Perspectives on Cross-Validation

Wenda Zhou

January 17, 2020

O




Estimators and Risk
Given loss £ and hypothesis f, we are interested in its risk:

R(f) = ExL(X, f).

O




Estimators and Risk
Given loss £ and hypothesis f, we are interested in its risk:

R(f) = ExL(X, f).

In general, we do not have access to the distribution of X, but
rather samples X,...,. X,,. We may estimate the risk:

R(f) =) L(Xi,]).

=1




Estimators and Risk
Given loss £ and hypothesis f, we are interested in its risk:

R(f) = ExL(X, f).

In general, we do not have access to the distribution of X, but
rather samples X,...,. X,,. We may estimate the risk:

R(f) =) _ L(Xi,f)
—

We usually are not given f but estimate it from data ./A'(;--\'] ...... > S

R(f) = ExL(X, f) = R,.




Estimators and Risk
Given loss £ and hypothesis f, we are interested in its risk:
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In general, we do not have access to the distribution of X, but
rather samples X,...,. X,,. We may estimate the risk:

R(f) =) _ L(Xi,f)
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We usually are not given f but estimate it from data ./A'(',,--\',., ..... X, ):
R(f) = ExL(X, f) = Rn.
The insample estimate of the risk is biased:

~
.

R"(f) =Y L(Xi, f(X1,..., Xn))
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Sample Splitting

Separate the training and testing sets (let & = n/m):

n
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Sample Splitting

Separate the training and testing sets (let & = n/m):

o li l 2 > 2 > >
Hip‘l‘l't - E Z E(‘\' J X Xn—m ))
t=n—m-+1

It is an unbiased estimator of R,,_,, /1 = R, 1.

If k is constant, then it is asymptotically unbiased for R,, when f is
parametric.

Problem: part of the data is unused for learning.




Cross-Validation
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Cross-Validation

Is RV a better estimator than RSPlit?

Note that we have: ER = ERPt hence it suffices to understand
the variance.




Cross-Validation

Is RV a better estimator than RSPlit?

Note that we have: ER = ERPt hence it suffices to understand
the variance.

Our hope is that splits behave “independently’:

’ | _
Var R®Y ~ = Var [sPlit

Main ditficulty: the splits are not actually independent, hence subtle
analysis.




Cross-Validation: Some Previous Work

» Blum et al. (1999): Var R < Var RPlit,
> Kale et al. (2011): Var R® < (1 + o(1))+ Var Rt under
stability conditions.

» Kumar et al. (2013): Further study the stability conditions in
Kale et al.




Asymptotics of Cross-Validation

Joint work with Morgane Austern (MSR New England).
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Asymptotics

To evaluate such problems, we will establish a central limit theorem.

A

XL Y D g ;
n®(RE, — Ry x) — N(0,07)
A central limit theorem is powerful tool to understand the behaviour
of a random quantity.

» Characterize the rate of convergence (i.e. «)

» Give sharp constants (i.e. o*)

» Full description of behaviour to that order / universality




Asymptotics for Cross-Validation

General Result
Suppose that f satisfies some stability conditions, and that
k = o(n), then we have that:

o

VR(BPY — R, 1) = N(0,07 + 03)

b

\/Z\/I_I(l V. — Rp k) = N(O, 0% + a5 + 2p)
where we have:
o : lim E Var(£ (X, )1 1).
n.'_“',)—lilllnn(l /k) Var E[L(X, f) | fl, a
p = lim Cov(E[L(X', f(X1,..,- XL EBIGE, FIX X XN | XN




Asymptotics: Parametric M-estimator

Suppose that ,/A' Is a parametric M-estimator for a loss W:

I

 ' = arg min Z W(X;,0),

and that W and £ are nice, then:

0" = argmin EW (X, 0),

dcRp

G, = 09 R(60"), Gu(X)=009(X,0*), H =E[02V(X,0")]

oi = Var £(X;,0%), 0
0 = GoH ' Cov(Gy)H 'Gr,
= —G L H HCov(Ge (X)) . L(X1,0%)).




Results: good news

Corollary: Parametric case with W = L

Suppose that f is a parametric estimator, and ¥ = L.
Then, we have that:

0" = argmin R(0) = Gr = 0yR(6") = 0.

felRP
Which immediately implies:

p=—-GrH 1 Cov(Gy(X1), L(X1,0%)) = 0.
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Some surprises: ridge regression

Consider the ridge estimator:

) 1 n - |
Oridge = argmin— » (y — .‘1',—7 0)% + X||0]|5.
gcrr N e :

In this case, we have:

(Y — .'1,'-“())2,
(y—x' )% + \||6]|3.
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Some surprises: ridge regression

For ridge with gaussian design, p < 0 implies that the reduction in
variance is larger than k!

n Var 1;’5p| i+ Var 1;’(:\, Speedup

50 8.08 (0.06) 2.78 (0.02) 2.90 (0.03)

100 7.65 (0.05) 2.42(0.02) 3.16 (0.03)

200 7.45 (0.05) 2.30 (0.01) 3.24 (0.03)

500 7.15 (0.05) 2.19 (0.01) 3.27 (0.03)

1000 7.23 (0.05) 2.14 (0.01) 3.38 (0.03)
oo 7.140 2.124 3.362

Table: Observed performance of 2-fold cross-validation for a ridge
estimator.

p = 3, Sx toeplitz with increasing powers of 1/2, 50000 replications.



Some surprises: impact of data distribution

The general formula indicates that p depends on the true distribution
of the data. For example, we consider a binary classification problem:

Y ~ Bernoulli(0.5)
X |Y =0n~d,;
X|Y=1~do

and consider the linear discriminant estimator:

We consider the 0 — 1 loss (or accuracy):

L(z,y, 11, p2) = H{y =I(|lz —pa| > |z - /lz\)}-




Some surprises: impact of data distribution

» Slow setup: d; =1'(10,0.15), do =1(1,1)
» Fast setup: dy =1'(1,10), do =1'(1,1).
Slow Fast
N Var Regie  Var Ry Speedup  Var Reyie  Var Rey  Speedup
40 1.44 0.83 102 0.43 0.19 2.31
160 1.93 1.13 1.71 0.42 0.18 285
640 0.66 0.40 1.63 0.43 0.18 2.34
2560 0.53 0.33 1.62 0.44 0.18 2.37
00 0.53 0.33 1.64 0.43 0.19 2.37

20000 replications, standard errors shown in paper.

Y

Table: Variance of train-test split and cross-validated accuracy for LDA.




A few words on the proof technique

There are a couple of main strategies for central limit theorems. We
use a strategy known as Stein's method.

Stein's Method

Fact: Z is normally distributed if and only if, for all absolutely
continuous g where E|¢'(Z)| < oo, we have:

E[Zg(Z)] = Elg'(Z)]
We can make this quantitative: for any r.v X:

dw(X,07) < sup|E[Xg(X) — o°¢' (X)]|
fEH ®
where H = {f € C* : ||¢'|| £ 1, ||g"|| < 1}.

To learn more: read Chatterjee's survey.
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Asymptotics of Cross-Validation

Summary

» General theorem of estimators verifying stability conditions
» Formula for parametric M-estimators
» “Full” speedup for parametric models when ¥ = L

» Surprising behaviour even for parametric models when W # L

Other ideas
» Some degenerate cases exist when o7 = 0: require careful
handling
» Can we estimate Var R from the data? Tricky when k is
finite.

» High-dimensional asymptotics?




Cross-Validation in the High-Dimensional Regime

Joint work with Kamiar Rad (CUNY Baruch) and Arian Maleki
(Columbia).




On the bias of cross-validation

» \We often say that cross-validation (or data splitting) is
unbiased.

» However, RS, is unbiased for R, ;, and not R,,.

» |n high-dimensional problems, reducing the sample-size by a
constant factor affects fundamentally the estimator.




On the bias of cross-validation

LASSO, n= 800, p=1000

0804+ —— EPE
—— 5.fold
LOO

0.75 A

QG
©

£ 0.70 A \
O
=

" 0.65 -

M




On the bias of cross-validation

» Bias reduces as number of folds increases: can we analyze the
extreme case of leave-one-out cross-validation (n = k)?

» Not clear how variance behaves: large correlations between folds




Generalized Linear Models

Penalized Generalized linear models are a flexible class of models.
Consider i.i.d. data (y;,z;) € R x RP.

= arg. mmz( (Y. 1 B) + AR(53)

—

» Contains in particular LASSO, SVM, matrix completion.

» Decouples the high-dimensional interaction x,' 3 with prediction
loss /. o




Bounding the error of LOOCV

Theorem (Rad, Z., Maleki)

Assume that (1;,x;) is well-behaved, and that ¢ is smooth enough,
then, we have that, as n — oo, n/p = 0:

SCV 2 C

E(RS, — Rn)? < =.

n,n n

» |dea for proof: Taylor expansion / mean-value theorem.

» Tight rate, but no constants. 2
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Approximate Leave-One-Out for Fast Parameter

uning

Joint work with Shuaiwen Wang (Columbia), Peng Xu (Columbia), Haihao
Lu (MIT), Vahab Mirrokni (Google), Arian Maleki (Columbia)




Approximate Computation for LOO

» LOOCV is statistically desirable
» LOOCV is computationally infeasible

Can we obtain a fast approximate estimate of the LOOCV risk?




Approximation through linearization

For linear smoothers, which are estimators which verify:
y = S(X)y,

there exists a closed-form expression for leave-one-out estimates.
In particular, for OLS, we have a closed form expression in terms of

the hat matrix: ,
s

| — 1],‘,'.

-~

o=

,’-
A/

Where "IA°,' — !],- — -!/I-' f-i — .1'/,'

{

—1y;, and H is given by:

™

H=XX"X)"'x'




The Primal Approach
3 and 3/ respectively minimize:
L(B) = ) _{y;;x; B) +7(B),
=1

LI'(B) =) ty;iz; B) +r(B):




The Primal Approach

3 and 3/ respectively minimize:
L(B) = ) _{y;;x; B) +7(B),
=1

L/Y(B) =) Lyj;z] B) +r(B).

Vol

Idea: 3 might be a good starting point to B3/t Approximate 3/" by
a Newton step from /3.

Bt = 3+ (H/H)~1g/t. .

where H/i = V2L/{(8) and G/* = VL/'(3).




The Primal Approach

V2L/(B) = Y i(y;x] B)zx] + VER(B)

j#i

= V*L(B) — L(yi, z; B)ziw; .




The Primal Approach

o

VILIY(B) =) ly;,z]B)z;x; + V R(B)

J#1

= V’L(B) — (yi, z; B)zix;

V2L/t differs from V2L by a rank-1 matrix. Use rank-1 inverse
formula:
// ~ly. ”B 'H-

(HMN ™ =H1 + -
/ +a: ' H- ¢,

Plug-in to Newton's formula to get:

[I,,((z/, T, ,8)

I A/i A
£; 1[3, = &; 3 Bl
: | — ll,,((zj, X, ﬁ)




The Primal Approach

General formula for smooth problems:

2 e o T
x, B/ =x; B+ ””{('1./."'13’ @)~
L\ — a0 £, B)

» General formula
» Provable accuracy (compared to LOO: Rad and Maleki, 2018)

O




Non-Smooth Estimators

» In high-dimensional setting, often wish to use non-smooth
penalizers.

» Non-smooth penalizers can induce structure in the estimation
(sparsity, low-rank).




Non-Smooth Estimators

» In high-dimensional setting, often wish to use non-smooth
penalizers.

» Non-smooth penalizers can induce structure in the estimation
(sparsity, low-rank).

Consider lasso estimator:

LASSO: min — (T,ﬁ — ;1/_,')2 + Al[B]|1

Problem: R is not differentiable everywhere, and VQI?(Bf) very likely
to be ill-defined.




Non-Smooth Estimators

» In high-dimensional setting, often wish to use non-smooth
penalizers.

» Non-smooth penalizers can induce structure in the estimation
(sparsity, low-rank).

Consider lasso estimator:

LASSO: min — (T,ﬁ — ;1/_,')2 + Al[B]|1

Problem: R is not differentiable everywhere, and VQI?(Bf) very likely
to be ill-defined.




ALO Examples: LASSO

| - > 1
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ALO Examples: LASSO

LASSO:  min = Y (z/8—y;)* + Bl

Let 3 be the estimator on the full dataset

Hy; . 2
f = ]1,',‘(3:/ /6 .1/1)

H=Xs(X5Xs) ' X, S=1{j:8;#0}

ALO: z'B'~z'B+

Equivalently, we may write:

.,"., |
S T : \) At :
ALD) recidual + 7. = In-sample residual

S

with 7, =y — ¢; and 7; =y — 9. leverage




ALO Examples: LASSO

Figure: LOO vs ALO risk estimates for LASSO

D 200 400 1600
single fit  0.035 0.13 060 ©
ALO 0.06 0.21 0.89

LOOCV 27 107 480

Table: Time (in s) for each procedure (n = 800)




ALO Examples: SVM, Nuclear Norm

.’n“(’ ,o N0 I

300, p = 600

risk

8828000000034 00
900 0000000000000

GO0, 1
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™

Figure: LOO vs. ALO risk estimates of nuclear norm minimization.




The Dual Approach - LASSO Example

primal: 111311% ly — X85+ M3
3 2

11;111 Sy —w|3+ M|B|l1, st. w=X"}
&7

O

Primal-Dual correspondence: Y — XB =1




The Dual Approach - LASSO Example

Leave-i-out problem:
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Y E -

y_i — X_iB/' =06

Dimension Mismatch. — Lift the Dinlension.
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The Dual Approach - LASSO Example

Leave-i-out problem:
Ya,q Ya,i
I i
primal: 11};11 Y %('},/.,- — :1;‘/.7',(3‘)‘-’ + A|Bl1 + 5(x; 3/ z! 3)2

e &

Y — X -/ﬂﬁ = U Yo — X[T’ = U'=p

Dimension Mismatch. — Lift the Dinlension.




The Dual Approach - LASSO Example cont
spanned by X;, j € S

T S = {k: B # 0)

) — 0= (I-Xs(XiXs) X )y —50)
— [(I - Xs(X3Xs)' XT)(y - ya)]

2




The Dual Approach - LASSO Example cont
spanned by X;, j € S

T S = {k: B # 0)

)= 0= (I~ Xs(X3Xs)"' X3 )y~ ya)

yi— 2] B=0;=[(I-Xs(X3Xs)"'X3)(y - ¥a)]
= (1 — Hi)(Yi — Yasi)

2

Yi — 33,‘I /8
| — H;;

[. ‘/'/'l. e : e
Yi — & /6 =it Yay
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» Very useful for norm-type regularizers (e.g. generalized LASSO,
SLOPE)
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Approximate Leave-One-Out

» Generic framework for obtaining risk estimators in the
high-dimensional regime. In the scenario considered, compares
favorably against alternatives:

Compared to SURE cross-validation is model free, and
estimates the out of sample risk. tr H is related
to the degrees of freedom.

Compared to IJ (Giordano et al. 2019) : ALO has better

behavior when p is large compared to n. However,

J is more flexible.




Approximate Leave-One-Out

» Generic framework for obtaining risk estimators in the
high-dimensional regime. In the scenario considered, compares
favorably against alternatives:

Compared to SURE cross-validation is model free, and
estimates the out of sample risk. tr H is related
to the degrees of freedom.

Compared to |J (Giordano et al. 2019) : ALO has better

behavior when p is large compared to n. However,

J is more flexible.

» Work in progress: applications in neuroscience.

» Many unanswered questions: e.g. in the interpolating regime
(when 7; = v;), nearly all linearization strategies (ALO, |J)
break down. How can we produce fast estimates of the risk in
that regime?




Thanks!
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