MinHash Hierarchy for Privacy Preserving Trajectory Sensing
and Query

Jiaxin Ding, Chien-Chun Ni Mengyu Zhou Jie Gao
Stony Brook University Tsinghua University Stony Brook University
{jiading,chni}@cs.stonybrook.edu zhoumy12@mails.tsinghua.edu.cn jgao@cs.stonybrook.edu

ABSTRACT

In this work, we study privacy preserving trajectory sensing and
query when n mobile entities (e.g., mobile devices or vehicles) move
in an environment of m checkpoints (e.g, WiFi or cellular towers).
The checkpoints detect the appearances of mobile entities in the
proximity, meanwhile, employ the MinHash signatures to record
the set of mobile entities passing by. We build on the checkpoints
a distributed data structure named the MinHash hierarchy, with
which one can efficiently answer queries regarding popular paths
and other traffic patterns. The MinHash hierarchy has a total of
near linear storage, linear construction cost, and logarithmic up-
date cost. The cost of a popular path query is logarithmic in the
number of checkpoints. Further, the MinHash signature provides
privacy protection using a model inspired by the differential pri-
vacy model. We evaluated our algorithm using a large mobility
data set and compared with previous works to demonstrate its util-
ities and performances.

CCS CONCEPTS

«Security and privacy —Privacy protections; «Networks —In-
network processing;

KEYWORDS

MinHash Hierarchy, Privacy protection, Trajectory sensing, Path
queries

ACM Reference format:

Jiaxin Ding, Chien-Chun Ni, Mengyu Zhou, and Jie Gao. 2017. MinHash
Hierarchy for Privacy Preserving Trajectory Sensing and Query. In Pro-
ceedings of The 16th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, Pittsburgh, PA USA, April 2017 (IPSN 2017), 12 pages.
DOI: http://dx.doi.org/10.1145/3055031.3055076

1 INTRODUCTION

The technology development in localization mechanisms and the
wide spread of mobile devices have enabled the capability to gather
an enormous amount of real-world mobility data. Such data can be
valuable in a variety of ways. Human mobility patterns can be used
to aid civil planning such as improving transportation systems and
city construction. How people move around in the living space

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IPSN 2017, Pittsburgh, PA USA

© 2017 ACM. 978-1-4503-4890-4/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3055031.3055076

can be used for activity recognition, energy management, health
monitoring, just to name a few.

With such enormous trajectory data, we have new challenges
on the front of data management, analysis, and applications. The
motivation of this paper is two folds. The first issue is real-time
mobility sensing and queries, and the second issue is privacy pro-
tection. The two topics are closely related. In almost all past works,
mobility trajectories are first gathered into a trajectory database be-
fore any analysis is done, which does not meet real-time require-
ments. It is a waste of efforts to collect and archive all trajectory
data as traffic congestion or frequent traffic patterns may change
fast and soon become outdated. In addition, user queries for traffic
information generally exhibit spatial and temporal locality — one
cares mostly about the traffic situation near the current location
and cares less about the traffic condition faraway. With both data
locality and query locality in consideration, it is desirable to have
a distributed system to keep data near where it is generated.

Collecting all mobility traces for a long time scale at a central
place may also raise privacy concerns. Human movement trajecto-
ries over a long period of time are surprisingly unique with strong
personal traits. Simply removing the personal identifiers of the
records is far from enough. Frequently visited locations or repeated
motifs can be related to activities that reveal important locations
such as home or work locations [19], which results in the high pre-
dictability of individual locations [39]. Frequent co-location events
can be used to infer social tie structures [44]. Natural motion tra-
jectories have fairly distinctive signatures — even the coarse knowl-
edge of someone’s whereabouts can be used to identify a single tra-
jectory out of a million others [12]. Sanitization of long-term mo-
bility traces is a non-trivial task. In this work, we do not archive
long-term trajectory traces but only keep, in a distributed manner,
mobile entity appearance/traffic situation in recent history.

Our results. We would like to address the problem of finding pop-
ular paths in real time, with respect to the current trajectory flow
and recent history. Since the trajectories are naturally spatially
spread out, we develop a distributed sensing framework which
makes use of a set of spatially located checkpoints, (e.g., the road-
side units in vehicular network setting, WiFi hotspots or cellular
towers). These checkpoints can detect and record the mobile enti-
ties (e.g., the vehicle with GPS or people with mobile devices) pass-
ing by. Instead of collecting all trajectories through these check-
points first, we would like to directly work with the checkpoints
and build a distributed data structure that 1) is compact, of modest
size; 2) allows efficient and continuous updates when new traffic
data comes in; 3) answers real-time queries of popular patterns;
4) protects user privacy. Our idea is to collect the trajectory data
at the ‘checkpoints’ by using the MinHash mechanism. In partic-
ular, each mobile entity is assumed to have a unique ID. At each

IPSN 2017, April 2017, Pittsburgh, PA USA

checkpoint, all mobile agents that pass by would report the hashed
values of their IDs. Each checkpoint only keeps the minimum hash
value of all agents that pass by in a recent time frame. This is re-
peated by using k independent hash functions at all checkpoints.
The min-hash values at these checkpoints now form a MinHash
signature.

Albeit the simplicity and compactness of the MinHash signa-
ture, it has a number of attractive properties. Namely, the sig-
nature at one checkpoint can be used to estimate the number of
mobile agents that have recently appeared - the larger this num-
ber, the smaller the MinHash value is. For two physically adjacent
checkpoints, the intersection of their MinHash signatures can be
used to estimate the Jaccard coefficient, i.e., the similarity of the
mobile entities they have seen. This is useful for mining popular
trajectories. Last but most importantly, the MinHash signature
protects personally identifiable information, formulated using e-
differential privacy. If any particular trajectory is removed from a
set of trajectories, the MinHash signature remains the same with
high probability over the random choices made in the hash func-
tions. Thus, with such signatures personally relevant information
is protected, while cumulative traffic patterns can still be effec-
tively extracted.

Our most important contribution is the MinHash hierarchy on
the checkpoints, with which one can efficiently answer popular
path queries. The MinHash hierarchy built in levels takes ran-
domly sampled checkpoints in a recursive manner, where a check-
point on level i appears in level i+ 1 with fixed probability. At each
level, the checkpoints record whether they are ‘neighbors’ on this
level - defined as whether there is a popular path connecting them
without other checkpoints of the same level in between. The inter-
section of all the MinHash signatures along this popular path is
also stored at the two end checkpoints. It turns out that the total
storage requirement of the hierarchy would be near linear in the
number of checkpoints. The depth of the hierarchy is logarithmic
in the number of checkpoints. With such a hierarchy, which is
stored in the checkpoints in a distributed manner, one can issue a
number of queries of all the popular paths between two locations,
the popularity of a given path, as well as all the popular paths start-
ing from one point. The first two queries can be answered in time
only logarithmic in the number of checkpoints while the last one
in polylogarithmic time. Both the MinHash signature and the hi-
erarchy can be made time-evolving.

In this paper, we prove rigorously the above claims. We also
evaluate the MinHash hierarchy with large trajectory sets. Com-
pared with previous frequent pattern mining algorithms (SPADE[51],
PrefixSpan [24]), our MinHash hierarchy outperforms them in both
computation and storage complexity. As for the communication
complexity of popular path queries, we show our algorithm scales
well with heavy tasks compared to the brute force method.

In the following we start by reviewing the related work. Then
we define the settings, introduce MinHash for trajectory analysis,
and prove that the MinHash signature is privacy preserving. We
thereafter propose the MinHash hierarchy and efficient algorithms
to answer the popular path queries. The performance evaluation
is presented at the end.

J. Ding et al.

2 RELATED WORK

Frequent pattern mining. The study of spatial temporal pat-
terns that summarize the collective behaviors of moving objects
has been a subject of study under the name of sequential pattern
mining. The frequent sequential pattern (FSP) problem [2] is de-
fined over a database of sequences D, where each element is a
time-stamped set of items called an itemset. And the problem is
to find all sequences that are frequent in D, i.e., appearing as sub-
sequences in a large percentage of all sequences of D. Here a se-
quence «a is a subsequence of f if all the elements of a appear in the
same order in f3, though not necessarily to be consecutive. This def-
inition has been widely adopted in mining of a variety of data sets,
from DNA sequences to e-commerce. A number of well known
algorithms have also been proposed (e.g., Generalized Sequential
Patterns (GSP) [41], PrefixSpan [24], SPAM [3], IncSpan [8], and
SPADE [51]). Handling trajectories as discrete items is missing one
important aspect of location proximity. Thus in a number of pre-
vious work [17, 28], approximation or clustering is used to group
nearby locations together. In the work above, the temporal dimen-
sion is not considered and instead the trajectories from different
time window are put together to generate the frequent patterns.
This has merit in certain applications that are neutral or blind to
the time dimension. But our setting is different.

Some other works related to frequent pattern mining are called
Convoy Pattern Mining[25, 26]. Convoys are groups of objects that
are density—connected in continuous trajectory snapshots. In [25,
26], Jeung et al. proposed a method to find the convoy by in-
terpolate an object’s location for snapshots and filter-and-refine
the trajectory points. Their method has later been discovered by
Yoon and Shahabi[49] to have the accuracy problem. Yoon and
Shahabi[49] redefined the term to be valid convoy, and proposed
a method called VCoDA to solve the problem. In recent work,
Orakzai et al.[36] suggested a distributed solution of this convoy
problem.

There are also some grid-based works for frequent pattern min-
ing. In [27], Uehara et al. proposed a MapReduce method of a
hierarchical grid with quad-tree search that can detect different
levels of granularity. In [43], Verhein proposed k-STARs, which
is also a hierarchical lattice based method to mine the trajectory
patterns in different resolution.

Existing frequent sequential pattern mining mainly take two
general approaches: the bottom-up Apriori-based approach [41,
51], and the top down FP-growth based approach [23, 24]. The
way that the trajectory data is stored is more similar to the Apriori-
based approach such that frequent paths appear and bubble up in
the hierarchy. While queries to the hierarchy take a more top-
down approach and directly start from paths kept on high levels
of the hierarchy.

Frequent trajectory mining. There is also prior work that con-
siders the temporal relations between events, or patterns that con-
tain both spatial and temporal information [18, 32]. Giannotti et al.
[18] handled GPS trajectories and identify popular regions and
then connected them with the temporal patterns. Liu et al. [32] fo-
cused on trajectory pattern mining in noisy RFID data. The mined
frequent trajectories are used for prediction or classification of the
trajectories [31], labelling of locations [52], or deriving mobile user

MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query

behaviors [33]. MinHash was used to measure the similarity of two
trajectories in [20, 45]. There was no prior work in mining trajec-
tory patterns in a distributed setting as what is done in this paper.

Protecting trajectory privacy. Plenty of work has been con-
ducted to protect the privacy of a single location, when the user
submits a query to location-based services (LBS) on mobile phones.
A nice survey can be found in [9, 38]. For query privacy (i.e., not
identifying the user issuing the query), the most common approach
is to use k-anonymity measure [42] in which the user location is
indistinguishable from at least k — 1 other users. Cloaking boxes
were used [21, 34] in which one user query is packed in a box with
k — 1 other users in the neighborhood. Only the box is sent to
the LBS. For location privacy (i.e, not identifying the location of
a user), one common metric used is location entropy, which char-
acterizes the uncertainty of the location information an adversary
can extract from LBS queries. Most methods use perturbations of
the true locations to confuse the adversary (for example, see [48]).
Notice that the reported location cannot be too far away from the
true location as otherwise the location based query will become
useless. There is a tradeoff of location privacy versus query utility.
Protecting the privacy of the trajectory data is not investigated
as much. Previous work is along the following directions: spatial
temporal cloaking [46, 47], which often suffers from growing size
of the boxes; mixed zones [4, 15] in which users’ pseudonyms are
mixed inside the zone. In the case of protecting privacy during
publication of trajectories to a third party, three ideas have been
mainly used: clustering based [1, 16], generalization based [35] and
adding dummies [30, 50]. In all of them the k-anonymity is used
as a measure of privacy protection. While k-anonymity protects
against identifying an individual in a group of k entries, it does not
provide sufficient protection against attribute - i.e., the link of an
attribute to an individual may disclose sensitive information.

3 SETTINGS AND MODELS
3.1 Network and Privacy Models

Checkpoints. We consider the setting in which n mobile enti-
ties move within a geographical region in which m checkpoints
are spatially distributed. Typically n > m. Each checkpoint can
detect the appearances of mobile entities in close proximity and
maintain a signature as the sketch of the ID set of mobile entities
passing by. We assume that the checkpoints have sufficient den-
sity to distinguish between different trajectories. In particular, we
assume that whenever two different paths meet at v, diverge and
then meet at w again, they each visit at least one other different
checkpoint.

Network Model. The checkpoints, being roadside units, WiFi ac-
cess points or cellular base stations, are naturally connected to
each other by the Internet. We exploit the existing communication
infrastructure and assume that any checkpoint can communicate
with any other checkpoint with unit cost. When we discuss com-
munication cost we count the number of message transmissions
among these checkpoints.

Privacy Model and Adversaries. For privacy protection, we use
the idea inspired by differential privacy [13], which is proposed
for protecting the privacy of a query database. Given a database

IPSN 2017, April 2017, Pittsburgh, PA USA

and user queries on the database, the queries are answered by a
randomized algorithm which is e-differentially private if for both
datasets, D1 and Da, that differ on a single element (i.e., data of
one person), and all S C Range(A),

Pr[A(D1) € §] < ¢ x Pr[A(Dy) € S,

where the probability is taken over the coins of the algorithm and
Range(A) denotes the output range of the algorithm A.

Our model is a bit different. In the database setting, all data is
stored on a trusted server and noise is added to the query result
to ensure that one cannot infer the information of any particular
element. However, if the server is hacked, all the information is
revealed. In our case, trajectory data is stored in a distributed man-
ner, locally at the checkpoints of detection. We assume that the
checkpoints are trusted when they collect data and generate signa-
tures. Even if an adversary collects the signatures from all check-
points, the adversary still cannot infer information about any sin-
gle trajectory with high probability. This is a stronger condition
as any information inferred from the signature will automatically
have the differential privacy property.

As will be described later, we use hash functions in the data
structure. We assume that the mobile entities, as well as check-
points, have the same set of hash functions so they are able to com-
pute the hash values themselves. If needed, the hash functions can
be taken as cryptographic one-way hash functions [37] so that ad-
versaries knowing the hashed values cannot inverse the functions
and recover the IDs of the mobile entities.

Time Evolving Signatures. Trajectories in a long period of time
can reveal personal information, such as frequently visited loca-
tions [12]. This concern is substantially reduced if only short trajec-
tories are kept [40]. Therefore, in addition to spreading trajectory
information spatially on the checkpoints, we work on real-time
settings and partition trajectories by short time intervals. At the
beginning of each time interval, we re-start the hash signatures
(by choosing random seeds). We keep the signatures for the latest
t time intervals. Any information older than ¢ slots away is re-
moved. As time evolves, the oldest signature is overwritten. Both
the length of the interval and the value ¢ are determined by appli-
cations.

3.2 Popular and Consistent Paths

In this work we are mostly interested in paths that are travelled
by a large number of mobile entities (either in absolute value, or a
fractional amount) in a recent period of time. There are a number
of motivations for supporting this type of queries. First, the popu-
lar paths represent an important class of significant patterns in the
trajectory set. If two sets of trajectories are similar, then the popu-
lar paths in these sets must be similar too. Thus comparing popu-
lar paths in two different trajectory sets can be a quick detector of
anomalies. Second, from a user’s perspective, it is often of interest
to know what is the popular (most used) path to go to a given des-
tination. Thirdly, learning about the paths that are travelled a lot
can help with many other city planning applications, e.g., decid-
ing on the location of gas stations, convenient stores, improving
public transportation system, optimizing the road types (one-way,
two-ways) etc. Last but not least, popular paths, by definition, are
typically of less concerns from a privacy perspective.

IPSN 2017, April 2017, Pittsburgh, PA USA

Assume there is a path P that goes through the sequence of
checkpoints v1,v2, - -+ ,vp. Let I; be ID set of mobile entities that
visited checkpoint v; for 1 < i < . We introduce two definitions,
y-popular path and ¢-consistent path, that capture different fea-
tures in traffic patterns.

Definition 3.1. P is y/-popular if there are at least {y mobile enti-
ties that travel along P, i.e., | ﬂle Ll = 9.

This definition is similar to the definition of flocks [22] and con-
voys [25], which refer to groups of mobile entities travelling to-
gether during consecutive time slots.

We use the Jaccard similarity coefficient of I1, I, - - , I, to de-
fine consistent paths. For two sets A and B, the Jaccard similarity
coefficient is defined as: J(A,B) = |AN B|/|AU B|. We denote
the Jaccard similarity coefficient of P to be J(I1,I2, - -+ ,Ir), the
Jaccard similarity coefficient of the ID sets along the sequence P:

_|hnkn---nlip

Ii,Ip,--- ,Ip) = .
J(I1, I) L UL U UL,

Definition 3.2. If the Jaccard similarity coefficient of a path P is
at least ¢, we define P as a ¢-consistent path.

This is inspired by the idea of moving clusters [29], which is
a sequence of spatial clusters on different time slots, where the
Jaccard similarity of clusters in two consecutive time slots is at
least ¢.

Discussions. The y-popular path and ¢-consistent path capture
different features of traffic patterns. i is an absolute value and ¢ is
afraction. For example, take y = 3, ¢ = 1/2 and consider the path
P =[1,2,3] in Figure 1, where each line represents the trajectory
of a vehicle. In Figure 1(a), the checkpoint 2 is located at a crossing
that sees a lot of vehicles traveling in a different direction such that
the fraction of mobile entities on P, 3/7, does not reach ¢. Thus
P is a y-popular path, but not a ¢-consistent path. On the other
hand, there could be paths with light traffic such that they do not
meet the criteria for a ¢ popular path, as shown in Figure 1(b). But
if almost all traffic on P follow the same path, this is an interesting
pattern that is captured by the ¢-consistent path. ¢-consistent path
captures the pattern where a large fraction of traffic follows the
same path, no matter whether the traffic is heavy or light. The two
definitions have their respective merits.

Almost all theoretical results for the @-consistent path in our
work also apply to the y/-popular path. Therefore in the following
discussion we mainly focus on ¢-consistent paths.

(a) ¥-popular, not ¢-consistent.

(b) ¢-consistent, not i/-popular.

Figure 1: y-popular path versus ¢-consistent path. ¥ = 3,
$=1/2. P=[1,2,3].

A useful observation is that any subset of a ¢-consistent path P
is also ¢-consistent. For any subpath, the intersection of the sets

J. Ding et al.

(i.e., numerator of the Jaccard coefficient) always gets no smaller
while the union of the sets (i.e., the denominator) always gets no
greater. Thus the Jaccard coefficient of a subset of P is no smaller
than the Jaccard coefficient of P.

Thus it is only interesting to consider the maximal ¢-consistent
path, which cannot be extended further. In the following we show
auseful property on the maximum number of maximal ¢-consistent
paths that start from one checkpoint.

LEMMA 3.3. The number of maximal §-consistent paths starting
from any checkpoint v is bounded by 1/¢.

Proor. For a maximal ¢-consistent path P that goes through
the sequence of checkpoints v1,v2, - ,vp, we define the set of
supporters U(P) as the ID set of the mobile entities which travel
along P. Precisely, U(P) = ﬂleli, where I; is the ID set of v;.

We consider all the maximal ¢-consistent paths {P1, P2, - -+ , P}
that start at v1. Since any two such ¢-consistent paths are differ-
ent for at least some of the checkpoints, the sets of supporters for
them are disjoint (as one trajectory cannot visit two different paths
simultaneously). Since each set of supporters must have at least
|I1|¢ mobile entities, the total number of such ¢-consistent paths
is bounded by r < 1/¢. m]

If the maximum number of mobile entities passing by any check-
point is n*, with the same proof, we have the similar lemma that
the number of maximal y/-popular paths starting from any check-
point v is bounded by n* /y.

In this paper we consider the following three types of popular
path queries:

e ¢-consistent/y-popular paths for a source-destination pair.

e All ¢-consistent/i/-popular paths starting from a check-
point.

e The Jaccard similarity coefficient/the mobile entity num-
ber of a path.

4 MINHASH
4.1 MinHash Definition

Givenaset T,leth: T — [0, 1] be a hash function that maps mem-
bers of T to distinct numbers drawn uniformly at random from
interval [0,1]. For any set D C T, define the value h(D) to be the
MinHash value of D, where fl(D) = min{h(x)|x € D} [6, 7]. Min-
Hash can be used to estimate set cardinality and Jaccard similarity
coefficient.

Estimate set cardinality. For any set D ¢ T, MinHash can be ap-
plied to estimate cardinality |D| of D [10, 14]. Suppose we use k dif-
ferent hash functions hy, ho, - - - , by and hy (D), ﬁg (D), -+, ﬁk (D)
are the k corresponding MinHash values, it is shown in [10] that
(k- 1)/2{.‘:1 hi(D) is an unbiased estimator of |D|. If k > 2 +
1/(82n), with probability at least 1 — 7,

k-1

——— —ID|
>k hi(D)

< 8|D|.

Estimate Jaccard similarity coefficient. Denote by A(A) and

h(B) the MinHash values of A and B with hash function h respec-
tively. h(A) = h(B) if and only if the element with the minimum

MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query

hash value with respect to k lies in the intersection A N B. That is,

Pr{h(A) = h(B)} = J(A,B).

Given k hash functions, h1, ha, - - - , hg, we get k MinHash values
for A and B respectively. Let X1,Xa2, -+, X be the 0/1 random
indicator variables. X; = 1 iff fzi(A) = fli(B). Take X = Zin,
E(X/k) = J(A, B). Thus X /k is an unbiased estimator of the Jac-
card similarity coefficient [6].

In our scenario, we are interested in Jaccard coefficients that are
at least ¢. If k > 3log % /($82), by Chernoff inequality,

p X
r
k

kps?
X sap ?
That is, with the probability of at least 1 — 7,

) <1

> 5](A,B)} < 2exp(—

’%(—J(A,B)| < 5J(A B).

Estimate cardinality of set intersections. In the definition of /-
popular path, we are interested in the estimation of the cardinality
of set intersections. Combined with the above analyses, for set A
and B, denote J*(A, B) as the estimation of J(A, B), |A U B|* as
the estimation of |A U B|. We can use J*(A, B)|A U B|* to estimate
|A N B, such that for k > max{2 + 1/(5%5), 3log %/(¢52)}, with

probability at least 1 — 7,

| J*(A,B)JAU B|* = |AN B|| < 35|AN BJ.

All above, we would like to remark: 1) MinHash estimation is
robust to the number of appearances of the same element and pro-
duces a count of distinct elements; 2) the error bounds of the above
analyses can be applied to the estimations of the multiple sets; 3)
with MinHash, we can get a good estimation of the Jaccard simi-
larity as well as the cardinality of the set intersections, with space
requirement of O(k) instead of O(n), where k only depends on the
approximation error bounds.

The evaluations of the errors in the experiments can be found in
[6, 10]. In the following , we would not explicitly write down the
approximation factor whenever we use MinHash to approximate
the Jaccard coefficient.

4.2 MinHash Signature

Given the set C = {1,2,---,n} consisting of the IDs of n mobile
entities, we have k hash functions hi, ha, - - - , b, each of which
maps mobile entity i € C to distinct uniform random numbers
drawn from U(0, 1), denoted as [hy (i), h2(i), - -+ , hg(i)]. There-
fore, each mobile entity i carries k hash values as its signature.
Denote V = {1,2,--- ,m} as the ID set of m checkpoints. Each
checkpoint j € V also keeps a signature of k values corresponding
to the k hash functions denoted as Sj = [sj1, /2, - ,sjk]. When
a mobile entity i passes by a checkpoint j, the mobile entity’s sig-
nature is passed to the checkpoint. The checkpoint j compares i’s
signature with its current signature; maintains the smaller values
for each hash function as its new signature, to be precise, updates
sj1 = hy(i) only if h; (i) < sj;. That is, each checkpoint maintains
the k MinHash values as its signature, as illustrated in Figure 2. We
define this signature to be the MinHash signature of the checkpoint.

IPSN 2017, April 2017, Pittsburgh, PA USA

VSig [ssiq | [ssiq |
0.77 0.70 0.70
0.07 0.81 |=—=>| 0.07
0.13 :> 0.46 |=—=>[0.13
0.39 0.35 0.35
0.40 0.72 |==>| 0.40
0.62 0.53 0.53

e

Figure 2: When a vehicle passes by a checkpoint, it sends its
signature VSig to the checkpoint. The checkpoint compares
the received VSig with its signature SSig and updates wher-
ever VSig is smaller.

Since the checkpoint updates the MinHash values correspond-
ing to each hash function only if it receives a smaller one, the
chance of this update event decreases when the number of mobile
entities passing by increases. The total update cost is only loga-
rithmic in the number of mobile entities appearing, as is proved in

[11].
4.3 MinHash Operations

The operations on synopses for distinct value estimation, includ-
ing MinHash, has been studied in [5, 11]. Similarly, we also in-
troduce union and intersection operations in our work. Given
the MinHash signatures of two checkpoints S = [s1,s2, - -+, sg],
S = [§1,82, -+ ,3k] , we define the union and intersection as fol-
lowing.

Union. We define the union operation of the MinHash signature
SandSasSUS = [x1,x2,- - ,x;] where

x; = min{s;,§;} fori=1,2,--- k.

The union operation can be used to estimate set cardinality. This
can be generalized to multiple checkpoints along a road, or in a
certain geographical region to estimate the total number of mobile
entities that have visited this region.

Intersection. The intersection of the MinHash signature S and S
is defined as SN S = [y1,y2, - - , yx] where

s; ifsi =5;
Yi = . - .
1L ifs;,§; =1 ors; #5;

fori =1,2,---,k. L is a symbol meaning undefined.

The intersection of MinHash signatures offers an estimate for
the Jaccard similarity. Let w be the number of elements which
are not L in the result. w/k approximates the Jaccard similarity
coefficient.

Further, we define the MinHash signature of path P that goes
through v1,v9, -+ ,vg, as the intersection of the MinHash signa-
tures of the checkpomts on path P, that is, ﬂ 150;- Thereafter,
we can calculate the Jaccard similarity of P to tell whether Pisa¢-
consistent path. Besides, we can take the union of the signatures
of checkpoints on P to estimate the cardinality of all the mobile
entities passing by any of the checkpoints on P, and multiply the
result with the Jaccard similarity of P to find the number of mobile
entities sharing P. Hence, we can tell whether P is a y/-popular

IPSN 2017, April 2017, Pittsburgh, PA USA

path. The Figure 3 illustrates a toy example of the ¢-consistent
and y/-popular paths.

0.89 0.14 0.73 0.70
0.07 |- 0.07 > [0.07 0.64
0.13 |- 0.13 > [0.13 0.92
0.03 0.83 092 | —>[092
H—»H 0.46 | =—> [0.46
0.53 0.32 0.03 0.02

= =
Figure 3: If § = 2/6, the path [1,2,3] and [3, 4] are both ¢-
consistent paths. We can estimate the cardinality of mobile
entities visiting at least one checkpoint on path [1,2,3] as
(6-1)/(0.14 4+ 0.07 + 0.13 4 0.03 + 0.11 + 0.03) ~ 10. Multi-
plied by the Jaccard similarity of the path, 2/6, the number
of mobile entities sharing the path is 3. Hence the path is a

y-popular path if y = 3.

5 PRIVACY PROTECTION

Assume we want to conduct the trajectory pattern mining within
a time interval [t1, t2], where t2 could be the current time. Each
checkpoint j € V sets all elements in its MinHash signature S; to
oo at time #1 and starts to update S; until time t2. In this interval,
the trajectory of a mobile entity is formed as the sequence of time-
stamped checkpoints it passes by contiguously. Trajectory set D
is the collection of all the n trajectories. The MinHash signature
of the trajectory set D consists of the MinHash signatures of all m
checkpoints in V, denoted by S(D) = [S1,S2, - , Sm].

Now we prove that the MinHash signature of a trajectory set
provides a decent method to protect individual user privacy. We
show that for two sets D and D’ of trajectories that only differ by
one, they have the same signature with high probability. Here we
require that the total number of mobile entities seen by a check-
point is beyond a minimum requirement. We do not include the
checkpoints before they see at least n’ mobile agents, n’ = Q(km).
The checkpoints that only see a small number of IDs have a good
chance to reveal information about these mobility traces. In the ex-
treme setting, if only one mobile entity is present, then the entire
mobility trace can be plotted easily. But this is not an interesting
setting in practice. Typically we have a large number of mobile en-
tities moving around in the environment. The number of mobile
entities n is typically much larger than the number of checkpoints
m and k (which is typically a small constant). In this setting, the
MinHash signature satisfies e-differential privacy. It means adding
one more trajectory to a trajectory set almost changes nothing in
the MinHash signature of the trajectory set, therefore the chance
of identifying a specific trajectory is low.

THEOREM 5.1. For two trajectory set D, D where D contains D and
one extra trajectory, the probability of the output of the MinHash

signature S(D), S(D) satisfies:
Pr{S(D) = S*} < ef x Pr{S(D) = S*},

where e = km/n’. Here each checkpoint sees at least n’ mobile enti-
ties.

J. Ding et al.

ProoEF. For the new mobile entity in D, the probability of its ith
hash value of its signature appearing in the MinHash signature of
a specific checkpoint p is at most 1/n’. Therefore the probability
that the MinHash signature of D being the same as that of D is at
least

& 1

1 km

1 _ k — 1 N km > ——).
i@)= (1=)" 2 ep(-—7)
Therefore the claim is true. O

The differential privacy property is stronger if each checkpoint
has fewer hash functions, while the accuracy of estimating cardi-
nality or Jaccard similarity is worse. This is a tradeoff between the
privacy and the accuracy.

6 MINHASH HIERARCHY

With the MinHash signature now we propose the MinHash hier-
archy with which we can answer popular path queries efficiently.
The process of constructing a hierarchy structure for the i/-popular
path is almost the same as the process for the ¢-consistent path.
We can make two small modifications to change a hierarchy for
¢-consistent paths to a hierarchy for y-popular paths. 1) For ¢-
consistent path, we take the intersections of the signatures of the
checkpoints on a path to get the Jaccard similarity, while for -
popular path, we also need to take the union of the checkpoint
signatures to estimate the cardinality. Multiplying the cardinal-
ity with the Jaccard similarity, we can tell whether the path is a
y-popular path. The additional steps don’t increase the bound of
complexity. 2) In the following analyses for the complexity, if we

change the ¢ to =, where n* is the maximum number of mobile en-
tities seen by any checkpoint, we get the bound for the i-popular
paths.

In the following, we focus on the ¢-consistent path. We model
the checkpoints as a directed graph G(V, E). The node set is the
checkpoint set V. If there is a mobile entity that visits checkpoint
v and w consecutively, there is a directed edge from v to w in E.

To organize the ¢-consistent paths, we first define two functions
Path and Sig,then we define the MinHash hierarchy.

Definition 6.1. For any nodes v, w, Path(v, w) contains the set
of all ¢-consistent paths from v to w. For a ¢-consistent path
P = [v = v1,v2,--,w = vy] € Path(v,w), Sig(P) refers to
the MinHash signature of P, i.e., Sig(P) = ﬂleSvi.

Definition 6.2. The MinHash hierarchy consists of vertex sets
Vg € Vg-1---,€ Vo =V, and a directed graph G; defined on
Vi. The vertex set V; on level i is a set randomly sampled with
probability ff from V;_1 on the level i — 1. The edge set E; contains
an edge from v to w if there is at least one ¢-consistent path from
v to w without passing through any other node in V;. Further, we
will store with each edge vw on level i two records, Path(v, w) (the
set of all ¢-consistent paths from v to w) and their signatures.

We remark that a path P € Path(v, w) can be represented us-
ing only the sequence of the level i — 1 nodes on P, instead of
using all the checkpoints on P. If there are multiple ¢-consistent
paths between two nodes of level i — 1 on P, we can index those
¢-consistent paths and keep the index of the ¢-consistent path on
P. This method can save storage, while it needs to recursively visit

MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query

the nodes in the lower levels when reconstructing the ¢-consistent

paths.

LEMMA 6.3. The total number of levels in the MinHash hierarchy
is O(logm/log(1/p)), where m is the total number of checkpoints.

Proor. Onlevel 0, there are m nodes. The chance for each node
on level i — 1 to be selected to level i is . The expected number of
nodes on level i is mB!. On the highest level of the hierarchy, the
number of nodes is O(1). Therefore, the total number of levels of
the hierarchy is O(logm/log(1/f)). m]

To construct the MinHash hierarchy, on the lowest level, level 0,
we generate a graph Go(Vo, Eg). Vp is the same as the set V. Any
two checkpoints v, w that are adjacent to each other on a trajectory
would evaluate the intersection of their signatures S;, N S,,. If the
Jaccard similarity of path [0, w] is at least ¢, we add an edge (v, w)
to Eg. [0, w] is added to set Path(v, w) and we update Sig([v, w]) =
So N Sy

Once the bottom level is constructed, recursively we can con-
struct G;(V;, E;) on level i. Given Gj—1(Vi-1, Ei—1), we need to
find the edges on E;. From each v € V;, we start a depth first
search to find all the neighbors of v on this level, i.e., the nodes
directly connected to v by a ¢-consistent path. In particular, for
each neighbor w of v in G;_1, we start the depth first search with
each P € Path(v, w). We denote the current path and the MinHash
signatures of the current path as P and S; at the beginning of the
search, P = P, § = Sig(P). Now, the depth search goes to node w.
If w € V;, the search terminates and we add an edge (v, w) to E;
with Path(v, w) set as P and Sig(P) « S. Otherwise, for each path
P’ € Path(w,u) where (w,u) € E;j_1, calculate S N Sig(P’). If the
Jaccard similarity is greater than ¢ and P N P’ has no loop, assign
the result to P, assign S N Sig(P’) to S and the depth first search
goes to node u. This process will repeat until all neighbors of v on
level i are found. Otherwise, this search terminates. An example
of the hierarchy structure can be found in Figure 4.

L32
LQI

Lll

LO :
Figure 4: A MinHash hierarchy with 4 levels.

In the following, we will analyze the hierarchy in terms of com-
putational cost and storage cost. First, recall that for each edge vw
in G; we save Path(v, w), which has at least one ¢-consistent path
Pin G;_1. Such paths are represented by a sequence of checkpoints
in V;_1. Below we show that there are only a constant number of
them.

LEMMA 6.4. The expected number of nodes of level i — 1 on a ¢-
consistent path P € Path(v, w), forvw € Ej, is at most 1/f.

Proor. Take the path P from v to w. Suppose that there are b
nodes of V;_1 on P. None of these b nodes are on V; and v is the
first node that appears on V;. Since each node of V;_1 is selected

IPSN 2017, April 2017, Pittsburgh, PA USA

to V; independently with probability . The expectation of b is
E(b) < X1 j(1-pY1p=1/p. mi

Recursively, the number of checkpoints on the ¢-consistent path
P € Path(v, w), for vw € E;, can be bounded.

LEmMA 6.5. The expected number of checkpoints on P is at most
1/p%

Proor. By the same argument, let @ be the number of check-
points on P. The last checkpoint is selected to level i but not any
of the earlier ones. The probability for any checkpoint on P being
selected to level i is 5’. Therefore, E(a) < ;-1 jp'(1 - gL =
1/p%. o

LEMMA 6.6. For each node v € V;, the expected number of edges
of v in Gj is at most 1/¢ to become ¢-consistent.

Proor. Recall from Lemma 3.3 that the number of maximal ¢-
consistent path starting from any node v is at most 1/¢. This im-
mediately follows from that. O

THEOREM 6.7. For the MinHash hierarchy for ¢-consistent paths,
the expected computation complexity of building the MinHash hierar-
chyisO(m/$?); the expected communication complexity isO(m/$?);
the expected storage complexity is O(mlog(m)/¢), where m is the
number of checkpoints.

Proor. For any v € V;, we conduct the depth first search to
find its neighbors in G;. The depth first search terminates at the
time either the neighbor of v on V; is found or the path is not a ¢-
consistent after adding one node. According to Lemma 6.6, there
are at most 1/¢ ¢-consistent paths originating from v. Meanwhile,
the expected number of nodes to traverse on level i — 1 for each
¢-consistent path is at most 1/ according to Lemma 6.4. There-
fore, there are at most 1/(¢f) nodes in V;_1 on all the ¢-consistent
paths starting from v € V;. Since every time we traverse to a node,
it has at most 1/¢ neighbors to explore, the computation complex-
ity of the depth first search for each node v € V; is at most 1/(¢2).
In the distributed setting, for each node visited during the depth
first search, there is one unit communication cost. The communi-
cation complexity of the depth first search for each node v is also
at most 1/(¢2B). On level i, the expected number of nodes in V;
is mpB!. Therefore, the expected computation complexity and com-
munication complexity to construct edges on level i are at most
Bi~tm/¢2.

With Lemma 6.5, the expected length of a ¢-consistent path to
store is at most 1/f¢. Therefore, the storage cost on level i is m/¢.

Now, since the MinHash hierarchy can have at most log m lev-
els, summing up everything we get that the expected computation
complexity and communication cost of building the whole hierar-

chy is Z;cflm B tm/¢? = O(m/¢?). The expected storage cost is

S m/¢ = O(mlog(m)/g). ! o

The MinHash hierarchy provides a multi-resolution structure
on the ¢-consistent paths. We can also show that a long ¢-consistent
path is more likely to appear on a high level of the hierarchy.

IRemark that for ¢-consistent paths on level i if we just store the checkpoints on
level i — 1, the storage cost is O(m/¢).

IPSN 2017, April 2017, Pittsburgh, PA USA

For a ¢-consistent path P on the sequence of checkpoints p1, p2,
-+ ,pe+1 > we define the length of P as £, the number of hops of
P. For px,py € V;, we define that the subpath of P between px, py,
[Dx»Px+1. " » Pyl is covered by px,py, on level i. We are most
interested in the maximal subpath covered by all the checkpoints
of P on level i. Take the example in Figure 4, on level 0, the length
of the maximal subpath covered is 7, on level 1, it is 6, and on level
2,it’s 3.

THEOREM 6.8. For any ¢-consistent path P of length €, the ex-
pected length of the maximal subpath covered on level i is at least

€/2, fori < logl/ﬁ(f/él).
Proor. Assume we have j nodes on path P selected to level i.
Denote by ¢; the length of the maximal subpath covered on level i.

If {; = b, there are ((+ 1 -b) (f:%) different combinations for the
J nodes. Therefore,

b-
(€+1-b)("2)
11 d-1y "
Zd:j—1(€ +1- d) (j—2)
14 d-1
_ Zd:j—l d(€+ 1- d)(J—Q) _ j— 1
Tyt d-1y
Zd:j_1(€+1_d)(j—2)]+1
Any checkpoint on P is selected to V; with probability ¢ = .
The probability that exactly j nodes on P are in V; is (ejl)qj (1-
q){+17J, where 2 < j < £ + 1. Let £ be the length of the subpath
covered on level i with respect to all possible j,

Pr{{; = b} =

E(t)) (£ +2).

+1

5 (+1) _
B0 =Y, (oot)
—\
J
2 (qt+2)(1-q)ftt - egft?
:€+2_a+(q+)(Z) q

2 2
>f+2——:€+2——.
q B
Therefore, on the level i < log, /B (£/4), the expected length of the
maximal subpath covered by the nodes on level i is at least £/2.
]

The above theorem means that a ¢-consistent path of length ¢
has a significant portion of nodes covered on levels below the level

logl/ﬁ(€/4).

7 POPULAR PATH QUERY

Now we explain how to use the MinHash hierarchy for answer-
ing ¢-consistent path queries. We first discuss a number of useful
structures and operations.

Each ¢-consistent path P from v to w has a canonical representa-
tion, enabled by the MinHash hierarchy. Consider the checkpoints
of the highest level (say i) on P. Assume that there are b of them:
{v1,v2, -+ ,vp}. Then we replace the subpath between v and vy,
on P by the path v1,v2,---vp, on level i. This also partitions the
path P to three parts, the first part P; from v to vy, the ‘short-
cut’ from v1 to vy on level i, and the last part P> from v to w.
Recursively, we also change P and Ps to their canonical represen-
tations. In other words, the canonical representation contains the

J. Ding et al.

first upward path in which the checkpoints have increasing levels
(including the highest level) and followed by the downward path in
which the checkpoints have decreasing levels. This representation
will be useful for the query algorithms below.

In addition, we also define two basic search operations.

¢-consistent upward search. In upward search, we perform a
depth-first search from a checkpoint and always search for neigh-
bors of the same level or higher. We start from a checkpointv € Vp.
We perform depth-first search until we find some node u whose
level is 1. Beyond u we continue the search on level 1 and repeat
the process above until we hit a node of level 2 or we have visited
all edges. We continue in the same manner.

During the depth-first search we may also record and calculate
the path signature from v to the current node, and trim the search if
the Jaccard similarity drops below ¢. This is called the ¢-consistent
upward search.
¢-consistent downward search. In the downward search, we
perform a similar depth-first search with the upward search but
enforce that the next checkpoint to visit to be of the same level or
lower.

LEmMMA 7.1. The number of checkpoints in ¢-consistent upward
search is O(ﬁ—l(}S log(m)).

Proor. The upward search from v will generate a tree rooted
at v such that a path from the root to a leaf of this tree is a ¢-
consistent path from v. Each of this path is an upward path, con-
taining nodes of at most log(m) levels. The number of consecutive
nodes of the same level on this path is expected to be 1/ (be-
fore we hit a node of a higher level). Since there are only 1/¢
¢-consistent paths from v, the total number of checkpoints in this
tree is O(ﬁ log(m)). m]

LEmMA 7.2. The number of checkpoints in ¢-consistent downward

search is O(ﬁ log(m)).

Proor. The downward search also generates a tree in which a
path from the root to a leaf node is a ¢-consistent downward path
from v. Similarly, the number of nodes on one such path is at most
O(% log(m)) and there are only 1/¢ ¢-consistent paths from v.

Thus the total number of checkpoints in this tree is O(ﬁ—1¢ log(m)).
i

7.1 ¢-Consistent Path From v To w

Now we answer the query of all the ¢-consistent paths that start
from checkpoint v and end at w.

First we conduct a ¢-consistent upward search from v. All the
nodes visited during this modified depth-first search is denoted as
Ry. Meanwhile, we also perform a reversed ¢-consistent upward
search from w, by checking all ¢-consistent paths that arrive at
w. This is almost the same as the above except that we travel in
the opposite direction of the edges. The set of nodes discovered is
denoted as R,,. An example is illustrated in Figure 4, with green
and orange lines demonstrating two searches and the grey denot-
ing the common nodes during the search. If R, N R,, is not empty,
for any node u in R, N R,y, we concatenate the ¢-consistent paths
from v to u and the ¢-consistent paths from u to w, in the previous
two upward searches and test if the whole path is ¢-consistent. In

MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query IPSN 2017, April 2017, Pittsburgh, PA USA

particular, we apply the function Path and Sig to each pair of neigh-
bors in the sequence, merge the subpaths and get the intersection
of the MinHash signatures.

THEOREM 7.3. The bidirectional depth-first search algorithm can
find all the ¢-consistent paths between two nodes. The number of
checkpoints examined is O(ﬁ log(m)).

Proor. Consider a ¢-consistent path P from v to w. Denote by
u the checkpoint with highest level among all checkpoints on P
(u does not have to be unique). Clearly the subpath from v to u
and the subpath from u to w are both ¢-consistent. Therefore u
will surely show up in both depth-first search results. Thus all ¢-
consistent paths from v to w will be discovered by the algorithm.
The total number of checkpoints visited immediately follows after
Lemma 7.1. O

7.2 All ¢-Consistent Paths From v

To find all ¢-consistent paths starting from v, we first perform a
¢-consistent upward search, which gives a tree T;,. For each node
u on T, we perform a ¢-consistent downward search. The final
outcome gives all the ¢-consistent paths from v.

THEOREM 7.4. The above algorithm can find all the ¢-con-sistent

paths fromv. The number of checkpoints examined isO(ﬁ21¢2 log?(m)).

Proor. Every ¢-consistent path from v has a canonical repre-
sentation. The upward path is discovered by the upward search
from v, while the downward path can be discovered from the down-
ward search. Thus all such paths are found.

The total number of checkpoints visited immediately follows af-
ter Lemma 7.1 and Lemma 7.2. O

7.3 Jaccard Similarity of a Path

To find the Jaccard similarity of a path P, we can get the canon-
ical representation of the path. We communicate with the first
checkpoint on P, do an upward search. With the path given, the
checkpoint can find its neighbor on its highest level, communicate
with that neighbor, and repeat this process recursively from the
neighbor until one checkpoint has no neighbor on its highest level
belonging to the path. Thereafter, from that checkpoint we do a
downward search for the neighbor, 1-level lower, on the given
path and repeat this process until we reach the last checkpoint on
the path. We calculate the intersection of the MinHash signatures
of the subpaths while finding the canonical representation. The
communication complexity of finding the canonical represent and
calculating the Jaccard similarity is O(% log(m)). Remark if the

Jaccard similarity ¢ is 0, we can terminate the search and return 0.

8 EXPERIMENTS

In this section, we evaluate our MinHash hierarchy and algorithms
on the taxi dataset of Shenzhen. First, we analyse the accuracy of
MinHash estimation of Jaccard similarity and set cardinality. We
compare the complexity of constructing MinHash hierarchy with
SPADE [51] and PrefixSpan [24]. Moreover, we demonstrate the ef-
ficiency to answer ¢-consistent path queries with MinHash hierar-
chy compared with the brute-force method In the end, we provide
evaluations for privacy preserving properties.

8.1 Data Description

The data used contains taxis’ GPS locations collected every 1.01
minutes on average in Shenzhen. We capture a two-hour dura-
tion with 29,639 trajectories, choose the checkpoints along the
roadmap, then interpolate the sampled GPS locations on the roadmap,
and represent the trajectories as the sequences of checkpoints pass-
ing by. The average number of checkpoints each taxi visits is
123.91, with the minimum and maximum number of 31 and 1, 580,
respectively.

8.2 MinHash Performance

We first evaluate the accuracy of the estimation of set cardinal-
ity and Jaccard similarity. For each checkpoint, we calculate the
MinHash estimation of both the ID set cardinality of mobile enti-
ties passing by and the Jaccard similarity between its ID set and
their neighbors’, using different numbers of hash functions k. The
relative errors of the estimations are illustrated in Figure 5(a) and
Figure 5(b), where the relative error is defined as the difference
between the exact value and the estimation divided by the exact
value. We observe that the larger k is, the smaller the error is. In
this work, we choose k = 200 as a reasonable value that balances
the accuracy, the storage complexity, and privacy. When k = 200,
the median relative errors of set cardinality and Jaccard similarity
are 4.57% and 2.55%, respectively.

S\?,GOJ == median g50; = median
5 50 m 25% ~ 75% 5 4 25% ~ 75%
5 404 min ~ max :1:) ggf min ~ max

N A S A .
10 25 50 100 200 400 800 1600 10 25 50 100 200 400 800 1600
#MinHash functions(log) #MinHash functions(log)
(a) Cardinality. (b) Jaccard similarity coefficient.

Figure 5: Relative error of MinHash estimation.

8.3 Privacy Protection

Here we demonstrate the privacy protection ability of our Min-
Hash signature with the numbers of hash functions, mobile enti-
ties and checkpoints. With the different combinations of the three
factors, we choose a trajectory set and get the MinHash signature
of the set, then we add more trajectories into the trajectory set
to find out the probability that the MinHash signature of the new
trajectory set remains the same, in the setting of ¢-differential pri-
vacy.

Figure 6 demonstrates the results. The Y-axis is the probabil-
ity that the MinHash signature of the set remains the same after
adding one extra mobile entity with the change of #hash functions
k, #checkpoints m, and #mobile entities n. In Figure 6(a), we ob-
serve that the probability goes down with the increase of k and m.
Figure 6(b) demonstrates the probability goes up with the increase
of n. The results follow Theorem 5.1.

8.4 MinHash Hierarchy

We assign each taxi a unique ID and use k = 200 hash functions to
generate the signature for each taxi. Each checkpoint is assigned
with the levels it belongs to and the neighbors on the lowest level.

IPSN 2017, April 2017, Pittsburgh, PA USA

100 100
= 80 __.80
< 60 60
£ £
E 40 E 40
@ 20 @ 20
0 le3 0 le
0.0 1.0 2.0 3.0 4.0 5.0 00 1.0 20 30

#checkpoints #mobile entities

(a) With different k, m. n = 29, 639. (b) With different k, n. m = 500.

Figure 6: Probability of signatures being the same.

Table 1: Hierarchy structures details

Avg. Max
Level | Checkpoints | Edges | subpath subpath

length length

0 7,714 | 11,713 | 1 1

1 3,874 7,651 | 2.40 13

2 1,949 4,406 | 4.40 24

3 961 1,999 | 6.45 32

4 434 731 | 8.25 40

5 171 188 | 9.82 42

All checkpoints update their MinHash signatures when the taxis
pass by. With the MinHash signatures, all the checkpoints on dif-
ferent levels communicate with their neighbors to build the Min-
Hash hierarchy.

Structure. We build the 6-level hierarchy for the ¢-consistent
paths recursively where ¢ = 5%, the chance of each checkpoint
to be chosen to a higher level § = 1/2, as shown in Figure 7. The
details of the hierarchy structure are listed in Table 1. On each
level, we just count the checkpoints that have at least one edge.

LTy : ‘/

Figure 7: L1, Lo, and L3 of the MinHash hierarchy structure
for ¢-consistent path.

We also build a 6-level MinHash hierarchy for ¢-popular path
with ¥ = 50, f = 1/2, with similar statistics as above. We use
the same values for i and ¢ in the rest of experiments. Here,
we examine the accuracy of the MinHash hierarchy. For each
path kept in the hierarchy, we evaluate whether the path is a ¢-
consistent path/i/-popular path with the real mobile entity ID sets
of the checkpoints on the path. If the answer is no, we count it as a
false positive. Meanwhile, we find all the real ¢-consistent paths/i/-
popular paths between checkpoints on each level, if a path is not
included in the hierarchy, we count it as a false negative. The sta-
tistics of the numbers of total paths, false positive paths and false

J. Ding et al.

Table 2: Accuracy of MinHash hierarchy

Avorith #Total #False #False
gorithm paths positive | negative
] 970 600
¢-consistent path | 28,316 (3.45%) (2.12%)
1,554 1,222
y-popular path | 24,839 (6.25%) | (4.92%)

Table 3: Hierarchy structures vs SPADE

Algorithm Comput:«:ltion Storage for S.torage for
complexity | paths signatures
SPADE 79,838,400 4,382,387 73,432,800
Hierarchy 8,688,200 63,980 5,663,200
(10.8%) (1.46%) (7.71%)

negative paths are shown in Table 2. The percentiles in the paren-
theses are the values divided by the number of total paths. With
k = 200, we can achieve enough accuracy for both hierarchies.
The error rate for /-popular paths is approximately twice the one
for ¢-consistent paths, because the estimation of ¢-popular paths
depends on both the estimation of set cardinality and Jaccard sim-
ilarity.

Complexity. We first compare our MinHash Hierarchy with SPADE
[51], which takes the same data format to find sequential patterns
as in our algorithm, where trajectory data are aggregated by check-
points. The algorithm is Apriori-based with the “bottom up” fea-
ture in finding the frequent patterns. It can be used to find both
¢-consistent paths and /-popular paths. Here we only demon-
strate the results of ¢-consistent paths. The SPADE algorithm with
MinHash is implemented as following. Denote {-path as the path
with length ¢. First, we calculate all the ¢-consistent 1-paths be-
tween neighboring checkpoints on the lowest level. Remark that
in the original SPADE, the ¢-consistent path is obtained by the
set operations of the ID set of mobile entities passing by, while
in this experiment, we use MinHash to replace the set operations
in order to focus on the differences of the algorithms. After ob-
taining the ¢-consistent | — 1-paths, we recursively generate the
set of §-consistent ¢-paths. For a path P = [v1,v2, - - vg), if the
subpath from v to vy_1 and the subpath from v2 to v, are both
¢-consistent, we calculate the intersection of the MinHash signa-
tures of the two subpaths. If the result is ¢-consistent, we add P
to the set of ¢-consistent £-paths. The process is repeated until no
new consistent paths can be found.

We compare the complexity of building the MinHash hierarchy
and the SPADE algorithm. The computation cost in our experi-
ment is the cost of comparisons. Each comparison of two Min-
Hash values has a unit cost. The storage cost is the space used to
store all the values. The space to store a MinHash value or a check-
point ID is one unit. In our analysis, each checkpoint MinHash
signature has 200 MinHash values. The computation cost of two
checkpoint MinHash signatures is 200, and the storage cost of one
checkpoint MinHash signature is 200. The complexity analysis is
demonstrated in Table 3. The percentiles in the parentheses are
the values of MinHash hierarchy divided by the ones of SPADE.
Since SPADE just grows one node for each step, there are a lot of
overlapping paths to compute and store. Compared with SPADE,
our hierarchy is more efficient in both computation and storage.

MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query

Table 4: Hierarchy structures vs PrefixSpan

Algorithm Computa}tion Storage .
complexity complexity

PrefixSpan | 47,063,962 187,112,931

Hierarchy 7,369,600 5,022,280
(15.7%) (2.68%)

We also compare our hierarchy with PrefixSpan [24], one of the
most efficient algorithms for sequential pattern mining. Different
from SPADE, PrefixSpan take the whole trajectories of all the taxis
as input and it can only be used to find the y-popular path. Hence,
PrefixSpan is compared with our hierarchy of {/-popular paths over
the total computation and storage cost. Remark that to adapt to our
problem, we restrict PrefixSpan to detect only contiguous frequent
sequential patterns. The comparison results are in Table 4. We
observe that it takes PrefixSpan a lot of spaces and computations
finding frequent patterns in long sequences, such as trajectories.
Our hierarchy outperforms PrefixSpan.

8.5 OQuery

We compare the communication cost of the queries for ¢-consistent
paths using MinHash hierarchy with the brute force algorithm. The
brute force algorithm answers queries with a breadth first search:
once visiting a checkpoint, the checkpoint communicates with all
the neighbors to see if appending the neighbor to the current path
still results in a ¢-consistent path; if the answer is yes, then add
the neighbor to the current path and update the MinHash signa-
ture accordingly; the neighbor starts the same process. The above
process is repeated until the ¢-consistent path cannot be extended
any more.

¢-consistent paths from v to w. For the query of ¢-consistent
paths between two checkpoints, we run the bidirectional depth
first search(BDFS) on the MinHash hierarchy and compare with
brute force algorithm. We submit 17,938 queries. In Figure 8(a),
the red points illustrate the communication costs of our algorithm
corresponding to the ones of brute force for each query. When the
communication costs of brute force increase from 100 to 250, the
costs of BDDFS remains between 20 to 30. In Figure 8(b), we show
the average communication costs of brute force and BDFS corre-
sponding to different lengths of the ¢-consistent paths between
two checkpoints. The communication costs of brute force increase
with the increase of the length of ¢-consistent path, while BDFS al-
most remains the same. We can see in both figures, our algorithm
scales well and outperforms the brute force.

All ¢-consistent paths from v. We submit @-consistent path
queries from all the 7,701 checkpoints. In Figure 8(a), the blue
line shows the average communication costs corresponding to the
ones of brute force search. Finding all ¢-consistent paths from v
with our algorithm needs at most 2 times the communication cost
of finding ¢-consistent path between v and w, meanwhile it scales
well with large communication costs of brute force.

Jaccard similarity of a path. To calculate the Jaccard similarity
of a given path with length ¢, naively, the checkpoints can com-
municate in the sequence of the path with communication cost of
O(¢). While with MinHash hierarchy, we just need communicate

IPSN 2017, April 2017, Pittsburgh, PA USA

to obtain the canonical representation. Remark that for our analy-
sis, we don’t terminate the search, when the Jaccard similarity di-
minishes to 0, to give an upper bound for the communication cost
of our algorithm. As illustrated in Figure 8(c), the average commu-
nication complexity of a path with length ¢ is only O(log(¢)).

9 CONCLUSION

In this paper, we proposed a distributed sensing framework by us-
ing the MinHash hierarchy for efficient real-time query of popular
paths among distributed checkpoints. The proposed method nav-
igates through a variety of design objectives including low data
collection cost and highly efficient queries as well as preserving cu-
mulative group behavior while protecting individual user privacy.
We believe that the proposed scheme stands at a unique position
at the interface of collecting, managing, and analyzing real-time,
large scale human motion traces.

ACKNOWLEDGMENTS

J. Ding, C.-C. Ni and]J. Gao would like to acknowledge support
through NSF DMS-1418255, CCF-1535900, CNS-1618391 and AFOSR
FA9550-14-1-0193.

REFERENCES

[1] O. Abul, F. Bonchi, and M. Nanni. 2008. Never Walk Alone: Uncertainty for
Anonymity in Moving Objects Databases. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on. 376-385.

[2] R.AgrawalandR. Srikant. 1995. Mining sequential patterns. In Data Engineering,
1995. Proceedings of the Eleventh International Conference on. 3-14.

[3] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential
PAttern Mining Using a Bitmap Representation. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’02). 429-435.

[4] AR. Beresford and F. Stajano. 2003. Location privacy in pervasive computing.
Pervasive Computing, IEEE 2, 1 (Jan 2003), 46-55.

[5] Kevin Beyer, Peter] Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. 2007. On synopses for distinct-value estimation under multiset op-
erations. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. ACM, 199-210.

[6] Andrei Z Broder. 1997. On the resemblance and containment of documents. In

Compression and Complexity of Sequences 1997. Proceedings. IEEE, 21-29.

Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.

1998. Min-wise independent permutations. In Proceedings of the thirtieth annual

ACM symposium on Theory of computing. ACM, 327-336.

[8] Hong Cheng, Xifeng Yan, and Jiawei Han. 2004. IncSpan: Incremental Mining of

Sequential Patterns in Large Database. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD "04).

527-532.

Chi-Yin Chow and Mohamed F. Mokbel. 2011. Trajectory Privacy in Location-

based Services and Data Publication. SIGKDD Explor. Newsl. 13, 1 (Aug. 2011),

19-29.

Edith Cohen. 1997. Size-estimation framework with applications to transitive

closure and reachability. . Comput. System Sci. 55, 3 (1997), 441-453.

Edith Cohen. 2008. Min-Hash Sketches. Springer US, 1-7.

Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and Vin-

cent D. Blondel. 2013. Unique in the Crowd: The privacy bounds of human

mobility. Scientific Reports 3 (25 March 2013).

Cynthia Dwork. 2006. Differential privacy. In Automata, languages and program-

ming. Springer, 1-12.

Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms

for data base applications. Journal of computer and system sciences 31, 2 (1985),

182-209.

[15] Julien Freudiger, Maxim Raya, Mark Félegyhazi, Panos Papadimitratos, and

Jean-Pierre Hubaux. 2007. Mix-zones for location privacy in vehicular networks.

In ACM Workshop on Wireless Networking for Intelligent Transportation Systems

(WIN-ITS).

Sheng Gao, Jianfeng Ma, Cong Sun, and Xinghua Li. 2014. Balancing Trajectory

Privacy and Data Utility Using a Personalized Anonymization Model. J. Netw.

Comput. Appl. 38 (Feb. 2014), 125-134.

7

[9

[10

==
i

[13

[14

[16

IPSN 2017, April 2017, Pittsburgh, PA USA

#comm. of brute force

¢-consistent path length

J. Ding et al.

60 all ¢-consistent paths from v 160 12
‘) 140 ®
- 50 (] »-consistent paths v to w : - 10 ®
£ ¢ P ey £ 120 oo ® £
£ 40 LT £ 100 - a00 £ 8
Q UL 9 S
© 30 e L - brute force c 6 -
o RO 2 60 o
2006 . G0 % -
E 20 A ; E hos A BDFS § 4 data
10 3 e 2 —_— .
o™ 20 AAAAAAAAAAAAAAAAAAAAAAAA 176 10g(x)-3.93
0 0 0 T T T T T T T T T
A L L SO I N N NN
0 50 100 150 200 250 0 10 20 30 40 50 0 20 40 60 80 100 120 140 160 180

path length

(a) The average communication costs of bidirectional (b) The average communication costs of the brute force (c) The average communication costs of the queries of pop-
depth first search and the corresponding cost of the brute and the bidirectional depth first search(BDFS) with respect ularity of given paths with MinHash hierarchy illustrate

force over two queries.

[17]
(18]
[19]

[20]

[21]

[22]

[23

[24

[25]

[26

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

to the same popular path length.

logarithm of the length of the popular paths. R? = 0.79.

Figure 8: Communication costs.

Fosca Giannotti, Mirco Nanni, and Dino Pedreschi. 2006. Efficient mining of
temporally annotated sequences. In In Proc. SDM06. 346-357.

Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. 2007. Trajec-
tory pattern mining. KDD (2007), 330-339.

Marta C. Gonzalez, César A. Hidalgo, and Albert-La$zl6 Barabasi. 2008. Under-
standing Individual Human Mobility Patterns. Nature 453 (June 2008).

Olof Gornerup, Nima Dokoohaki, and Andrea Hess. 2015. Privacy-preserving
mining of frequent routes in cellular network data. In Trustcom/BigDataSE/ISPA,
2015 IEEE, Vol. 1. IEEE, 581-587.

Marco Gruteser and Dirk Grunwald. 2003. Anonymous Usage of Location-Based
Services Through Spatial and Temporal Cloaking. In Proceedings of the 1st Inter-
national Conference on Mobile Systems, Applications and Services (MobiSys 03).
ACM, 31-42.

Joachim Gudmundsson and Marc van Kreveld. 2006. Computing longest dura-
tion flocks in trajectory data. In Proceedings of the 14th annual ACM international
symposium on Advances in geographic information systems. ACM, 35-42.

Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,
and Mei-Chun Hsu. 2000. FreeSpan: Frequent Pattern-projected Sequential Pat-
tern Mining. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’00). ACM, 355-359.

Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and MC Hsu. 2001. Prefixspan: Mining sequential patterns efficiently
by prefix-projected pattern growth. In proceedings of the 17th international con-
ference on data engineering. 215-224.

Hoyoung Jeung, Heng Tao Shen, and Xiaofang Zhou. 2008. Convoy Queries
in Spatio-Temporal Databases. 2008 IEEE 24th International Conference on Data
Engineering (ICDE 2008) (2008), 1457-1459.

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S Jensen, and
Heng Tao Shen. 2008. Discovery of convoys in trajectory databases. Proceed-
ings of the VLDB Endowment 1, 1 (2008), 1068—1080.

Ryota Jinno, Kazuhiro Seki, and Kuniaki Uehara. 2012. Parallel distributed tra-
jectory pattern mining using MapReduce. (2012), 269-273.

Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. Advances in Spatial
and Temporal Databases: 9th International Symposium, SSTD 2005, Angra dos
Reis, Brazil, August 22-24, 2005. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, Chapter On Discovering Moving Clusters in Spatio-temporal Data,
364-381.

Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. On discovering mov-
ing clusters in spatio-temporal data. In International Symposium on Spatial and
Temporal Databases. Springer, 364-381.

H. Kido, Y. Yanagisawa, and T. Satoh. 2005. An anonymous communication
technique using dummies for location-based services. In Pervasive Services, 2005.
ICPS ’05. Proceedings. International Conference on. 88-97.

Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hong Cheng. 2011. Mining Discrimi-
native Patterns for Classifying Trajectories on Road Networks. Knowledge and
Data Engineering, IEEE Transactions on 23, 5 (May 2011), 713-726.

Yunhao Liu, Yiyang Zhao, Lei Chen, Jian Pei, and Jinsong Han. 2012. Mining
frequent trajectory patterns for activity monitoring using radio frequency tag
arrays. IEEE Transactions on Parallel and Distributed Systems 23, 11 (Oct. 2012),
2138-2149.

E.H.-C.Lu, V.S. Tseng, and P.S. Yu. 2011. Mining Cluster-Based Temporal Mobile
Sequential Patterns in Location-Based Service Environments. Knowledge and
Data Engineering, IEEE Transactions on 23, 6 (June 2011), 914-927.

Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. 2006. The New Casper:
Query Processing for Location Services Without Compromising Privacy. In Pro-
ceedings of the 32Nd International Conference on Very Large Data Bases (VLDB

[35]

[45]

[46]

[47]

[49

[50]

[51]

[52

’06). VLDB Endowment, 763-774.
Mehmet Ercan Nergiz, Maurizio Atzori, Yiicel Saygin, and Baris Giig. 2009. To-

wards Trajectory Anonymization: A Generalization-Based Approach. Trans.
Data Privacy 2, 1 (April 2009), 47-75.

Faisal Orakzai, Thomas Devogele, and Toon Calders. 2015. Towards distributed
convoy pattern mining. In Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems. ACM, 50.

C. Paar and J. Pelzl. 2010. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer-Verlag New York Inc.

K.G. Shin, Xiaoen Ju, Zhigang Chen, and Xin Hu. 2012. Privacy protection for
users of location-based services. Wireless Communications, IEEE 19, 1 (February
2012), 30-39.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-Laszl6 Barabasi. 2010.
Limits of Predictability in Human Mobility. Science 327, 5968 (2010), 1018-1021.
Yi Song, Daniel Dahlmeier, and Stephane Bressan. 2014. Not So Unique in the
Crowd: a Simple and Effective Algorithm for Anonymizing Location Data.. In
PIR@ SIGIR. Citeseer, 19-24.

Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceeding of the 5th inter-
national conference on extending database technology (EDBT’96). 3-17.

Latanya Sweeney. 2002. K-anonymity: A Model for Protecting Privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 10, 5 (Oct. 2002), 557-570.

Florian Verhein. 2009. Mining Complex Spatio-Temporal Sequence Patterns.
Society for Industrial and Applied Mathematics, Philadelphia, PA.

Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and Albert-
Laszlo Barabasi. 2011. Human mobility, social ties, and link prediction. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. ACM, 1100-1108.

Mengwen Xu, Dong Wang, and Jian Li. 2016. DESTPRE: a data-driven approach
to destination prediction for taxi rides. In Proceedings of the 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing. ACM, 729-739.
Toby Xu and Ying Cai. 2007. Location anonymity in continuous location-based
services. In Proceedings of the 15th annual ACM international symposium on Ad-
vances in geographic information systems. ACM, 39.

Toby Xu and Ying Cai. 2008. Exploring historical location data for anonymity
preservation in location-based services. In INFOCOM 2008. The 27th Conference
on Computer Communications. IEEE. IEEE, 547-555.

Man Lung Yiu, Christian S. Jensen, Xuegang Huang, and Hua Lu. 2008.
SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query Perfor-
mance, and Query Accuracy in Mobile Services. In Data Engineering, 2008. ICDE
2008. IEEE 24th International Conference on. 366-375.

Hyunjin Yoon and Cyrus Shahabi. 2009. Accurate Discovery of Valid Convoys
from Moving Object Trajectories. In 2009 IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 636-643.

Tun-Hao You, Wen-Chih Peng, and Wang-Chien Lee. 2007. Protecting Moving
Trajectories with Dummies. In Proceedings of the 2007 International Conference
on Mobile Data Management (MDM ’07). IEEE Computer Society, Washington,
DC, USA, 278-282.

Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent
sequences. Machine learning 42, 1-2 (2001), 31-60.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining Interesting
Locations and Travel Sequences from GPS Trajectories. In Proceedings of the
18th International Conference on World Wide Web (WWW ’09). 791-800.

	Abstract
	1 Introduction
	2 Related Work
	3 Settings and Models
	3.1 Network and Privacy Models
	3.2 Popular and Consistent Paths

	4 MinHash
	4.1 MinHash Definition
	4.2 MinHash Signature
	4.3 MinHash Operations

	5 Privacy Protection
	6 MinHash Hierarchy
	7 Popular Path Query
	7.1 Lg-Consistent Path From Lg To Lg
	7.2 All Lg-Consistent Paths From Lg
	7.3 Jaccard Similarity of a Path

	8 Experiments
	8.1 Data Description
	8.2 MinHash Performance
	8.3 Privacy Protection
	8.4 MinHash Hierarchy
	8.5 Query

	9 Conclusion
	Acknowledgments
	References

