountered in sim
and real examples.

Additional future work includes extensions of the cross-
modal semi-supervised feature extraction framework to other
robotics tasks, considering the use of multiple unsupervised
data modalities that span beyond images. We believe that
applications such as autonomous driving and robotic manip-
ulation present perception and control scenarios analogous
to the aerial navigation task, where multiple modalities of
simulated data can be cheaply obtained.
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