
Influence Maximization with Spontaneous User Adoption
Lichao Sun

james.lichao.sun@gmail.com

University of Illinois at Chicago

Chicago, IL

Albert Chen

abchen@linkedin.com,

LinkedIn Corporation

Sunnyvale, CA

Philip S. Yu

psyu@uic.edu

University of Illinois at Chicago

Chicago, IL

Wei Chen
∗

weic@microsoft.com

Microsoft Research

Beijing, China

ABSTRACT
We incorporate the realistic scenario of spontaneous user adoption

into influence propagation (also refer to as self-activation) and pro-

pose the self-activation independent cascade (SAIC) model: nodes

may be self activated besides being selected as seeds, and influence

propagates from both selected seeds and self activated nodes. Self

activation occurs in many real world situations; for example, people

naturally share product recommendations with their friends, even

without marketing intervention. Under the SAIC model, we study

three influence maximization problems: (a) boosted influence maxi-

mization (BIM) aims to maximize the total influence spread from

both self-activated nodes and 𝑘 selected seeds; (b) preemptive influ-

ence maximization (PIM) aims to find 𝑘 nodes that, if self-activated,

can reach the most number of nodes before other self-activated

nodes; and (c) boosted preemptive influence maximization (BPIM)

aims to select 𝑘 seeds that are guaranteed to be activated and can

reach the most number of nodes before other self-activated nodes.

We propose scalable algorithms for all three problems and prove

that they achieve 1 − 1/𝑒 − 𝜀 approximation for BIM and BPIM

and 1 − 𝜀 for PIM, for any 𝜀 > 0. Through extensive tests on real-

world graphs, we demonstrate that our algorithms outperform the

baseline algorithms significantly for the PIM problem in solution

quality, and also outperform the baselines for BIM and BPIM when

self-activation behaviors are nonuniform across nodes.

CCS CONCEPTS
• Information systems → Social advertising; Social networks; •
Theory of computation→ Probabilistic computation; Submodular
optimization and polymatroids;

KEYWORDS
preemptive influence maximization, reverse influence sampling

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371791

ACM Reference Format:
Lichao Sun, Albert Chen, Philip S. Yu, and Wei Chen. 2020. Influence Max-

imization with Spontaneous User Adoption. In The Thirteenth ACM In-
ternational Conference on Web Search and Data Mining (WSDM ’20), Feb-
ruary 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3336191.3371791

1 INTRODUCTION
Influence maximization is the task of finding a small set of seed

nodes to generate the largest possible influence spread in a social

network [15]. It models the important viral marketing applications

in social networks, and many aspects of influence maximization

have been extensively studied in the research literature. In most

studies, influence propagation starts from a set of seed nodes, which

are selected before the propagation starts. Propagation starts from

all seed nodes together at the same time and proceeds in either

discrete or continuous time to reach other nodes in the network, and

the objective to maximize is typically the influence spread, defined
as the expected number of nodes activated through the stochastic

diffusion process.

In practice, however, when a marketing campaign starts, users’

reactions to the campaign are not synchronized at the same time.

Some users react to the campaign immediately, while others may

react after a significant delay. Moreover, propagation may not only

start from seed users that the campaign originally selected. It is

possible that other users may spontaneously react to the campaign

and also propagate the information and influence in the campaign.

We call this phenomenon self activation, which is in contrast to

the seed activation by the external force. While seed activation

by the external force typically requires a marketing budget to be

successful, self activations are spontaneous and do not require a

budget. Self activation may also lead to other interesting objectives

one may want to optimize, as we will discuss shortly. To give some

concrete examples of self-activation without marketing influence,

people may naturally share consumer product recommendations

with their friends and businesses may attract clients through or-

ganic referrals. A product or business marketing team interested in

influence maximization should consider this natural activity. There-

fore, self activation is a realistic phenomenon in viral marketing,

but it has not been well addressed in the influence maximization

literature. In this paper, we incorporate self activation into the in-

fluence propagation model and provide a systematic study on the

impact of self activation to the influence maximization task.

We first incorporate self activation with the classical indepen-

dent cascade (IC) model to propose the self-activation independent

https://doi.org/10.1145/3336191.3371791
https://doi.org/10.1145/3336191.3371791

cascade (SAIC) model of influence propagation. In the SAIC model,

social network is modeled as a directed graph, and each node 𝑢

has a self-activation probability 𝑞(𝑢) indicating the probability of 𝑢

being self activated by the campaign. If activated, node 𝑢 also has a

random self-activation delay 𝛿 (𝑢) sampled from distribution Δ(𝑢),
such that 𝑢 is self-activated at time 𝛿 (𝑢) after the campaign starts

at time 0. A seed node 𝑣 selected explicitly by the campaign will be

deterministically activated at time 𝛿 (𝑣), equivalently as saying that

its self-activation probability 𝑞(𝑣) is boosted to 1. Propagation from

seed nodes and self-activated nodes follows the classical IC model:

if a node 𝑢 is activated, then it has one chance to activate each of its

out-going neighbor 𝑣 with success probability 𝑝 (𝑢, 𝑣). We further

extend the classical IC model by allowing real-time delay on the

edges: if 𝑢 would successfully activate 𝑣 , then this activation would

occur after the random propagation delay of 𝑑 (𝑢, 𝑣) sampled from a

distribution 𝐷 (𝑢, 𝑣), from the time 𝑢 is activated. Thus, overall the

propagation starts from the seed nodes and self-activated nodes,

and a node is activated either because it is a seed, or because it

is self-activated, or because it is activated by a neighbor, and the

activation time is the earliest time when one of the above activation

happens. Once a node is activated, it stays as activated. The reason

we allow real time delays is to make it more realistic when we study

the new objective functions discussed below.

With the incorporation of self activation into the SAICmodel, we

are able to study several different influence maximization objectives.

The first objective is closer to the classical influence maximization,

where we aim at select 𝑘 seed nodes to maximize the total influence

spread after boosting the self-activation probabilities of seed nodes

to 1. We refer to this objective as boosted influence spread, denoted
𝜎𝐵 (𝑆) for seed set 𝑆 , and the corresponding influence maximization

problem as boosted influence maximization (BIM). Note that the

total boosted influence spread 𝜎𝐵 (𝑆) counts both nodes activated

by seeds and nodes activated by self-activated nodes.

Besides 𝜎𝐵 (𝑆), self activation further allows us to study some

interesting new objectives. Conceptually, in the SAIC model, we

can view a node as an organic influencer if the node is frequently
and easily self-activated and its influence often reaches many other

nodes first before other self-activated nodes. To model this, we

precisely define the preemptive influence spread 𝜌 (𝐴) of node set 𝐴
as the expected number of nodes that some node𝑢 ∈ 𝐴 reaches first,

if𝑢 is self-activated, before other self-activated nodes. Then the pre-
emptive influence maximization (PIM) problem is to identify the set

of 𝑘 nodes that has the largest preemptive influence spread, which

models the task of identifying top organic influencers in a network.

Furthermore, we define boosted preemptive influence spread 𝜌𝐵 (𝑆)
of a seed set 𝑆 as the preemptive influence spread of set 𝑆 after we

boost the self-activation probability of every node in 𝑆 to 1. Then

the boosted preemptive influence maximization (BPIM) problem is to

find 𝑘 seed nodes with the maximum boosted preemptive influence

spread 𝜌𝐵 (𝑆). BPIM corresponds to the viral marketing campaign

that focuses on the reach of the campaign from the selected seed

nodes rather than self-activated nodes, because for example the seed

nodes carry high-quality and more effective campaign messages.

For the above objectives, we first study their properties and show

that 𝜎𝐵 and 𝜌𝐵 are monotone and submodular, while 𝜌 is additive.

Then, based on these properties and the reverse influence sample

(RIS) approach [2], we design scalable approximation algorithms

for the three problems BIM, BPIM, and PIM. Even though our algo-

rithms are patterned from the existing algorithm, the new objectives

studied here requires nontrivial adaptation of the algorithm. Espe-

cially for BPIM and PIM, we need to redesign the reverse simulation

procedure to generate what we call preemptive reverse reachable
(P-RR) sets, which are more sophisticated than the standard reverse

reachable (RR) sets [2, 22, 23]. We prove that our algorithms solve

BIM and BPIM with approximation ratio 1 − 1/𝑒 − 𝜀 for any 𝜀 > 0,

and solve PIM with approximation ratio 1 − 𝜀, and all algorithms

can run in time near linear to the graph size.

Finally, we conduct extensive experiments on real-world datasets

and compare our algorithms with related baselines solving classical

influence maximization or influence-based network centrality. We

demonstrate that for the PIM problem, our IMM-PIM algorithm

significantly outperforms the baselines on the achieved preemptive

influence spread in all test cases, showing that utilizing the knowl-

edge of self activation is important in finding organic influential

nodes in a network. For the BIM and BPIM problems, our algo-

rithms have minor improvements in influence spread in some cases

where the self-activation behaviors of the nodes are non-uniform,

which algorithms such as IMM that are oblivious to self-activation

may be used for these problems, but it may still be beneficial to use

our algorithms designed for the self-activation scenarios. All our

algorithms can scale to large networks with hundred thousands of

nodes and edges.

To summarize, we have the following contributions: (a) we incor-

porate the realistic self-activation scenario into influence propaga-

tion and study three influence maximization problems PIM, BPIM,

and BIM due to this incorporation; (b) we design scalable algorithms

for all three problems with theoretical approximation guarantee;

and (c) we demonstrate through experiments that our algorithms

provide significantly better results for PIM, and also outperform

other algorithms in non-uniform self-activation scenarios.

Due to the space constraint, some experiments, some pseudocode

and all proofs are moved to the extended version [20].

1.1 Related Work
Domingos and Richardson are the first to study influence maxi-

mization [10, 19], but Kempe et al. [15] are the first to formulate the

problem as a discrete optimization problem, describe the indepen-

dent cascade (IC), linear threshold and other models, and propose

to use submodularity and greedy algorithm to solve influence max-

imization. Since then influence maximization has been extensively

studied in various fronts, including its scalability [2, 8, 9, 13, 18, 21–

23, 25], robust influence maximization [6, 11], competitive and

complementary influence maximization [3, 5, 12, 16, 24], etc.

Borgs et al. [2] propose the novel reverse influence sampling

(RIS) approach that guarantees both the approximation ratio and

near-linear running time, and it has been improved in a series of

studies [2, 18, 22, 23]. In this paper, we adapt the IMM algorithm

in [22] mainly because of its clarity, and other algorithms such as

D-SSA of [18] can be plugged in too.

Our PIM problem has connection with the Shapley centrality

proposed in [7]. In particular, in the special case when all nodes

have self-activation probability 1, uniform self-activation delay

distribution, and propagation delays can be ignored, the preemptive

influence spread of a node coincides with its Shapley centrality.

Thus, the general preemptive influence spread studied in this paper

is more realistic than the Shapley centrality, andwe compare against

the Shapley centrality algorithm in our experiments and show that

our algorithm achieves much better PIM result.

2 MODEL AND PROBLEM DEFINITION
2.1 Self-Activation Propagation Model
A social network is modeled as a directed graph 𝐺 = (𝑉 , 𝐸), where
𝑉 is a finite set of vertices or nodes, and 𝐸 ⊆ 𝑉 × 𝑉 is the set of

directed edges connecting pairs of nodes. Let 𝑛 = |𝑉 | and𝑚 = |𝐸 |.
In this paper, we study the influence propagation model where

every node has a chance to be self-activated, even without being

selected as a seed. In this model, at time 0 we assume a marketing

campaign is started, and then every node may be self-activated

by this campaign, and this activation may occur after a random

delay from the beginning of the campaign. Technically node self

activation is governed by the following set of parameters.

Definition 2.1. (Self-Activation Probability and Delay). In a social

network, every node 𝑢 ∈ 𝑉 can be self-activated as a seed by the

campaign with self-activation probability 𝑞(𝑢) ∈ [0, 1]. If 𝑢 is self-

activated, then it is activated after a random delay 𝛿 (𝑢) ∈ [0, +∞)
drawn from a self-activation delay distribution Δ(𝑢).

We combine self activation and independent cascade model [15]

and further add real-time propagation delays on edges to obtain

the self-activation independent cascade (SAIC) model. In the SAIC

model, every node 𝑢 ∈ 𝑉 is associated with self-activation prob-

ability and delay as defined in Definition 2.1. Meanwhile, every

edge (𝑢, 𝑣) ∈ 𝐸 is associated with two parameters: 1) a propagation
probability 𝑝 (𝑢, 𝑣) ∈ (0, 1] (𝑝 (𝑢, 𝑣) = 0 if and only if (𝑢, 𝑣) ∉ 𝐸); 2)

a propagation delay distribution 𝐷 (𝑢, 𝑣) with range [0, +∞). The
SAIC model proceeds following the rules below:

(1) For each node 𝑢 ∈ 𝑉 , it is self-activated with probability

𝑝 (𝑢), and if so it is activated at time 𝛿 (𝑢) drawn from Δ(𝑢)
(denoted as 𝛿 (𝑢) ∼ Δ(𝑢)), unless it has been previously

activated by other nodes before 𝛿 (𝑢).
(2) For any node 𝑢 ∈ 𝑉 activated at time 𝑡 (self-activated or

neighbor-activated), it tries once to activate each of its out-

going neighbors 𝑣 with propagation probability 𝑝 (𝑢, 𝑣). If
the activation is successful, the propagation delay 𝑑 (𝑢, 𝑣)
is sampled from 𝐷 (𝑢, 𝑣) and 𝑣 would be activated at time

𝑡 + 𝑑 (𝑢, 𝑣), unless 𝑣 has been activated before this time.

(3) A node 𝑣 is activated (both self-activated or neighbor-

activated) at earliest time 𝑡 when any activation of 𝑣 would

happen, and 𝑣 stays active afterwards.

The above description of the SAIC model only considers the prop-

agation starting from the self-activated nodes. We could further

include externally selected seed nodes in the model as follows. Let

𝑆 be the set of (externally selected) seed nodes. Then besides the

three rules above, we have one more rule:

(4) For each seed 𝑢 ∈ 𝑆 , its self-activation probability is boosted

to 1, that is, it is for sure activated, and it is activated at time

𝛿 (𝑢) ∼ Δ(𝑢), unless it has been activated by its neighbors

before that time.

Note that when the self-activation probabilities of all nodes are

0, the self-activation delays for all nodes take deterministic value

0, and propagation delays of all nodes take deterministic value 1,

SAIC model falls back to the classical independent cascade (IC)

model. We add self activation to model the realistic situation that

some users may spontaneously help propagating the marketing

campaign. We introduce delay parameters because in reality people

take actions asynchronously, and when we consider preemptive

influence spread (to be defined shortly), delay factor does matter

on who could claim credits on the activation of each node.

The SAICmodel can be equivalently described as propagations in

a possible world model. A possible world𝑊 contains all randomness

in a SAIC propagation. In particular,𝑊 is a tuple (𝐴𝑊 , 𝛿𝑊 , 𝐿𝑊 , 𝑑𝑊),
where𝐴𝑊 is the random set of all self-activated nodes governed by

the self-activation probability 𝑞, 𝛿𝑊 is the vector of self-activation

delays sampled from Δ, 𝐿𝑊 is the set of live edges governed by

the propagation probability 𝑝 (i.e. each edge (𝑢, 𝑣) ∈ 𝐸 is live with

probability 𝑝 (𝑢, 𝑣)), and 𝑑𝑊 is the vector of propagation delays

sampled from 𝐷 . We useW(𝑞,Δ, 𝑝, 𝐷) to denote the probability

space of all possible worlds, determined by parameters 𝑞,Δ, 𝑝, 𝐷 .
In a fixed possible world𝑊 , a live path 𝑃 is a path consisting of

only live edges in 𝐿𝑊 . The propagation delay 𝑑𝑊 (𝑃) of a live path
is the sum of propagation delays on all live edges. For a 𝑢 ∈ 𝐴𝑊
and a live path 𝑃 from 𝑢 to 𝑣 in𝑊 , let 𝑇𝑊 (𝑃) = 𝛿𝑊 (𝑢) + 𝑑𝑊 (𝑃) be
the total delay of live path 𝑃 . We also use 𝑇𝑊 (𝑢, 𝑣) to denote the

minimum total delay among all live paths from 𝑢 to 𝑣 . Propagation

starts from nodes in 𝐴𝑊 and follows the direction of all live edges

and incurs delay on the edges, and a node 𝑣 is activated at a time 𝑡

if the minimum total delay of all live paths from any node in 𝐴 to 𝑣

is 𝑡 . If we have externally selected seed set 𝑆 , then the propagation

starts from 𝑆∪𝐴 instead of𝐴, and all other aspects remain the same.

It is easy to see that the above described possible world model is

just a different way of stating the SAIC model, when we determine

all randomness before the propagation starts.

2.2 Self-Activation Influence Maximization
In the SAIC model, we consider several optimization tasks, each

corresponding to a different objective function. We start with

an objective function that is close to the influence spread objec-

tive function in the classical IC model. For a possible world 𝑊

and a seed set 𝑆 ⊆ 𝑉 , let Φ𝐵
𝑊
(𝑆) denote the set of nodes acti-

vated in the possible world𝑊 when 𝑆 is the seed set (nodes in

𝑆 have their self-activation probabilities boosted to 1). We call

𝜎𝐵 (𝑆) = E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [|Φ𝐵
𝑊
(𝑆) |] the boosted influence spread

of seed set 𝑆 in the SAIC model. Note that 𝜎𝐵 (∅) may be greater

than 0 since some nodes may be self-activated, and thus we use

the word “boosted” to refer to the final influence spread due to the

boosting of self-activation probabilities of seed nodes to 1. It is easy

to see that the delay distributions Δ and 𝐷 do not affect the final

set of activated nodes, and thus 𝜎𝐵 (𝑆) doesn’t depend on Δ and

𝐷 . Moreover, when 𝑞 ≡ 0, 𝜎𝐵 (𝑆) becomes the influence spread in

the classical IC model. The first optimization task is to maximize

𝜎𝐵 (𝑆):

Definition 2.2 (Boosted Influence Maximization). Boosted influence
maximization (BIM) is the optimization task with the directed graph

𝐺 = (𝑉 , 𝐸), the self-activation probabilities 𝑞, the propagation

probabilities 𝑝 , and a budget 𝑘 as the input, and the goal is to find

an optimal seed set 𝑆∗ having at most 𝑘 nodes, such that the boosted
influence spread of 𝑆∗ is maximized, i.e., 𝑆∗ = argmax |𝑆 | ≤𝑘 𝜎

𝐵 (𝑆).
The boosted influence spread and boosted influence maximiza-

tion is close to the classical influence spread and influence max-

imization concepts. We introduce them as a stepping stone for

the new concept of preemptive influence spread and preemptive

influence maximization.

In the SAIC model, a natural metric measuring the influence

ability of a set of nodes 𝑆 is the number of nodes that are actually

activated due to the propagation from nodes in 𝑆 , not by other

sources. We define this metric formally as follows. First, we as-

sume that all delay distributions in Δ and 𝐷 are continuous func-

tions and thus there is no probability mass at any given value.

Thus, it is safe to assume that in any possible world𝑊 , the to-

tal delay of any path would be different, since the worlds with

paths having same delays have probability measure 0. Given a

possible world 𝑊 = (𝐴𝑊 , 𝛿𝑊 , 𝐿𝑊 , 𝑑𝑊), let P𝑊 (𝑢, 𝑣) denotes a
set of all live paths in𝑊 starting from node 𝑢 and ending at 𝑣 .

For a set of nodes 𝐴, we use Γ𝑊 (𝐴) to denote the set of nodes

𝑣 that have minimum total delays from some node in 𝐴 to 𝑣 , i.e.

Γ𝑊 (𝐴) = {𝑣 | ∃𝑢 ∈ 𝐴𝑊 ∩ 𝐴, ∃𝑃 ∈ P𝑊 (𝑢, 𝑣),𝑇𝑊 (𝑃) < +∞,∀𝑢 ′ ∈
𝐴𝑊 \ 𝐴,∀𝑃 ′ ∈ P𝑊 (𝑢 ′, 𝑣),𝑇𝑊 (𝑃) < 𝑇𝑊 (𝑃 ′)}. Set Γ𝑊 (𝐴) contains
all activated nodes in𝑊 whose activation sources are some nodes

in𝐴. In other words,𝐴 could claim full credits for activating Γ𝑊 (𝐴)
in𝑊 . We define 𝜌 (𝐴) = E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [|Γ𝑊 (𝐴) |] the preemptive
influence spread of node set 𝐴. Intuitively, preemptive influence

spread 𝜌 (𝐴) measures the contribution of node set 𝐴 in propa-

gating and activating nodes in the SAIC model, when there is no

externally selected seed nodes.

When we use preemptive influence spread 𝜌 (𝐴) as our objective
function, we have the preemptive influence maximization problem.

Definition 2.3 (Preemptive Influence Maximization). Preemptive
influence maximization (PIM) is the optimization task with the di-

rected graph 𝐺 = (𝑉 , 𝐸), the self-activation probabilities 𝑞, the

self-activation delay distribution Δ, the propagation probabilities 𝑝 ,

the propagation delay distribution 𝐷 , and a budget 𝑘 as the input,

and the goal is to find an optimal set 𝐴∗ having at most 𝑘 nodes,

such that the preemptive influence spread of 𝐴∗ is maximized, i.e.,

𝐴∗ = argmax |𝐴 | ≤𝑘 𝜌 (𝐴).
Preemptive influencemaximization defined above corresponds to

the application where a company may want to identify top organic

influencers in an online social network, to study the characteris-

tics that make them influential. These users could be targeted to

propagate company-specific information without changing their

activation behavior.

We remark that, when the self-activation probabilities of all

nodes are 1, self-activation delays of all nodes follow the same

distribution, and propagation delays of all nodes take deterministic

value 0 (i.e. propagations are instantaneous), preemptive influence

spread of each individual node coincides with the Shapley centrality

defined in [7].

In preemptive influence maximization, we do not have the ac-

tion of selecting seeds and changing the behavior of seeds. We can

further incorporate seed selection with preemptive influence max-

imization as follows. In a possible world𝑊 = (𝐴𝑊 , 𝛿𝑊 , 𝐿𝑊 , 𝑑𝑊),

for a seed set 𝑆 , similar to Γ𝑊 (𝐴) we define Γ𝐵
𝑊
(𝑆) as the set

of nodes that are activated due to 𝑆 , after nodes in 𝑆 are se-

lected as seeds and their self-activation probabilities are boosted

to 1, that is, Γ𝐵
𝑊
(𝑆) = {𝑣 | ∃𝑢 ∈ 𝑆, ∃𝑃 ∈ P𝑊 (𝑢, 𝑣),𝑇𝑊 (𝑃) <

+∞,∀𝑢 ′ ∈ 𝐴𝑊 \ 𝑆,∀𝑃 ′ ∈ P𝑊 (𝑢 ′, 𝑣),𝑇𝑊 (𝑃) < 𝑇𝑊 (𝑃 ′)}. We define

the boosted preemptive influence spread 𝜌𝐵 (𝑆) of a seed set 𝑆 as

𝜌𝐵 (𝑆) = E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [|Γ𝐵𝑊 (𝑆) |]. We can now use 𝜌𝐵 (𝑆) as our
third objective function to define the third optimization task:

Definition 2.4 (Boosted Preemptive Influence Maximization).
Boosted preemptive influence maximization (BPIM) is the optimiza-

tion task with the directed graph 𝐺 = (𝑉 , 𝐸), the self-activation
probabilities 𝑞, the self-activation delay distribution Δ, the propa-
gation probabilities 𝑝 , the propagation delay distribution 𝐷 , and a

budget 𝑘 as the input, and the goal is to find an optimal seed set 𝑆∗

having at most 𝑘 nodes, such that the boosted preemptive influence
spread of 𝑆∗ is maximized, i.e., 𝑆∗ = argmax |𝑆 | ≤𝑘 𝜌

𝐵 (𝑆).
BPIM defined above models the applications where the market-

ing campaign wants to engage in explicit incentive for a set of seed

nodes (e.g. giving out free sample products) so that the seed nodes

will be boosted to adopt the campaign and start propagating it. The

difference between BPIM and BIM (Definition 2.2) is that BPIM

only optimizes for the number of nodes first activated by the seed

nodes, while BIM optimizes for the number of all activated nodes.

The difference between BPIM and PIM (Definition 2.3) is that BPIM

actively boosts the self-activation probabilities of seed nodes while

PIM does not change node behaviors, and this is also the reason

in PIM we avoid calling the set 𝐴 selected as a seed set. Although

all three problems look similar on surface, they are different and

require separate algorithmic solutions. Moreover, PIM is very differ-

ent from BIM and BPIM in that their algorithmic solutions would

have different approximation guarantees. This is because the pre-

emptive influence spread has different properties from the other

two objective functions, as we discuss in the next section.

Finally, we remark that our proposed SAIC model is rich enough

to consider realistic self-activation scenarios and all the above opti-

mization tasks, while we do not introduce further parameters to

complicate situation. For example, for a seed node 𝑢 ∈ 𝑆 , we could
further consider shortening its self-activation delay or boosting

its self-activation probability partially instead of 1. The added flex-

ibility would not significantly change our algorithm design and

analysis but only complicate our presentation. On the other hand,

assuming seed selection would not shorten the self-activation de-

lay is also reasonable, since when an online marketing campaign

starts, a user in the network need to come online to be aware of this

marketing campaign, and thus the initial delay from the time the

campaign starts to the user coming online is not likely affected by

the user being selected as a seed. Finally, the added parameters, such

as self-activation delay distributions, self-activation probabilities

are likely to be empirically obtained from real marketing campaigns,

while the extraction of propagation probabilities and propagation

delays have been well studied in the literature (e.g. [14, 17]).

2.3 Properties of Influence Spread Functions
We now show the key properties of the three influence spread func-

tions 𝜌 (·), 𝜌𝐵 (·), and 𝜎𝐵 (·), which are crucial for later algorithm

design. For a set function 𝑓 : 2
𝑉 → R, we say that 𝑓 is a) addi-

tive if for any subset 𝑆 ⊆ 𝑉 , 𝑓 (𝑆) = ∑
𝑣∈𝑆 𝑓 ({𝑣}); b) monotone if

for any two subsets 𝑆 ⊆ 𝑇 ⊆ 𝑉 , 𝑓 (𝑆) ≤ 𝑓 (𝑇); and c) submodu-
lar if for any two subsets 𝑆 ⊆ 𝑇 ⊆ 𝑉 and an element 𝑣 ∈ 𝑉 \ 𝑇 ,
𝑓 (𝑇 ∪ {𝑣}) − 𝑓 (𝑇) ≤ 𝑓 (𝑆 ∪ {𝑣}) − 𝑓 (𝑆). The following lemma sum-

marizes the key properties of the three influence spread functions.

Lemma 2.5 (Influence Spread Properties). (1) The preemptive
influence spread function 𝜌 is additive; (2) the boosted preemptive
influence spread function 𝜌𝐵 is monotone and submodular; and (3) the
boosted influence spread function 𝜎𝐵 is monotone and submodular.

3 SCALABLE IMPLEMENTATIONS
In this section, we develop scalable algorithms for all three problems

PIM, BPIM, and BIM, based on the reverse influence sampling (RIS)

approach [2, 22, 23].

The key concept in RIS is the reverse-reachable set. A (random)

Reverse-Reachable (RR) set 𝑅(𝑣) rooted at node 𝑣 ∈ 𝑉 is the set of

nodes reachable from 𝑣 by reverse simulating a propagation from

𝑣 . More precisely, in the SAIC model, 𝑅(𝑣) is the set of nodes that
can reach 𝑣 in a random possible world𝑊 = (𝐴𝑊 , 𝛿𝑊 , 𝐿𝑊 , 𝑑𝑊)
following only live edges in 𝐿𝑊 . We use root(𝑅(𝑣)) to denote its

root 𝑣 . When we do not specify the root, an RR set 𝑅 is one rooted

at a node picked uniformly at random from 𝑉 . We will use the

notations 𝑅𝑊 (𝑣) and 𝑅𝑊 when we want to clarify that the RR set

is under the possible world𝑊 .

An RR set 𝑅 has the following intrinsic connection with the

influence spread 𝜎 (𝑆) of seed set 𝑆 in the classical IC model [2, 23]:

𝜎 (𝑆) = 𝑛 · E[I{𝑆 ∩ 𝑅 ≠ ∅}], (1)

where I is the indicator function. RIS approach utilizes this fact to

generate enough RR sets to estimate the influence spread and turn

influence maximization into a coverage problem of finding 𝑘 nodes

that covers (a.k.a. appears in) the most number of RR sets. We now

need to adapt the RIS approach for our problems considered in the

paper. Our adaptations are patterned over the IMM algorithm [22],

although it would be as easy to adapt other state-of-the-art RIS

algorithms too.

3.1 Algorithm for BIM
We first present the adaption of IMM to the BIM problem, since

BIM is close to the original influence maximization problem. The

boosted influence spread 𝜎𝐵 has the following connection with a

random RR set 𝑅:

Lemma 3.1. For any seed set 𝑆 ,

𝜎𝐵 (𝑆) = 𝑛 · E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [I{(𝑆 ∪𝐴𝑊) ∩ 𝑅𝑊 ≠ ∅}] . (2)

Eq. (2) enables the RIS approach as for the classical influencemax-

imization.We adapt the IMM algorithm of [22] to get the IMM-BIM
algorithm, as given in Algorithm 1. The two main parameters 𝜆′

and 𝜆∗ (ℓ) used in the algorithm are given below:

𝜆′ ← [(2 + 2

3

𝜀 ′) · (ln
(
𝑛

𝑘

)
+ ℓ · ln𝑛 + ln log

2
𝑛) · 𝑛]/𝜀 ′2 (3)

𝜆∗ (ℓ) ← 2𝑛 · ((1 − 1/𝑒) · 𝛼 + 𝛽)2 · 𝜀−2 (4)

𝛼 ←
√
ℓ ln𝑛 + ln 2; 𝛽 ←

√
(1 − 1/𝑒) · (ln

(
𝑛

𝑘

)
+ 𝛼2)

Algorithm 1: IMM-BIM: adapted IMM for the BIM prob-

lem

Input: Graph 𝐺 = (𝑉 , 𝐸), propagation probabilities

{𝑝 (𝑢, 𝑣)}(𝑢,𝑣) ∈𝐸 , self-activation probabilities

{𝑞(𝑢)}𝑢∈𝑉 , budget 𝑘 , accuracy parameters (𝜀, ℓ)
Output: seed set 𝑆

// Phase 1: Estimate 𝜃 , the number of RR sets needed, and
generate these RR sets

1 R ← ∅; 𝐿𝐵 ← 1; 𝜀 ′ ←
√
2𝜀; covered ← 0 ;

2 using binary search to find a 𝛾 such that

⌈𝜆∗ (ℓ)⌉/𝑛ℓ+𝛾 ≤ 1/𝑛ℓ // Workaround 2 in [4], 𝜆∗ (ℓ) is
defined in Eq. (4)

3 ℓ ← ℓ + 𝛾 + ln 2/ln𝑛;
4 for 𝑖 = 1 𝑡𝑜 log

2
(𝑛 − 1) do

5 𝑥𝑖 ← 𝑛/2𝑖 ;
6 𝜃𝑖 ← 𝜆′/𝑥𝑖 ; // 𝜆′ is defined in Eq. (3)
7 while |R | + covered < 𝜃𝑖 do
8 Select a node 𝑣 from 𝑉 uniformly at random;

9 Generate RR set 𝑅 from 𝑣 ;

10 if ∃𝑢 ∈ 𝑅, 𝑢 is self-activated with probability 𝑞(𝑢)
then

11 covered ← covered + 1;
12 else
13 insert 𝑅 into R;

14 𝑆𝑖 ← NodeSelection(R, 𝑘);
15 if 𝑛 · 𝐹𝑆R (𝑆𝑖) ≥ (1 + 𝜀

′) · 𝑥𝑖 then
// 𝐹𝑆R (𝑆) is defined in Eq. (5)

16 𝐿𝐵 ← 𝑛 · 𝐹𝑆R (𝑆𝑖)/(1 + 𝜀
′);

17 break;

18 𝜃 ← 𝜆∗ (ℓ)/𝐿𝐵; // 𝜆∗ (ℓ) is defined in Eq. (4)
19 while |R | + covered ≤ 𝜃 do
20 Select a node 𝑣 from 𝑉 uniformly at random;

21 Generate RR set 𝑅 from 𝑣 ;

22 if ∃𝑢 ∈ 𝑅, 𝑢 is self-activated with probability 𝑞(𝑢) then
23 covered ← covered + 1;
24 else
25 insert 𝑅 into R;

// Phase 2: select seed nodes from the generated RR sets
26 𝑆 ← NodeSelection(R, 𝑘);
27 return 𝑆 .

The algorithm contains two phases. In Phase 1, we generate 𝜃

RR sets R, where 𝜃 is computed to guarantee the approximation

with high probability. In Phase 2, we use the greedy algorithm to

find 𝑘 seed nodes that cover as many RR sets in R as possible: in

each iteration, we find one seed node that covers the most number

of remaining RR sets not covered by previously selected seed nodes.

The NodeSelection procedure of Phase 2 implements the above

greedy algorithm, and is exactly the same as in [22], and thus we

omit it here.

Phase 1 follows the IMM structure: it uses the for-loop to es-

timate a lower bound of OPT, the optimal solution to the BIM

problem, by repeatedly halving the estimate 𝑥𝑖 and checking if

the estimate is valid. The validity check is by running the greedy

NodeSelection procedure (line 14) to find a seed set 𝑆𝑖 and getting

its influence spread estimate, since the greedy algorithm should

give a constant approximation of OPT. IMM-BIM differs from IMM
because it needs to incorporate self-activation probabilities 𝑞(𝑢)’s.
In particular, when we generate an RR set 𝑅, for each node 𝑢 ∈ 𝑅,
we sample a random coin with bias 𝑞(𝑢) to see if 𝑢 is self-activated.

If so, it means this RR set 𝑅 has already be covered by the self-

activated 𝑢, and there is no need to select an extra seed node to

cover 𝑅. In this case, we do not need to store 𝑅, but only need to

count its number in variable covered, which records the number of

RR sets covered by self-activated nodes. Only an RR set 𝑅 that con-

tains no self-activated nodes needs to be stored in R for later greedy

seed selection (line 11). The variable covered is used to estimate

boosted influence spread 𝜎𝐵 (𝑆). In particular, by Eq. (2), 𝜎𝐵 (𝑆) can
be estimated as 𝑛 times the fraction of RR sets that are covered

either by 𝑆 or by self-activated nodes. This fraction is defined as

𝐹𝑆R (𝑆):

𝐹𝑆R (𝑆) =
covered +∑𝑅∈R I{𝑆 ∩ 𝑅 ≠ ∅}

covered + |R| . (5)

By an analysis similar to that of the IMM algorithm [22], we have

the following theorem. Let 𝑣 be a random node selected from 𝑉

with probability proportional to its indegree, and let 𝜎 (𝑣) denote
the influence spread of 𝑣 in the corresponding IC model.

Theorem 3.2. Let 𝑆∗ be the optimal solution of the BIM problem.
For every 𝜀 > 0 and ℓ > 0, with probability at least 1− 1

𝑛ℓ , the output
𝑆𝑜 of IMM-BIM satisfies

𝜎𝐵 (𝑆𝑜) ≥
(
1 − 1

𝑒
− 𝜀

)
𝜎𝐵 (𝑆∗),

In this case, the expected running time for IMM-BIM is𝑂 ((𝑘 + ℓ) (𝑛 +
𝑚) log𝑛/𝜀2 · (E[𝜎 (𝑣)]/𝜎𝐵 (𝑆∗))) = 𝑂 ((𝑘 + ℓ) (𝑛 +𝑚) log𝑛/𝜀2).

Similar to IMM, the above theorem shows that IMM-BIM
achieves 1 − 1/𝑒 − 𝜀 approximation with near-linear running time.

The theorem explicitly shows the ratio E[𝜎 (𝑣)]/𝜎𝐵 (𝑆∗), which is

less than 1, in order to compare later with other algorithms.

3.2 Algorithm for BPIM
We next discuss our implementation of BPIM, which we call

IMM-BPIM. Since the objective function 𝜌𝐵 (𝑆) is monotone sub-

modular (Lemma 2.5), IMM-BPIM follows the general structure of

greedy seed selection. However, it differs from IMM and IMM-BIM
significantly in its RR set definition and generation process. In-

tuitively, the preemptive influence spread of a seed node 𝑢 only

counts the activated nodes that 𝑢 reaches first before any other

seed nodes or self-activated nodes. In terms of RR sets, this means

that a node 𝑢 can be included in the preemptive RR set only if the

total delay from 𝑢 to the root 𝑣 is smaller than the minimum total

delay from any self-activated nodes to 𝑣 . We formally define the

preemptive reverse-reachable (P-RR) set as follows. Given a possible

world𝑊 = (𝐴𝑊 , 𝛿𝑊 , 𝐿𝑊 , 𝑑𝑊) in the SAICmodel, a P-RR set 𝑅𝑃
𝑊
(𝑣)

rooted at 𝑣 is the set of nodes𝑢 such that (1)𝑢 could reach 𝑣 through

live edges in 𝐿𝑊 , and (2) the total delay of 𝑢 to 𝑣 , 𝑇𝑊 (𝑢, 𝑣), is less

Algorithm 2: P-RR: Preemptive RR Set Generation

Input: root 𝑣𝑟 , Graph 𝐺 = (𝑉 , 𝐸), self-activation probability

𝑝 , random distribution of self-activation delay Δ,
propagation probability 𝑝 , random distribution of

propagation delay 𝐷

Output: P-RR set 𝑅𝑃 , node 𝑢𝑠 that is the first activating 𝑣𝑟

1 𝑄 ← {𝑣𝑟 }; 𝑅𝑃 ← ∅; 𝑢𝑠 ← −1 ;
2 for each 𝑣 ∈ 𝑉 do
3 delay [𝑣] ← +∞;// initial delays for reaching the root
4 delay [𝑣𝑟] ← 0;

5 while 𝑄 ≠ ∅ do
6 𝑤 ← argmin𝑤′∈𝑄 delay [𝑤 ′];
7 delete𝑤 from 𝑄 ;

8 if 𝑤 is a shadow node 𝑣 then
9 insert 𝑣 into 𝑅𝑃 ;

10 if 𝑣 is self-activated with probability 𝑞(𝑣) then
11 𝑢𝑠 ← 𝑣 ;

12 break;

13 else
// let𝑤 be the real node 𝑣

14 sample 𝛿 (𝑣) ∼ Δ(𝑣);
15 delay [𝑣] ← delay [𝑣] + 𝛿 (𝑣);
16 insert 𝑣 into 𝑄 ;

17 for each real in-neighbor 𝑢 of 𝑣 in 𝐺 do
18 if (𝑢, 𝑣) is sampled as live with probability 𝑝 (𝑢, 𝑣)

then
19 sample 𝑑 (𝑢, 𝑣) ∼ 𝐷 (𝑢, 𝑣);
20 𝑡𝑚𝑝 ← delay [𝑣] + 𝑑 (𝑢, 𝑣);
21 if delay [𝑢] = +∞ then
22 insert 𝑢 into 𝑄 ;

23 if 𝑡𝑚𝑝 < delay [𝑢] then
24 delay [𝑢] ← 𝑡𝑚𝑝 ;

25 return 𝑅𝑃 , 𝑢𝑠 .

than or equal to the minimum total delay from any self-activated

node in 𝐴𝑊 to 𝑣 . When we do not specify the root 𝑣 , P-RR set 𝑅𝑃
𝑊

is a P-RR set with root selected uniformly at random among all

nodes in 𝑉 . The subscript𝑊 could be omitted when the context is

clear. With this definition, we can obtain the following connection

between a P-RR set and the preemptive influence spread 𝜌𝐵 (𝑆).

Lemma 3.3. For any seed set 𝑆 ,

𝜌𝐵 (𝑆) = 𝑛 · E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [I{𝑆 ∩ 𝑅𝑃𝑊 ≠ ∅}] . (6)

With Eq. (6), we can see that as long as we can properly generate

P-RR sets, we can use the IMM algorithm in the sameway to find the

seed sets. Therefore, our main focus now is to efficiently generate a

random P-RR set. This algorithm is implemented as P-RR as given

in Algorithm 2. The main idea is that for each node 𝑣 ∈ 𝑉 , we add its

shadow node 𝑣 and an edge from 𝑣 to 𝑣 , and consider the delay on

the edge (𝑣, 𝑣) as a sample of the self-activation delay 𝛿 (𝑣) ∼ Δ(𝑣).
Then the delay from any node (real or shadow) to the root 𝑣𝑟 is

the minimum delay along any path from the node to 𝑣𝑟 . Let 𝑢𝑠 be

a node that is self-activated and its corresponding shadow node

𝑣𝑠 has the minimum delay to the root 𝑣𝑟 among all shadow nodes.

Then the P-RR set 𝑅𝑃 is the set of nodes whose shadow nodes have

delay less than or equal to the delay of 𝑣𝑠 .

To find 𝑢𝑠 and 𝑅𝑃 , we apply the idea from the Dijkstra’s shortest

path algorithm: from the candidate nodes we touched so far (set

𝑄), we take node 𝑤 that has the shortest delay as the next one

to explore (line 6). If 𝑤 is a shadow node 𝑣 , we insert 𝑣 into 𝑅𝑃

(line 9), then test if 𝑣 is self-activated or not, and if so, we find

𝑢𝑠 = 𝑣 , and 𝑅𝑃 contains all the shadow nodes we have explored so

far and the algorithm stops (lines 10–12). If𝑤 is a real node 𝑣 , we

first sample the delay 𝛿 (𝑣) ∼ Δ(𝑣) as the delay from 𝑣 ’s shadow 𝑣

to 𝑣 , compute the delay of 𝑣 as delay [𝑣] +𝛿 (𝑣), and insert 𝑣 into the
candidate node set 𝑄 (lines 14–16). We then do reverse simulation

along all of 𝑣 ’s incoming edges (𝑢, 𝑣), and sample the edge delay

𝑑 (𝑢, 𝑣) ∼ 𝐷 (𝑢, 𝑣), and do proper updates of delay [𝑢] (lines 17–24).
The algorithm guarantees that the node sequence we explore has

increasing delays, which in turn guarantees the correctness of 𝑅𝑃

and 𝑢𝑠 found by the algorithm. We remark that 𝑢𝑠 would be useful

in solving PIM, as to be explained in the next subsection.

With the P-RR set generation algorithm P-RR, we just plug it into
the IMM algorithm and obtain IMM-BPIM. The full pseudocode is

omitted. We have the theorem below for the IMM-BPIM algorithm.

Theorem 3.4. Let 𝑆∗ be the optimal solution of the BPIM. For every
𝜀 > 0 and ℓ > 0, with probability at least 1 − 1

𝑛ℓ , the output 𝑆𝑜 of the
IMM-BPIM algorithm satisfies

𝜌𝐵 (𝑆𝑜) ≥
(
1 − 1

𝑒
− 𝜀

)
𝜌𝐵 (𝑆∗) .

In this case, the expected running time of the IMM-BPIM algorithm
is 𝑂 ((𝑘 + ℓ) (𝑛 +𝑚) log2 𝑛/𝜀2 · (E[𝜎 (𝑣)]/𝜌𝐵 (𝑆∗))).

Note that for the ratio E[𝜎 (𝑣)]/𝜌𝐵 (𝑆∗), one would expect that

typically the optimal solution of BPIM would be larger than any

single node influence spread, and thus the ratio is less than 1 and

we have a near-linear time algorithm. In this case, the expected

running time for IMM-BPIM still has one extra log𝑛 term com-

paring to that of IMM-BIM or IMM. This is because our reverse

simulation algorithm P-RR needs to run a Dijkstra-like algorithm,

and in particular we need to implement the set𝑄 in Algorithm 2 as

a priority queue to support insertion, deletion, updates, and finding

the minimum value.

3.3 Algorithm for PIM
Finally, we consider the preemptive influence maximization (PIM)

algorithm. PIM differs from BIM and BPIM in that we do not select

seeds and boost their self-activation probabilities to 1. We only

select 𝑘 nodes who spontaneously have the largest preemptive influ-

ence spread, due to self activations. By Lemma 2.5, we know that

the preemptive influence spread 𝜌 is additive, which implies that

we just need to estimate individual node’s preemptive influence

spread and select the top 𝑘 of them. We still use the RIS approach

for estimating individual node’s preemptive influence spread, based

on the following result. Let𝑢𝑠
𝑊
(𝑣) be the node in the possible world

𝑊 that is self-activated and can reach 𝑣 with the minimum total

Algorithm 3: IMM-PIM: Preemptive IMM Algorithm

Input: Graph 𝐺 = (𝑉 , 𝐸), self-activation probabilities 𝑞,

self-activation delay distributions Δ, propagation
probabilities 𝑝 , propagation delay distributions 𝐷 ,

budget 𝑘 , accuracy parameters (𝜀, ℓ)
Output: set 𝑆
// Phase 1: Estimate 𝜃 , the number of P-RR sets needed, and
generate these P-RR sets

1 R ← ∅; 𝐿𝐵 ← 1; 𝜀 ′ ←
√
2𝜀;

2 using binary search to find a 𝛾 such that

⌈ ˜𝜆∗ (ℓ)⌉/𝑛ℓ+𝛾 ≤ 1/𝑛ℓ // Workaround 2 in [4], ˜𝜆∗ (ℓ) is
defined in Eq. (??)

3 ℓ ← ℓ + 𝛾 + ln 2/ln𝑛;
4 𝑒𝑠𝑡𝑢 ← 0 for every 𝑢 ∈ 𝑉 ;

5 for 𝑖 = 1 to ⌊log
2
𝑛⌋ − 1 do

6 𝑥𝑖 ← 𝑛/2𝑖 ;
7 𝜃𝑖 ← 𝜆′/𝑥𝑖 ; // 𝜆′ is defined in Eq. (3)
8 while |R | ≤ 𝜃𝑖 do
9 Select a node 𝑣 from 𝑉 uniformly at random;

10 (−, 𝑢) ← P-RR(𝑣,𝐺, 𝑞,Δ, 𝑝, 𝐷); // generate a random
P-RR set pair (𝑅𝑃 , 𝑢), need the returned node 𝑢 that
is both self-activated and the earliest in reaching
root 𝑣 , but ignore the set 𝑅𝑃

11 if 𝑢 ≠ −1 then
12 𝑒𝑠𝑡𝑢 ← 𝑒𝑠𝑡𝑢 + 1;

13 topk ← sum of the top 𝑘 largest values in {𝑒𝑠𝑡𝑢 }𝑢∈𝑉 ;
14 if 𝑛 · topk ≥ (1 + 𝜖 ′) · 𝑥𝑖 then
15 𝐿𝐵 ← 𝑛 · topk/(𝜃𝑖 · (1 + 𝜖 ′));
16 break;

17 𝜃 ← ˜𝜆∗/𝐿𝐵; // ˜𝜆∗ is defined in Eq. (??)
18 while |R | ≤ 𝜃 do
19 Select a node 𝑣 from 𝑉 uniformly at random;

20 (−, 𝑢) ← P-RR(𝑣,𝐺, 𝑞,Δ, 𝑝, 𝐷);
21 if 𝑢 ≠ −1 then
22 𝑒𝑠𝑡𝑢 ← 𝑒𝑠𝑡𝑢 + 1;

// Phase 2: obtain the top 𝑘 nodes
23 𝑆 ← set of top 𝑘 nodes with the largest values in {𝑒𝑠𝑡𝑢 }𝑢∈𝑉 ;
24 return 𝑆 .

delay 𝑇 (𝑢, 𝑣), and 𝑢𝑠
𝑊

denotes such a random 𝑢𝑠
𝑊
(𝑣) where 𝑣 is

selected uniformly at random.

Lemma 3.5. For any node 𝑢,

𝜌 ({𝑢}) = 𝑛 · E𝑊 ∼W(𝑞,Δ,𝑝,𝐷) [I{𝑢 = 𝑢𝑠𝑊 }] . (7)

With Lemma 3.5, we can randomly select a root 𝑣 , and reverse

simulate from 𝑣 to find the node 𝑢𝑠
𝑊
(𝑣), and for each such node

𝑢 = 𝑢𝑠
𝑊
(𝑣), we compute the fraction of times it appears in the

reverse simulation, and multiply it with 𝑛 to get 𝑢’s preemptive

influence spread 𝜌 ({𝑢}). This reverse simulation procedure has

been done as part of P-RR algorithm, and its output 𝑢𝑠 is the 𝑢𝑠
𝑊

we refer here.

With the above new way of reverse simulation, we can plug

it into the IMM framework to obtain our algorithm IMM-PIM 3.

The main difference is that we do not need greedy NodeSelection
procedure to give a 1 − 1/𝑒 approximation of the optimal seed set

covering the RR set sequence R. Instead, each node 𝑢 maintains a

counter 𝑒𝑠𝑡𝑢 to record the number of times the reverse simulation

hits 𝑢𝑠 = 𝑢, and we just select the top 𝑘 nodes with the largest

counters as our output set. This would give a 1 − 𝜀 approximation

instead of the 1− 1/𝑒 − 𝜀 approximation as previous algorithms. For

the same reason, the parameter 𝜆∗ (ℓ) should be redefined, replacing
the factor 1 − 1/𝑒 in the parameter with 1. With these changes,

IMM-PIM has the following theoretical guarantee.

Theorem 3.6. Let 𝑆∗ be the optimal solution of the PIM. For every
𝜀 > 0 and ℓ > 0, with probability at least 1 − 1

𝑛ℓ , the output 𝑆𝑜 of the
IMM-BPIM algorithm satisfies

𝜌 (𝑆𝑜) ≥ (1 − 𝜀) 𝜌 (𝑆∗).

In this case, the expected running time of the IMM-PIM algorithm is
𝑂 ((𝑘 + ℓ) (𝑛 +𝑚) log2 𝑛/𝜀2 · (E[𝜎 (𝑣)]/𝜌 (𝑆∗))).

4 EMPIRICAL EVALUATION
The main purpose of our empirical evaluation is to validate if and

when using our self-activation aware influence maximization algo-

rithms are beneficial over using the classical self-activation oblivi-

ous algorithms, and to quantify is the difference in performance. We

conduct experiments on two real-world social networks to test the

performance of our algorithms and compare them with the classical

influence maximization and the Shapley centrality algorithms.

4.1 Experiment Setup
Data Description. We use the following two datasets, all of which

have been used in a number of influence maximization studies. (1)

Flixster. The Flixster dataset is a network of American social movie

discovery service (www.flixster.com). To transform the dataset into

a weighted graph, each user is represented by a node, and a directed

edge from node 𝑢 to 𝑣 is formed if 𝑣 rates one movie shortly after

𝑢 does so on the same movie. The dataset is analyzed in [1], and

the influence probability are learned by the topic-aware model. We

use the learning result of [1] in our experiment, which is a graph

containing 29 357 nodes and 212 614 directed edges. There are 10

probabilities on each edge, and each probability represents the in-

fluence from the source user to the sink on a specific topic. In our

experiment, we test the first topic. (2) NetHEPT. The NetHEPT
dataset [8] is extensively used in many influence maximization

studies. It is an academic collaboration network from the “High

Energy Physics Theory” section of arXiv from 1991 to 2003, where

nodes represent the authors and each edge represents one paper

co-authored by two nodes. There are 15 233 nodes and 58 891 undi-

rected edges (including duplicated edges) in the NetHEPT dataset.

We clean the dataset by removing those duplicated edges and ob-

tain a directed graph𝐺 = (𝑉 , 𝐸), |𝑉 | = 15 233, |𝐸 | = 62 774 (directed

edges). The propagation probability on edges are set by weighted

cascade model [15]: the probability of an edge (𝑢, 𝑣) is set as the
inverse of the in-degree of 𝑣 . (3) DBLP. The DBLP dataset [25] is

an academic collaboration network extracted from online archive

DBLP (dblp.uni-trier.de). There are 654K nodes and 1990K directed

edges in the DBLP. The propagation probabilities on the edges are

also set by the weighted cascade model.

Algorithms. For the two problems (PIM, BPIM), we test our cor-

responding algorithms with the baseline IMM, which is oblivious to

the self-activation behaviors and treat all nodes as no self activation

and seed nodes as activated at time 0. For the PIM problem, we

further compare against the efficient Shapley computation algo-

rithm ASV-RR proposed in [7], which essentially treats all nodes

as self-activations in a uniform random order. We use the same

parameters settings for these algorithms: ℓ = 1, 𝜀 = 0.1. We test

seed set sizes of 10, 50, 100, 150 and 200.

Self-activation parameters and test cases. In practice, self-

activation delays can be estimated from the users’ access patterns

to online social networks, and self-activation probabilities can be

estimated from the fraction of times users’ participating in informa-

tion cascades not due to the influence from the neighbors or external

selections as seed users. Unfortunately for the datasets we use, these

information are not available. Instead, we use synthetic settings,

focusing on whether the knowledge of the self-activation behaviors

would benefit our algorithm design. For self-activation probability

𝑞(𝑢) of node 𝑢, we first randomly select a value 𝛽𝑢 from [0, 𝑐] as
a node 𝑢’s base value, then we further test five cases: (0) uniform:

𝑞(𝑢) = 𝛼𝑢 ; (1) positively correlated: 𝑞(𝑢) is positively correlated

with 𝑢’s out-degree 𝑑+ (𝑢), in particular 𝑞(𝑢) = min{𝛽𝑢 · 𝑑+ (𝑢), 1};
(2) negatively correlated: 𝑞(𝑢) = 𝛽𝑢/𝑑+ (𝑢); (3) random mixing of

cases 0 and 1: randomly pick half of the nodes with 𝑞(𝑢) = 𝛼𝑢 and

the other half with 𝑞(𝑢) = min{𝛽𝑢 ·𝑑+ (𝑢), 1}; (4) random mixing of

cases 0 and 2: randomly pick half of the nodes with 𝑞(𝑢) = 𝛼𝑢 and

the other half with 𝑞(𝑢) = 𝛽𝑢/𝑑+ (𝑢). These five cases aim at scenar-

ios where all users are equally likely to react to a campaign (case

0), high-degree nodes (usually more influential) are more likely

or less likely to react to the campaigns, and mixture of uniform

behavior and a correlation (or reverse correlation) behavior. We set

𝑐 = 2 for BPIM and PIM tests, because otherwise the preemptive

influence spread for PIM is too small. For self-activation delays,

we use exponential distribution with rate 1 for all nodes. We al-

ready vary the self-activation behaviors through the self-activation

probabilities, and thus we simply keep the self-activation delay dis-

tributions uniform. We also use the same exponential distribution

for propagation delay distributions. Two proposed algorithms and

two baselines are written in c++ and compiled by Visual studio. All

experiments are conducted on a 15” MacBook Pro with a 2.5GHz

Intel Core i7 and 16GB of 1600MHz DDR3 memory.

4.2 Results
Influence spread result. As we can see in Figure 1, IMM-PIM
significantly outperforms the baselines on the achieved preemp-

tive influence spread, and IMM-BPIM also outperforms others

when self-activation behaviors of the nodes are non-uniform. On

average IMM-PIM improves about 32.7% than the other base-

lines, IMM-BPIM improves about 2.3% than IMM algorithm, and

IMM-BIM improves about 2.1% than IMM algorithm.. Detailed re-

sults are in extended version [20].

Running time results. Table 1 reports the running time of all al-

gorithms on both datasets, by using the default setting with the seed

set size 𝑘 = 200 in test case 3. We can clearly see the order of run-

ning time is BIM < IMM < IMM-BPIM < ASV-RR < IMM-PIM

(a) PIM-NetHEPT (b) PIM-Flixster (c) BPIM-NetHEPT (d) BPIM-NetHEPT

Figure 1: Influence Spread Results (𝜀 = 0.1 with case 3).

Table 1: Running time results (in seconds).

Data IMM-BIM IMM-PIM IMM-BPIM IMM ASV-RR Data IMM-BIM IMM-PIM IMM-BPIM IMM ASV-RR
NetHEPT 0.7534 195.75 48.123 1.9712 74.175 Flixster 1.3516 955.45 218.51 5.1072 235.34

(we ignore the prefix IMM in our algorithm to fit the table width).

This is inline with our theoretical analysis, which shows that the

running time is inversely proportional to the optimal value of each

problem. For example, the optimal solution of BIM is larger than

that of the classical influence maximization because BIM has self-

activated nodes contributing extra influence spread, and PIM has

the smallest optimal value because the self-activation probabilities

are small in general and the optimal set has to compete with other

self-activated nodes on preemptive influence spread. IMM-BPIM
and IMM-PIM are further slower due to the Dijkstra-like reverse

simulation, which takes more time than the simple breadth-first-

search simulation. But even for the slowest IMM-PIM algorithm,

on the Flixster dataset with more than hundred thousands nodes

and edges, it could complete in less than 16 minutes on our laptop

test machine. Besides the dataset, running time is also related to

the 𝜀. We also test the 𝜀 values from 0.1 to 0.5 on NetHEPT for the

proposed algorithms, and the details are in the extented version

due to the space constraint [20].

In summary, our tests clearly demonstrate that for the PIM prob-

lem targeted for identifying top organic influencers in a graph with

self-activation, our IMM-PIM algorithm significantly outperform

other baselines in terms of result quality, which suggests that know-

ing the self-activation behavior is important for this task. For BPIM,

our algorithm have small improvements for certain test cases with

non-uniform self-activation behaviors. This may suggest that base-

line such as IMM may be usable for these tasks, but one could still

benefit from our algorithms in certain cases.

5 CONCLUSION AND FUTUREWORK
We introduce self activation and preemptive influence maximiza-

tion task in this study. A future direction of our study would be

incorporating self activation and preemptive influence spread con-

siderations into other influence maximization tasks, such as com-

petitive and complementary influence maximization, adaptive and

online influence maximization, etc.

6 ACKNOWLEDGMENTS
This work is supported in part by NSF under grants III-1526499,

III-1763325, III-1909323, CNS-1930941, and CNS-1626432.

REFERENCES
[1] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2012. Topic-aware

social influence propagation models. In ICDM’12. IEEE.
[2] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.

Maximizing social influence in nearly optimal time. In ACM-SIAM (SODA ’14).
[3] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. 2011. Limiting the spread

of misinformation in social networks. In WWW11.
[4] Wei Chen. 2019. An Issue in the Martingale Analysis of the Influence Maximiza-

tion Algorithm IMM. In CSoNet.
[5] Wei Chen, Alex Collins, Rachel Cummings, Te Ke, Zhenming Liu, David Rincon,

Xiaorui Sun, Yajun Wang, Wei Wei, and Yifei Yuan. 2011. Influence maximization

in social networks when negative opinions may emerge and propagate. In SDM.

[6] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. 2016. Robust

Influence Maximization. In KDD.
[7] Wei Chen and Shang-Hua Teng. 2017. Interplay between social influence and

network centrality: A comparative study on shapley centrality and single-node-

influence centrality. In WWW. 967–976.

[8] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In KDD.
[9] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable Influence Maximization in

Social Networks under the Linear Threshold Model. In ICDM.

[10] Pedro Domingos and Matthew Richardson. 2001. Mining the network value of

customers. In KDD.
[11] X. He and D. Kempe. 2016. Robust Influence Maximization. In KDD.
[12] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. 2012. Influence Blocking

Maximization in Social Networks under the Competitive Linear ThresholdModel.

[13] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and Robust

Influence Maximization in Social Networks. In ICDM.

[14] Saito K., Kimura M., Ohara K., and Motoda H. 2010. Selecting information

diffusion models over social networks for behavioral analysis. In ECML-PKDD.
[15] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In KDD.
[16] Wei Lu, Wei Chen, and Laks VS Lakshmanan. 2015. From competition to comple-

mentarity: comparative influence diffusion and maximization. PVLDB (2015).

[17] Gomez-Rodriguez M., Song L., Du N., Zha H., and Schölkopf B. 2016. Influence

estimation and maximization in continuous-time diffusion networks. ACM
Transactions on Information Systems 34, 2 (2016).

[18] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. 2016. Stop-and-Stare: Optimal

Sampling Algorithms for Viral Marketing in Billion-scale Networks. In SIGMOD.
[19] Matthew Richardson and Pedro Domingos. 2002. Mining knowledge-sharing

sites for viral marketing. In KDD.
[20] Lichao Sun, Albert Chen, Philip S Yu, andWei Chen. 2019. Influencemaximization

with spontaneous user adoption. arXiv preprint arXiv:1906.02296 (2019).
[21] Lichao Sun, Weiran Huang, Philip S Yu, and Wei Chen. 2018. Multi-round

influence maximization. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2249–2258.

[22] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in

near-linear time: a martingale approach. In SIGMOD.
[23] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization:

near-optimal time complexity meets practical efficiency. In SIGMOD.
[24] Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. 2007. A

framework for community identification in dynamic social networks. In KDD’07.
[25] Chi Wang, Wei Chen, and Yajun Wang. 2012. Scalable influence maximization

for independent cascade model in large-scale social networks. DMKD (2012).

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Problem Definition
	2.1 Self-Activation Propagation Model
	2.2 Self-Activation Influence Maximization
	2.3 Properties of Influence Spread Functions

	3 Scalable Implementations
	3.1 Algorithm for BIM
	3.2 Algorithm for BPIM
	3.3 Algorithm for PIM

	4 Empirical Evaluation
	4.1 Experiment Setup
	4.2 Results

	5 Conclusion and Future Work
	6 Acknowledgments
	References

