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[Buolamwini, J. & Gebru, T. 2018]
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[Nushi et. al. HCOMP 2018]
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[Wu et. al. ACL 2019]

[Zhang et. al. IEEE TVCG 2018]
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https://scikit-learn.org/stable/auto_examples/

calibration/plot_calibration_curve.html

[Platt et al., 1999; Zadrozny & Elkan, 2001]

[Gal & Ghahramani, 2016; Osband et al., 2016]

https://scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
https://scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
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Probably a yellow school bus driving down a street
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Intelligible, Transparent, Explainable AI



 Predictable ~ (Human) Simulate-able

 Intelligible  ~ Transparent

 Explainable ~ Interpretable

 Inscrutable ⊇ Blackbox

⊇
⊇

Predict exactly what it will do

Answer counterfactual

predict how a change to model’s inputs 

will change its output

Construct rationalization for why

(maybe) it did what it did 

Inscrutable:  too complex to understand

Blackbox: know nothing about it

Caveat: My take – No consensus here



Reasons for Wanting Intelligibility

1. The AI May be Optimizing the Wrong Thing 

2. Missing a Crucial Feature

3. Distributional Drift

4. Facilitating User Control in Mixed Human/AI Teams

5. User Acceptance

6. Learning for Human Insight

7. Legal Requirements

[Weld & Bansal CACM 2019]



interactions, or computed in expectation from the system it-
self.

In this paper, we argue that a classifier that is intended to
work with a human should maximize the number of accurate
examples beyond the handover threshold by focusing the op-
timization effort on improving theaccuracy of such examples
and putting less emphasis on examples within the threshold,
since such examples would be inspected and overriden by the
human anyways. We achieve this goal by proposing a new
optimization loss function named as negative log-utility loss
(NELU) that optimizes for team utility rather than AI accu-
racy alone. Current classifiers trained via log-loss for opti-
mizing team accuracy do not take into account this aspect of
AI-advised decision making, and therefore only aim at maxi-
mizing the number of instances on either side of the decision
boundary.

Take for instance, the illustrative example shown in Fig-
ure 1. The left side shows a standard classifier (h1) trained
with negative log-loss, while the right side shows a classifier
trained with negative log-utility loss (h2). The shaded gray
area shows the handover region for which it is rational for
the human to inspect the prediction and if inaccurate, over-
ride thedecision. It is clear that although h1 ismore accurate
(i.e., more accurate instances on either side of the decision
boundary), if it were used in an AI-advised decision making
setting, its high accuracy in the handover region would not
be useful to the team because the human would not trust the
classifier on those instances and spend more time in solving
the problem herself, which would then translate to subopti-
mal team utility. For the case of h2 instead, even though the
overall accuracy is lower (B is on the wrong side of the de-
cision boundary), if combined with a human it could achieve
a higher team utility because the human can safely trust the
machine outside of the handover region and at the same time
there exist less data points to inspect within the handover re-
gion (notice that the set of data points A has now moved out-
side of this region).

While there exist other aspects of collaboration that can
also beaddressed via optimization techniques, such as model
interpretability, supporting complementary skills, or enabling
learning among partners, the problem we address in this pa-
per to account for team-based utility functions is a first step
towards human-centered optimization. 1

In sum, we make the following contributions:

1. We highlight a novel, important problem in the field of
human-centered artificial intelligence: the most accu-
rate ML model may not lead to the highest team utility
when paired with ahuman overseer.

2. Weshow that log-loss, themost popular loss function, is
insufficient (as it ignores teamutility) and develop anew
loss function to overcome its issues.

3. Show that on multiple real data sets and machine learn-
ing models our new loss achieves higher utility than log
loss.

1BUG: This is an attempt to say that we are just making a first
step here to set expectations right.

(a)

(b)

Figure 2: (a) A schematic of AI-advised decision making. (b) To
make a decision, the human decision maker either accepts or over-
rides a recommendation. The Over r i de meta-decision is costlier
than Accept .

4. Provide a thorough explanation on when and why it is
best to use the negative log-utility loss by showing ex-
perimental results with varying domain related cost pa-
rameters.

2 3 4 5

2 Problem Descr iption

We focus on a special case of AI-advised decision mak-
ing where a classifier h gives recommendations to a hu-
man decision maker d to help make decisions (Figure 2a).
If h(x) denotes the classifier’s output, a probability distri-
bution over Y , the recommendation r h (x) consists of a la-
bel argmax h(x) and a confidence value max h(x), i.e.,
r h (x) := (argmax h(x), max h(x)). Using this recommen-
dation, the user computes a final decision d(x, r h (x)). The
environment, in response, returns a utility which depends on
the quality of the final decision and any cost incurred due to
human effort. Let U denote the utility function. If the team
classifiesasequenceof instances, theobjectiveof this team is
to maximize the cumulative utility. Before deriving a closed

2BUG: Change. Weanalyze... with different costs....
3BUG: - show connection with real world
4BUG: say wemakeassumptions about collaboration, but its im-

portant
5BUG: Work weneed to citehere to show that collaboration may

not work: [Zhang et al., 2020; Lai and Tan, 2018; Feng and Boyd-
Graber, 2019].

interactions, or computed in expectation from the system it-
self.

In this paper, we argue that a classifier that is intended to
work with a human should maximize the number of accurate
examples beyond the handover threshold by focusing the op-
timization effort on improving theaccuracy of such examples
and putting less emphasis on examples within the threshold,
since such examples would be inspected and overriden by the
human anyways. We achieve this goal by proposing a new
optimization loss function named as negative log-utility loss
(NELU) that optimizes for team utility rather than AI accu-
racy alone. Current classifiers trained via log-loss for opti-
mizing team accuracy do not take into account this aspect of
AI-advised decision making, and therefore only aim at maxi-
mizing the number of instances on either side of the decision
boundary.

Take for instance, the illustrative example shown in Fig-
ure 1. The left side shows a standard classifier (h1) trained
with negative log-loss, while the right side shows a classifier
trained with negative log-utility loss (h2). The shaded gray
area shows the handover region for which it is rational for
the human to inspect the prediction and if inaccurate, over-
ride thedecision. It is clear that although h1 ismore accurate
(i.e., more accurate instances on either side of the decision
boundary), if it were used in an AI-advised decision making
setting, its high accuracy in the handover region would not
be useful to the team because the human would not trust the
classifier on those instances and spend more time in solving
the problem herself, which would then translate to subopti-
mal team utility. For the case of h2 instead, even though the
overall accuracy is lower (B is on the wrong side of the de-
cision boundary), if combined with a human it could achieve
a higher team utility because the human can safely trust the
machine outside of the handover region and at the same time
there exist less data points to inspect within the handover re-
gion (notice that the set of data points A has now moved out-
side of this region).

While there exist other aspects of collaboration that can
also beaddressed via optimization techniques, such as model
interpretability, supporting complementary skills, or enabling
learning among partners, the problem we address in this pa-
per to account for team-based utility functions is a first step
towards human-centered optimization. 1

In sum, we make the following contributions:

1. We highlight a novel, important problem in the field of
human-centered artificial intelligence: the most accu-
rate ML model may not lead to the highest team utility
when paired with ahuman overseer.

2. Weshow that log-loss, themost popular loss function, is
insufficient (as it ignores teamutility) and develop anew
loss function to overcome its issues.

3. Show that on multiple real data sets and machine learn-
ing models our new loss achieves higher utility than log
loss.
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Abstract

Decisions made by human-AI teams (e.g., AI-advised hu-
mans) are increasingly common in high-stakes domains such
as healthcare, criminal justice, and finance. Achieving high
team performance depends on more than just the accuracy of
the AI system: Since the human and the AI may have differ-
ent expertise, the highest team performance is often reached
when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: thehuman’smental model of theAI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?” ). Awareness of this lets the hu-
man decidewhen to accept or override theAI’srecommenda-
tion. Wehighlight two key properties of an AI’serror bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
proveoverall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teamsputsadditional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-
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Figure 1: AI-advised human decision making for read-
mission prediction: The doctor makes final decisions us-
ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. Thesolid line represents theAI error boundary, while
thedashed lineshowsapotential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance(Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

Whilemany factors influenceteam performance, westudy
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses theAI’soutput to makedecisions, this mental model of
theAI’serror boundary—which describes theregionswhere
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
simplebut widespread form of human-AI team, for example,
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ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
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While many AI applications address automation, numer-
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Figure 4: A part of Figure 1 from [5] showing 3 (of 56 total) components for a GA2M model, which was trained to predict a

patient’s r isk of dying from pneumonia. The two l ine graphs depict the contr ibution of individual features to risk : a) patient’s

age, and b) boolean variable asthma. The y-axis denotes i ts contr ibution (log odds) to predicted risk . The heat map, c, visual izes

the contr ibution due to pairwise interactions between age and cancer rate.

evidence from the presence of thousands of words, one could see

the e ect of a given word by looking at the sign and magnitude of

the corresponding weight. This answers the question, “What if the

word had been omitted?” Similarly, by comparing the weights asso-

ciated with two words, one could predict the e ect on the model of

substituting one for the other.

Ranking Intel l igible Models: Since one may have a choice of

intelligible models, it is useful to consider what makes one prefer-

able to another. Grice introduced four rules characterizing coop-

erative communication, which also hold for intelligible explana-

tions [11]. The maxim of quality says be truthful, only relating

things that are supported by evidence. The maxim of quantity says

to give as much information as is needed, and no more. The maxim

of relation: only say things that are relevant to the discussion. The

maxim of manner says to avoid ambiguity, being be as clear as

possible.

Miller summarizes decades of work by psychological research,

noting that explanations are contrastive, i.e., of the form “Why P

rather than Q?” The event in question, P, is termed the fact and Q is

called the foil [28]. Often thefoil isnot explicitly stated even though

it is crucially important to the explanation process. For example,

consider the question, “Why did you predict that the image depicts

an indigo bunting?” An explanation that points to the color blue

implicitly assumes that the foil is another bird, such as a chickadee.

But perhaps the questioner wonders why the recognizer did not

predict a pair of denim pants; in this case a more precise explana-

tion might highlight the presence of wings and a beak. Clearly, an

explanation targeted to the wrong foil will be unsatisfying, but the

nature and sophistication of a foil can depend on the end user’s

expertise; hence, the ideal explanation will di er for di erent peo-

ple [7]. For example, to verify that an ML system is fair, an ethicist

might generate more complex foils than a data scientist. Most ML

explanation systems have restricted their attention to elucidating

thebehavior of abinary classi er, i.e., wherethere isonly onepossi-

ble foil choice. However, as we seek to explain multi-class systems,

addressing this issue becomes essential.

Many systems are simply too complex to understand without

approximation. Here, the key challenge is deciding which details

to omit. After long study psychologists determined that several

criteria can beprioritized for inclusion in an explanation: necessary

causes (vs. su cient ones); intentional actions (vs. those taken

without deliberation); proximal causes vs. distant ones); details that

distinguish between fact and foil; and abnormal features [28].

According to Lombrozo, humans prefer explanations that are

simpler (i.e., contain fewer clauses), moregeneral, and coherent (i.e.,

consistent with what thehuman’s prior beliefs) [24]. In particular,

she observed the surprising result that humans preferred simple

(one clause) explanations to conjunctive ones, even when the prob-

ability of the latter was higher than the former) [24]. These results

raise interesting questions about the purpose of explanations in

an AI system. Is an explanation’s primary purpose to convince a

human to accept thecomputer’s conclusions (perhapsby presenting

a simple, plausible, but unlikely explanation) or is it to educate the

human about the most likely true situation? Tversky, Kahneman,

and other psychologists have documented many cognitive biases

that lead humans to incorrect conclusions; for example, people

reason incorrectly about the probability of conjunctions, with a

concrete and vivid scenario deemed more likely than an abstract

one that strictly subsumes it [17]. Should an explanation system

exploit human limitations or seek to protect us from them?

Other studies raise an additional complication about how to

communicate a system’s uncertain predictions to human users.

Koehler found that simply presenting an explanation asafact makes

people think that it is more likely to be true [18]. Furthermore,

explaining a fact in the same way as previous facts have been

explained ampli es this e ect [35].

3 INHERENTLY INTELLIGIBLE MODELS

Several AI systems are inherently intelligible. We previously men-

tioned linear models as an example that supports conterfactuals.

Unfortunately, linear models have limited utility because they of-

ten result in poor accuracy. More expressive choices may include

simple decision trees and compact decision lists. We focus on Gen-

eralized additive models (GAMs), which are a powerful class of

ML models that relate a set of features to the target using a linear

combination of (potentially nonlinear) single-feature models called

shape functions [25]. For example, if y represents the target and

{x1, . . . .xn } represents the features, then a GAM model takes the

form y = β0 +
Õ

j f j (xj ), where the f i sdenote shape functions and

the target y is computed by summing single-feature terms. Popular

shape functions include non-linear functions such as splines and

decision trees. With linear shapefunctions GAMsreduce to a linear
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Figure 4: A part of Figure 1 from [5] showing 3 (of 56 total) components for a GA2M model, which was trained to predict a

patient’s r isk of dying from pneumonia. The two l ine graphs depict the contr ibution of individual features to risk : a) patient’s

age, and b) boolean variable asthma. The y-axis denotes i ts contr ibution (log odds) to predicted risk . The heat map, c, visual izes
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evidence from the presence of thousands of words, one could see

the e ect of a given word by looking at the sign and magnitude of

the corresponding weight. This answers the question, “What if the

word had been omitted?” Similarly, by comparing the weights asso-

ciated with two words, one could predict the e ect on the model of

substituting one for the other.

Ranking Intel l igible Models: Since one may have a choice of

intelligible models, it is useful to consider what makes one prefer-

able to another. Grice introduced four rules characterizing coop-

erative communication, which also hold for intelligible explana-

tions [11]. The maxim of quality says be truthful, only relating

things that are supported by evidence. The maxim of quantity says

to give as much information as is needed, and no more. The maxim

of relation: only say things that are relevant to the discussion. The

maxim of manner says to avoid ambiguity, being be as clear as

possible.

Miller summarizes decades of work by psychological research,

noting that explanations are contrastive, i.e., of the form “Why P

rather than Q?” The event in question, P, is termed the fact and Q is

called the foil [28]. Often thefoil isnot explicitly stated even though

it is crucially important to the explanation process. For example,

consider the question, “Why did you predict that the image depicts

an indigo bunting?” An explanation that points to the color blue

implicitly assumes that the foil is another bird, such as a chickadee.

But perhaps the questioner wonders why the recognizer did not

predict a pair of denim pants; in this case a more precise explana-

tion might highlight the presence of wings and a beak. Clearly, an

explanation targeted to the wrong foil will be unsatisfying, but the

nature and sophistication of a foil can depend on the end user’s

expertise; hence, the ideal explanation will di er for di erent peo-

ple [7]. For example, to verify that an ML system is fair, an ethicist

might generate more complex foils than a data scientist. Most ML

explanation systems have restricted their attention to elucidating

thebehavior of abinary classi er, i.e., wherethere isonly onepossi-

ble foil choice. However, as we seek to explain multi-class systems,

addressing this issue becomes essential.

Many systems are simply too complex to understand without

approximation. Here, the key challenge is deciding which details

to omit. After long study psychologists determined that several

criteria can beprioritized for inclusion in an explanation: necessary

causes (vs. su cient ones); intentional actions (vs. those taken

without deliberation); proximal causes vs. distant ones); details that

distinguish between fact and foil; and abnormal features [28].

According to Lombrozo, humans prefer explanations that are

simpler (i.e., contain fewer clauses), moregeneral, and coherent (i.e.,

consistent with what thehuman’s prior beliefs) [24]. In particular,

she observed the surprising result that humans preferred simple

(one clause) explanations to conjunctive ones, even when the prob-

ability of the latter was higher than the former) [24]. These results

raise interesting questions about the purpose of explanations in

an AI system. Is an explanation’s primary purpose to convince a

human to accept thecomputer’s conclusions (perhapsby presenting

a simple, plausible, but unlikely explanation) or is it to educate the

human about the most likely true situation? Tversky, Kahneman,

and other psychologists have documented many cognitive biases

that lead humans to incorrect conclusions; for example, people

reason incorrectly about the probability of conjunctions, with a

concrete and vivid scenario deemed more likely than an abstract

one that strictly subsumes it [17]. Should an explanation system

exploit human limitations or seek to protect us from them?

Other studies raise an additional complication about how to

communicate a system’s uncertain predictions to human users.

Koehler found that simply presenting an explanation asafact makes

people think that it is more likely to be true [18]. Furthermore,

explaining a fact in the same way as previous facts have been

explained ampli es this e ect [35].

3 INHERENTLY INTELLIGIBLE MODELS

Several AI systems are inherently intelligible. We previously men-

tioned linear models as an example that supports conterfactuals.

Unfortunately, linear models have limited utility because they of-

ten result in poor accuracy. More expressive choices may include

simple decision trees and compact decision lists. We focus on Gen-

eralized additive models (GAMs), which are a powerful class of

ML models that relate a set of features to the target using a linear

combination of (potentially nonlinear) single-feature models called

shape functions [25]. For example, if y represents the target and

{x1, . . . .xn } represents the features, then a GAM model takes the

form y = β0 +
Õ

j f j (xj ), where the f i sdenote shape functions and

the target y is computed by summing single-feature terms. Popular

shape functions include non-linear functions such as splines and

decision trees. With linear shapefunctions GAMsreduce to a linear
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age, and b) boolean variable asthma. The y-axis denotes i ts contr ibution (log odds) to predicted risk . The heat map, c, visual izes

the contr ibution due to pairwise interactions between age and cancer rate.

evidence from the presence of thousands of words, one could see

the e ect of a given word by looking at the sign and magnitude of

the corresponding weight. This answers the question, “What if the

word had been omitted?” Similarly, by comparing the weights asso-

ciated with two words, one could predict the e ect on the model of

substituting one for the other.

Ranking Intel l igible Models: Since one may have a choice of

intelligible models, it is useful to consider what makes one prefer-

able to another. Grice introduced four rules characterizing coop-

erative communication, which also hold for intelligible explana-

tions [11]. The maxim of quality says be truthful, only relating

things that are supported by evidence. The maxim of quantity says

to give as much information as is needed, and no more. The maxim

of relation: only say things that are relevant to the discussion. The

maxim of manner says to avoid ambiguity, being be as clear as

possible.

Miller summarizes decades of work by psychological research,

noting that explanations are contrastive, i.e., of the form “Why P

rather than Q?” The event in question, P, is termed the fact and Q is

called the foil [28]. Often thefoil isnot explicitly stated even though

it is crucially important to the explanation process. For example,

consider the question, “Why did you predict that the image depicts

an indigo bunting?” An explanation that points to the color blue

implicitly assumes that the foil is another bird, such as a chickadee.

But perhaps the questioner wonders why the recognizer did not

predict a pair of denim pants; in this case a more precise explana-

tion might highlight the presence of wings and a beak. Clearly, an
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nature and sophistication of a foil can depend on the end user’s

expertise; hence, the ideal explanation will di er for di erent peo-

ple [7]. For example, to verify that an ML system is fair, an ethicist

might generate more complex foils than a data scientist. Most ML

explanation systems have restricted their attention to elucidating

thebehavior of abinary classi er, i.e., wherethere isonly onepossi-

ble foil choice. However, as we seek to explain multi-class systems,

addressing this issue becomes essential.

Many systems are simply too complex to understand without

approximation. Here, the key challenge is deciding which details

to omit. After long study psychologists determined that several

criteria can beprioritized for inclusion in an explanation: necessary

causes (vs. su cient ones); intentional actions (vs. those taken

without deliberation); proximal causes vs. distant ones); details that

distinguish between fact and foil; and abnormal features [28].

According to Lombrozo, humans prefer explanations that are

simpler (i.e., contain fewer clauses), moregeneral, and coherent (i.e.,

consistent with what thehuman’s prior beliefs) [24]. In particular,

she observed the surprising result that humans preferred simple

(one clause) explanations to conjunctive ones, even when the prob-

ability of the latter was higher than the former) [24]. These results

raise interesting questions about the purpose of explanations in

an AI system. Is an explanation’s primary purpose to convince a

human to accept thecomputer’s conclusions (perhapsby presenting

a simple, plausible, but unlikely explanation) or is it to educate the

human about the most likely true situation? Tversky, Kahneman,

and other psychologists have documented many cognitive biases

that lead humans to incorrect conclusions; for example, people

reason incorrectly about the probability of conjunctions, with a

concrete and vivid scenario deemed more likely than an abstract

one that strictly subsumes it [17]. Should an explanation system

exploit human limitations or seek to protect us from them?

Other studies raise an additional complication about how to

communicate a system’s uncertain predictions to human users.

Koehler found that simply presenting an explanation asafact makes

people think that it is more likely to be true [18]. Furthermore,

explaining a fact in the same way as previous facts have been

explained ampli es this e ect [35].

3 INHERENTLY INTELLIGIBLE MODELS

Several AI systems are inherently intelligible. We previously men-

tioned linear models as an example that supports conterfactuals.

Unfortunately, linear models have limited utility because they of-

ten result in poor accuracy. More expressive choices may include

simple decision trees and compact decision lists. We focus on Gen-

eralized additive models (GAMs), which are a powerful class of

ML models that relate a set of features to the target using a linear

combination of (potentially nonlinear) single-feature models called

shape functions [25]. For example, if y represents the target and

{x1, . . . .xn } represents the features, then a GAM model takes the

form y = β0 +
Õ

j f j (xj ), where the f i sdenote shape functions and

the target y is computed by summing single-feature terms. Popular

shape functions include non-linear functions such as splines and

decision trees. With linear shapefunctions GAMsreduce to a linear
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Abstract

Decisions made by human-AI teams (e.g., AI-advised hu-
mans) are increasingly common in high-stakes domains such
as healthcare, criminal justice, and finance. Achieving high
team performance depends on more than just the accuracy of
the AI system: Since the human and the AI may have differ-
ent expertise, the highest team performance is often reached
when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: thehuman’smental model of theAI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?” ). Awareness of this lets the hu-
man decidewhen to accept or override theAI’srecommenda-
tion. Wehighlight two key properties of an AI’serror bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
proveoverall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teamsputsadditional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-

Copyright c 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: AI-advised human decision making for read-
mission prediction: The doctor makes final decisions us-
ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. Thesolid line represents theAI error boundary, while
thedashed lineshowsapotential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance(Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

Whilemany factors influenceteam performance, westudy
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses theAI’soutput to makedecisions, this mental model of
theAI’serror boundary—which describes theregionswhere
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
simplebut widespread form of human-AI team, for example,

When can I trust it?
How can I adjust it?
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Decisions made by human-AI teams (e.g., AI-advised hu-
mans) are increasingly common in high-stakes domains such
as healthcare, criminal justice, and finance. Achieving high
team performance depends on more than just the accuracy of
the AI system: Since the human and the AI may have differ-
ent expertise, the highest team performance is often reached
when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: thehuman’smental model of theAI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?” ). Awareness of this lets the hu-
man decidewhen to accept or override theAI’srecommenda-
tion. Wehighlight two key properties of an AI’serror bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
proveoverall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teamsputsadditional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-
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ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. Thesolid line represents theAI error boundary, while
thedashed lineshowsapotential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance(Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

Whilemany factors influenceteam performance, westudy
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses theAI’soutput to makedecisions, this mental model of
theAI’serror boundary—which describes theregionswhere
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
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interactions, or computed in expectation from the system it-
self.

In this paper, we argue that a classifier that is intended to
work with a human should maximize the number of accurate
examples beyond the handover threshold by focusing the op-
timization effort on improving theaccuracy of such examples
and putting less emphasis on examples within the threshold,
since such examples would be inspected and overriden by the
human anyways. We achieve this goal by proposing a new
optimization loss function named as negative log-utility loss
(NELU) that optimizes for team utility rather than AI accu-
racy alone. Current classifiers trained via log-loss for opti-
mizing team accuracy do not take into account this aspect of
AI-advised decision making, and therefore only aim at maxi-
mizing the number of instances on either side of the decision
boundary.

Take for instance, the illustrative example shown in Fig-
ure 1. The left side shows a standard classifier (h1) trained
with negative log-loss, while the right side shows a classifier
trained with negative log-utility loss (h2). The shaded gray
area shows the handover region for which it is rational for
the human to inspect the prediction and if inaccurate, over-
ride thedecision. It is clear that although h1 ismore accurate
(i.e., more accurate instances on either side of the decision
boundary), if it were used in an AI-advised decision making
setting, its high accuracy in the handover region would not
be useful to the team because the human would not trust the
classifier on those instances and spend more time in solving
the problem herself, which would then translate to subopti-
mal team utility. For the case of h2 instead, even though the
overall accuracy is lower (B is on the wrong side of the de-
cision boundary), if combined with a human it could achieve
a higher team utility because the human can safely trust the
machine outside of the handover region and at the same time
there exist less data points to inspect within the handover re-
gion (notice that the set of data points A has now moved out-
side of this region).

While there exist other aspects of collaboration that can
also beaddressed via optimization techniques, such as model
interpretability, supporting complementary skills, or enabling
learning among partners, the problem we address in this pa-
per to account for team-based utility functions is a first step
towards human-centered optimization. 1

In sum, we make the following contributions:

1. We highlight a novel, important problem in the field of
human-centered artificial intelligence: the most accu-
rate ML model may not lead to the highest team utility
when paired with ahuman overseer.

2. Weshow that log-loss, themost popular loss function, is
insufficient (as it ignores teamutility) and develop anew
loss function to overcome its issues.

3. Show that on multiple real data sets and machine learn-
ing models our new loss achieves higher utility than log
loss.

1BUG: This is an attempt to say that we are just making a first
step here to set expectations right.

(a)

(b)

Figure 2: (a) A schematic of AI-advised decision making. (b) To
make a decision, the human decision maker either accepts or over-
rides a recommendation. The Over r i de meta-decision is costlier
than Accept .

4. Provide a thorough explanation on when and why it is
best to use the negative log-utility loss by showing ex-
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human effort. Let U denote the utility function. If the team
classifiesasequenceof instances, theobjectiveof this team is
to maximize the cumulative utility. Before deriving a closed

2BUG: Change. Weanalyze... with different costs....
3BUG: - show connection with real world
4BUG: say wemakeassumptions about collaboration, but its im-

portant
5BUG: Work weneed to citehere to show that collaboration may

not work: [Zhang et al., 2020; Lai and Tan, 2018; Feng and Boyd-
Graber, 2019].

interactions, or computed in expectation from the system it-
self.

In this paper, we argue that a classifier that is intended to
work with a human should maximize the number of accurate
examples beyond the handover threshold by focusing the op-
timization effort on improving theaccuracy of such examples
and putting less emphasis on examples within the threshold,
since such examples would be inspected and overriden by the
human anyways. We achieve this goal by proposing a new
optimization loss function named as negative log-utility loss
(NELU) that optimizes for team utility rather than AI accu-
racy alone. Current classifiers trained via log-loss for opti-
mizing team accuracy do not take into account this aspect of
AI-advised decision making, and therefore only aim at maxi-
mizing the number of instances on either side of the decision
boundary.

Take for instance, the illustrative example shown in Fig-
ure 1. The left side shows a standard classifier (h1) trained
with negative log-loss, while the right side shows a classifier
trained with negative log-utility loss (h2). The shaded gray
area shows the handover region for which it is rational for
the human to inspect the prediction and if inaccurate, over-
ride thedecision. It is clear that although h1 ismore accurate
(i.e., more accurate instances on either side of the decision
boundary), if it were used in an AI-advised decision making
setting, its high accuracy in the handover region would not
be useful to the team because the human would not trust the
classifier on those instances and spend more time in solving
the problem herself, which would then translate to subopti-
mal team utility. For the case of h2 instead, even though the
overall accuracy is lower (B is on the wrong side of the de-
cision boundary), if combined with a human it could achieve
a higher team utility because the human can safely trust the
machine outside of the handover region and at the same time
there exist less data points to inspect within the handover re-
gion (notice that the set of data points A has now moved out-
side of this region).

While there exist other aspects of collaboration that can
also beaddressed via optimization techniques, such as model
interpretability, supporting complementary skills, or enabling
learning among partners, the problem we address in this pa-
per to account for team-based utility functions is a first step
towards human-centered optimization. 1

In sum, we make the following contributions:

1. We highlight a novel, important problem in the field of
human-centered artificial intelligence: the most accu-
rate ML model may not lead to the highest team utility
when paired with ahuman overseer.

2. Weshow that log-loss, themost popular loss function, is
insufficient (as it ignores teamutility) and develop anew
loss function to overcome its issues.

3. Show that on multiple real data sets and machine learn-
ing models our new loss achieves higher utility than log
loss.

1BUG: This is an attempt to say that we are just making a first
step here to set expectations right.

(a)

(b)

Figure 2: (a) A schematic of AI-advised decision making. (b) To
make a decision, the human decision maker either accepts or over-
rides a recommendation. The Over r i de meta-decision is costlier
than Accept .

4. Provide a thorough explanation on when and why it is
best to use the negative log-utility loss by showing ex-
perimental results with varying domain related cost pa-
rameters.

2 3 4 5

2 Problem Descr iption

We focus on a special case of AI-advised decision mak-
ing where a classifier h gives recommendations to a hu-
man decision maker d to help make decisions (Figure 2a).
If h(x) denotes the classifier’s output, a probability distri-
bution over Y , the recommendation r h (x) consists of a la-
bel argmax h(x) and a confidence value max h(x), i.e.,
r h (x) := (argmax h(x), max h(x)). Using this recommen-
dation, the user computes a final decision d(x, r h (x)). The
environment, in response, returns a utility which depends on
the quality of the final decision and any cost incurred due to
human effort. Let U denote the utility function. If the team
classifiesasequenceof instances, theobjectiveof this team is
to maximize the cumulative utility. Before deriving a closed

2BUG: Change. Weanalyze... with different costs....
3BUG: - show connection with real world
4BUG: say wemakeassumptions about collaboration, but its im-

portant
5BUG: Work weneed to citehere to show that collaboration may

not work: [Zhang et al., 2020; Lai and Tan, 2018; Feng and Boyd-
Graber, 2019].

Assistance Architecture

0)   Solo Human (No AI)

1) AI Recommends

2) AI also gives its confidence

3) AI also explains (LIME-like)

4) AI gives human explanations



Explanations are Convincing

AI Correct

AI Incorrect



Explanations are Convincing

AI Correct

AI Incorrect



Explanations are Convincing

AI Correct

AI Incorrect



Explanations are Convincing

Better Explanations are More Convincing

AI Correct

AI Incorrect





That Other Question…

Beyond Accuracy: TheRole of Mental Models in Human-AI Team Performance

Gagan Bansal1 Besmira Nushi2 EceKamar 2 Walter S. Lasecki3

Daniel S. Weld1,4 Eric Horvitz2

1University of Washington 2Microsoft Research 3University of Michigan 4Allen Institute for Artificial Intelligence

Abstract

Decisions made by human-AI teams (e.g., AI-advised hu-
mans) are increasingly common in high-stakes domains such
as healthcare, criminal justice, and finance. Achieving high
team performance depends on more than just the accuracy of
the AI system: Since the human and the AI may have differ-
ent expertise, the highest team performance is often reached
when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: thehuman’smental model of theAI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?” ). Awareness of this lets the hu-
man decidewhen to accept or override theAI’srecommenda-
tion. Wehighlight two key properties of an AI’serror bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
proveoverall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teamsputsadditional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-

Copyright c 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: AI-advised human decision making for read-
mission prediction: The doctor makes final decisions us-
ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. Thesolid line represents theAI error boundary, while
thedashed lineshowsapotential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance(Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

Whilemany factors influenceteam performance, westudy
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses theAI’soutput to makedecisions, this mental model of
theAI’serror boundary—which describes theregionswhere
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
simplebut widespread form of human-AI team, for example,
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when they both know how and when to complement one an-
other. We focus on a factor that is crucial to supporting such
complementary: thehuman’smental model of theAI capabil-
ities, specifically the AI system’s error boundary (i.e. know-
ing “When does the AI err?” ). Awareness of this lets the hu-
man decidewhen to accept or override theAI’srecommenda-
tion. Wehighlight two key properties of an AI’serror bound-
ary, parsimony and stochasticity, and a property of the task,
dimensionality. We show experimentally how these proper-
ties affect humans’ mental models of AI capabilities and the
resulting team performance. We connect our evaluations to
related work and propose goals, beyond accuracy, that merit
consideration during model selection and optimization to im-
proveoverall human-AI team performance.

1 Introduction
While many AI applications address automation, numer-
ous others aim to team with people to improve joint per-
formance or accomplish tasks that neither the AI nor peo-
ple can solve alone (Gillies et al. 2016; Kamar 2016;
Chakraborti and Kambhampati 2018; Lundberg et al. 2018;
Lundgard et al. 2018). In fact, many real-world, high-stakes
applications deploy AI inferences to help human experts
make better decisions, e.g., with respect to medical diag-
noses, recidivism prediction, and credit assessment. Rec-
ommendations from AI systems—even if imperfect—can
result in human-AI teams that perform better than either
the human or the AI system alone (Wang et al. 2016;
Jaderberg et al. 2019).

Successfully creating human-AI teamsputsadditional de-
mands on AI capabilities beyond task-level accuracy (Grosz
1996). Specifically, even though team performance depends
on individual human and AI performance, the team perfor-
mance will not exceed individual performance levels if hu-
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Figure 1: AI-advised human decision making for read-
mission prediction: The doctor makes final decisions us-
ing the classifier’s recommendations. Check marks denote
cases where the AI system renders a correct prediction, and
crosses denote instances where the AI inference is erro-
neous. Thesolid line represents theAI error boundary, while
thedashed lineshowsapotential human mental model of the
error boundary.

man and the AI cannot account for each other’s strengths
and weaknesses. In fact, recent research shows that AI ac-
curacy does not always translate to end-to-end team perfor-
mance(Yin, Vaughan, and Wallach 2019; Lai and Tan 2018).
Despite this, and even for applications where people are in-
volved, most AI techniques continue to optimize solely for
accuracy of inferences and ignore team performance.

Whilemany factors influenceteam performance, westudy
one critical factor in this work: humans’ mental model of
the AI system that they are working with. In settings where
the human is tasked with deciding when and how to make
use of the AI system’s recommendation, extracting benefits
from the collaboration requires the human to build insights
(i.e., a mental model) about multiple aspects of the capabil-
ities of AI systems. A fundamental attribute is recognition
of whether the AI system will succeed or fail for a partic-
ular input or set of inputs. For situations where the human
uses theAI’soutput to makedecisions, this mental model of
theAI’serror boundary—which describes theregionswhere
it is correct versus incorrect—enables the human to predict
when the AI will err and decide when to override the auto-
mated inference.

We focus here on AI-advised human decision making, a
simplebut widespread form of human-AI team, for example,
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interactions, or computed in expectation from the system it-
self.

In this paper, we argue that a classifier that is intended to
work with a human should maximize the number of accurate
examples beyond the handover threshold by focusing the op-
timization effort on improving theaccuracy of such examples
and putting less emphasis on examples within the threshold,
since such examples would be inspected and overriden by the
human anyways. We achieve this goal by proposing a new
optimization loss function named as negative log-utility loss
(NELU) that optimizes for team utility rather than AI accu-
racy alone. Current classifiers trained via log-loss for opti-
mizing team accuracy do not take into account this aspect of
AI-advised decision making, and therefore only aim at maxi-
mizing the number of instances on either side of the decision
boundary.

Take for instance, the illustrative example shown in Fig-
ure 1. The left side shows a standard classifier (h1) trained
with negative log-loss, while the right side shows a classifier
trained with negative log-utility loss (h2). The shaded gray
area shows the handover region for which it is rational for
the human to inspect the prediction and if inaccurate, over-
ride thedecision. It is clear that although h1 ismore accurate
(i.e., more accurate instances on either side of the decision
boundary), if it were used in an AI-advised decision making
setting, its high accuracy in the handover region would not
be useful to the team because the human would not trust the
classifier on those instances and spend more time in solving
the problem herself, which would then translate to subopti-
mal team utility. For the case of h2 instead, even though the
overall accuracy is lower (B is on the wrong side of the de-
cision boundary), if combined with a human it could achieve
a higher team utility because the human can safely trust the
machine outside of the handover region and at the same time
there exist less data points to inspect within the handover re-
gion (notice that the set of data points A has now moved out-
side of this region).

While there exist other aspects of collaboration that can
also beaddressed via optimization techniques, such as model
interpretability, supporting complementary skills, or enabling
learning among partners, the problem we address in this pa-
per to account for team-based utility functions is a first step
towards human-centered optimization. 1

In sum, we make the following contributions:

1. We highlight a novel, important problem in the field of
human-centered artificial intelligence: the most accu-
rate ML model may not lead to the highest team utility
when paired with ahuman overseer.

2. Weshow that log-loss, themost popular loss function, is
insufficient (as it ignores teamutility) and develop anew
loss function to overcome its issues.

3. Show that on multiple real data sets and machine learn-
ing models our new loss achieves higher utility than log
loss.

1BUG: This is an attempt to say that we are just making a first
step here to set expectations right.

(a)

(b)

Figure 2: (a) A schematic of AI-advised decision making. (b) To
make a decision, the human decision maker either accepts or over-
rides a recommendation. The Over r i de meta-decision is costlier
than Accept .

4. Provide a thorough explanation on when and why it is
best to use the negative log-utility loss by showing ex-
perimental results with varying domain related cost pa-
rameters.

2 3 4 5

2 Problem Descr iption

We focus on a special case of AI-advised decision mak-
ing where a classifier h gives recommendations to a hu-
man decision maker d to help make decisions (Figure 2a).
If h(x) denotes the classifier’s output, a probability distri-
bution over Y , the recommendation r h (x) consists of a la-
bel argmax h(x) and a confidence value max h(x), i.e.,
r h (x) := (argmax h(x), max h(x)). Using this recommen-
dation, the user computes a final decision d(x, r h (x)). The
environment, in response, returns a utility which depends on
the quality of the final decision and any cost incurred due to
human effort. Let U denote the utility function. If the team
classifiesasequenceof instances, theobjectiveof this team is
to maximize the cumulative utility. Before deriving a closed
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3BUG: - show connection with real world
4BUG: say wemakeassumptions about collaboration, but its im-

portant
5BUG: Work weneed to citehere to show that collaboration may

not work: [Zhang et al., 2020; Lai and Tan, 2018; Feng and Boyd-
Graber, 2019].
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