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Abstract

Overcoming language barriers is a key challenge for international organizations providing med-
ical aid in a variety of places. While bilingual doctors or human translators can achieve this
effectively, many volunteer clinics are under-staffed and under-funded and must do without.
Machine translations have become increasingly accurate and accessible, e.g. via Google Trans-
late. However, uploading medical data to the cloud can violate patient privacy, while offline
translation systems are often less accurate. Using homomorphic encryption, clients could sub-
mit encrypted queries to a server hosting a translation model without revealing the underlying
private information. However, modern translation systems are based on Recurrent Neural
Networks (RNNs) which are challenging to evaluate homomorphically due to their inherent
high depth and their heavy reliance on non-linearity. We design, implement, and evaluate a
proof-of-concept solution and explore a variety of solutions to these challenges.

Introduction

Overcoming language barriers remains a key challenge for aid organisations working globally. In
the case of medical aid, effective communication is required not just for efficient logistics and ad-
ministration, but is of vital importance to the main mission. Doctors volunteering abroad need
to understand patients’ records in order to make correct diagnoses and select appropriate treat-
ments. After many in-clinic treatments, patients must follow specific drug or care regimens. These
instructions must be communicated effectively to ensure a positive outcome.

Overcoming these language barriers can place considerable strain on the resources of these organi-
sations. While bilingual doctors can facilitate the translation of medical records, prescriptions, and
instructions with high accuracy, not all doctors volunteering abroad are proficient in their patients’
languages. Meanwhile, professional translators are a costly resource and volunteer clinics are often
under-staffed and under-funded to begin with. Therefore, efficient and effective automated solutions
for medical translation are needed to lighten the translation workload.

Automated translation has become increasingly accurate due to the development of neural-network-
based machine learning approaches. Cloud-based services like Google Translate offer fast and
accurate translations of documents and speech. However, uploading medical data to the cloud can
violate patient privacy. Meanwhile, offline translation systems are often less accurate than state-
of-the-art cloud based solutions. In the case of medical translation services, there could also be
concerns about releasing models trained on private medical data.

Homomorphic encryption (HE) could allow users to outsource translation to a server without reveal-
ing the underlying information. A service provider would train and maintains a machine-learning
model, likely derived from private medical data, and make the translation service based on it avail-
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able to the clients. The client then sends an encrypted query to the server, which homomorphically
evaluates the model on the query and returns the encrypted result.

A Machine-Learning-as-a-Service (MLaaS) provider might donate the required server resources to
charities, or public institutions like hospitals or universities could run such a platform, which would
be many orders of magnitude cheaper than human translators. We imagine that in this setting, client
devices belong to the doctors, pharmacist, or clinics rather than individual patients. Since patients
already trust their doctors with their private data, this offers significant deployment benefits with
little practical impact on the privacy guarantees.

While much prior work considers homomorphically encrypted machine learning (e.g., [GBDL+16,
JVC18]), natural language processing tasks like translation generally make use of Recurrent Neural
Networks (RNNs) which offer unique challenges. Due to their recurrent nature, they inherently
have a high depth of computation. Convolutional Neural Networks (CNNs), in contrast, are gen-
erally ‘wide’ rather than deep. The high-cost of evaluating deep circuits in levelled FHE is usually
compensated by fully utilizing batching to amortize costs across many parallel computations. How-
ever, the ‘narrow-but-deep‘ layout of an RNN computation makes it challenging to fully exploit
this common technique. In addition, RNNs rely heavily on complex non-linear activation functions.
While all neural network architectures tend to feature non-linear-activation functions, it has been
shown [GBDL+16] that low-degree polynomial functions can achieve the desired effects in lower-
depth CNNs. RNNs, however, require activation functions that ‘clamp’ values to a fixed interval
in order to avoid numerical issues. Such functions are inherently nearly impossible to emulate with
low-degree polynomials.

Therefore, implementing RNN-based machine translation using homomorphic encryption is a highly
non-trivial task. In order to set a feasible goal, we consider prescriptions, specifically the directions
on when and how to take the drug, as a first step. These texts are suitable for an initial design since
they are generally a single short phrase (e.g., “one capsule every eight hours”), frequently contain
vocabulary that is otherwise rarely used (e.g., “Apply one inhalation...”) yet feature a small overall
vocabulary. In addition, relaying the information in these texts is both vitally important and
surprisingly challenging. A large number of studies have shown how complex language or unclear
instructions lead to patient misunderstandings [SBM18].

The need for clear effective translations of prescription instructions is also evidenced by the devel-
opment of standardised translation tables [AHRQ14] that provide a mapping from common phrases
(e.g., “Take one pill at bedtime”) into several languages. While these represent an important first
step, they cover only a very limited number of prescription instructions, cannot accommodate
additional explanations and only work uni-directionally.

We therefore propose a solution for private outsourced translation for medical texts, specifically
prescription instructions, using homomorphic encryption. We focus on the concise texts found in
prescription instructions, allowing us to showcase a feasible proof-of-concept implementation using
existing tools. We evaluate our prototype and explore how the remaining challenges might be
overcome. Finally we propose avenues for future work in this area.

Machine Translation

Modern approaches to machine translation are frequently based on neural networks, specifically
Recurrent Neural Networks (RNNs). In contrast to feed-forward networks, RNNs can process
sequences of inputs, incorporating information from previous parts of the input in the decision
process. This makes them especially suited to natural language processing tasks.

For text-based tasks like translation, words are represented by their index in a fixed-size dictionary,
i.e. a list of the k most relevant words for the task, with typical sizes for k starting around 5000
words. Chunks of the one-hot encoded phrase are then converted into embeddings in, e.g., Rw using
a simple, non-task-specific, model. These chunks, rather than the individual words, make up the
input sequence for the RNN.

Generating a translation with an RNN consists of two stages. First the input sequence of chunks
is run through an encoding phase, which generates a fixed-length hidden representation of the
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RNN

0       …           0  1 0  … 0

“Take”

RNN

0       …   0 1  0        …   0

“twice”

RNN

0         …              0  1 0  0

“daily”

(a) Encoding

RNN

0.8  6.1  1.2  0.3  1.3  0.2

<start>

argmax

0     1     0     0    0     0 

“zweimal”

RNN

0.5  0.9  1.2 3.5  2.1  7.2

argmax

0     0     0     0    0     1 

“täglich”

RNN

4.2  4.1  1.2  0.3  1.3  0.2

argmax

1     0     0     0    0     0 

“einnehmen”

(b) Decoding

Figure 1: Encoding and decoding stages of the model

sequence. This allows easy training of the model with sentences of varying lengths. Second, this
representation is used as the input for the decoding phase, which generates the translation output.

The encoding and decoding phase each consist of a single unit, that could be either a simple “fully
connected” layer or a more complex architecture such as GRUs [CvMG+14] or LSTMs [HS97].
Each unit features at least one source of non-linearity. This is most commonly the tanh activation
function which has bounded outputs, preventing numerical issues that arise due to the recurrent
nature of RNNs. In each phase, the current input from the sequence and the output from the
previous step are fed into the unit, as shown in Figure 1. This allows the model to incorporate
information from previous parts of the sequence, but also leads to a very deep computation graph,
which makes a homomorphic encryption implementation challenging.

While plaintext-based solutions often err on the side of larger hidden representations, we experi-
mented with a simple RNN model in the clear to determine what an acceptable value of w would
be; the results are shown in Figure 2.

Figure 2: ML Model parameters to determine acceptable value of w.

Design

We assume that the client, i.e. the doctor or clinic, posses a symmetric secret key for the CKKS
scheme [CKKS17]. The server, meanwhile, has access to the corresponding public relinearization
and rotation keys required to evaluate the computation. For convenience of deployment, these
might be set-up before a doctor departs his home country or at a major city in the destination
country, where high-speed internet is available.

Given a phrase to translate, the client software first tokenizes the phrase, representing each word as
a one-hot encoding vector referring to a fixed-length dictionary. Should a word not be present in the
dictionary, it is usually assigned a special “unknown” token when evaluating translation models.
However, in a practical deployment setup it might be more suitable to notify the user and give
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them a chance to provide an alternative word. In our design, we choose a dictionary size of 5000
words, which is on the smaller side for general language tasks but still common. Since the language
of prescription instructions is fairly standardized, we would expect unknown words to occur with
very small frequency.

Chunks of the phrase are then embedded into the hidden space, in our case R256 as this provides
a good balance between accuracy and model size (See Fig. 2). This embedding is performed on-
device, using a simple pre-trained lookup table. The list of embedded chunks, x0, x1, . . . , xn ∈ R256

is the input to the FHE computation. The client encrypts the chunks using the symmetric secret
key, batching them into a single ciphertext which is then sent to the server.

The server then evaluates the RNN on the input. For simplicity, we consider a fully recurrent neural
network, i.e. for each element xi in the input sequence, we have

hi = g(Wxxi + Whhi−1 + b)

where Wx,Wh ∈ R256x256 are weight matrices, b is a bias vector, and g : R256 → R256 is a non-linear
activation function. In the decoding phase, the weight matrices are of size R512x256 and the resulting
vector is split into ht and yt. To derive the actual output from yt ∈ R256, we find the dictionary
entry that has the embedding vector that is closest to yt (argmax). This model architecture can be
seen in Fig. 1.

In an ideal setting, the server would evaluate the whole model under FHE and return the encrypted
result to the client, once again batched into a single ciphertext for communication efficiency. How-
ever, there are several challenges that make a straightforward evaluation of the network infeasible.

Challenges One challenge of a homomorphic encryption implementation of an RNN is the se-
quential nature of the architecture. A long input sentence will result in a high multiplicative depth
of the computation, requiring larger parameters and therefore slower computations. Another chal-
lenge are the required non-polynomial functions. These include the non-linear activation functions,
which are also present in traditional feed-forward networks. However, in RNNs they are consider-
ably more important since the deep nature of the computation can quickly lead to numerical issues
if unsuitable activation functions are chosen. More importantly, however, the decoder requires the
repeated evaluation of the argmax function. While many neural networks use functions to like
max, softmax or even argmax, these are generally applied at the very end of the computation and
can therefore be left to the client to perform after decryption. In the RNN decoder architecture,
however, the output of the argmax needs to be fed into the next stage of the computation.

We explored a variety of possible solutions to these issues during the course of this project:

(i) Polynomial Approximation: In previous work on neural networks in FHE, non-linear activation
functions like RELu have been approximated with varying low-degree polynomials [GBDL+16].
In more general purpose computations, using Chebyshev polynomials to approximate continuous
functions on an interval is a standard techniques in HE. However, due to the deep nature of RNNs,
using standard approximations can lead to significant accuracy issues.

More importantly, existing techniques do not admit a straightforward method for approximating
argmax which is a multivariate function. Using the method of [CKK19] for computing a maximum,
it might be possible to compute the argmax by performing a linear number of max operations
over the output vector. While this max operation is computationally costly, all the costs would be
incurred at the server, not the computationally limited client device.

(ii) Binary Representation: Changing to a binary representation would allow us to compute the
non-linear functions directly. Here, it would be best to use a scheme and implementation optimized
for this setting (e.g. TFHE [CGGI16])). The activation functions can be implemented via lookup
tables at the desired accuracy, while the argmax could be implemented directly. However, in this
setting matrix-vector multiplications become prohibitively expensive. In fact, the only existing
FHE implementation of a RNN that we are aware of [LJ19] actually uses the binary setting, but
uses an extremely quantized network with 4 bit weights to avoid this multiplication overhead. At
such high quantization levels, more complex machine learning tasks like machine translation are
likely to lose too much accuracy to be of practical use. In essence, we would only be trading the
challenge of polynomial approximation with the challenge of extreme quantization.
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(iii) Scheme Switching: Some other frameworks have proposed switching between different repre-
sentations or schemes in order to improve performance. Glyph [LFFJ19] and Chimera [BGGJ18]
both switch to Fully Homomorphic Encryption on the Torus (TFHE) [CGGI16] for non-linear com-
putations such as softmax. While Chimera seems to have been implemented for the i-DASH 2019
competition, the implementation is not yet publicly available.

On a conceptual level, it seems straight-forward to switch from CKKS to TFHE to e.g. evaluate
a non-linearity activation function after using CKKS for matrix-vector multiplications. However,
while Chimera also introduces transitions from TFHE to CKKS, these transitions produce very
specific CKKS ciphertexts that contain not the original message but an exponentiated form. It is
not obvious to us at this point whether or not it would be possible to “complete the circle” and
convert a TFHE ciphertext back into a CKKS ciphertext that would be suitable for continuing the
evaluation of the network. Even if it is not possible to switch back-and-forth in a straight-forward
way, it might be possible to rephrase the entire computation from scratch in a way that can take
advantage of the power of both schemes.

(iv) Client Interaction: Finally, the most simple solution is to send each individual unit’s output
back to the client, who will decrypt it, compute the required non-linear functions including acti-
vation functions and argmax, and send it back to the server. While this option introduces several
additional rounds of communication and significantly increases the communication overhead, it is
simple to implement and makes each individual unit a very low-depth and efficient circuit.

For the encoding phase, we use low-degree polynomial approximations. For the input sizes common
for prescription instructions, the circuit depth – while high – is not entirely prohibitive. While this
requires more complex training procedures, it has been shown that e.g. replacing tanh with ReLU

in RNNs leads to only slightly lower performance [LJH15]. Hopefully, with significant adjustments
to the training, polynomial activation functions could be shown to have acceptable performance,
too. For the decoding phase, where argmax is required, we consider client interaction to be most
feasible for an initial design. However, the authors want to continue exploring the feasibility of
scheme switching for a fully-outsourced RNN implementation.

Implementation & Evaluation

We developed a proof-of-concept implementation1 using the Micorosft SEAL library [SEA19], show-
ing the feasibility of evaluating a sequence of RNN units. The core of the computation is made up
of matrix-vector products between the plaintext weight matrices of the model and the (encrypted)
input or hidden-representation vectors. We approximate the non-linear activation functions during
the encoding phase with g(x) = x2.

Encoding Choosing the right batching layout is essential for an efficient implementation. CKKS
ciphertexts of lattice dimension n can hold up to n/2 independent values in (virtua) slots. Arith-
metic operations apply component-wise, i.e. in a SIMD fashion. Special automorphisms can can
be used to rotate the elements between slots cyclically.

In order to optimize the matrix-vector products, we use the “diagonal method” [HS14], where we
encode the matrices not row- or column-wise but instead encode the diagonals. This allows us to
compute the matrix-vector-product between a matrix of dimension kxk and a vector of length k
with only k − 1 rotations, k component-wise multiplications and k − 1 component wise additions.

However, since rotations on the slots are cyclical, naively encoding the values produces correct
results only if k = n/2. In addition, we want to encode all inputs xi (of length k = 256) into a
single ciphertext (with n >= 16348) in order to minimize the communication overhead. Since the
diagonal method only requires rotations in a single direction, and by at most k − 1, we choose to
simply encode each vector twice. While this does require more slots, we already need to choose
n very large to accommodate the depth of the computation, therefore we can still easily fit many
duplicated input vectors into the same vector.

1Available at github.com/PrivateAI-Group1/SEAL
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Optimizations While the diagonal method already requires a relatively small number of rota-
tions, this can be improved further by using a baby-step–giant-step approach [Che19]. This relies
upon the fact that we can split each rotation into two separate rotations and only perform the
second rotation after aggregating vectors that require the same rotation. For a rotation of l steps,
we can decompose l into k ∗n1 + j for n = n1 ∗n2 and 0 ≤ k ≤ n1, 0 ≤ j ≤ n2. We first store copies
of the vector rotated by each possible j. For each k, we compute the component-wise multiplication
between each of the pre-rotated vectors and the corresponding matrix diagonal. Then, we add all
n2 of these products together and rotate the resulting vector by k∗n1 steps. Note that this requires
pre-rotating each matrix diagonal k ∗ n2 + j steps in the opposite direction prior to multiplication,
to account for the second rotation. However, since the matrices are available as plaintext, this cost
is negligible.

The client must provide the server with the necessary Galois keys to perform the ciphertext rota-
tions. Even though this is a one-time setup, we nevertheless want to minimize the size of these keys.
During the computation, we need to rotate the vector by up to k−1 steps, however choosing all k−1
keys would be very space-inefficient. By default, SEAL already picks rotation keys corresponding to
steps by 2i and −2i for 0 ≤ i ≤ log n/2, and rotations are assembled from the Non-Adjacent-Form
decomposition of the number of steps required, which minimizes the number of rotations required.
However, since we never need to rotate all the way to n/2− 1, we choose only the powers required
to reach k. Considering the decomposition of the rotations in the baby-step–giant-step approach
might allow us to select even fewer rotation keys, but even with the current approach we can already
reduce the key size from 247 MB to 152 MB for n = 16348.

Results We evaluated the performance of our implementation on a standard desktop computer
with an Intel i7-8700 CPU (6 cores, up to 4.60 GHz) and 32 GB of RAM. Using CKKS as imple-
mented in Microsoft Seal v 3.4.5, we set n = 32768, a coefficient modulus with 880 bits and a scale
of 240. We evaluated the encoding phase of the network, using x2 as the activation function. While
this naturally led to a significant blow-up in values (even when rescaling appropriately), we consid-
ered this a good test case to demonstrate that even reasonably deep circuits can be practical. The
ciphertext transmitted to the server was 3.8 MB in size, and for five RNN units, the computation
took a total of 90 seconds. In the context of a clinic appointment, latencies in the order of minutes
seem more than acceptable, making this initial result a promising start.

Discussion

We have introduced our design and prototype for privacy-preserving outsourced translation of med-
ical data. By focusing on short, formulaic prescription instructions we have picked an application
area where FHE could feasibly be deployed in the near future. At the same time, existing makeshift
solutions show the need for translation in this domain and medical surveys confirm the importance
of understandable prescription instructions for positive treatment outcomes. Our initial implemen-
tation shows the feasibility of such a system and features a variety of optimizations to implement the
underlying computations efficiently. The major challenge going forward is the inability to efficiently
evaluate more complex activation functions and the argmax function in CKKS using standard FHE
techniques. We consider future work in this area, especially investigating how to apply scheme
switching techniques, to be of independent interest and will continue to explore in this direction.
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