
Prediction-Guided Design for Software Systems

Si Qin1, Yong Xu1, Shandan Zhou2, Qingwei Lin1,
Hongyu Zhang3, Dongmei Zhang1, Saurabh Agarwal2, Karthikeyan Subramanian2,
Eli Cortez2, John Miller2, Chris Cowdery2, Shanti Kemburu2, Thomas Moscibroda2

1Microsoft Research, China 2Microsoft Azure, USA 3The University of Newcastle, Australia
1,2{siqin, yox, shazho, qlin, dongmeiz, saaga, karthik, eli.cortez, johnmil, chcowder, shkembur, moscitho}@microsoft.com

3hongyu.zhang@newcastle.edu.au

Abstract
While software system development is commonly conducted
with explicit rules, machine learning (ML) has been driving
a revolution in modern system design. In this paper, we in-
troduce a new prediction-guided paradigm, which leverages
ML techniques to support decision-makings for the system
itself. In the proposed design, the system would be automat-
ically driven by various type of data, e.g., system workloads,
user behaviors, and platform operations, etc. More impor-
tantly, it brings a mindset of “proactive” to developers. Some
significant issues can be thus eliminated before becoming
catastrophe. In order to illustrate the benefits of the proposed
paradigm, we present a project showcase, intelligent buffer
management, which is used to achieve an optimal trade-off
between having sufficiently large buffers to avoid failures and
minimizing excess capacity in Microsoft Azure. It is designed
in the prediction-guided paradigm to dynamically and proac-
tively adjust the reserved buffer based on customer workload
patterns and platform operations. The project not only sig-
nificantly improves CFR (capacity fulfillment reliability) of
tenant growth, but also reduces millions of dollars in COGS
(cost of goods sold) for Microsoft.

Prediction-Guided Design
Currently, most of software system developments have been
conducted based on human experience and comprehension.
Given a task, domain knowledge is usually transferred into
source code with explicit rules. After system evaluation, de-
velopers could gain more understanding about the system
and could further improve the code. This process could go
through several rounds, as illustrated in Figure 1.

However, this code-centric approach is often less optimal.
On the one hand, in large-scale software systems, the inter-
nal details and the inter-dependencies of software modules
could be extremely complicated. On the other hand, the soft-
ware systems should be adaptive to different inputs and en-
vironments, and should satisfy the ever-changing business
rules and requirements. Therefore, it is hard to frequently
change the source code to cater for changes and the tradi-
tional code-centric approach is difficult to scale.

Recent advances in machine learning (ML) framework
have ignited changes in system design. In view of the ca-
pabilities in learning complex correlations, causalities, and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Code centric

Define task

Design modules

Write/reuse codes

Evaluation

Take actions
(Execute functions)

Define task

Collect data

Build a model
(reflect current status)

Evaluation

Take actions
(Online tuning)

Define task

Collect data

Build a model
(predict future status)

Evaluation

Take actions
(Decision-making)

Online tuning Prediction guided

Figure 1: The different designs for software systems.

patterns among components from the data, ML-based ap-
proaches therefore hold the potential in building a bridge
from the task definition to system operation directly, par-
ticularly in a dynamic environment without so many hu-
man inputs. In the data-driven context, software develop-
ment would consist largely of developing a data processing
pipeline and then streaming the corresponding output into an
ML model to perform a given task (Ré 2018). As such, de-
velopers pay more attention to collect data and build a model
instead of designing modules and writing codes. Likewise,
large but complicated training datasets and cutting-edged
models play more crucial roles in improvements of perfor-
mance than the abundant domain knowledge and code effi-
ciency. In practice, however, current prevailing designs limit
the merits of ML to the “dynamic”. Specifically, a couple of
parameters are set and then can be online tuned by leverag-
ing ML techniques based on workloads (Li and et al. 2018).
While output values from the model are the best choice for
the current status, they might not be optimal for the future.
Such a reactive approach reacts the past rather than antici-
pate the future. We are still expected to have some sleepless
nights when considerable issues come.

Besides intricate dependencies among components, ML
can learn factors that impact system behaviors from his-
torical events and incidents, and then make a fair predic-
tion for the future system status. That allows the system
to make a proactive response to eliminate significant is-
sues before they become serious problems. In Fig. 1, we
introduce our prediction-guided design as compared to the
above-mentioned two paradigms. In the proposed paradigm,
the ML model is utilized to predict future system status in



supporting decision-makings (Kruchten and et al. 2009;
Zhang and Jarzabek 2005) for the system itself. There are
three keywords: data, status, and action. The telemetry
data are collected from various of perspectives (e.g., system
workloads, user behaviors, and platform events, etc) with
multiple temporal granularity (e.g., 15 minutes, hour, day,
week, month, etc) and spatial granularity (e.g., location, ver-
sion, operation system type, etc). The ML model exploits the
data as the inputs and predicts the future status. A decision-
making process will be triggered in view of the predicted
status and then the system will take the corresponding action
automatically. Different actions also have different impacts
on data distribution, the model is thus necessary to capture
these distinctions on data drifts. Note that the prediction-
guided design not only brings the “dynamic” to developers,
but also has a mindset of “proactive”. In this paradigm, the
system would learn lessons from the past and present, and
make an appropriate choice for the future.

Example: Intelligent Buffer Management
A typical cloud serivce system contains a large number of
physical servers, or “nodes”. These nodes are arranged into
racks and a group of racks form a cluster distributed in mul-
tiple regions. In Azure, a new deployment request is initiated
when a customer requires an amount of specific type virtual
machines (VMs) in a particular region. Afterwards, the al-
locator of the platform selects a few clusters in this region
as candidates, and then previews the requested allocation on
all candidates. Based on preview results, VMs are eventu-
ally deployed on the optimal cluster. Correspondingly, the
customer is referred to as the tenant of the chosen cluster
with a unique tenant id.

On the other hand, the cloud systems allow tenants to al-
locate and release VMs according to their demands. How-
ever, such a pay-as-you-go style makes resource demands
more volatile. To improve CFR of further tenant growth,
Azure maintains a buffer within each cluster, i.e., preserves
an amount of capacity by preventing new deployments to
land in this cluster in preview. As such, buffer capacity man-
agement is of fundamental importance in Azure. However,
traditional approaches implement the same strategy on any
cluster of similar size and property, regardless of the specific
workload deployed within the cluster. In so doing, the buffer
is necessarily set for the worst case because sufficient capac-
ity needs to be maintained for all circumstances. This static
and one-fits-all management therefore ends up preserving
too much buffer capacity in a large number of clusters, re-
sulting in low utilization and high COGS.

To overcome this problem, we design a new buffer man-
agement approach based on an intelligent admission con-
trol system (InACS). Following with the prediction-guided
paradigm, the InACS dynamically and proactively adjust the
reserved buffer by governing which new deployments can be
admitted into the cluster, and which ones are not. The archi-
tecture of InACS is presented in Fig. 2. At the heart is an
ML-based prediction-engine that monitors tenants that al-
ready deployed and predicts further growth demand resulted
from these deployments within the cluster. The admission
controller takes the prediction result as an input, and makes

Admission Controller

Cluster

Resource Allocator

Customer

reject

1

2

3

1

2

Tenant Demand Prediction 
Engine

DataCluster 
ConfigInACS

New deployments

Figure 2: The architectural design of InACS.

a binary decision on whether or not allow VM new deploy-
ment to deploy into this cluster.

Specifically, we first collect related signals that show
high correlations with tenant demand growth. The data can
mainly be categorized into three aspects: tenant (e.g., VM
type, core utilization, etc.), cluster (e.g., hardware type, clus-
ter size, etc.), and platform (e.g., fragmentation, policy, etc.).
The goal of the tenant demand prediction engine is to effec-
tively predict whether a cluster will have “high”, “medium”,
and “low” tenant demand growth in the next τ days, based
collected feature in most recent T days. As such, it is a
multi-class classification problem over a number of tempo-
ral and spatial features, whose labels are given by{

low, µi < α% and µc < α%,
medium, otherwise,
high, µi > β% and µc > β%,

(1)

where µi and µc denote the maximum intra-day demand
growth and maximum cross-day demand growth within next
τ days respectively, and two threshold α and β are set based
on the domain knowledge from production teams. In clus-
ters with high predicted demand growth, the admission con-
troller would apply a more restrictive policy and start reject
new deployment earlier, thus preserve more capacity for fu-
ture tenant growth. For those clusters with low predicted ten-
ant growth, the admission controller would be more lenient
in allowing new deployments into the cluster.

Our intelligent buffer management approach has been
successfully integrated into the capacity pipeline of Mi-
crosoft Azure. So far, it achieves more than 95% precision
and 60% recall. Compared with traditional approaches, In-
ACS not only improves CFR of tenant growth, but also leads
to millions of dollars reduction in COGS.

References
Kruchten, P., and et al. 2009. The decision view’s role in
software architecture practice. In IEEE Software.
Li, Z. L., and et al. 2018. Metis: Robustly optimizing tail
latencies of cloud systems. In Proc. of USENIX ATC.
Ré, C. 2018. Software 2.0 and snorkel: Beyond hand-labeled
data. In Proc. of SIGKDD.
Zhang, H., and Jarzabek, S. 2005. A bayesian network ap-
proach to rational architectural design. International Jour-
nal of Software Engineering and Knowledge Engineering
15:695–718.


