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ABSTRACT

Predicting words and subword units (WSUs) as the output
has shown to be effective for the attention-based encoder-
decoder (AED) model in end-to-end speech recognition.
However, as one input to the decoder recurrent neural net-
work (RNN), each WSU embedding is learned independently
through context and acoustic information in a purely data-
driven fashion. Little effort has been made to explicitly
model the morphological relationships among WSUs. In
this work, we propose a novel character-aware (CA) AED
model in which each WSU embedding is computed by sum-
marizing the embeddings of its constituent characters using a
CA-RNN. This WSU-independent CA-RNN is jointly trained
with the encoder, the decoder and the attention network of
a conventional AED to predict WSUs. With CA-AED, the
embeddings of morphologically similar WSUs are naturally
and directly correlated through the CA-RNN in addition to
the semantic and acoustic relations modeled by a traditional
AED. Moreover, CA-AED significantly reduces the model
parameters in a traditional AED by replacing the large pool
of WSU embeddings with a much smaller set of character
embeddings. On a 3400 hours Microsoft Cortana dataset,
CA-AED achieves up to 11.9% relative WER improvement
over a strong AED baseline with 27.1% fewer model param-
eters.

Index Terms— character-aware, end-to-end, attention,
encoder-decoder, speech recognition

1. INTRODUCTION

Traditional hybrid automatic speech recognition (ASR) sys-
tem [1, 2, 3, 4] consists of an acoustic model, a pronunciation
model and a language model. Different components are op-
timized separately towards different objectives. With the ad-
vance of deep learning, end-to-end (E2E) speech recognition
has shown promising ASR performance by incorporating the
three components into a single deep neural network (DNN)
and directly mapping a sequence of input speech signal to a
sequence of output labels as the transcription. Connectionist
temporal classification (CTC) [5, 6], recurrent neural network
transducer [7] and attention-based encoder-decoder (AED)
[8, 9, 10] are three dominant approaches that enable E2E
speech recognition. With the advantage of no conditional in-

dependence assumption over CTC, AED was first introduced
to the speech area in [10] for phoneme recognition. In AED
model, an encoder maps the input speech frames into high-
level representations and a decoder predicts the current output
symbol given the acoustic context vector and the embeddings
of previously predicted symbols. An attention mechanism [9]
aligns each decoder output with the encoded representations
and computes the acoustic context vector. In [11, 12], AED is
successfully applied to large vocabulary speech recognition
and is recently reported to achieve superior performance to
the conventional hybrid systems [13].

Initially, characters (graphemes) are commonly used as
the output units for AED in E2E ASR [11, 12, 14]. Later
on, people began to use words and subword units (WSUs) as
the output since the perplexity of a word LM is lower than
that of a character LM and the WSUs enable a stronger LM
to be learned in the decoder of AED [15]. Modeling WSUs
instead of characters enables the E2E system more directly
targeting on the ASR output – word hypotheses. One popular
type of WSUs is the word pieces model generated by itera-
tively combining two units out of the current inventory that
increase the likelihood the most on the training data [13, 16].
Another kind of WSUs is the mixed-units [17] which include
all the frequent words in the vocabulary as the major part and
decompose each infrequent word into frequent words and left-
over multi-character units. Mixed units were first introduced
to address the issue of out-of-vocabulary (OOV) words [17]
in a CTC-based E2E system. Recently, for AED-based ASR,
mixed units outperform the characters and words as the out-
put units [18]. With around 30k WSUs commonly used for
US English, the WSU set is about 1000 times larger than the
character set (about 30). Therefore, the WSU-based AED ne-
cessitates a much larger output layer with much more param-
eters but requires fewer decoding steps to generate the ASR
results.

The WSU-based AED model learns a distinct embedding
vector for each WSU from the text history and the speech
signal by conditioning the decoder on previous WSU embed-
dings to predict the current WSU posteriors. Although good
performance is achieved, the relationships among the WSUs
are not explicitly modeled or well exploited. In many lan-
guages, the semantic relations of WSUs are not only deter-
mined by their relative positions and functionality in the sen-
tences, but also are directly reflected in the similarity among



their spellings, i.e., the shared characters that form the WSUs.
To directly capture the additional morphological rela-

tionships among WSUs, we propose a character-aware (CA)
AED in which only the character embeddings are learned
through the E2E training and each WSU representation is
generated by summarizing the embeddings of its constituent
characters using a CA-recurrent neural network (RNN). With
CA-AED, the embeddings of different WSUs that share the
same character sequence are naturally bridged through the
WSU-independent CA-RNN. A rare WSU representation can
be better estimated through “assembling” the well-trained
character embeddings. With the same output layer predicting
WSU posteriors, CA-AED inherits the strong WSU dis-
criminability in a large vocabulary and further improves
AED through more sophisticated character-aware modeling
of WSU embeddings.

Moreover, CA-AED significantly reduces the number of
model parameters by replacing a large pool of WSU em-
beddings with a much smaller set of character embeddings.
Therefore, CA-AED is expected to outperform conventional
AED models with remarkably reduced model size and com-
putational cost. A similar CA architecture based on convolu-
tional neural network was proposed to improve the perplexity
in neural language model [19] and has outperformed the
word/morpheme-level long short-term memory network lan-
guage model with fewer parameters.

Evaluated on 3400 hours Microsoft Cortana dataset (US
English) with models of different sizes, the proposed CA-
AED achieves up to a 11.9% relative word error rate (WER)
improvement over a strong AED baseline with 27.1% fewer
model parameters for word-piece output, and up to 8.5% rel-
ative WER gain with 29.3% fewer parameters for mixed-unit
output.

2. ATTENTION-BASED ENCODER-DECODER
(AED) MODEL FOR E2E ASR

In this work, we focus on improving the AED-based E2E
speech recognition [10, 11, 12] with WSUs as the out-
put units. AED models the conditional probability dis-
tribution P (Y|X) over sequences of output WSU labels
Y = {y1, . . . , yT } given a sequence of input speech frames
X = {x1, . . . ,xI}, where yt ∈ R, t = 1, . . . , T,xi ∈
R

dx , i = 1, . . . , I . To achieve E2E ASR, AED directly maps
X to Y via an encoder, a decoder, an attention network and a
WSU-embedding dictionary as shown in Fig. 1.

The encoder is an RNN which encodes the sequence of
input speech frames X into a sequence of high-level features
H = {h1, . . . ,hI} as follows and it resembles the role of an
acoustic model in a traditional ASR system.

hi = RNNenc(hi−1,xi) (1)

where hi ∈ Rdh represents the hidden state of the encoder
RNN at current time i. With the encoder, P (Y|X) is equiv-

Fig. 1. The architecture of AED model for E2E ASR. The
convolution network generating vector ft,i is omitted for
brevity.

alent to the probability over the output WSU sequences con-
ditioned on the encoded high-level features H, i.e., P (Y|H),
as follows.

P (Y|X) = P (Y|H) =

T∏
t=1

P (yt|y0, . . . , yt−1,H) (2)

We use a decoder to model P (Y|H). In P (yt|y0, . . . ,
yt−1,H), the conditional dependence of yt on H is captured
through an acoustic context vector gt ∈ Rdh obtained by a
linear combination of all the encoded features H weighted by
an attention probability vector at ∈ RI against H. To esti-
mate at, a location-aware attention mechanism [10] is applied
to determine which encoded features in H should the decoder
attend to predict the output label yt. Specifically, at is com-
puted by normalizing the similarity scores, zt,i, i = 1, . . . , I ,
among the current hidden state st ∈ Rds of the decoder RNN,
each encoded feature hi and the convoluted attention vector
ft,i as follows.

zt,i = v>ReLU(Whhi +Wsst +Wf ft,i + bz) (3)
at = softmax(zt) (4)

gt =

I∑
i=1

at,ihi. (5)

where the column vector v ∈ Rk, bias bz ∈ Rk, the pro-
jection matrices Wh ∈ Rk×dh , Ws ∈ Rk×ds , Wf ∈ Rk×df



are all learnable parameters. ft,i ∈ Rdf is generated by con-
volving the previous attention probability vector at−1 with a
matrix F ∈ Rdf×r.

The conditional dependence of yt on y0, . . . , yt−1 is mod-
eled by an RNN with a feedback connection from the decoder
output of the previous time step to the input of the current
step. Similar to an RNN language model [20], we maintain
a large dictionary Dw which maps each WSU to an embed-
ding vector and feed the previous WSU embedding instead of
the label to the current input of the decoder. The WSU em-
beddings are learned jointly with the other parts of the AED
in the training process. We denote the WSU-embedding se-
quence of Y as W = {w1, . . . ,wT }. Therefore, at each time
step t, the decoder RNN takes the sum of the previous WSU
embedding wt−1 and the acoustic context vector gt−1 as the
input to predict the conditional probability of each WSU, i.e.,
P (u|y0, . . . , yt−1,H), u ∈ U, at the current time t as follows,
whereU is the set of all the WSUs:

st = RNNdec(st−1,wt−1 + gt−1) (6)
[P (u|y0, . . . , yt−1,H)]u∈U =

softmax [Wy(st + gt) + by] (7)

where bias by ∈ Rk and the matrix Wy ∈ Rdy×ds are learn-
able parameters. Note that dy is the number of WSUs in the
vocabulary and dh = ds in our AED model.

To train the AED model, we maximize the conditional
probability of the reference label sequencesY = {Y1, . . . ,YN}
given their corresponding input speech sequences X =
{X1, . . . ,XN} on the training corpus, which is equivalent
to minimizing the total cross-entropy loss LCE between the
output of the decoder and the references at all the time steps
below:

LCE = −
N∑

n=1

logP (Yn|Xn)

= −
N∑

n=1

Tn∑
t=1

logP (y
(n)
t |y

(n)
0 , . . . , y

(n)
t−1,Hn) (8)

3. CHARACTER-AWARE (CA) AED MODEL FOR
E2E ASR

As discussed in Section 2, a dictionary of WSU embeddings
are learned through the E2E training of the AED model. The
WSU embeddings exhibit the property that semantically and
phonetically close words are likewise close in the induced
vector space since the encoder and decoder RNNs are able
to well capture the acoustic and the contextual relationships
at the WSU-level. However, there is another level of con-
nections that exist more apparently among different WSUs
which the traditional AED models with WSUs output fail to
capture - the morphological relationships. For example, in ad-
dition to the semantic and phonetic similarity, the words note,

noted, noting, notification, notify, notified, notifying, notifi-
able, noticeable, unnoticeable, unnoticeably include the same
sequence of characters “not-”, and thus should have struc-
turally correlated embeddings.

In a traditional WSU-based AED, the embeddings of the
morphologically related WSUs are initialized and learned in-
dependently only through contextual WSUs and speech in a
purely data-driven way. The robust estimation of so many
WSU embeddings (e.g., around 30k) requires a huge amount
of training data. The embeddings are poorly estimated for
the WSUs that rarely occur in the training data. This is espe-
cially problematic for morphologically rich languages, e.g., in
Finnish, a noun has 15 different cases; in French and Spanish,
most verbs have more than 40 inflected forms.

To address this problem, we propose a CA-AED which
directly makes use of the rich morphological relations among
WSUs. As shown in Fig. 2, based on the existing components
of AED, CA-AED introduces an additional character-aware
(CA) RNN and replaces the WSU embeddings in Dw with
WSU representations dynamically generated by this WSU-
independent CA-RNN from character embeddings.

Fig. 2. The architecture of CA-AED model for E2E ASR.
The convolution network generating vector ft,i is omitted for
brevity.

The WSU yt is comprised of a character sequence Ct =

{c(t)1 , . . . , c
(t)
Lt
}, where Lt is length of yt in terms of charac-

ters. We construct a character-embedding dictionary Dc that
maps each character into an embedding vector. By looking up
Dc, we encode Ct into a sequence of character embeddings
Et = {e(t)1 , . . . , e

(t)
Lt
}. In CA-AED, the CA-RNN takes the

character-embedding sequence Et of the WSU yt as the input



and generate a representation for yt using its last hidden state
q
(t)
Lt

as follows.

q
(t)
l = RNNchar(q

(t)
l−1, e

(t)
l ), l = 1, . . . , Lt (9)

q
(t)
Lt

is then used in place of the WSU embedding wt as the
input to the decoder RNN below, which further predicts the
conditional probabilities of all possible WSUs via Eq. (7).

st = RNNdec(st−1,q
(t−1)
Lt−1

+ gt−1) (10)

Fig. 3 shows an example of how CA-RNN works. The en-
coder and the attention network of CA-AED are exactly the
same as the ones in AED. The character embeddings in Dc

along with the CA-RNN are jointly trained with the other
parts of CA-AED to minimize cross-entropy loss LCE in Eq.
(8).

Fig. 3. An example of CA-RNN for generating the represen-
tation of WSU “play” with label yt from the embeddings of
its constituent characters.

With CA-AED, the WSUs sharing the same character
substrings are naturally and explicitly correlated through the
CA-RNN so that the embeddings of rare WSUs can be ro-
bustly estimated through assembling their constituent charac-
ters whose embeddings are accurately learned from abundant
training samples. In addition, CA-AED inherits the strong
discriminativity power among WSUs by predicting the same
set of WSU units at the decoder output layer.

More importantly, CA-AED entails a much smaller num-
ber of character embeddings (e.g., about 30 in English) and
a light-weight CA-RNN to be learned together with the en-
coder, decoder and attention network as opposed to a huge
number of WSU embeddings (e.g., about 30k) with 1000
times more parameters in a conventional AED. Benefiting
from modeling the additional morphological relations, the
CA-AED is expected to generate better WSU embeddings
for the decoder and improve the AED-based E2E ASR with

significantly reduced number of parameters. The compres-
sion ratio becomes higher for a CA-AED model of smaller
size since the character embeddings plus CA-RNN save a
fixed number of parameters from WSU embeddings. There-
fore, CA-AED has even higher potential for improving low-
footprint AED models on mobile devices.

Before testing, all the WSU embeddings are pre-computed
for once to form the WSU dictionary Dw by feed the con-
stituent character embeddings of each WSU to the well-
trained CA-RNN. Just as a conventional AED model de-
scribed in Section 2, the pre-computed WSU dictionary is
then looked up at each decoding step to provide the WSU
embedding that the decoder is currently conditioned on to
predict the next WSU output. Therefore, CA-AED does not
increase the computational cost over the conventional AED
model during evaluation.

Note that, during the WSU embedding computation for
both training and testing, the CA-RNN resets its memory ev-
ery time the first character embedding of a WSU is fed as
the input. The CA-RNN thus only models the morphology
of each WSU, i.e., the statistical relationships among inter-
nal characters, without performing any WSU-level language
modeling.

4. EXPERIMENTS

We perform E2E ASR using AED and CA-AED with WSUs
as the output units on a Microsoft Windows phone short mes-
sage dictation (SMD) task.

4.1. Data Preparation

The training data consists of 3400 hours of Microsoft inter-
nal live US English Cortana utterances collected through a
number of deployed speech services including voice search
and SMD. The test data includes about 5600 utterances (6
hours). We explore both the word pieces and mixed units
as the WSUs. We extract 80-dimensional log Mel filter bank
(LFB) features from the speech signal in both the training and
test set every 10 ms over a 25 ms window. We stack 3 consec-
utive frames and stride the stacked frame by 30 ms, to form
a sequence of 240-dimensional input speech frames. We first
generate 29190 word pieces as in [21] and 33755 mixed units
as in [17] based on the training transcription and then pro-
duce both word-piece and mixed-unit label sequences serving
as the training targets. We insert a special token <space>
in between every two adjacent words to indicate word bound-
aries and add tokens <sos>, <eos> to the beginning and the
end of each label sequence, respectively, to represent sentence
boundaries.



4.2. AED Baseline System

We train a WSU-based AED model for E2E ASR. The en-
coder is a bi-directional gated recurrent units (GRU)-RNN
[8, 22] with 4 or 6 hidden layers, each with 512 hidden
units. Layer normalization [23] is applied for each encoder
hidden layer. Units at the last hidden layer are used as the
encoded high-level features. Each WSU is represented by a
512-dimensional embedding vector in Dw. The decoder is
a uni-directional GRU-RNN with 2 hidden layers, each with
512 hidden units. The decoders predicting word pieces and
mixed units have 29190 and 33755 output units, respectively.
During training, scheduled sampling [24] is applied to the
decoder with a sampling probability starting at 0.0 and grad-
ually increasing to 0.4 [13]. Dropout [25] with a probability
of 0.1 is used in both encoder and decoder. We use 1-D con-
volution with a filter size of 15 and 512 output channels to
generate ft,i and fix Wh,Ws,Wf as identity matrices to com-
pute the similarity scores zt,i in Eq. (5). A label-smoothed
cross-entropy [26] loss is minimized during training. Greedy
decoding is performed to generate the ASR transcription. We
use PyTorch [27] for all the experiments.

As shown in Table 1, AED achieves 9.52% and 7.75%
WERs with 4-layer and 6-layer encoders, respectively, by pre-
dicting word pieces at the output. By predicting mixed-unit
output, the WERs decrease to 9.31% and 7.58% with 4-layer
and 6-layer encoders, respectively. AED achieves better ASR
performance with mixed-unit output.

WSU System Ne WER WERR Np PRR

Word
Piece

AED 4 9.52 - 44.9 -
6 7.75 - 52.2 -

CA-AED 4 8.39 11.9 32.7 27.1
6 7.36 5.0 39.0 23.8

Mixed
Unit

AED 4 9.31 - 49.5 -
6 7.58 - 55.8 -

CA-AED 4 8.52 8.5 35.0 29.3
6 7.35 3.0 41.3 26.0

Table 1. The WER (%) performance of AED and CA-AED
with different WSU output units for E2E ASR on a 3400
hours Microsoft Cortana dataset. Ne is the number of hid-
den layers in a encoder GRU and Np (in million) is the total
number of model parameters. WERR (%) and PRR (%) are
the relative WER improvement and the parameter reduction
rate of a CA-AED with respect to the AED with the same Ne.

4.3. Character-Aware (CA) AED System

We further train a CA-AED for E2E ASR with the same train-
ing data. The encoder, decoder and attention network in CA-
AED have exactly the same architectures as the ones in AED.
We map each of the 30 characters into a 256-dimensional em-
bedding vector. CA-RNN is a GRU with 2 hidden layers and

512 hidden units for each layer. The last state of the top hid-
den layer of CA-RNN is used as the 512-dimensional WSU
representation.

We vary the number of hidden layers in the encoder Ne to
investigate the effectiveness of CA-AED for different model
sizes with different parameter reduction rates (PRR). As
shown in Table 1, for word-piece model, CA-AED achieves
8.39% and 7.36% WERs, respectively, with 4-layer and 6-
layer encoders, which are 11.9% and 5.0% relative gains over
the AED baseline system with 27.1% and 23.8% less model
parameters, respectively. For mixed-unit model, CA-AED
achieves 8.52% and 7.35% WERs, respectively, with 4-layer
and 6-layer encoders, which are 8.5% and 3.0% relative im-
proved over the AED baseline system with 29.3% and 26.0%
reduction in model parameters, respectively.

As expected, PRR grows as the number of encoder lay-
ers decreases, indicating increased compression ratio. With
a 4-layer encoder, CA-AED performs better for word-piece
output, but with a 6-layer encoder, CA-AED achieves similar
WERs for mixed-unit and word-piece outputs. With signifi-
cantly reduced model parameters, CA-AED improves consis-
tently over AED models for both word-piece and mixed-unit
outputs. We also observe that the relative WER gain doubles
when the encoder downsizes from 6 layers to 4 layers possi-
ble because the less accurate acoustic embeddings generated
by a weaker encoder of smaller size make more room for the
improvement from a more sophisticated WSU representation
learned by the CA mechanism. This implies that CA-AED
can achieve higher relative improvement upon corresponding
AED model with a smaller number of parameters, and thus
with a higher PRR. Therefore, CA-AED is even more effec-
tive in improving the accuracy of low-footprint AED models
on mobile devices.

5. CONCLUSION

In this work, we propose a character-aware AED model for
E2E ASR. The CA-AED explicitly models the morphologi-
cal relations that exist prevalently among WSUs sharing the
same sequence of characters. An additional CA-RNN is in-
troduced to generate WSU representations by taking in the
embeddings of their constituent characters. CA-AED makes
prediction still at WSU level while entails only a few char-
acter embeddings be learned instead of a huge set of WSU
embeddings.

Evaluated on a 3400 hours Microsoft Cortana dataset,
CA-AED improves the WER of a traditional AED by up
to 11.9% relatively with 27.1% fewer parameters with no
increase of computational cost during testing. The gain is
consistent for both word pieces or mixed units as the output
units. CA-AED has great potential in improving small-
footprint model on mobile devices, as the relative gain is
higher over the AED models with fewer parameters.
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