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Abstract

We propose a smartphone app named HappyKidz that allows parents
to monitor their child’s well-being in a non-invasive way based on mea-
surable behavioral indicators. The app collects behavioral data on smart-
phone usage, encrypts them with homomorphic encryption, and sends the
encrypted data to a server. The server calculates a well-being score for
the child using a trained neural network and sends the resulting encrypted
score to the parent to decrypt locally. This architecture takes advantage
of modern machine learning techniques while maintaining privacy for indi-
vidual children from the server. Unlike existing apps, it does not directly
control, access or report raw behavioral data. In this work, we describe
the high-level application and implement a proof of concept of the core
neural network logic. We address concerns about the appropriate use of
the app and discuss potential barriers to implementation, including col-
lecting appropriate training data and scaling the model to a larger feature
set.

1 Introduction

Smartphones have become indispensable parts of our daily lives. Along with
adults, children are also using them for both education and entertainment.
However, the adverse effects of excessive phone usage have created concerns
among parents and social scientists. While these effects are observed in children
and adults alike, children are considered to be more susceptible [YR98, BP05,
SMO09, HBC17, CRC+16, TZW+19].

To tackle this issue, several apps are designed to allow parents to oversee
the phone usage of their children. A study on popular parenting apps in the
Google Play Store identified two key features of these apps - remote monitoring
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and remote locking [KCY+15]. Another study on the acceptance of these apps
among children has reported that the ratings given by the children to these apps
are significantly lower than those given by the parents [GBUG+18]. According
to this study, children felt that the apps were overly restrictive and invasive of
their privacy, which negatively impacts their relationship with parents.

The existing apps have two limitations. First, it annoys the children, espe-
cially teenagers, who want more control over their lives, thus leading to more
complex problems and worsening the situation in many cases. “Hover parent-
ing”, has been associated with increased levels of child anxiety and depres-
sion [SLMM+14, LO18, GBUG+18]. Second, it is often difficult to determine
when a phone usage pattern becomes unhealthy. Most mental health apps
approved by the Anxiety and Depression Association of America [ADA] are tar-
geted toward individual, self-guided management of existing disorders or are
designed to be used in tandem with a licensed therapist. Moreover, the signs of
depression in the children often go unnoticed by the parents. A poll by the Uni-
versity of Michigan [CFD+19] suggests that two-thirds of parents face barriers
in recognizing depression in their own children.

In this work, we aim to help the parents effectively monitor the well-being of
their children in a non-invasive way. We propose an app, called HappyKidz, that
automatically collects usage data from a child’s phone and sends it to a server.
The server holds a Machine Learning (ML) model that is trained collaboratively
by a large number of parents as well as child psychologists and social scientists to
calculate a well-being score of the child. The parents receive a periodic update
of the score on their phones. In this way, instead of constantly monitoring the
child’s usage, parents only need to intervene if there is a drop in the well-being
score.

While this approach solves the above-mentioned limitations of the existing
apps, it brings a more crucial issue - protecting the privacy of the child’s data.
Allowing the server to view the raw data creates the possibility of corporate
misuse, e.g., using knowledge of depressive behaviors to tailor predatory adver-
tisements or selling health data to insurance companies or other partners. In the
proposed app, to ensure the privacy of the child the collected data is encrypted
locally with Homomorphic Encryption (HE) at the child’s phone before being
sent to the server. The server computes the well-being score by performing ML
on the encrypted data and sends the encrypted score to the parents’ phone that
can decrypt it locally. This allows the parents to benefit from a well-trained ML
model that is enriched by the knowledge of other parents and experts without
compromising the privacy of their children.

We present a proof-of-concept implementation of the app in this paper. The
proposed ML model takes as input the app usage data with the granularity of
different app categories and hours of usage. It also takes the sleep pattern of
the child since this is considered a strong indicator of the mental health con-
dition [TZW+19]. This data is encrypted with HE using the Microsoft SEAL
library [SEA19]. While designing the ML model, we take into account both
the precise calculation of the well-being score as well as its efficient execution
through the SEAL library. In our evaluation, one inference requires ∼100 ms
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and deviates by ∼0.0002 from the inference result without encryption. In the
current implementation, the training is performed on unencrypted data. Ef-
ficient training of any generic ML model on encrypted data is still an open
problem. However, we outline a concrete methodology to train on encrypted
data.
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ML model

Figure 1: Privacy model

Privacy model. The privacy model of HappyKidz is illustrated in Figure 1.
It involves three parties: the parent, the child, and the server. The parent
generates the secret key and evaluation key for HE and sends the secret key
to the child and the evaluation key to the server. The phone usage data is
collected at the child’s phone, encrypted with HE using the parent’s secret key
and sent to the server. This guarantees that the server cannot access the child’s
data. The server who holds the ML model uses the evaluation key to compute
the well-being score. The result generated by the server is an encryption of the
well-being score under the parent’s secret key. This result is sent to the parent
who uses the secret key to decrypt it and learn the well-being score of the child.
We assume that the server does not collude with parents to release additional
data about the child.

2 Proof of Concept Implementation

We implemented a proof-of-concept version of this app during the 2019 Microsoft
Private AI Bootcamp1. This section describes the details of the implementation.

2.1 Data Selection and Features

Overall, the HappyKidz app aims to evaluate well-being by measuring quanti-
tative behavioral indicators associated with mental health issues. The proof of

1https://www.microsoft.com/en-us/research/event/private-ai-bootcamp/
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concept uses two commonly cited indicators: total time spent on phone apps
and sleep patterns. Data from these behaviors are collected on the child’s phone
and consolidated into features that are used in the machine learning model.

Various studies have found a correlation between overall social media use
and depressive symptoms [HGD+19, TJRM18]. We define three categories of
phone apps (social media, education, and games) and divide each day into three
time-blocks (school hours, evening hours, and sleep hours). We aggregate the
total time a child spends using apps in each category. This breakdown provides
insight into appropriate phone usage. For example, a child is welcome to use
social media during their evening free time, but excessive use while at school or
during sleeping hours is less appropriate.

Sleep also plays a role in adolescent well-being. A variety of studies indicate
links between sleep deprivation and behavioral problems in youth. Clarke and
Harvey [CH12] suggest that improved sleep quality in adolescents with insomnia
correlates with improved moods. We record the time that the child falls asleep
and the total duration of sleep each night. This pair is stored locally for three
days. Each day, we send the past three nights of sleep data to the model. This
accommodates natural fluctuations in bedtimes (e.g. a child may stay up late
one night to finish their homework) while still identifying longer-term patterns
(e.g. a child goes to bed late every night).

These data provide 15 features each day: 9 from app usage and 6 from sleep
data. The data are encrypted and uploaded to the cloud. For discussion of
other potential data sources, see Section 3.1.

2.2 Learning Model

The app implements a model consisting of two fully connected (FC) layers. The
output of the model is a wellness score between 0 and 1, where a higher score
indicates positive behavioral indicators and thus good mental health2. In the
proof of concept, we trained the model on a simulated feature vector (described
in Section 2.1) with hand-labeled wellness scores.

Formally, our model is described as the following function, which takes the
input feature vector x of length n:

f(x) = b2 + W2(s(b1 + W1x)). (1)

In this function, b1 ∈ Rn, b2 ∈ R are bias vectors, W1 ∈ Rn×n and W2 ∈ R1×n

are weight matrices, and s : Rn → Rn is the activation function (which operates
element-wise on a vector). The bias vectors and weight matrices are generated
during training.

We define the activation function s as the square function. It provides high
inference accuracy for low-depth ML models [DGBL+16] and is efficient to cal-
culate under homomorphic encryption. Given our two-layer model, this is the
most suitable option.

2In the parent’s app, we will color-code the wellness score for easy interpretation. High
scores will be green, low scores will be red.
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2.3 Microsoft SEAL Implementation

We implemented the neural net described in Section 2.2 using the Microsoft
SEAL [SEA19] homomorphic encryption library. The library supports several
protocols and data representations; we used the CKKS scheme [CKKS17] with
a multiplicative depth of three.

As described in Equation 1, the three main operations are a matrix-vector
multiplication (W1x), a square activation function (s), and an inner product
(W2s(·)). The matrix-vector multiplication uses the diagonal method intro-
duced by Halevi and Shoup [HS14]. The square activation function can be com-
puted using a square-in-place homomorphic multiplication. The inner product
operation is optimized to use only O(logN) rotations.

Figure 2: Schema of the inference SEAL implementation

Our model is stored in plaintext as a weight matrix W1 and a weight vec-
tor W2. When the server receives a batched encoding CKKS ciphertext x, it
computes the matrix-vector product W1 · x. To make this more efficient, two
preprocessing steps are done. One, on the server-side the diagonals of W1 are
encoded as plaintext vectors. Second, on the child’s device, the ciphertext x has
the features repeated to fill all the slots. The diagonal method for the matrix-
vector multiplication requires us to be able to rotate the slots of a ciphertext.
In our implementation, we introduce some temporary ciphertext so that we can
get to all the necessary rotations by only rotating one position each time. We
can then request just this rotation in the Galois key.

// perform the multiplication

Ciphertext temp, temp2;

Ciphertext enc_result;

temp2 = ct; // ct = x

for (int i =0; i < dimension ; i++){

temp = temp2;

// multiply

evaluator.multiply_plain_inplace(temp, ptxt_diag[i]);

if (i == 0){

enc_result = temp;

} else{

evaluator.add_inplace(enc_result, temp);

}

5



evaluator.rotate_vector(temp2, 1, galk, temp2);

}

evaluator.rescale_to_next_inplace(enc_result);

enc_result.scale() = pow(2.0, my_scale);

Next, we add the bias vector b1. The activation function s(x) = x2 can be ap-
plied by squaring the ciphertext in place followed by relinearization and rescal-
ing.

//add bias vector b1

encoder.encode(b1, enc_result.parms_id(),scale, b1_plaintext);

evaluator.add_plain_inplace(enc_result,b1_plaintext);

//square in place

evaluator.square(enc_result, enc_result);

evaluator.relinearize_inplace(enc_result, relin_keys);

evaluator.rescale_to_next_inplace(enc_result);

enc_result.scale() = pow(2.0, my_scale);

Next, the inner product with the weight vector W2 can be done by first
performing a component wise multiplication and then summing the slots. To
do this we need to rotate the ciphertext by powers of 2 rotations; we request
these specific Galois keys be created. We follow this up with adding in the final
bias correction value b2.

//multiply in place

evaluator.multiply_plain_inplace(enc_result, W2);

// Sum the slots

Ciphertext temp_ct;

for (size_t i = 1; i <= encoder.slot_count() / 2; i <<= 1) {

evaluator.rotate_vector(enc_result, i, galk, temp_ct);

evaluator.add_inplace(enc_result, temp_ct);

}

// add bias value b2

encoder.encode(b2,enc_result.parms_id(), enc_result.scale(),

b2_plaintext);

evaluator.add_plain_inplace(enc_result,b2_plaintext);

In the interest of performance, we tried to minimize the size of the CKKS
parameters. We chose a polynomial of degree 8192 and a ciphertext modulus
with prime factors of sizes {60, 30, 30, 60}. The communication sizes of the
ciphertexts are in Table 1. There are two ways to encrypt the data on the
child’s device, either using a secret key that is shared with the parent’s device
or with a public key that corresponds to the secret key on the parent’s device.
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Encrypting with the secret key saves about a factor of 2 in ciphertext size.

Client to server (encrypting with secret key) (feature vector) 144 KB
Client to server (encrypting with public key) (feature vector) 288 KB
Server to client (wellness score) 130 KB

Table 1: Ciphertext sizes

Since the server needs to compute rotations, it will need a set of Galois
keys. We generated the smallest set of Galois keys necessary, which includes
rotations {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}. The total size of these
keys is 7.5 MB. Since the server will also be performing relinearization as part
of the homomorphic computation, it will need relinearization keys, which have
size 627 KB. The evaluation key is the name given to all the key material
(relinearization keys and Galois keys) that is needed for the server to run the
homomorphic computation. In total the evaluation key has size 8.1 MB but is
only generated by the parent’s device and sent to the server in the initial setup.

The total execution time of the homomorphic circuit is around 100 ms. With
these parameters, the floating-point approximation of CKKS gives us about 4
decimal digits of precision. The full code for our implementation can be found
at https://github.com/bmcase/bootcamp.

3 Soundness and Future Work

Why use HE? When designing a HE application, one must compare against
performing this computation locally without homomorphic encryption. We
think there are a couple of reasons why using homomorphic encryption is the
better option for our application. First, all the data storage can happen on the
server and we can periodically send the parent long term statistical summaries
of the data and also train other models to look for unhealthy trends in the long
term data. Second, it may be the case that the app wants to keep the model
from being easily taken by a competitor and charge a monthly subscription for
the app. If this is the desire, then it is better to have the model computation
done on the server. Keeping the model on the server also gives the app designers
more flexibility in updating the model periodically.

How to keep malicious parties from corrupting the ML? One issue any
ML application faces is collecting and maintaining accurate training data. There
may be adversarial parties who wish to influence the outcome of the model: for
example, a game developer may try to reclassify its products as education apps
or train the model to associate higher wellness to children with increased game
times.

In other use cases for machine learning with homomorphic encryption such
as phishing or spam detection, the adversary has control over the target that
the model is trying to identify (e.g. the phishing and spam emails), and in such
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a setting, it is necessary to continually retrain the model to stay up-to-date
against modern threats. In our use case, healthy usage of social media, games,
and educational apps does not change significantly on a short-term basis. We
can train a single model via a large-scale study and use it for an extended time
period without compromising its accuracy. Such a study should be done in
collaboration with psychologists in settings where children already have devices
(some schools have programs to provide students with devices).

The app also depends on secondary data sources, such as app classifications.
This data is not used in the machine learning model but is necessary to featurize
data or interpret the results. Since this is stored in the clear, we can issue
updates to the child and parent apps (e.g. with new classification lists) to
combat malicious behavior from app developers.

How to detect if the app is not functioning correctly? Another concern
is how to incentivize correct usage by children. This app fails to be useful if,
for example, the child has a secondary phone that they use for certain types of
behavior. One mitigating factor is to provide high-level data for the parent, such
as total time spent in each of three app categories (these statistics could also
be computed using homomorphic encryption). If the parent is roughly aware
of their child’s typical phone usage, they should be able to identify cases where
the app data doesn’t correlate with the child’s behavior patterns.

How to customize the app to irregular schedules? This app is designed
to be useful for the average child, but many families have schedules that fall
outside the norm. For example, home-schooled children may not have typical
9-3 school hours and varsity athletes may wake up early for team practice. One
potential mitigating approach is to allow parents to define custom schedules.
They can locally set expected hours for sleep, school, and evening/playtime.
These are sent to the child’s device and used to define the app usage features.

What is a good well-being score? Since the perception of a good well-being
score may vary among parents, we do not define a concrete threshold between
good and bad. Instead, we divide the scores into four ranges and color code the
ranges as red, orange, yellow, and green where red indicates the worst and green
indicate the best. Along with the absolute value, the changes in the well-being
score is also an important indicator of the mental health of the child.

3.1 Future Work

The proof-of-concept app described in this paper is fairly limited. Future work
includes producing higher-quality training data and expanding the machine
learning models to provide more useful data.

Training data and features. We need to collect and accurately label real-
world, representative data. In a commercial setting, we would collect data via a
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larger scientific study. Some telecom companies, including Sprint and TracFone,
have partnered with public schools to provide free cell phones to students. We
could work with such programs to install a preliminary app on the free phones
that would collect training data. This study would have to partner with child
and education psychologists or other trained professionals who could evaluate
the students individually to assess their mental health and assign labels to the
data. This type of study would also provide intuition to whether our two-layer
model is appropriate for this setting.

Another option for collecting labeled training data is to work in partnership
with parents and continually retrain the model. In this setting, we could have
parents answer questions on the app regarding their child’s well-being. The
answers would provide new labels for their child’s collected data. This approach
has several issues.

• Training a model on encrypted data is prohibitively inefficient, so it would
have to be done in the clear on the client-side. This might require the
parent to use a more powerful device (e.g. a desktop computer) to answer
questions and update the model.

• The server may be able to infer information about the client’s data by
comparing the model before and after an update. A typical mitigation
is to send the model along a chain of parents (each of whom provides an
update) before returning it to the server. However, this requires extensive
communication and synchronization between individual users of the app.

• There are a variety of approaches for training a model in parallel, but these
are not compatible with the privacy requirements of our application. The
server would only be able to request updates from one parent (or chain of
parents) at a time.

• This provides an avenue for parents to provide arbitrary or incorrect an-
swers. We would have to compute server-side cross-validation after each
retraining session to protect the model.

In the future, we may also wish to add more features to the app. For example,
the SleepCycle [Sle20] app computes a “quality” score that correlates with the
measured amount of deep or REM sleep. We also wish to incorporate more
granular app categories or time blocks, or data beyond sleep and phone usage.
The maximum ciphertext size in the CKKS implementation is much larger than
our current input vector, so it is technically simple to add more features.

Expanded models. In the future, we would like to make longer-term eval-
uations about overall mental health. There are two potential approaches: We
can store daily scores on the parent’s phone and report monthly averages and
trends. Alternately, we can store encrypted features on the cloud and train new
models on the aggregates to produce long-range wellness scores. These would
likely be more informative and less reactive than day-to-day snapshots.

The current app architecture provides flexibility to evaluate more complex
models on the cloud. The simple two-layer network may not be appropriate for
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use on real data, but we can train and evaluate larger and more useful models
that incorporate more data and advanced ML techniques.

4 Conclusion

We have presented the HappyKidz app that allows parents to monitor the well-
being of their children through phone usage and sleep patterns. Contrary to the
existing parental apps, which researchers have found to be unpopular among
children, this app does not control or report phone usage of the children directly
to the parents. Instead, it calculates a well-being score of the child using an ML
model that is trained collaboratively by a large group of parents and experts
and is deployed on a server. The app protects the privacy of the child’s data
by encrypting it with HE. Our proof-of-concept implementation shows that
computation of the well-being score on encrypted data is practical in terms of
computation time and memory usage.
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