
DRIFT: Deep Reinforcement Learning
for Functional Software Testing

Luke Harries*, Rebekah Storan-Clarke*, Timothy Chapman, Swamy V. P. L. N. Nallamalli,

Levent Ozgur, Shuktika Jain, Alex Leung, Steve Lim, Aaron Dietrich,

José Miguel Hernández-Lobato, Tom Ellis**, Cheng Zhang**, Kamil Ciosek**

Abstract

Efficient software testing is essential for productive software development and
reliable user experiences. As human testing is inefficient and expensive, automated
software testing is needed. In this work, we propose a Reinforcement Learning (RL)
framework for functional software testing named DRIFT. DRIFT operates on the
symbolic representation of the user interface. It uses Q-learning through Batch-RL
and models the state-action value function with a Graph Neural Network. We apply
DRIFT to testing the Windows 10 operating system and show that DRIFT can
robustly trigger the desired software functionality in a fully automated manner. Our
experiments test the ability to perform single and combined tasks across different
applications, demonstrating that our framework can efficiently test software with a
large range of testing objectives.

1 Introduction

Testing computer software is a crucial element of modern software engineering practice. The push
towards continuous integration and continuous delivery (CI/CD) of software requires efficient testing
to ensure the builds are stable [1]. Otherwise, software delivery may be delayed or bugs may result in
poor user experience. While this is true for all software, tests are especially important for operating
systems, where bugs could impair core system functions and introduce security vulnerabilities.

The most time-consuming part of software testing is testing through interactions with the Graphical
User Interface (GUI), which was traditionally done manually. However, creating GUI tests manually
is a time-consuming and expensive process. In particular, testing large numbers of interacting
components takes many hours and small changes in the software can easily break many of these
tests. [2]. As such, companies often outsource this testing to humans through quality assurance (QA)
companies and/or beta users.

Alternatively, large numbers of automated agents may be deployed to interact with the software.
The current generation of these agents commonly act using a fixed random policy. This results in
poorly-targeted tests, compared to those performed by a human user. To improve efficiency, heuristics
have been added to random agents [3]. However, a better automated solution for efficient software
testing is clearly needed.

As system complexity increases, two features of software tests become critically important. First,
since it is infeasible to manually specify a huge number of tests, they have to be fully automatic.
Second, the testing framework needs to be sample-efficient, meaning the ability to complete the

∗ Equal contribution. Completed during the AI residency program at Microsoft Research, Cambridge, UK.
∗∗ Equal contribution from senior authors. All authors are affiliated with Microsoft.

33rd Deep Reinforcement Learning Workshop (NeurIPS 2019), Vancouver, Canada.

tests with a reasonable amount of interactions. As discussed, existing approaches do not meet these
requirements [4, 5].

In this work, we propose an efficient software testing framework addressing these requirements,
by exploiting insights from Deep Reinforcement Learning [6, 7, 8]. Our goal is to train an RL
agent which can perform efficient software testing with specified properties, such as testing specific
functionalities with different coverage. We name our proposed framework DRIFT, which stands for
Deep ReInforcement learning for Functional software-Testing.

Contributions We design a novel Batch Reinforcement learning framework, DRIFT, for software
testing. We use the tree-structured symbolic representation of the GUI as the state, modelling a
generalizeable Q-function with Graph Neural Networks (GNN). We introduce a fully modular and
automated setup to train agents to perform desired tasks. Additionally, the programmer can designate,
in a language-agnostic way, which functionality should be tested. Afterwards, we evaluate DRIFT
on the Windows 10 operating system, showing that trained agents can learn single tasks as well as
multiple tasks with different coverage requirements. These agents outperform a random baseline by
two orders of magnitude and can successfully generalize in settings where hash-based methods failed.

2 Background

To formally define our testing framework, we require several concepts that we will now introduce.

Markov Decision Process We formalize the interaction between the agent and the environment as a
family of Markov Decision Processes [9] (MDP), indexed by the objective, o. An MDP is defined as
a tuple (S,A, T,Ro, γ,⊥o), where S is the set of states, A is the set of actions, T is the transition
function, Ro is the reward function corresponding to an objective o, γ is the discount factor and ⊥o is
the set of absorbing states. The transition function T (st+1, st, at) = P(s′ = st+1|s = st, a = at)
models the transition to the next state given the current state and action. The reward function for
a given objective Ro(st+1, st, at) = Eτ [rot |s = st, a = at, s

′ = st+1] (we skip the superscript o
in the remainder of the paper where it is clear). Each step in the MDP can be described with a
transition := (st, at, rt, st+1). An episode is a sequence of transitions until termination episode :=
[s0, a0, r0, s1, a1, r1...].

Reinforcement Learning In reinforcement learning, the agent is faced with a sequential decision-
making problem. At each time step t, the agent receives the state st ∈ S from the environment.
The agent has a policy π which selects an action given the state π(a|s) = P [A = a|S = s]. The
action is passed to the environment, and the state is updated using the transition function T . The
environment then returns the new state st+1 and a scalar reward rot+1 ∈ R determined by the
(objective-dependent) reward function. This interaction continues until a goal is achieved and thus
the episode is completed. The task for the agent is to learn a policy π which maximizes the total
discounted reward Jot = Eτ [

∑
t γ

trot] received from the environment where the discount γ ∈ (0, 1]
[10, 11].

Trees and Graph Neural Networks A graph is a tuple G = (V,E) containing a set of vertices V
and edges E ⊆ {(x, y)|(x, y) ∈ V 2 ∧ x 6= y}. A tree is an acyclic graph with a designated root node.
Graph Neural Networks (GNNs) are differentiable parameterized functions f : G → Rm where
v ∈ V, v ∈ Rn. Each layer in a GNN updates the representation of each node using its neighboring
nodes [12, 13, 14].

Off-Policy Reinforcement Learning and Batch Reinforcement Learning Off-policy Reinforce-
ment Learning is often deployed in settings where the policy collecting the experience is different
from the policy being learned. This setting is known as off-policy reinforcement learning [15]. Batch
Reinforcement Learning (Batch-RL) describes a subset of off-policy learning where a fixed set of
transitions is used, with no further interaction with the environment [16, 17, 18]

3 Method

We now describe the components of DRIFT. Abstractly, the framework works by exploiting the
operating system API to interact with the software under test. It learns a policy which, given a
symbolic representation of the interface, selects desired GUI interactions.

2

{
"Identifier": "94d29a9543c9c...",
"UIProperties": [

{
"AutomationID": "23423",
"ClassName": "MainMenu"
"ControlType": "Panel",
"ProcessName": "StartMenu"

}
],
"Children": [...]

}

Figure 1: On left subfigure is the UITree for the StartMenu, shown by the large black rectangular
box in the screenshot the right subfigure. On average, each state has 36 UI elements, although some
graphs have up to 800 UI elements.

In this section, we provide details of how this policy is obtained. We do this by first specifying
software testing as a Markov Decision Process and then describing the training process that computes
the policy for the MDP.

3.1 The Testing MDP

States The state st is a tree that corresponds to a hierarchy of GUI elements, known as a UITree.
Each node in the UITree represents a UI element such as the "Start Menu" as shown in Figure 1. Each
node has four properties: the AutomationID, an optional string which is used for manual UI testing;
the ClassName, a string which determines the visual properties of the element; the ControlType, an
enum describing the type of element; and the ProcessName, the name of the process which created
the element. Additionally, the element may have children which correspond GUI elements that it
contains. The root of the tree is the Desktop node.

The UITree is obtained using Microsoft UI Automation Tree Tool [19] which is traditionally used for
accessibility tools such as screen readers. Alternative tree representations of the interface may be
used to test different systems, for example the Document Object Model (DOM) for testing websites.

An alternative to the UITree would be to use screenshots of the interface [20]. However, using tree
representations has several advantages over screenshots. Firstly, the features of each element are
encoded directly into the node properties such as ClassName Button, Label, ScrollBar, etc. which
eliminates the need to learn to visually recognize each element. Secondly, the UITrees are invariant
to the location of the windows on the screen. Thirdly, the UITrees have a smaller memory footprint
of a few KBs compared to several MBs for a screenshot. Fourthly, we have access to a very large
number of historical trajectories where only the UITrees are stored. Combined, these features mean
that a testing framework that makes use of UITrees is much more efficient and well worth the small
amount of computation the API has to perform to obtain them.

Actions The actions in the testing MDP reflect the possible interactions the user might have with
the software such as clicking the mail icon to open to mail application. We extract the actions from
the UITree. In particular, each possible action is a tuple consisting of a hash of the UIProperties
of the node, known as the node identifier, and the action type, for example ("94d29a9543c9c...",
"LeftClick"). As different windows may have a variable number of items the user can interact with,
the number of actions that are available at each step is dynamic. The number of available actions
varies from 2 to 842, with the mean being 248.

Reward Function For important systems, there often exists a list of key functions that should be
verified as operational before a build is released. This process of verification is known as smoke
testing [21]. In Windows 10, these key functions span many different apps. For example, adding a
website to favorites in Edge or clicking "Add Bluetooth or other device" in System Settings.

We use several reward functions, one for each objective o that our framework is trying to achieve.
The reward function computes a scalar reward from a state-action pair. To know when a particular
objective has indeed been achieved, we use an API function that triggers the generation of logs.
The logs are converted into a scalar reward by counting the number of times the event related to a

3

particular function has occurred. Our testing setup is fully modular, allowing the programmer to
easily mark, in a language-agnostic way, which functionality should be tested. The agent adapts both
to the objective and to any changes in the software that might have changed the best path towards the
existing objectives.

3.2 Training

The Simulator We developed a training environment by interfacing with the Windows operating
system. We followed OpenAI’s gym specification [22]. However, since GUI events are processed in
real-time, the time required to complete each step (such as opening Outlook) can be up to several
seconds. This is very different from step lengths of several milliseconds, typical of most typical
RL environments. This, combined with the often complex sequence of actions needed to perform a
particular task, impairs the ability to directly learn from the simulator in a reasonable length of time.
Therefore, we trained our agent using a large cache of historical data. The simulator was then only
used to evaluate the agents. The simulator was reset when the desired task was achieved.

Historical Data To overcome the limitations of the relatively slow simulator, we learn solely from
historical data. In our case, the historical data are the episodes collected by random agents during
previous testing runs. We query the historical data for the particular episodes where a particular
objective is achieved, helping to alleviate the problem of sparse rewards. Our testing framework is
generic with respect to the source of historical data. For alternative systems under test, interactions
recorded from real users could be used as well.

Q-learning For training, we use a variant of Q-learning known as DQN [15, 7]. As Q-learning is an
off-policy algorithm, the training data does not have to be collected from the policy being trained.
In Q-learning, we learn the Q-function which allows us to estimate the expected cumulative reward
of a state-action pair under the optimal policy π?. By default, the policy π of the agent is greedy
with respect to the current estimate of the Q-function, selecting the action with the highest expected
reward π(s) = argmaxa∈AQπ(s, a). Q-learning iteratively performs the update Q′π(s, a) ← r +
maxa∈AQ(s′, a) for tuples (s, a, r, s′).

Due to the large possible number of combinations of state-action pairs, and to achieve the ability to
generalize across state-action pairs, we approximate the function using a neural network and optimize
the network parameters θ by using stochastic gradient descent to minimize the loss function L. The
stochastic gradient descent update is shown below where β represents the learning rate. In practice,
the learning rate is dynamically set using the Adam optimiser [23] with an initial value of 1× 10−2.

The combination of approximation (our use of neural networks), bootstrapping, and off-policy
learning results in instability during training known as the deadly triad [15]. We use an experience
replay buffer and dual Q networks to aid stability [7]. The loss function L is based on [7], D
represents the dataset of transitions (s, a, r, s′) contained in the experience replay, θ represents the
parameters of the policy network, and θ− represents the values of the target network

L(θi) = E(s,a,r,s′)∼D[(r + γmax
a′∈A

Q(s′, a′; θ−i)−Qπ(s, a; θi))
2] (1)

An additional parameter η ∈ R+ determines the frequency at which the target network parameters
are updated using the policy network parameters. η and γ are chosen using a hyperparameter sweep.
Algorithm 1 gives an overview of our training procedure.

Modeling the state using Graph Neural Networks The state is initially returned from the environ-
ment as a UITree. We first convert the nodes of the UITree to vector form and then apply the graph
neural network.

For a graph with n ∈ N+ nodes, we set the representation of each node as the concatenation of the
one hot encoding of the node’s UIProperties. Specifically, we use a variant of one hot encoding where
the rarely seen/unseen properties are grouped into an "Other" value. This ensures that the network
can handle unseen values at evaluation time. We represent each node embedding v ∈ {0, 1}z . We
define the vectorized action a ∈ (ae,ai) as the concatenation of the one hot encoding of the action
type ae{LeftClick,RightClick, ...} and ai the one hot encoding of the node index [0..n].

We use a graph neural network (GNN) to approximate the action-value function where s = (Vs, Es)
and Q(s, a) = GNN(Vs, Es) · a. The GNN is applied to the state and outputs a matrix containing
a vector representation for each node. The expected cumulative reward for performing each of the

4

Figure 2: States seen whilst navigating to the notifications panel. At the start of each episode, the
System Settings process is started by the simulator.. To achieve the reward the agent must select the
"System" element followed by the "Notifications Panel" element.

corresponding actions, followed by the agent acting greedily, is calculated by performing a dot
product with the vectorized action. Here, we want a network architecture which takes into account
the hierarchy within the tree and is able to differentiate between nodes with identical properties but
different locations within the tree. We chose the GNN architecture as it is specially designed to
operate on graph structures [14].

Algorithm 1 DRIFT Batch-RL

Input: The desired objective o, the application
processes relevant to the reward process, the
historical data D
Output: Trained GNN net

transitions← list()

Extract relevant transitions
for episode in D do

if episode_meets_objective(episode, o) then
cropped_episode← crop(episode, o)
transitions += cropped_episode

Vectorize the states and actions
for t in transitions do

for s in [’state’, ’next_state’] do
t[s]← get_process(t[s], process)
t[s]← vectorise(t[s])

t[’r’]← get_reward(o, t)
t[’a’]← vectorise_action(t[’a’])

net← GNN()
target_net← net.copy()
update_frequency← 100
steps← 0
Train the GNN
for batch in DataLoader(transitions) do

net← train(batch, net, target_net)
if update_frequency mod steps = 0 then

target_net← net.copy()

At each time step or each layer, the GNN up-
dates the representation of each node based on
the current node representation and its neigh-
boring nodes. We chose GNN architecture by
using a toy supervised learning task (classifying
whether the node ClassName is Button). We se-
lected the Graph Attention Network (GAT) [24]
as it achieved the best performance. GAT is a
convolution style architecture which uses self-
attention to determine the relative weighting of
the neighboring nodes. Each layer of the GAT
updates each node representation

v′i = αi,ivi +
∑

j∈N (i)

αi,jvj . (2)

where αi,j represents the self-attention with i
being the index of the query node and j being
the index of the key node.

We implemented the GAT architecture using Py-
Torch Geometric [25]. Our final architecture
consisted of two GAT layers separated by a Rec-
tified Linear Unit (ReLU) [26]. The first layer
has 1080 input channels (the length of the vector-
ized node representation) and 80 outputs chan-
nels with 8 self-attention heads. The second
layer outputs 1 channel (the number of action
types) and 1 self-attention head. Only 1 action
type was used as all the key functions could be
performed with only the LeftClick.

Efficiency vs Coverage We introduce two vari-
ants of DRIFT: DRIFT-Greedy and DRIFT-
Sampler. DRIFT-Sampler focuses on perform-
ing one given objective most efficiently. It
uses a greedy policy, which selects the action
with the highest expected reward π(s, a) =
argmaxa∈AQ(s, a). However, when testing

software, we may also want to maximize state coverage in addition to achieving the desired
objective. To do this, we use DRIFT-Sampler, which has a stochastic policy π(s, a) = a ∼
Categorical(Softmax([Q(s, a)/m|a ∈ A])) where the temperature parameter m ∈ (0,∞]. Smaller

5

Task DRIFT-Greedy Q-hash Agent Random Agent
(Train, Eval) (Train, Eval) (Evaluation)

Navigate to notifications panel (Settings) 2± 0, 2± 0 2± 0, Fail 443± 1235
Add Bluetooth or other device (Settings) 2± 0, 2± 0 2± 0, Fail 852± 1681

Add a page to favorites (Edge) 2± 0, 2± 0 2± 0, Fail 444± 1372

Figure 4: The number of steps required for each agent to complete a specific task on a simulator. For
DRIFT-Greedy and Q-hash, the evaluation was performed using 1000 evaluation steps by the agent
in the simulator. The result shown is the mean and standard deviation of 5-fold cross-validation with
4 random seeds. The number of steps for the Random Agent is calculated using the mean historical
data and includes the standard deviation. DRIFT-Greedy was able to successfully learn to achieve all
the tasks following the optimal route.Although the random agent was able to achieve all the tasks,
it was very sample-inefficient, requiring a large number of steps. The Q-hash based agent failed to
achieve any of the tasks on the unseen evaluation environments as it was unable to generalize.

temperature values bias the sampled actions towards the action with the largest predicted reward
while higher temperature values bias the sampled actions toward a uniform distribution across actions.

Multiple Tasks To support multiple tasks, DRIFT is trained train on episodes where the tasks are
performed individually. Since the rewards are normalized across tasks, this gives a combined policy
that targets all tasks. During training, we monitor performance on each task. During testing, we
deploy the multi-objective agent using DRIFT-Sampler so that the agent explores more efficiently
and is more robust to imperfections in the learned policy.

4 Experiments

0 100 200 300 400 500

0

200

400

600

Training steps

To
ta

lr
ew

ar
d

ov
er

10
0
0

ev
al

ua
tio

n
st

ep
s

DRIFT-Greedy
Random Agent

Figure 3: The cumulative reward achieved by an
agent on a single task for a given amount of train-
ing. The task is to navigate to the notifications
page within the settings app for which it is given a
reward of 1. The shaded area represents the stan-
dard deviation of the DRIFT-Greedy agent over 5
folds and 4 seeds.

We use DRIFT to perform a variety of different
software tests within Windows 10. In particular,
we verify key functionality of the System Set-
tings App and the Edge browser. DRIFT-Greedy
finds the most efficient path to the objective, out-
performing the random agent baseline by two
orders of magnitude, and consistently achieving
the reward, unlike the Q-hash baseline which
failed to generalize. We show that the temper-
ature parameter of DRIFT-Sampler can be var-
ied to effectively trade-off between efficiency
at completing the task and coverage of the pos-
sible states. Additionally, we demonstrate that
DRIFT-Sampler can learn to accomplish multi-
ple testing objectives.

Experimental setup The agents were trained
on historical data as described in the Methods
section. For each reward, 20 episodes of training
data were used, each with an average of 44 tran-
sitions. We used a batch size of 128 transitions,
where each batch is known as a step. We used
random search to determine which hyperparameters were able to most efficiently learn to navigate to
the notifications page. The best frequency of the target network updates was found to be 100 and the
optimal discount factor γ was set to 0.1. All experiments are repeated using 5-fold cross-validation,
holding out a subset of the historical data used for training, with 4 different seeds. We implemented
the algorithm using PyTorch and PyTorch Geometric [27, 25]

As the naive agent required a huge number of samples to complete the tests it was very expensive to
evaluate, taking on average 443 steps to 852 steps with a very large standard deviation to achieve one
desired goal state. Rather than let it timeout, we performed the evaluation off-policy.

6

10−2 10−1 100

0

100

200

300

400

500

Temperature

To
ta

lr
ew

ar
d

ov
er

1
00
0

ev
al

ua
tio

n
st

ep
s

DRIFT-Sampler
Random Agent

10−2 10−1 100

0

50

100

150

Temperature

N
um

be
ro

fu
ni

qu
e

st
at

es
se

en

DRIFT-Sampler
Random Agent

Figure 5: Number of rewards achieved and unique pages visited given different temperature. The
task is to navigate to the notifications panel within the settings app. As the temperate increases, the
distribution from which the actions are sampled becomes more uniform and so more states are visited.
The shading represents the standard deviation across 5 folds and 4 seeds.

We use an additional baseline, which we call Q-hash, where the representation of a state-action pair
was obtained by hashing. Q-hash learned the correct path on the training data, however, it failed on
both held-out data and the evaluation simulator. This was caused by the fact that slight variations in
the state greatly change the hash representation, which meant the algorithm was unable to generalize.
Although method was inspired by [28], we do not use the same feature engineering, or a process of
selecting stable elements, which is the reason our Q-hash agent was unable to generalize.

4.1 Solving a specific task

We evaluated the ability of DRIFT-Greedy to perform tasks by measuring the number of times a
particular task is achieved in 1000 steps. For example, the "Navigate to notifications panel" task is
shown in Figure 2. Figure 3 demonstrates that all runs of DRIFT, regardless of which seed or folds of
data were used for training, were able to learn the most efficient route to the notifications panel (2
steps). In contrast, by analyzing the historical data we can see that the random agent took on average
443 steps with a very large standard deviation. The Q-hash approach failed to perform the task due to
an inability to generalize to slight differences in the state of the simulator compared with the training
data. Results for a larger number of different tasks are shown in Figure 4.

4.2 Trading off efficiency and state coverage

10−1.4 10−1.2 10−1
0

50

100

150

Temperature

To
ta

lr
ew

ar
d

ov
er

10
00

ev
al

ua
tio

n
st

ep
s

Both tasks
Notifications Panel

Add Bluetooth or other device

Figure 6: The cumulative reward achieved by
DRIFT-Sampler on multiple tasks given different
temperature. The agent is given a reward of 1 for
each of the tasks: firstly, navigating to the notifi-
cations panel;secondly, navigating to and clicking
the button "Add Bluetooth or other device".

An additional consideration when performing
automated software testing is covering a large
number of possible states. We evaluate DRIFT-
Sampler’s ability to trade-off coverage and abil-
ity to achieve the desired reward by investigating
the effects of the temperature parameter. The
left panel of Figure 5 shows that as we increase
the temperature the number of steps required to
achieve the reward decreases. The right panel
shows that as the temperature increases the num-
ber of unique states visited increases as well.
Together, these panels show that the tempera-
ture can be used to effectively trade-off between
task efficiency and state coverage given a trained
value function.

4.3 Multiple Testing Objectives

We evaluated our testing framework where there
were multiple functions to test, as is often the

case in practice. To do this, we trained a single agent on a mixture of episodes containing a mixture
of several reward signals.

7

We trained the agent to perform two tasks within the Settings application. The first task was to
navigate to the notifications panel, as shown in Figure 2, requiring two steps. The second task was to
navigate to the "Devices" page and then click "Add Bluetooth or other device", similarly requiring
two steps. A reward of 1 was given for completing either task.

As our agent has no memory, learning to achieve the tasks sequentially was not possible. Instead, we
used the DRIFT-Sampler so that at each step the agent would sample from the likely actions and,
hopefully, on different runs, randomly choose between the different objectives. As shown in Figure 6
the agent was able to solve both tasks at least some of the time over 1000 evaluation steps. However,
the "Add Bluetooth or other device" task was completed less often. On average, it was accomplished
21 times using a temperature of 0.03 and 18 times using a temperature of 0.1. This was due to the
fact that some of the training episodes for the Bluetooth task also contained successful solutions to
the Notifications panel task, while the opposite was not the case, biasing the agent to one of the tasks.

5 Related Work

Our framework has the same underlying objective as other tools for automated software testing —
using the GUI to find the kind of bugs that are easily reachable by the end-user [29, 28, 5]. However,
many of these tools use a policy without a feedback loop, simply generating a sequence of inputs
from a fixed distribution. For example, Monkey uses a random policy to test android apps with the
action space being a combination of UI interactions and system events such as turning airplane mode
off and on [29]. GUITest is a Java application which uses a fixed random policy to test MacOSX
apps [30], similarly using the accessibility interface of the operating system. Such fixed policies are
often combined with heuristics. For example, the DynoDroid policy is biased towards least recently
used actions [3]. The common limitation of these tools is that they require large amounts of time to
complete the tests.

Several other tools have been produced to deal with this limitation. Sapienz uses genetic algorithms to
optimize the sequences generated by the random policy [5]. Sapienz learns to perform a sequence of
events and motifs (hand-crafted sequence of events) depending on the current screenshot. Humanoid
[20] learns to generate human-like actions by using a convolutional neural network to learn a mapping
from the screenshot to the actions selected by end-users. It has been [20] theorized that the improved
coverage compared to other tools was the result of learning to prioritize more critical UI elements.

The system [31] proposed a Q-learning based approach to finding bugs within MacOSX applications.
They suggested using a Q-table, where a Q-value is learned for each state-action pair. To do this,
they propose hand-engineering the representation of the state and actions which can then be used to
lookup the Q-table for the corresponding Q-value. This approach was developed by [28] resulting in
the "Testar" tool, where the state and action representations are created by their respective hashes
on hand-selected, application-specific stable elements. This paper inspired our Q-hash baseline.
However, we found that our model, which lacked feature-engineering of stable elements, was unable
to generalize to any small variations in the state and actions, suggesting that this method is not robust.

6 Conclusion

We propose DRIFT, a novel efficient software testing framework. We first formalize the software
testing task as an MDP and solve it using deep RL. Our agent operates on a symbolic representation
of the GUI and uses a graph neural network to model the state-action value function. To amortize the
cost of data collection, it is trained from existing data using the batch-RL paradigm. We demonstrate
our framework on several testing tasks on the Windows 10 platform. Our agents outperform the
baseline, a fuzzing tool with a policy independent of the state, by two orders of magnitude. Moreover,
we compare to a simpler Q-learning approach, which represents the state-action tuples using a hash
function, that failed to generalize. We introduce a sampling agent and demonstrate that we can
trade-off efficiency and coverage in addition to learning to perform multiple tasks. In future work, we
hope to improve exploration by incorporating agent memory, which would allow more complex tests,
where the current action depends on the whole history of interactions between agent and environment
rather than just the current state.

8

References

[1] Sean Stolberg. Enabling agile testing through continuous integration. 2009 Agile Conference,
2009.

[2] Yauhen Leanidavich Arnatovich and Lipo Wang. A systematic literature review of automated
techniques for functional GUI testing of mobile applications. CoRR, abs/1812.11470, 2018.

[3] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 224–234, New York, NY, USA, 2013. ACM.

[4] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zimmermann, and
David Lo. Understanding the test automation culture of app developers. 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST), 2015.

[5] Ke Mao, Mark Harman, and Yue Jia. Sapienz: multi-objective automated testing for android
applications. Proceedings of the 25th International Symposium on Software Testing and Analysis
- ISSTA 2016, 2016.

[6] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, January
2016.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[8] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[9] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[10] Richard S. Sutton and Andrew G Barto. Reinforcement Learning: an introduction. MIT Press,
2018.

[11] Rahul Gupta, Aditya Kanade, and Shirish K. Shevade. Deep reinforcement learning for
programming language correction. CoRR, abs/1801.10467, 2018.

[12] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[13] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[14] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018.

[15] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. MIT press
Cambridge, 1998.

[16] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Adaptation,
Learning, and Optimization Reinforcement Learning, page 45–73, 2012.

[17] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. CoRR, abs/1812.02900, 2018.

[18] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in
off-policy deep reinforcement learning. CoRR, abs/1907.04543, 2019.

9

[19] UI Automation Team. Using ui automation for automated testing, Mar 2017.

[20] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. A deep learning based approach to
automated android app testing. CoRR, abs/1901.02633, 2019.

[21] A.m. Memon and Q. Xie. Studying the fault-detection effectiveness of gui test cases for rapidly
evolving software. IEEE Transactions on Software Engineering, 31(10):884–896, 2005.

[22] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd
International Conference for Learning Representations, San Diego, 2015, 2015.

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. accepted as poster.

[25] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[26] Richard Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney Douglas, and H Sebas-
tian Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405:947–51, 07 2000.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS 2017 Workshop Autodiff, 2017.

[28] Tanja E.j. Vos, Peter M. Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and Joachim
Wegener. Testar. International Journal of Information System Modeling and Design, 6(3):46–83,
2015.

[29] Google. Android monkey, 2018.

[30] Sebastian Bauersfeld and Tanja E. J. Vos. Guitest: a java library for fully automated gui
robustness testing. Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering - ASE 2012, 2012.

[31] Sebastian Bauersfeld and Tanja E. J. Vos. A reinforcement learning approach to automated gui
robustness testing. 2012.

10

	Introduction
	Background
	Method
	The Testing MDP
	Training

	Experiments
	Solving a specific task
	Trading off efficiency and state coverage
	Multiple Testing Objectives

	Related Work
	Conclusion

