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ABSTRACT

Text-independent speaker verification imposes no constraints
on the spoken content and usually needs long observations
to make reliable prediction. In this paper, we propose two
speaker embedding approaches by integrating the phonetic in-
formation into the attention-based residual convolutional neu-
ral network (CNN). Phonetic features are extracted from the
bottleneck layer of a pretrained acoustic model. In implicit
phonetic attention (IPA), the phonetic features are projected
by a transformation network into multi-channel feature maps,
and then concatenated with the raw acoustic features as the in-
put of the CNN network. In explicit phonetic attention (EPA),
the phonetic features are directly connected to the attentive
pooling layer through a separate 1-dim CNN to generate the
attention weights. With the incorporation of spoken content
and attention mechanism, the system can not only distill the
speaker-discriminant frames but also actively normalize the
phonetic variations. Multi-head attention and discriminative
objectives are further studied to improve the system. Exper-
iments on the VoxCeleb corpus show our proposed system
could outperform the state-of-the-art by around 43% relative.

Index Terms— speaker verification, attentive pooling,
phonetic information

1. INTRODUCTION

Speaker verification is the task of determining whether a pair
of speech recordings is spoken by the same identity. As one
of the most natural and convenient ways for biometric authen-
tication, it has become an increasing demand for a wide range
of applications, including security-controlled access to con-
fidential information, criminal investigation and mobile pay-
ment [1]. According to the application scenarios, the speaker
verification task can be classified into two categories, text-
dependent speaker verification (TDSV) and text-independent
speaker verification (TISV). As TISV imposes no constraints
on the spoken content, it is more challenging than TDSV.

In the past, traditional TISV systems are based on i-
vectors [2]. The system consists of a universal background
model (UBM-GMM), an unsupervised projection using fac-
tor analysis (i-vectors) and a supervised probabilistic linear
discriminant analysis (PLDA) in the backend to compute a

similarity score between i-vectors [3, 4, 5, 6]. These individ-
ual components are loosely connected and optimized using
the different criteria.

In the last few years, more studies have presented the
results of end-to-end training using deep neural networks.
In [7], a supervised DNN was trained for TDSv to learn
the frame-level speaker representation, called d-vectors, and
achieved up to 25% improvement through combination with
classical i-vector system. [8] further reduced the equal error
rate by 3% on the “Ok Google” dataset. In TISV, [6] proposed
a DNN to produce segment-level embedding, showing com-
petitive results on long duration test conditions. [9] trained a
robust DNN embedding called x-vectors and obtained supe-
rior performance on NIST SRE16 evaluation set.

More recently, deep convolutional neural network (CNN)
based system has become an effective solution for speaker
verification due to the ability to capture local temporal and
frequency patterns. [10, 11, 12, 13, 14] all use CNN aug-
mented by residual blocks [15] as the speaker embedding ex-
tractor, significantly outperforming i-vectors for short-term
utterances under unconstrained conditions. We also choose
CNN as our system architecture.

On the other hand, phonetic information provides better
alignment for content and could assist speaker recognition
system, especially for TISV. Researchers have proposed sev-
eral strategies to utilize phonetic features, including replac-
ing the tokens (i.e., GMM components) in i-vector framework
with tied triphone states [16, 17, 18, 19] and directly introduc-
ing this information into DNN training [20, 21, 22].

In this paper, we propose two speaker embedding ap-
proaches by integrating the phonetic information via the
attention mechanism into the CNN network for the TISV
system. Given the local connectivity and spatial contiguity
in convolutional operations, we cannot directly feed the pho-
netic features into the CNN network. In implicit phonetic
attention (IPA), the phonetic features are projected by a trans-
formation network into multi-channel feature maps, and then
concatenated with the raw acoustic features as the input of
the CNN network. An attentive pooling layer is employed
to extract speaker-discriminative info from the augmented
input features. In explicit phonetic attention (EPA), the pho-
netic features are directly connected to the attentive pooling
layer to generate the attention weights. In order to match the



feature map length of CNN output, we apply several layers
of 1-dim convolutions to phonetic features along the time
axis. Experimental results on the VoxCeleb corpus show the
effectiveness of the proposed phonetic attention systems.

The rest of this paper is organized as follows: Sec-
tion 2 describes the fundamentals of the CNN-based text-
independent speaker verication system. Section 3 provides
the detailed implementation of the proposed phonetic at-
tention system. Experimental results will be presented and
discussed in Section 4. In Section 5, we conclude our contri-
bution and state future work.

2. CNN-BASED SPEAKER EMBEDDING

This section describes the structure of the CNN-based text-
independent speaker verication system developed for this
study. A typical end-to-end speaker verification system con-
sists of three main components. First of all, a frame-level
speaker embedding extractor. Then, an aggregation layer
is applied to summarize the frame-level representations and
yield a fixed-dimensional utterance-level speaker embedding.
Lastly, a speaker-discriminative criterion is designed to min-
imize the training objective. We describe the details of these
components in the remaining of this section.

2.1. CNN architecture

CNN has been proved to be extremely successful in many
applications. However, with network depth increasing, we
always suffer from saturation and performance degradation.
The residual convolution neural network (ResNet) introduces
shortcut connections between blocks of convolutional layers,
which allows training deeper networks without incurring gra-
dient vanishing problem [15]. Its superior performance has
been demonstrated in vision, speech and many other areas.

Table 1 shows the architecture of our ResNet-based net-
work. It consists of 5 convolutional layers without residual
connection and on top of each of the first three layers, two
residual blocks are inserted. These residual blocks do not re-
duce the size of the feature maps. All convolutional layers, 17
in total, are followed by a batch normalization layer and rec-
tified linear units (ReLU) activation function. The acoustic
features we used are 80-dimensional log filter banks (LFB).
Our frame-level speaker embedding has a dimension of 128.

In order to apply batch processing, we randomly crop in-
put utterances to 5 seconds. If an utterance is shorter than 5
seconds, we extend the signal by duplicating the utterance.

2.2. Aggregation layer

In order to obtain a fixed length speaker embedding for ut-
terances of variable length, we could simply apply a tem-
poral average pooling (TAP) to the frame-level representa-
tions. However, not all frames provide equal evidence to infer

Table 1: CNN architecture for speaker embedding. Notation
for convolutional layer: (channel, kernel size, stride). TAP:
temporal average pooling, AP: attentive pooling

Module Output Size
input layer 80× T × 1

conv: (64, 3× 3, 2)

2×
[

64, 3× 3, 1
64, 3× 3, 1

]
39× T/2× 64

conv: (64, 3× 3, 2)

2×
[

64, 3× 3, 1
64, 3× 3, 1

]
19× T/4× 64

conv: (128, 3× 3, 2)

2×
[

128, 3× 3, 1
128, 3× 3, 1

]
9× T/8× 128

conv: (256, 3× 3, 1) 4× T/8× 256

conv: (128, 3× 3, 1) 1× T/8× 128

aggregation layer TAP / AP
fc: (128, 5994) classification layer

speaker identities. Instead of averaging, the attention mech-
anism [23] provides a better alternate to actively select the
hidden representations and emphasize speaker-discriminative
information.

We implement the shared-parameter non-linear multi-
head attentive pooling (AP), similar to [24, 25].

U = softmax(V T tanh(WTH + b)) (1)

where H has a size of dh × T ′, it could be the frame-level
speaker representations (equals R) or phonetic features. dh
corresponds to hidden feature dimension, and T ′ is propor-
tional to input utterance length T . W, b, V are learnable pa-
rameters with sizes of dh × da, da × 1, da ×N respectively,
da corresponds to the hidden units of attention layer and N
is the number of attention heads. U represents the normal-
ized attention weights with a size of N × T ′. Then the final
utterance-level speaker embedding could be calculated as a
weighted sum.

z = URT (2)

where R represents our frame-level speaker embedding and
has a size of dh × T ′. z is the weighted sum of size N × d. If
N = 1, z would be the final utterance-level speaker embed-
ding, otherwise we flatten z and perform a linear projection
to still obtain the d-dimensional utterance-level embedding.

2.3. Training criterion

The typical training criterion for end-to-end speaker verifi-
cation is to have a classification layer and use softmax loss.
At training stage, networks aim at reducing classification er-
ror over a set of known speaker identities. At testing stage,
this classification layer is removed and the intermediate bot-
tleneck features are extracted as speaker embedding which are



expected to generalize to any number of speakers beyond the
training identities. Therefore there exists a gap between the
objective of training and testing, i.e., trained network empha-
sizes the separation over a set of speakers but do not directly
optimize the discrimination of speaker embedding.

Many approaches have been proposed to ease this prob-
lem. [26, 27] directly compare and optimize the distances
between positive and negative pairs/triplets. However, in-
numerable sample combinations and unstable convergence
make them hard to train. L2-constrained softmax [28] and
A-softmax [29] stick with the softmax loss but either have
constraints on learned embedding or classification weights,
forcing the original softmax loss to increase inter-class dis-
tances and decrease intra-class distances. We adopt these
two methods due to their effectiveness in face verification
systems. The objective function for L2-constrained softmax
is as follows,

L = − 1

M

M∑
i=1

log
eW

T
yi
zi+byi∑C

j=1 e
WT

j zi+bj
(3)

subject to ‖zi‖2 = α, i = 1, 2, ...M . where zi is the
utterance-level speaker embedding in a mini-batch of size M
with label yi. C is the number of training identities and α is
magnitude of zi, which could either be static or learnable.

Equation 4 defines the objective of A-softmax,

L = − 1

M

M∑
i=1

log
e‖zi‖ cos(mθyi,i)

e‖zi‖ cos(mθyi,i) +
∑
j 6=yi e

‖zi‖ cos(mθj,i)

(4)
where θj,i is the angle between vector Wj and zi and m is a
hyper parameter adjusting the angular margin.

3. PHONETIC ATTENTION

Spoken content is the predominant component in the speech
signal and has a profound impact on the perception of speaker
identities. Previous studies have demonstrated that incorpo-
rating the phonetic information of input utterances yields sig-
nicant gains for speaker recognition [16, 21, 20].

It is expected that in the attentive pooling step, high-
energy and slow-changing phones, such as vowels, should
receive higher attention weights. Silence and voiceless con-
sonants usually contain less identity clues and the network
should learn to deemphasize them. Many works [24, 25] have
shown that the attentive pooling produced significant im-
provement for speaker verification task. However, explicitly
exploiting the phonetic information in the attentive pooling
has not been well investigated.

In this section, we present the two approaches by incorpo-
rating phonetic information into the the attention mechanism.

Fig. 1: Implicit phonetic attention by combining LFB and
PBN features at the input layer (LFB: log filter bank; PBN:
phonetic bottleneck).

3.1. Implicit phonetic attention

One popular approach to exploiting the phonetic information
is to extract the phonetic bottleneck (PBN) features from the
last hidden layer of a pre-trained ASR network. The PBN fea-
tures are concatenated with the raw acoustic features and fed
into the network. Thus, the attentive layer is able to learns the
optimal attention weights with the aid of phonetic features.
Another benefit is that the network would actively normalize
phonetic variations in the meanwhile.

If the speaker embedding network is DNN or long short-
term memory (LSTM), it is straightforward to append the
phonetic features to the raw acoustic features. However, for
the 2-D convolutional networks such as the ResNet in the pre-
vious section, this method is inappropriate because we need to
preserve spectral contiguous patterns in the input. Figure 1 il-
lustrate the proposed implicit phonetic attention (IPA) to com-
bine two features into feature maps for CNN training. We
first transform the bottleneck features using a small fully con-
nected transformation network and reshape the outputs intoN
feature maps in the same size as raw acoustic features. Then,
these features are combined into N + 1 multi-channel fea-
tures as the input of the CNN. The transformation network is
jointly trained with the following CNN, so that the phonetic
features are projected into the feature maps in the same spatial
patterns as the original input features.

In our system, the acoustic feature we used is 80-dim LBF.
The phonetic feature has a dimension of 256. The transforma-
tion DNN consists of 3 fully connected layers, each of which
has 256 hidden units except for the last one with 80×N hid-
den units. We set N = 3, so there are 4 channels in total at
the CNN input layer. Note that our phonetic features are ex-



Fig. 2: Explicit phonetic attention by routing LFB and PBN
features through separate networks (LFB: log filter bank;
PBN: phonetic bottleneck).

tracted from a LSTM model. Thus, the whole system can be
interpreted as a cascade of LSTM and CNN.

3.2. Explicit phonetic attention

The second approach, called explicit phonetic attention
(EPA), is to directly connect phonetic features to the at-
tentive pooling layer and generate the attention weights. This
is analogous to cross-layer attention [25] where one layer
is used to compute the frame-level outputs, the other layer
controls the attention weights.

One issue is that the phonetic outputs need to be synchro-
nized with the frame-level embedding outputs in the striding
and pooling operations of convolutions. We applied the 1-
dim CNN network to the phonetic features, where the striding
operations are synchronized with the main ResNet along the
time axis. Thus, the frame-level phonetic and acoustic out-
puts are generated in parallel and the attention weights can be
calculated by substituting the phonetic outputs for H in Eq.
(1). In our system, the 1-dim CNN consists of 5 convolutional
layers without residual blocks are inserted in between. These
layers are followed by a batch normalization and ReLU acti-
vation functions.

4. EXPERIMENTS

4.1. Data description

We evaluate the proposed approach for speaker verification
on the VoxCeleb corpus [11, 12]. VoxCeleb is a large-scale
text-independent dataset with real-life conversational speech
collected in unconstrained conditions. Short-term utterances
(7.8s in average) and diverse acoustic environments make
it more challenging compared with telephone recordings or
clean speech. As shown in Table 2, we train the embedding

models using VoxCeleb2 ’dev’ part and mainly evaluate them
on the VoxCeleb1 test set composed of 40 speaker identities.
For completeness, we also evaluate the other two test sets
listed from VoxCeleb2 dataset: the extended VoxCeleb1-E
list which uses the entire VoxCeleb1 set (1251 identities), and
hard VoxCeleb1-H list which contains speakers with same
gender and nationality. All the following experiments share
the same training and evaluation sets. Stochastic gradient
descent (SGD) is used to train our network with mini-batches
of size 128. Momentum and weight decay are set to 0.9 and
0.0001 respectively.

Table 2: Statistics of dataset.

Items Count

Training set # utterances: 1092009
(Voxceleb 2 dev) # speakers: 5994

Evaluation set lists: vox1-test / vox1-all / vox1-hard
(Voxceleb 1) # test pairs: 37720 / 581480 / 552536

4.2. ASR model for extracting phonetic features

The phonetic bottleneck features are extracted from a deep
LSTM acoustic model for large vocabulary speech recog-
nition. The input feature for every 10ms speech frame is
80-dimensional static log Mel filter-banks. The output layer
has 9404 nodes, modeling senones. Two acoustic models are
trained. The first is a standard 4-layer LSTM [30], trained
with 3.4 k hours US English recordings. The second is a
6-layer contextual layer trajectory LSTM (cltLSTM) [31],
more powerful than the the 4-layer LSTM, trained with 30 k
hours of US English production data. All the LSTM units
inside both models are with 1024 memory cells and the
output dimension of each layer is reduced to 512 by linear
projection. Both acoustic models are then compressed with
singular value decomposition (SVD) [32] by keeping 60% of
total singular values. After SVD, the linear matrix connect-
ing the last hidden layer with the softmax layer is reduced
to two low rank matrices with size 256x512 and 9404x256
respectively. Hence, the bottleneck dimension is 256, and we
use the features extracted from this bottleneck layer of each
acoustic model as our phonetic representations. On general
ASR tasks, the cltLSTM model usually yields more than
20% relative improvement in WER over the 4-layer LSTM
model. Unless otherwise stated, the cltLSTM model is used
throughout the experiments.

4.3. Effect of attentive pooling

We test the performance of attention-based pooling for LFB
features. In our experiments, d is set to 128 and da equals 64.
The first two rows in Table 3 shows the equal error rate (EER)



using LFB features only with TAP and AP. Attention-based
pooling indeed helps to extract useful information for speaker
verification. With 16 attention heads, the relative EER reduc-
tion is 15.5%, 12.1%, 12.5%. This conclusion is consistent
with results reported in the literature [24, 25], confirming the
effectiveness of attentive pooling layer.

We believe phonetic attention can further boost the per-
formance of attention layer and also generalize well to unseen
speakers and conditions.

Table 3: Evaluation results with temporal average pooling
(TAP) and attentive pooling (AP, 16 attention heads). EERs
are reported on VoxCeleb1-test, VoxCeleb1-E and VoxCeleb1-
H respectively.

Method Aggregation EER(%)

LFB TAP 2.64 / 2.48 / 4.12

LFB AP 2.23 / 2.18 / 3.61

IPA TAP 2.04 / 1.94 / 3.61

IPA AP 1.85 / 1.70 / 3.13

EPA AP 2.16 / 2.03 / 3.79

4.4. Effect of phonetic attention

Evaluation results with implicit phonetic attention (IPA) and
explicit phonetic attention (EPA) are shown in the last three
rows of Table 3. Both methods have the ability to boost sys-
tem performance. However, IPA achieves better numbers than
EPA. Comparing second row and fourth row, the relative EER
reduction is 17%, 22.1%, 13.3% respectively, which proves
phonetic attention could further improve our system on top
of normal attention layer. Comparing the first row and third
row, we can observe phonetic features play an important role
in identity inference. By properly incorporating the LFB and
PBN features at a early stage, we could achieve decent results
even with simple average pooling.

In order to provide some intuitive insights into the pho-
netic attention, we plot the spectrogram of an utterance and
its corresponding learned 16-heads attention weights. As
shown in Figure 3, this utterance is from VoxCeleb1 with
file name ’id10270-5r0dWxy17C8-00004.wav’. It contains
short pauses and breath in between. We can observe that non-
speech areas are mostly assigned with smaller weights than
voiced areas, which implies the phonetic attention can effec-
tively emphasize or deemphasize the importance of frames
depending on the speech content. For voiced area, the weights
of different heads exhibits different patterns. The relevance
between the weights and phonetic context demands further
study.

Fig. 3: Visualization of 16-heads learned attention weights.

4.5. Effect of attention heads

We examine the performance of attention-based pooling with
respect to the various numbers of attention heads. Number
of attention heads are increased from 1 to 16 exponentially.
Table 4 shows the equal error rate (EER) on VoxCeleb1-test,
VoxCeleb1-E and VoxCeleb1-H. As the number of attention
heads increasing, system performance keeps improving. A
small fluctuation between one head and two heads is because
we append an additional linear projection layer when we
have more than one head. Comparing first row and last row,
with 16 attention heads, the relative EER reduction is 15.5%,
12.1%, 12.5% for LFB only, and 9.3%, 12.4% , 13.3% for
adding extra phonetic information.

Table 4: Evaluation results with different number of attention
heads. EERs are reported on VoxCeleb1-test, VoxCeleb1-E
and VoxCeleb1-H respectively.

# heads LFB IPA

TAP 2.64 / 2.48 / 4.12 2.04 / 1.94 / 3.61

1 2.56 / 2.38 / 3.99 1.95 / 1.87 / 3.50

2 2.66 / 2.44 / 3.96 2.14 / 2.05 / 3.67

4 2.47 / 2.30 / 3.78 1.99 / 1.86 / 3.37

8 2.40 / 2.25 / 3.73 1.85 / 1.76 / 3.29

16 2.23 / 2.18 / 3.61 1.85 / 1.70 / 3.13

4.6. Effect of ASR models

Table 6 examines the effect of ASR models for the speaker
verification task. We trained two models using implicit pho-
netic attention, where the PBN features are extracted from
the LSTM and cltLSTM models, respectively. The system
using the cltLSTM improves the EER slightly by 4.1%, 5.0%



Table 5: Evaluation results on VoxCeleb1-test, VoxCeleb1-E, and VoxCeleb1-H. [11, 14, 33, 34] do not report results on
VoxCeleb1-E, and VoxCeleb1-H.

System Training set Inputs Loss Aggregation EER(%)
Nagrani et al. [11] VoxCeleb1 i-vectors - - 8.80 / - / -

Cai et al. [14] VoxCeleb1 LFB A-softmax AP 4.40 / - / -
Okabe et al. [33] VoxCeleb1 MFCC softmax AP 3.85 / - / -

Hajibabaei et al. [34] VoxCeleb1 spectrogram A-softmax TAP 4.30 / - / -
Chung et al. [12] VoxCeleb2 spectrogram softmax+contrastive TAP 4.19 / 4.42 / 7.33

Xie et al. [13] VoxCeleb2 spectrogram softmax GhostVLAD 3.22 / 3.13 / 5.06
Ours VoxCeleb2 LFB softmax AP 2.23 / 2.18 / 3.61
Ours VoxCeleb2 LFB A-softmax AP 2.85 / 3.01 / 5.57
Ours VoxCeleb2 LFB L2-softmax AP 2.38 / 2.14 / 3.57
Ours VoxCeleb2 IPA softmax AP 1.85 / 1.70 / 3.13
Ours VoxCeleb2 IPA A-softmax AP 4.43 / 4.05 / 8.46
Ours VoxCeleb2 IPA L2-softmax AP 1.81 / 1.68 / 3.12

and 2.8%, respectively, over the one using the LSTM. The
cltLSTM model is trained with ten times more data and has
more complicated structure compared with LSTM model. It
implies that our phonetic attention network is not very sensi-
tive to the PBN feature quality. A moderate presentation of
spoken content could provide enough assistance in speaker-
discriminative learning, saving both computational and stor-
age resources.

Table 6: Evaluation results for implicit phonetic attention
with different ASR models.

ASR models EER(%)

LSTM 1.93 / 1.79 / 3.22

cltLSTM 1.85 / 1.70 / 3.13

4.7. Effect of loss function

Except for softmax loss, we also experiment with two dis-
criminative objective functions, i.e., A-softmax[29] and L2-
constrained softmax[28]. For L2-softmax, we use a static α
and fix it to 10 for all experiments. For A-softmax, we set
m = 4 and the annealing strategy is used as suggested in the
paper appendix. As we can observe from the last 6 lines in
Table 5, L2-softmax slightly improves performance while A-
softmax appears to degrade system behavior, especially with
phonetic inputs. Further experiments with different configu-
rations should be done to explore the potential for these two
loss functions.

4.8. Comparison

In Table 5, we also list other evaluation results reported in the
literature on VoxCeleb corpus. The first 4 systems are trained

on VoxCeleb1 ’dev’, so they do not have the evaluation results
on VoxCeleb1-E and VoxCeleb-H. Our best system is trained
with implicit phonetic attention using L2-softmax loss, which
achieves better performance than all the reported systems on
VoxCeleb data and outperform the current state-of-the-art re-
sults [13] by 43.8%, 46.3% and 38.3% on three test condi-
tions.

5. CONCLUSIONS

In this paper, we proposed an attention-based deep con-
volutional network using phonetic information for text-
independent speaker verification. The phonetic bottleneck
features are extracted from a trained acoustic model for
speech recognition, projected by a transformation network
into multi-channel feature maps, and then fed into the network
together with raw acoustic features. We integrate the system
with the multi-head attention and discriminative loss func-
tions to further improve the system performance. The whole
system is learned in an end-to-end fashion, so that the system
can not only pay attention to the speaker-discriminant frames
using phonetic information, but also actively normalize the
phonetic variations. Moreover, the proposed architecture al-
lows for the flexible incorporation of phonetic information,
which can be simply disabled when it’s not available. Exper-
iments on VoxCeleb dataset shows that the use of phonetic
features reduce EER by 22.7%, and multi-head attention fur-
ther reducing EER by 9.3%. Our best system outperforms the
current state-of-the-art result by around 43%.
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